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ABSTRACT
The detection and identification of resonances is a key ingredient in the studies of stability of
dynamical systems, with important applications for our Solar as well as for extrasolar systems.
In this paper we study the detection of resonances and close encounters in the three-body
problem using the fast Lyapunov indicator method. In order to investigate the close encounters,
we needed to adapt the method to the model and its singularities. Our technical improvement
lies in computation of the solutions of the singular variational equations by measuring the
divergence of close initial conditions. We have used the Levi-Civita regularization for the
integration of the equations of motion. As an application of the method, we show that it
provides a correct detection of the tube manifolds related to the Lagrangian point L1 of the
Sun–Jupiter system.

Key words: chaos – methods: analytical – methods: numerical – space vehicles – celestial
mechanics.

1 IN T RO D U C T I O N

Since the pioneering work of Hénon and Heiles (Hénon & Heiles
1964) wherein they studied the phase space with the method of
Poincaré surface of section, global phase-space studies of dynam-
ical systems have become a standard approach in many different
problems. In the field of astronomy, global studies for the puzzling
problem of the long-term stability of our Solar system can be found
in, for example Nesvorny & Morbidelli (1998), Murray & Holman
(1999), Robutel & Laskar (2001), Morbidelli (2002), Guzzo (2005,
2006), Robutel & Gabern (2006) and Hayes (2008); a picture of the
global dynamics in galactic potential is provided by, for example
Papaphilippou & Laskar (1998), Voglis, Tsoutsis & Efthymiopoulos
(2006) and Namouni, Guzzo & Lega (2008); and studies of global
dynamics related to cometary motion, close encounters and space
mission design can be found in, for example Villac (2008), Koon
et al. (2001), Perozzi & Ferraz Mello (2010), Gomez et al. (2004),
Valsecchi (2005) and Koon et al. (2008). Actually, many of these
studies have been motivated by the celebrated KAM (Kolmogorov
1954; Arnold 1963; Moser 1958) and Nekhoroshev (Nekhoroshev
1977) theorems, providing fundamental information about the long-
term stability of a Hamiltonian system from the global knowledge
of phase space, specifically from the distribution of resonances.

Many of these results have been obtained thanks to the develop-
ment of tools essentially based on the one hand on Fourier analysis
(such as Laskar’s frequency analysis, Laskar 1990), and on the other
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(CF)

hand on the developments in the Lyapunov exponents theory such as
fast Lyapunov indicator (FLI hereafter, Froeschlé, Lega & Gonczi
1997; Guzzo, Lega & Froeschlé 2002) [alternative methods are the
Mean Exponential Growth of Nearby Orbits (MEGNO), helicity
angles, local Lyapunov characteristic numbers, etc.; the reader can
refer to Morbidelli (2002) for an exhaustive review].

The implementation of methods that use the Lyapunov exponents
theory requires numerical computation of the solutions of the vari-
ational equations, which is very difficult to achieve in the case of
close encounters with the massive bodies. In fact, the power of sin-
gular terms in the equation of motions increases when computing
the variational equations (see Section 2.2).

In this paper we propose a numerical computation of the solutions
of the variational equations that works independently of the close
encounter with the primary or with the secondary body. The com-
putation is performed by implementing in the three-body problem
the method of measure of the divergence of close initial conditions
(Benettin, Galgani & Strelcyn 1976), in combination with the Levi-
Civita (LC hereafter) regularization with respect to the primary or
secondary body. In addition we introduce a technical improvement
to the method originally proposed in Benettin et al. (1976), which
improves the order of precision of the computation.

In order to avoid the problem of switching between the pri-
mary and secondary body, global transformations would provide a
simultaneous regularization of the two singularities. One exam-
ple is provided by the Birkhoff transformation (Birkhoff 1950)
suited to the planar circular restricted three-body problem, and other
global transformations can be found in Szebehely (1967). The ex-
tension to the spatial case is reviewed in Della Penna (2002) and
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references therein. In addition to the problem of their complexity,
global transformations cannot be extended to the N-body prob-
lem. Other different regularizations can be found, for example in
Froeschlé (1970) and Aarseth (1974), for integrating orbits of the
restricted three-body problem in the spatial case, and later general-
ized to the N-body problem by Heggie (1974). The reader can find
a review in Aarseth (2001).

