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ABSTRACT

Context. The presence of highly eccentric extrasolar planets in binary stellar systems suggests that the Kozai effect has played an
important role in shaping their dynamical architectures. However, the formation of planets in inclined binary systems poses a con-
siderable theoretical challenge, as orbital excitation due to the Kozai resonance implies destructive, high-velocity collisions among
planetesimals.
Aims. To resolve the apparent difficulties posed by Kozai resonance, we seek to identify the primary physical processes responsible
for inhibiting the action of Kozai cycles in protoplanetary disks. Subsequently, we seek to understand how newly-formed planetary
systems transition to their observed, Kozai-dominated dynamical states.
Methods. The main focus of this study is on understanding the important mechanisms at play. Thus, we rely primarily on analytical
perturbation theory in our calculations. Where the analytical approach fails to suffice, we perform numerical N-body experiments.
Results. We find that theoretical difficulties in planet formation arising from the presence of a distant (ã ∼ 1000 AU) companion star,
posed by the Kozai effect and other secular perturbations, can be overcome by a proper account of gravitational interactions within the
protoplanetary disk. In particular, fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the
disk’s unwarped, rigid structure is maintained. Subsequently, once a planetary system has formed, the Kozai effect can continue to be
wiped out as a result of apsidal precession, arising from planet-planet interactions. However, if such a system undergoes a dynamical
instability, its architecture may change in such a way that the Kozai effect becomes operative.
Conclusions. The results presented here suggest that planetary formation in highly inclined binary systems is not stalled by pertur-
bations, arising from the stellar companion. Consequently, planet formation in binary stars is probably no different from that around
single stars on a qualitative level. Furthermore, it is likely that systems where the Kozai effect operates, underwent a transient phase
of dynamical instability in the past.

Key words. planets and satellites: formation – planets and satellites: dynamical evolution and stability – methods: analytical –
methods: numerical

1. Introduction

Among the most unexpected discoveries brought forth by a con-
tinually growing collection of extra-solar planets has been the re-
alization that giant planets can have near-parabolic orbits. Since
the seminal discovery of 16Cygni B (Cochran et al. 1997), fol-
lowed by HD 80606 (Naef et al. 2001), much effort has been ded-
icated to understanding the dynamical origin and evolution of
systems with highly eccentric planets. In particular, it has been
understood that in presence of a companion star on an inclined
orbital plane, the most likely pathway to production of such ex-
treme planet eccentricities is via Kozai resonance (Eggleton &
Kiseleva-Eggleton 2001).

The Kozai resonance was first discovered in the context of
orbital dynamics of highly-inclined asteroids forced by Jupiter,
and has been subsequently recognized as an important process
in sculpting the asteroid belt (Kozai 1962) as well as being
the primary mechanism by which long-period comets become
Sun-grazing (Bailey et al. 1992; Thomas & Morbidelli 1996).
Physically, the Kozai resonance corresponds to extensive excur-
sions in eccentricity and inclination of a test particle forced by a
massive perturber, subject to conservation of the third Delaunay

momentum H =
√

1 − e2 cos(i) (where e is the eccentricity and i
is the inclination), and libration of its argument of perihelion ω
around ±90◦. A necessary criterion for the resonance is a suffi-
ciently large inclination (i > arccos

√
3/5) relative to the mas-

sive perturber’s orbital plane, during the part of the cycle where
the test-particle’s orbit is circular.

By direct analogy with the Sun-Jupiter-asteroid picture, the
Kozai resonance can give rise to variation in orbital eccentricity
and inclination of an extra-solar planet, whose orbit, at the time
of formation, is inclined with respect to a stellar companion of
the planet’s host star (Wu & Murray 2003). In the systems men-
tioned above (16Cygni B, HD 80606) the stellar companions’
(e.g. 16Cygni A, HD 80607) proper motion has been verified to
be consistent with a binary solution. Other examples of planets
in binary stellar systems are now plentiful (e.g. γ Cephei (Hatzes
et al. 2003), HD 196885 (Correia et al. 2008), etc.) with binary
separation spanning a wide range (ã ∼ 10−1000 AU). However,
all planets whose eccentricities are expected to have been excited
by the Kozai resonance with the companion star are in wide bi-
naries.