The use of the regularizing transformation in both the equations
of motion and the variational equations is quite complicated in the
three-body problem.

First we illustrate the method with a test computation of the
largest Lyapunov exponent of individual orbits, then we provide a
significant application of the FLI method for the detection of the
so-called tube manifolds of the Lagrangian points L1 and L2 for
the Sun–Jupiter system. We recall that recent applications of the
FLI method (Villac 2008; Guzzo, Lega & Froeschlé 2009; Guzzo
2010; Lega, Guzzo & Froeschlé 2010) provided a new way of com-
putation of the so-called stable and unstable manifolds related to
the resonances. Investigation of these manifolds is, since Poincaré,
the key point for understanding chaos and diffusion in dynamical
systems. In the case of the restricted circular three-body problem
(RC3BP hereafter), the computation of a piece of the unstable man-
ifolds associated with the Lyapunov orbits of the Lagrangian points
L1 and L2, also known as tube manifolds, allows us to show, for
example, the role played by heteroclinic intersections on cometary
orbits (Koon et al. 2001). A renewed interest in this is related also
to the spacecraft trajectory design (see Simó 1995 and references
therein; Gomez et al. 2004; Koon et al. 2008; Villac 2008 for an
application of FLI).

The paper is organized as follows. In Section 2 we discuss the
problem of numerical integration of the variational equations of
the restricted three-body problem; we show that the problem is not
trivial even in the regularized setting and we propose a method of
computation based on the divergence of nearby orbits. Examples of
computation of the largest Lyapunov exponent and of the tube man-
ifolds are provided in Section 3. Conclusions are given in Section 4.
We discuss in Appendix A the LC regularization in the three-body
problem.

2 THE RESTRICTED THREE-BODY PROBLEM
A N D I T S VA R I AT I O NA L EQUAT I O N S

RC3BP describes the motion of a massless body P perturbed grav-
itationally by two massive bodies P1 and P2 (called primary and
secondary body, respectively). In the rotating frame xOy, the equa-
tions of motion of P are⎧⎨
⎩

ẍ = 2ẏ + x − (1 − μ) x+μ

r3
1

− μx−1+μ

r3
2

ÿ = −2ẋ + y − (1 − μ) y

r3
1

− μ y

r3
2
,

(1)

where the units of mass, length and time have been chosen so that
the masses of P1 and P2 are 1 − μ and μ (μ ≤ 1/2), respectively;
their coordinates are (−μ, 0) and (1 − μ, 0); and their revolution
period is 2π. We define r2

1 = (x + μ)2 + y2 and r2
2 = (x − 1 + μ)2 +

y2.
As it is well known, the problem has an integral of motion C, the

so-called Jacobi integral, defined by

C = x2 + y2 + 2
1 − μ

r1
+ 2

μ

r2
− ẋ2 − ẏ2. (2)

In order to introduce the variational equations of (1), we first
rewrite it as a first-order system of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = vx

ẏ = vy

v̇x = 2vy + x − (1 − μ) x+μ

r3
1

− μx−1+μ

r3
2

v̇y = −2vx + y − (1 − μ) y

r3
1

− μ y

r3
2
,

(3)

and then we introduce its compact form:

ξ̇ = F (ξ ), (4)

where ξ = (x, y, vx, vy). The variational equations of (4) are therefore{
ξ̇ = F(ξ )

ẇ = ∂F
∂ξ

w,
(5)

where w ∈ R
4 represents the tangent vector. As it is evident, the

power of singular terms of the vector field F increases when com-
puting the Jacobian matrix ∂F

∂ξ
, and the numerical integration of (5)

becomes very difficult to achieve in the case of close encounters.
To solve the problem related to the singularities in the equations

of motion (4), different theories of regularization of the Kepler
problem have been developed in the last century. However, these
regularizations do not resolve the worst singularities of equations
(5). We show this fact in Section 2.2, which can also be understood
with the simpler one-dimensional regularization.

Since the numerical integration of the variational equations (5) is
a hard task, we use the method of computation based on the diver-
gence of nearby orbits, introduced in Benettin & Galgani (1979),
as an alternative method of computation of the largest Lyapunov
exponent.

2.1 The method of divergence of nearby orbits

The first efficient numerical methods for the computations of
the largest Lyapunov exponent were introduced in the seventies
(Benettin et al. 1976; Benettin & Galgani 1979). In Benettin et al.
(1976) the computation was implemented by means of the diver-
gence of nearby orbits. Precisely, let us consider a differential equa-
tion

ξ̇ = F(ξ ),

and let us denote by φ(t, ξ ) its flow. For any fixed time t, the solution
ξ (t), w(t) of the variational equations{

ξ̇ = F(ξ )

ẇ = ∂F
∂ξ

w
(6)

satisfies

w(t) = φ(t, ξ (0) + w(0)) − φ(t, ξ (0)) + O(‖w(0)‖)2. (7)

Therefore, as the norm of w(0) becomes small, the vector w(t) is
well approximated by the divergence of orbits with nearby initial
conditions ξ (0) + w(0) and ξ (0).

For numerical integrations, for a fixed small time τ , the flow is
approximated by an integrator map ψ(ξ ), and the evolution of the
tangent vector w(iτ ) is obtained by iterating the map:{

ξ ((i + 1)τ ) = ψ(ξ (iτ ))

w((i + 1)t) = ψ(ξ (iτ ) + w(iτ )) − ψ(ξ (iτ )).
(8)

Since the tangent dynamics is linear with respect to the tangent
vectors, it is always possible to implement the computation with
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normalized vectors,

w̃(0) = s0
w(0)

‖w(0)‖ ,

with s0 being suitably small. One chooses s0 so that the second-
order terms in (7) are very small, ideally smaller than the required
precision of the computation. Since the dynamics may amplify the
norm of the vectors, one typically needs to normalize several times
the vector during the computation in order to achieve the desired
precision. This is the essence of the method described in Benet-
tin et al. (1976). The original method was abandoned afterwards;
instead it was modified by using a direct computation of the solu-
tions of the variational equations, with normalizations. We recover
in this paper the original method, which we find more suitable for
the problem of close encounters, with some modifications that im-
prove the numerical precision. In fact, since the second-order term
in equation (7) is symmetric with respect to the initial vector w(0),
we gain an order in the precision of the computation by using the
divergence of three nearby orbits and by approximating w((i + 1)t)
with{

ξ ((i + 1)τ ) = ψ(ξ (iτ ))

w((i + 1)t) = 1
2 (ψ(ξ (iτ ) + w(iτ )) − ψ(ξ (iτ ) − w(iτ ))).

(9)

Equation (7) now improves to

w(t) = 1
2 (φ(t, ξ (0) + w(0)) − φ(t, ξ (0) − w(0))) + O(‖w(0)‖)3.

(10)

We list below the steps used for the implementation of the method
in the computations done in this paper.

(i) Let us consider an initial condition ξ (0), w(0). We first renor-
malize w(0) to w̃(0) = s0w(0)/‖w(0)‖, with suitable s0.

(ii) We iterate the algorithm (9) until the norm w̃(t) is bigger than
a suitably chosen s1 (for example, one may set s1 = 10s0), or until |t|
is bigger than a fixed amount of time T . Therefore, we renormalize
the vector w(t) as in step (i).

The algorithm produces at any time t a vector wt which is related
to the tangent vector w(t) through the relation

w(t) = wt

sN
0

,

where N is the number of normalizations performed during the
integration in the time interval [0, t]. We also chose the initial vector
tangent to the surface of constant Jacobi integral C. The numerical
integrator ψ is a fourth-order Runge–Kutta applied to the equations
of the three-body problem. Such equations are written using the LC
transformation with respect either to the primary or to the secondary,
depending on the relative position of the body (see Appendix A).

2.2 The variational equations and
regularizing transformations

In this subsection we show that the regularizing transformations
such as the LC and the Kustaanheimo–Stiefel (Kustaanheimo &
Stiefel 1965) do not resolve the singularities in the variational
equations due to the divergence of the gravitational potential at col-
lisions. We consider here for simplicity the one-dimensional case,
corresponding to bodies moving under their gravitational attraction
on a straight line. The same kind of problems are encountered in
the planar case with the LC transformation and in the spatial case
with the Kustaanheimo–Stiefel transformation.