If a Kozai cycle is characterized by a sufficiently small peri-
helion distance, the eccentricity of the planet may subsequently
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decay tidally, yielding a pathway to production of hot Jupiters,
whose orbital angular momentum vector is mis-aligned with re-
spect to the stellar rotation axis (Fabrycky & Tremaine 2007).
The presence of such objects has been confirmed via obser-
vations of the Rossiter-McLaughlin effect (McLaughlin 1924),
leading to a notion that Kozai cycles with tidal friction are re-
sponsible for generating at least some misaligned systems (Winn
et al. 2010; Morton & Johnson 2011).

Kozai cycles may have also played an important role in
systems where a stellar companion is not currently observed.
Indeed, one can envision an evolutionary history where the bi-
nary companion gets stripped away as the birth cluster disperses.
In fact, such a scenario may be rather likely, as the majority of
stars are born in binary systems (Duquennoy & Mayor 1991). In
this case, a Kozai cycle can be suddenly interrupted, causing the
planet’s eccentricity to become “frozen-in”.

In face of the observationally suggested importance of Kozai
cycles during early epochs of planetary systems’ dynamical evo-
lution, the formation of planets in presence of a massive, inclined
perturber poses a significant theoretical challenge (Larwood
et al. 1996; Marzari et al. 2009; Thébault et al. 2010). After all,
in the context of the restricted problem (where only the stars
are treated as massive perturbers), one would expect the proto-
planetary disk to undergo significant excursions in eccentricity
and inclination due to the Kozai resonance, with different tem-
poral phases at different radial distances, resulting in an inco-
herent structure. Such a disk would be characterized by high-
velocity impacts among newly-formed planetesimals, strongly
inhibiting formation of more massive objects (planetary em-
bryos) (Lissauer 1993).

Damping of eccentricities due to gas-drag has been consid-
ered as an orbital stabilization process. However, excitation of
mutual inclination among neighboring annuli renders this mech-
anism ineffective (Marzari et al. 2009). Ultimately, in the context
of a restricted model, one is forced to resort to competing time-
scales for formation of planetesimals and dynamical excitation
by the companion star. Such an analysis suggests that although
possible, planetary formation in binary systems is an unlikely
event.

Here, we show that the theoretical difficulties in planet for-
mation arising from the companion star, posed by the Kozai ef-
fect and other secular perturbations, can be resolved by a proper
account of the self-gravity of the proto-planetary disk (i.e. plan-
etesimals embedded in a gaseous disk). During the preparation
of this manuscript, a paper was published (Fragner et al. 2011)
addressing the role of the gravity of a gas disk on the relative
motion of embedded planetesimals, with hydrodynamical sim-
ulations. The work of Fragner et al. (2011) neglects the grav-
itational effects of the gas-disk onto itself, and therefore con-
siders a case where pressure and viscosity keep the disk more
coherent against external perturbations than would be possible
with self-gravity alone (Fragner & Nelson 2010). This param-
eter regime is characteristic of systems where external stresses
are strong enough to partially overcome the role of self-gravity,
but not that of the internal forces of the fluid. Examples of such
systems include binary stars with moderate separations (60 AU
in the simulations of Fragner et al. 2011).

In systems of this sort, the dynamics of the planetesi-
mals tends to be somewhat different from those of the gas.
Consequently, gas-drag induces size-sorted orbital evolutions,
ultimately leading to high-velocity impacts among planetesimals
of different sizes. This again, limits the prospects for accretion.
Conversely, in the present paper we consider binary separation
on the order of ã ∼ 1000 AU, consistent with the cases of 16Cyg

numerical

analytical
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γ (arcsec/year)

16 20 24 28 32

0

- 4

- 8

Fig. 1. Example of apsidal precession, γ, in a self-gravitating disk. Here
the disk is assumed to contain 50 M⊕ between 16 and 32 AU, char-
acteristic of a typical post-formation debris disk in the Nice model of
solar system formation (Tsiganis et al. 2005). The solid curve shows the
precession rate predicted by Eqs. (1)–(3), as a function of semi major
axis. The dots and error bars show the results of a numerical calcula-
tion, integrating 3000 equal-mass particles with a softening parameter
of ε ≈ 0.005 AU to smooth the effects of their mutual close encounters.
The disk was binned into 100 annuli in a and the mean frequency of the
longitude of pericenter �̇ was measured from the time-series of � of
the particles in each bin (dots) as well as its variance (error bars). Note
that the precession frequency of a self-gravitating disk is negative.