Let us consider the Lagrangian system

L(x, ẋ) = 1

2
ẋ2 + 1

x
(11)

with x ∈ R\0. The variational equations are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = v

v̇ = − 1
x2

ẇx = wv

ẇv = 2
x3 wx,

(12)

where w = (wx, wv) represents the tangent vector.
We now perform the one-dimensional version of LC transforma-

tion, and write the equations of motion and the variational equations
in the regularized variables. Setting x = u2, and correspondingly
ẋ = 2uu̇, the Lagrangian transforms to

L̃(u, u̇) = 2u2u̇2 + 1

u2
. (13)

The regularizing transformation is complemented by the introduc-
tion of a fictitious time s:

dt = u2ds. (14)

As a result of these transformations, the motions on any surface of
constant energy E satisfy the non-singular equation

u′′ = −1

2
Eu,

where u′′ = d2

ds2 u.
We now check if the transformation regularizes also the varia-

tional equations (12). We first perform the change of variables:

(u, p) −→ (x, v) =
(

u2,
p

2u

)
,

which implies the transformation of the tangent vectors:

(wu, wp) −→ (wx,wv) =
(

2uwu,
wp

2u
− p

2u2
wu

)
.

The above transformation conjugates, on any surface of constant
energy E, the variational equations (12) to the following equations:{

ẇu = wp

4u2 − p

2u3 wu

ẇp = − 2E

u2 wu.
(15)

After the introduction of the fictitious time (14), the above equations
become{

w′
u = wp

4 − p

2u
wu

w′
p = −2Ewu.

(16)

The first equation is still singular because of the term 1/u. Therefore,
the LC-like transformation has not resolved the singularity of the
variational equations.

The variational equations of the regularized equation of motions,{
w′

u = wp

4

w′
p = −2Ewu,

(17)

are different from (16), and do not correspond to the variational
equations (12) transformed with the regularizing transformation.
The reason is that the LC transformation includes a fictitious time
change which is a function of the spatial coordinates.

3 A PPLI CATI ONS TO THE R ESTRI CTED
CI RCULAR THREE-BODY PROBLEM

In this section we report on the applications of the method of compu-
tation explained in Section 2 to RC3BP for the Sun–Jupiter system
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Figure 1. Computation of the largest Lyapunov exponent for a regular (left-hand panel) and a chaotic orbit (right-hand panel) with initial conditions respectively:
x = 0.99, ẋ = y = 0, ẏ = ẏC and x = −1.9, ẋ = y = 0, ẏ = ẏC . ẏC is the value of the initial velocity ẏ as obtained from the Jacobi constant C = 3.03. The top
panels show the projection of the two orbits on the (x, y) plane (for a short time). The bottom panels show the computation of the largest Lyapunov indicator,
i.e. of the log ||w(t)|| divided by t. In the case of the regular orbit the largest Lyapunov indicator converges to zero. For the other orbit, which performs several
transitions between the regions which are inner and outer with respect to Jupiter, the evolution of the Lyapunov indicator is compatible with a chaotic orbit.

mass ratio and the Jacoby constant C = 3.03. As a test of the
method we first compute the largest Lyapunov indicator, whose
limit for t → ∞ is the largest Lyapunov exponent, for orbits having
close encounters with Jupiter, regular and chaotic ones. The results
are presented in Fig. 1: the top panels present the projection of
the orbits in the x, y plane (for a short time interval) and the bot-
tom panels present the evolution of the largest Lyapunov indicator
on a logarithmic scale. In the case of the regular orbit, the largest
Lyapunov indicator converges to zero as expected. We remark that
this computation represents a test of the precision of the algorithm
because the integrator switches the regularization from the primary
to the secondary many times during the numerical integration. The
second orbit performs several transitions between regions that are
inner and outer with respect to Jupiter’s orbit, and the evolution of
the Lyapunov indicator is compatible with a chaotic orbit.

As a further example we provide in Fig. 2 the computation of
log ||w(t)|| as a function of time for a regular orbit having close
encounters with Jupiter. It appears clearly that approaching the sin-
gularity the tangent vector increases sharply and decreases when

the orbit moves away from Jupiter. The growth of the tangent
vector is compatible with a logarithmic growth, typical of regular
orbits.

We provide a significant application of the FLI method for the
detection of the so-called tube manifolds of the Lagrangian points
L1 and L2 for the Sun–Jupiter system. FLI is defined as usual (Guzzo
et al. 2002):

FLI(ξ (0),w(0), t) = sup
τ≤t

log ||w(τ )||, (18)

where w(t) is the tangent vector at time t for an orbit with initial
conditions (x(0), w(0)). As we have shown in several of our previous
papers, FLI distinguishes the dynamical behaviour of the orbit with
initial condition x(0) in a relatively short time t (Froeschlé, Guzzo
& Lega 2000; Guzzo, Lega & Froeschlé 2002).