B and HD HD 80606. This allows us to show, with a simple an-
alytic approach, that gravity is a sufficient mechanism to main-
tain orbital coherence and planetary growth, without any need
to account for other forces acting inside the disk. In fact, we
show that one of the primary effects of self-gravity is to induce
a fast, rigid recession in the longitudes of perihelion and ascend-
ing node of the disk. This allows for planetary formation to take
place, as if the secular perturbations arising from the stellar com-
panion were not present. It is noteworthy that such a process is
in play, for instance, in the Uranian satellite system, where the
Kozai effect arising from the Sun is wiped out owing to secular
interactions among the satellites and the precession arising from
Uranus’ oblateness (Morbidelli 2002).

Furthermore, we show that even after the formation process
is complete, and the disk has evaporated, the Kozai effect may
continue to be wiped out by the orbital precession, arising from
planet-planet interactions. This is again in line with the exam-
ple of the outer solar system, where interactions among the gi-
ant planets erase a Kozai-like excitation due to the galactic tide
(Fabrycky & Tremaine 2007). However, if such a planetary sys-
tem undergoes a dynamical instability, which leads to a consid-
erable change in system architecture, it may evolve to a state
where the Kozai resonance is no-longer inhibited.

The purpose of this work is to identify the important physi-
cal processes at play, rather than to perform precise numerical
simulations. Consequently, we take a primarily analytical ap-
proach in addressing the problem. The plan of this paper is as
follows. In Sect. 2, we compute the precession rate, arising from
the self-gravity of the disk and show that it is copiously sufficient
to impede the Kozai effect. In Sect. 3, we show that under secu-
lar perturbations from the companion star, the reference plane of
the disk precesses rigidly, implying an un-warped structure. In
Sect. 4, we show how an initially stable two-planet system en-
ters the Kozai resonance after a transient instability causes one
of the planets to be ejected from the system. We summarize and
discuss our results in Sect. 5.
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2. Kozai resonance in a self-gravitating disk

We begin by considering the secular dynamics of planetesimals
in an isolated, flat nearly-circular disk of total mass Mdisk around
a Sun-like (M� = 1 M�) star. Due to a nearly-null angular mo-
mentum deficit, secular interactions within the disk will not ex-
cite the eccentricities and inclinations significantly. Rather, as
already mentioned above, the primary effect of disk self-gravity
is to induce a fast, retrograde apsidal precession.

Our calculation of the induced precession follows the for-
malism of Binney & Tremaine (1987), originally developed in
the context of galactic dynamics. We work in terms of a po-
lar coordinate system, where the radial coordinate is logarithmic
(ρ = ln r) and φ denotes the polar angle. The reduced potential
due to a disk surface density σ reads:

Φ = − G√
2

∫ ∞

−∞

∫ 2π

0

eρ/2σ√
cosh(ρ − ρ′) − cos(φ − φ′)dφ′dρ′, (1)

where G is the gravitational constant. We assume σ ∝ r−1.
Consequently, axial symmetry is implicit, and the potential is
only a function of ρ. The characteristic frequencies of a plan-
etesimal in the disk are the mean motion, n, and the radial fre-
quency, κ:

n =
1
a

(
∂Φ

∂r

)

κ =
3
a

(
∂Φ

∂r

)
+

(
∂2Φ

∂r2

)
(2)

where a is semi-major axis. The apsidal precession that results
from self-gravity, γ, can then be written as the difference be-
tween the mean motion and radial frequencies

γ ≡ n − κ. (3)

In practice, the calculation of γ is performed by breaking up
the disk into cells and computing the derivatives discretely.
Following Levison & Morbidelli (2007), we split the disk into
1000 logarithmic radial annuli, and take the angular cell width
to be Δφ = 0.5◦. We assume the disk edges to be ain = 0.5 AU
and aout = 50 AU, although the results are not particularly sen-
sitive to these choices. The resulting precession in the disk is
roughly uniform in a, except for the edges, where this linear the-
ory breaks down. Numerical experiments of debris disks, where
self-gravity is taken into account directly, however, show that
the precession rate at the edges is also roughly uniform and
quantitatively close to that elsewhere in the disk (see Fig. 1).
In other words, the disk’s apsidal precession is approximately
rigid. Consequently, for the purposes of this work, we take the
precession rate evaluated at a = 10 AU, to be the characteristic γ
for the entire disk.

Generally, typical protoplanetary disks contain Mdisk ∼
10−100 MJup at the time of formation, in gas and planetesimals.
We have calculated the characteristic precession rate for a plan-
etesimal embedded in such a disk, for total disk mass range,
spanning roughly two orders of magnitude, between Mdisk =
0.1 MJup and Mdisk = 300 MJup. Figure 2 shows the relation-
ship between γ and Mdisk. Note that unlike typical planetary
systems, where secular interactions among planets give rise to
positive apsidal precession, γ of a self-gravitating disk is nega-
tive. Quantitatively, for the assumed disk geometry, the preces-
sion rate is well fit by the functional relationship γ = −2.4 ×
10−5 (Mdisk/MJup) rad/year. Having computed the characteris-
tic precession rate, we can now write down the orbit-averaged
Hamiltonian of a planetesimal in the disk.

Fig. 2. Apsidal recession of a self-gravitating disk. The recession rate, γ
is plotted as a function of disk mass. Blue points are the model results.
The points are well fit by a linear functional relationship γ = −2.4 ×
10−5 (Mdisk/MJup) rad/year.

We work in terms of canonically conjugated action-angle
Delaunay variables

G =
√

a(1 − e2) , g = ω

H =
√

a(1 − e2) cos i, h = Ω
(4)

where the inclination i is measured relative to an arbitrary ref-
erence plane and Ω is the longitude of the node of the disk
relative to such a plane. In the analysis that follows, we shall
take the binary star’s orbital plane to be the reference plane. The
Hamiltonian is simply

KSG = γG. (5)

KSG describes an eccentric precessing orbit on a fixed orbital
plane (i.e. the plane of the disk).

Let us now incorporate the perturbations from the stellar
companion into the Hamiltonian. Due to a considerable orbital
separation between the protoplanetary disk and the perturber, the
interactions between the two will be secular in nature. For our
purposes here, we take the perturber to lie on a circular, inclined
orbit. A circular perturber implies that, to leading order, poten-
tial eccentricity excitations in the disk would arise exclusively
from the Kozai resonance. The free orbital precession induced
by the companion can be approximated as (Murray & Dermott
1999)

ġfree  3n
2

m̃
M

(a
ã

)3
(6)

where m̃ and ã are the perturber’s mass and semi-major axis
and M is the mass of the central star. In the following, we as-
sume that

ġfree � −|γ|, (7)

and neglect ġfree altogether. This condition is satisfied for well-
separated binary systems (a/ã� 1). Note that the lack of orbital
eccentricity of the perturber is a mathematical convenience that
makes the calculation more straight forward, without modifying
our conclusions on Kozai dynamics qualitatively1.

We take the stellar companion’s orbital semi-major axis to
be a = 1000 AU and take the inclination as well as disk mass
1 An eccentric star would induce some forced eccentricity in the disk.
However, because of the fast rigid apsidal precession of the disk, the
forced eccentricity will be small and the disk will maintain coherence.
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Fig. 3. Dynamical phase-space portraits for a planetesimal in protoplanetary disks of various masses, perturbed by a stellar companion at various
inclinations showing Kozai resonance. The eccentricity vector is plotted in cartesian coordinates on each panel (x = e cos g, y = e sin g). Regions
of libration of argument of perihelion are shown as red curves, while blue curves depict circulation. The top panels represent a mass-less disk,
middle panels correspond to a Mdisk = 1 MJup disk and the bottom panels show a Mdisk = 10 MJup disk. Note that the Kozai resonance disappears
as the disk mass is increased.

to be variable parameters. This choice is motivated by the esti-
mate of the orbital separation between HD 80606 and HD 80607
(Eggenberger et al. 2003). It is noteworthy, that the particular
choice of a does not have significant consequences on the dy-
namics of the disk, beyond setting the time-scale on which the
Kozai effect operates, provided that it is large enough that con-
dition (7) is satisfied. In this section, we shall assume that the
nodal reference plane of the disk precesses rigidly, and the disk
remains un-warped. In other words, we assume that no mutual
inclination is excited between neighboring disk annuli. This fea-
ture is implicitly essential to our argument, and we will justify
this assumption quantitatively in the next section.