Therefore, the computation of FLI on two-dimensional grids of
initial conditions provides a picture of the phase space (Froeschlé
et al. 2000). Recent applications of the FLI method (Villac 2008;
Guzzo et al. 2009; Guzzo 2010; Lega et al. 2010) have also provided
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Figure 2. Computation of the norm of the tangent vector for a regular orbit with initial conditions: x = 0.997 21, ẋ = y = 0, ẏ = ẏC ; ẏC is the value of the
initial velocity ẏ as obtained from the Jacobi constant C = 3.03. The left-hand panel shows the projection of the orbit on the (x, y) plane (for a short time). The
right-hand panel shows, as a function of time, the log ||w(t)|| as well as the log r, where r =

√
(x − 1 + μ)2 + y2 is the distance to Jupiter. The norm of the

tangent vector increases by several orders of magnitude when the orbit approaches the singularity and decreases when the orbit moves away from Jupiter.

detailed computations of the so-called stable and unstable manifolds
related to the resonances. Investigation of these manifolds is, since
Poincaré, the key point for understanding chaos and diffusion in
dynamical systems. In the case of RC3BP, several authors (see for
example Simó 1995; Koon et al. 2001) have shown the dynamical
relevance for space mission design of the stable and unstable mani-
folds associated with the Lyapunov orbits of the Lagrangian points
L1 and L2. Such manifolds are also known as tube manifolds. It

is well known that the numerical computation of these manifolds
is very difficult due to the presence of singularities and the com-
plicated hyperbolic dynamics. Here we obtain a representation by
computing FLI by the method described in Section 2. Precisely,
we compute FLI on a two-dimensional grid of initial conditions
regularly spaced on a section of the phase space, and the intersec-
tion of the tube manifold with the section appears in the set of the
local maxima of the FLI (see Guzzo et al. 2009). In Figs 3 and

Figure 3. Computation of FLI for a grid of 1000 × 1000 initial conditions regularly spaced in x(0), ẋ(0). The other initial conditions are y(0) = 0 and
ẏ(0) = ẏC ; ẏC is obtained from the Jacobi constant C = 3.03. The integration time is t = 15. For each initial condition we present the value of FLI using
the colour scale shown below the figure: the largest values of FLI, individuated by light grey, correspond to an hyperbolic manifold. The hyperbolic manifold
shown in this figure corresponds with evidence to the intersection of the tube manifold with the section [see top left of fig. 7 of Vela-Arevalo & Marsden (2004)
for comparison].
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112 E. Lega, M. Guzzo and C. Froeschlé

Figure 4. Computation of FLI for a grid of 1000 × 1000 initial conditions regularly spaced in x(0), ẋ(0). The other initial conditions are y(0) = 0 and
ẏ(0) = ẏC ; ẏC is obtained from the Jacobi constant C = 3.03. The integration time is t = 50. Therefore, we expect to detect additional lobes of the hyperbolic
manifold with respect to the computation presented in Fig. 3. Again, for each initial condition we present the value of FLI using the colour scale shown below
the figure: the largest values of FLI, denoted by light grey, correspond to an hyperbolic manifold. Actually, with respect to the shorter time computation of
Fig. 3, we detect additional lobes belonging to a longer piece of manifold.

4 we show the result of computation of FLI on a grid of 1000 ×
1000 initial conditions on the same portion of the phase space as in
fig. 7 of Vela-Arevalo & Marsden (2004). Precisely, the initial con-
ditions are regularly spaced on x, ẋ with −2.2 ≤ x(0) ≤ −1.1 and
−0.3 ≤ ẋ(0) ≤ 0.3; y(0) = 0 and ẏ(0) is obtained from the Jacobi
constant C = 3.03. The integration time is t = 15 in Fig. 3 and t =
50 in Fig. 4. The value of FLI is indicated in the panels using the
colour scale shown below them: the largest values of FLI, denoted
by light grey,1 correspond to the hyperbolic manifolds. In Fig. 3,
the points of maximum FLI evidently correspond to the intersection
of the tube manifold with the section (see top left of fig. 7 of Vela-
Arevalo & Marsden 2004 for comparison). Fig. 4 shows the same
computation done on a longer time t = 50, revealing additional
lobes belonging to a longer piece of the manifold.