In accord with the reasoning outlined above, we solely re-
tain the Kozai term in the disturbing potential of the stellar com-
panion. Consequently, the planetesimal’s Hamiltonian now reads

(Kinoshita & Nakai 1999)

KSGK = γG +
am̃ñ2

(M + m̃)

{15(a −G2)(G2 − H2) cos(2g)
G2

− (5a − 3G2)(G2 − 3H2)
G2

}
(8)

where ñ is the stellar perturber’s mean motion. Notice that in the
Hamiltonian above, γ could be factorized, so that the magnitude
of the perturbation would be proportional to ñ/γ. Since γ is a lin-
ear function of the disk mass, this illustrates that it is equivalent
to have a closer binary companion (larger ñ) to a proportionally
less massive disk.

With this simplified dynamical model in place, we can now
explore the effect of self-gravity on the orbital excitation of the
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planetesimals in the disk due to the Kozai resonance. We study
three choices of perturber inclination: i = 45◦, i = 65◦ and i =
85◦. To obtain a dynamical portrait of the system, we proceed as
follows. Because the variable h does not appear in Eq. (8), the ac-
tion H is a constant of motion. On each H = constant surface, the
Hamiltonian, KSGK, describes a one-degree of freedom system,
in the variables G, g. Simultaneously, because the Hamiltonian is
also a constant of motion, the dynamics is described by the level
curves of the Hamiltonian. For simplicity, we show the dynam-
ics in cartesian coordinates (x = e cos g, y = e sin g) in Fig. 3,
where e is computed from the definition of G, for the assumed
value of a (here a = 10 AU). Given that H is constant on each
panel, a given eccentricity also yields the inclination. The panels
are identified by the value of the inclination imax that corresponds
to e = 0 for the given value of H (i.e. the inclination of the star
relative to the initial, circular disk). Similarly, the maximal value
of e on each panel corresponds to i = 0.

It is useful to begin with a discussion of a mass-less disk
as this configuration is often assumed in formation studies. The
corresponding plots are shown as the top panel of Fig. 3. In
this case, there is no added precession (γ = 0) so the Kozai
resonance is present for all considered choices of inclination.
The phase-space portraits show that any orbit which starts out at
low eccentricity (near the origin) will follow a trajectory which
will eventually lead to a highly eccentric orbit, regardless of ini-
tial phase. In particular, for imax = 45◦, a particle which starts
out on a circular orbit will attain emax  0.4. For imax = 65◦,
emax  0.85 and for imax = 85◦, emax  1. The resulting high-
velocity collisions render formation of planetary embryos inef-
fective. Consequently, one should not expect planets to form un-
der the mass-less disk approximation.

Let us now consider a Mdisk = 1 MJup disk. The phase-space
portraits of this system are shown as the middle panels of Fig. 3.
Although the quoted value corresponds to a very low-mass disk,
the situation is considerably different from the mass-less case.
For imax = 45◦, the Kozai resonance is no longer effective2. Thus,
an initially nearly-circular orbit will retain its near-zero eccen-
tricity, allowing for planetary formation to take place. The Kozai
resonance still operates in the imax = 65◦ and imax = 85◦ cases,
but the maximum eccentricities are now lower (emax  0.55 and
emax  0.95 respectively) compared to the mass-less disk sce-
nario.

Finally, the bottom panels of Fig. 2 show the phase-space
portraits of a Mdisk = 10 MJup disk. Here, the Kozai resonance
is completely wiped out, for all values of imax. Particularly, cir-
cular orbits remain circular (the center of each panel is a stable
equilibrium point). Strictly speaking, these calculations describe
the dynamics of planetesimals embedded in the disk. However,
if planetesimals remain circular, the gaseous component of the
disk must do so as well because it feels the same gravitational
potential. On the other hand, if the Kozai resonance forces the
planetesimals to acquire a considerable eccentricity during their
evolution (the cases with low disk mass in Fig. 3 or, equivalently,
cases with a close stellar companion) the gas-disk may remain
more circular than the planetesimals, thanks to its additional dis-
sipative forces. This is the situation illustrated in Fragner et al.
(2011), where a differential evolution of planetesimals and gas,
leads to size-dependent gas-drag forces.

2 Interestingly, the disappearance of the Kozai separatrix is not exactly
symmetric with respect to the sign of γ. If γ is negative, it immediately
acts to erase the Kozai effect. However, a small positive γ (i.e. γ = 10−5

for imax = 45◦) can act to enhance to Kozai effect. The effect however
rapidly turns over for faster positive precession (i.e. γ > 10−4).

In conclusion, recalling that 10 MJup is a lower-bound for
the mass of a typical protoplanetary disk, this analysis suggests
that planetary formation can take place in well separated binary
systems like 16Cyg and HD 80606-7 as if secular perturbations,
arising from the companion star were not present.

3. Rigid precession of a self-gravitating disk

In the previous section, we showed that a self-gravitating disk is
not succeptible to excitation by the Kozai resonance. However,
in order for our argument to be complete, it remains to be shown
that the assumptions of rigid precession of the disk’s nodal ref-
erence plane, as well as the lack of the excitation of mutual in-
clination within the disk, hold true. To justify our assumptions,
it is sufficient to consider a nearly circular self-gravitating disk
and show that it is characterized by rigid nodal precession, since
we have already shown that a flat disk will remain circular under
external perturbations.

Intuitively, one can expect a rigidly precessing flat disk, from
adiabatic invariance. Consider an isolated self-gravitating disk
where mutual inclinations (inclinations with respect to the in-
stantaneous mid-plane), î, are initially small (i.e. sin î ∼ î � 1).
Forced by self-gravity, the mutual inclinations within the disk
will be modulated on a characteristic (secular) timescale related
to the precession of the longitude of the node, Ω̂, relative to the
disk mid-plane. One can define the action,

J =
∮

îdΩ̂ = const. (9)

which represents the phase-space area bounded by a secular
cycle (Neishtadt 1984). If the disk is subjected to an external
perturbation (such as the torquing from a stellar companion),
whose characteristic timescale is much longer than the secular
timescale on which self-gravity modulates the mutual inclina-
tions (the so-called adiabatic condition), J will remain a con-
served quantity (Henrard & Morbidelli 1993). This implies that
the mutual inclinations within the disk will remain small. This is
true for each annulus of the disk in which the adiabatic condition
is fulfilled. Consequently, the disk will remain unwarped and the
disk mid-plane will precess rigidly at constant inclination rela-
tive to the binary star’s orbital plane.

The same idea can be illustrated more quantitatively in the
context of classical Laplace-Lagrange secular theory. One pos-
sible way to view the inclination dynamics of disk is by model-
ing the disk as a series of massive self-gravitating rings, adjacent
to one-another. Note that the same technique cannot be directly
applied to eccentricities, since it would predict a positive apsi-
dal precession, whereas in reality the apsidal precession would
be negative, as shown in the previous section. This is because,
as soon as the eccentricity is non zero, a ring would start to in-
tersect the adjacent rings, violating the assumption on which the
Laplace-Lagrange secular theory is based.

The scaled Hamiltonian of a given annulus j, where exclu-
sively secular terms up to second order in inclination have been
retained, reads (Murray & Dermott 1999)

KLL
j =

1
2

B j ji
′2
j +

N∑
j=1, j�k

B jki
′
ji
′
k cos

(
Ω
′
j − Ω

′
k

)
(10)

where the primed quantities are expressed with respect to an
fixed inertial plane (here the initial plane of the disk). In this
approach, the disk is broken up into N − 1 annuli whereas the
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Fig. 4. Inclination structure of a mass-less (blue) and a self-gravitating
Mdisk = 10 MJup disks. Here the inclination is measured relative to the
original plane of the disk. The inclination is shown as a function of
semi major axis a at t = 1, 3, and 5 Myr. Note that the mass-less disk is
considerably warped due to the perturbations from the companion star,
while the self-gravitating disk maintains a uniform inclination. in this
case, the growth of inclination with time is due to the rigid precession
of the disk relative to the binary star plane. The inclination returns back
to zero after a precession period.