4 C O N C L U S I O N

In this paper we have proposed a method for the numerical compu-
tation of the variational equations of RC3BP, which is particularly
suitable for the computation of dynamical indicators. Dynamical in-
dicators provide a detailed knowledge of the phase-space structure,
such as resonances and invariant manifolds. The method enriches
the possibility of the numerical investigation of the three-body dy-
namics, as for example the computation of tube manifolds. This
result is relevant for many astronomical studies of theoretical inter-
est; it may also be relevant for applications such as mission design.

1 The colour versions of all the figures can be found in the electronic version
of the paper; the light grey here corresponds to yellow there and the darker
grey here corresponds to red–violet there.
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APPENDIX A : THE LEVI-CIVITA
R E G U L A R I Z AT I O N A N D T H E TH R E E - B O DY
PROBLEM

Since the potential function is infinite at collisions, the numerical
investigation of close encounters with both the massive bodies needs
special attention. To this aim, various theories of regularization of
the Kepler problem have been developed in the last century. In this
paper we use two Levi-Civita regularizations (Levi-Civita 1906)
with respect to the primary or secondary body, in order to treat both
the singularities.

The Levi-Civita transformation is(
x − x0

y

)
=

(
u1 −u2

u2 u1

) (
u1

u2

)
= A

(
u1

u2

)
, (A1)

where x0 is a parameter that can be set equal to the abscissa of P1

or P2.
The transformation will eliminate only one of the two singular-

ities. We will set x0 depending on whether the third body is closer
to the primary or to the secondary. Precisely, the choice is made by
comparing the forces, i.e. we regularize with respect to P1 if

(1 − μ)

r2
1

>
μ

r2
2

,

otherwise we regularize with respect to P2.

The LC transformation is completed by the introduction of a
fictitious, or regularized, time s defined by

dt = r ds, (A2)

where r = u2
1 +u2

2 = √
(x − x0)2 + y2. The equations of motion in

the regularized coordinates are (see, for example Szebehely 1967){
u′′

1 = 1
4 [(a + b)u1 + cu2]

u′′
2 = 1

4 [(a − b)u2 + cu1]
(A3)

with⎧⎪⎨
⎪⎩

a = 2m
R

− C + x2 + y2

b = 4y ′ + 2rx − 2mr((x−x0)±1)
R3

c = 2ry − 4x ′ − 2mry

R3 .

(A4)

In (A4) we use R = r2, the sign plus, and m = μ if we regularize
with respect to P1 and R = r1, the sign minus, and m = 1 − μ if we
regularize with respect to P2.

Let us remark that the denominators appearing in (A4) are well
separated from zero, therefore the singularity associated either with
1/r1 or with 1/r2 is removed.

As usual the integration of second-order differential equations
is done by splitting each equation into two first-order differential
equations. We have therefore a set of four first-order differential
equations. Starting with an initial condition (x, y), we obtain the
initial values of (u1, u2) as follows:⎧⎪⎪⎨
⎪⎪⎩

x < x0 x ≥ x0

u2 =
√

r−(x−x0)
2 u1 =

√
r+(x−x0)

2

u1 = y

2u2
u2 = y

2u1
.

(A5)

We have distinguished the cases x < x0 and x ≥ x0 in order to avoid
zero denominators in the computations of respectively u1 and u2.
Concerning the velocities, the relation between the physical and
regularized velocities is

x ′ = 2(u1u
′
1 − u2u

′
2),

y ′ = 2(u1u
′
2 + u2u

′
1), (A6)

where ′ denotes a derivative with respect to s. The first derivatives
of the coordinates u with respect to s as a function of x′ are(

u′
1

u′
2

)
= 1

2r
AT

(
x ′

y ′

)
, (A7)

where AT is the transpose of the matrix A. Actually one can write
the previous expression with respect to x′ or to ẋ taking into account
that(

x ′

y ′

)
= r

(
ẋ

ẏ

)
. (A8)

Equations (A1) and (A6), (A8) provide the position and velocities
in the physical space as a function of the regularized coordinates
while equations (A5) and (A7), (A8) provide the regularized posi-
tion and velocities as a function of the physical coordinates.
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