Nth index corresponds to the stellar companion. The coefficients
B j j and B jk take the form

B j j = −n j

4

N∑
k=1,k� j

mk

M� + m j
α jkᾱ jkb(1)

3/2(α jk)

B jk =
n j

4
mk

M� + m j
α jkᾱ jkb(1)

3/2(α jk) (11)

where m j denotes the mass of a given annulus j if j < N,
mN = m̃, α = a j/ak, ᾱ = α if perturbation is external and
ᾱ = 1 otherwise, while b(1)

3/2 is the Laplace coefficient of the
first kind. Similarly to Eq. (6), the diagonal terms in the B ma-
trix correspond to the free nodal precession rates. To crudely
account for the large mutual inclination of the stellar compan-
ion, we reduced its mass by a factor of sin(i) because in the
context of second-order theory, it is appropriate to only con-
sider the projection of its mass onto the disk’s reference plane.
Rewriting the above Hamiltonian in terms of cartesian coordi-
nates (q = i

′
cosΩ

′
, p = i

′
sinΩ

′
), the first-order perturbation

equations ( ṗ = ∂K/∂q, q̇ = −∂K/∂p) yield an eigen-system
that can be solved analytically (see Ch. 7 of Murray & Dermott
1999). In our calculations, we choose N = 101 and again con-
sider a σ ∝ r−1 surface density across the disk.

We take the orbital properties of the stellar companion to be
the same as those discussed in the previous section and take the
initial mutual inclination between the disk and the stellar com-
panion to be i = 65◦. Indeed, the evaluation of the solution for
various disk masses shows that the disk precesses rigidly, if the
disk mass exceeds Mdisk � 1 MJup. This threshold is in rough
quantitative agreement with the numerical models of Fragner
et al. (2011). Figure 4 shows the evolution of the inclination
as a function of semi-major axis, of a massless (blue) disk as
well as a self-gravitating (black) MJup = 10 MJup disk at various
epochs. The reference plane for the measure of the inclination is
the initial plane of the disk. We see that for the mass-less disk
the inclination varies considerably with semi-major axis, which
means that the disk is significantly warped, as one would expect
in the context of a standard restricted 3-body problem. However,
the inclination of a self-gravitating disk is nearly constant in

semi-major axis, depicting an unwarped, rigid structure. Note,
however, that the inclination changes with time. this is because
the disk is precessing with a constant inclination relative to the
plane of the binary star, so that the disk’s inclination relative to
its initial plane has to change periodically, over a precession pe-
riod, from imin = 0◦ to a maximum of imax = 130◦ and back.

In conclusion, the assumption of untwisted structure, that we
employed in the previous section when calculating the excitation
by the Kozai resonance, is valid for massive disks perturbed by
distant stellar companions, such as the ones that we consider in
this paper. This conclusion does not apply only to the planetesi-
mal disk, but also to the gas disk, for the same reasons mentioned
at the end of the previous section.

4. Production of highly eccentric planets

In the two preceeding sections, we have shown that in a binary
stellar system, a self-gravitating disk avoids dynamical excita-
tion, arising from the stellar companion, even if inclined. As
a result, one can expect that formation of planetary systems is
generally not inhibited. Furthermore, even after the disappear-
ance of the gas, we expect that the Kozai effect can continue to
be wiped out as a result of apsidal precession, induced by planet-
planet interactions. As already discussed in the introduction, this
is the case for the planets of the solar system with respect to the
galactic tide, or the satellites of Uranus relative to solar pertur-
bations. Consequently, the final issue we need of address is how
planets, such as HD 80606b and 16Cygni Bb, do eventually end
up undergoing Kozai cycles.

The evolutionary path that a planetary system can take be-
tween the birth nebula stage and the Kozai stage is necessarily
non-unique. One obvious possibility is that only a single large
planet forms in the disk and as the gas evaporates, self-gravity
of the disk becomes insufficient to wipe out the Kozai reso-
nance. Such a scenario, although possible, is probably far from
being universal, since the observed multiplicity in planetary sys-
tems (Mugrauer et al. 2010), as well as theoretical considera-
tions (Armitage 2010), suggest that protoplanetary disks rarely
produce only a single body.

However, an alternative picture can be envisioned: a multi-
ple system forms and after the dispersion of the disk, still pro-
tects itself from the Kozai cycles, exerted by the companion
star, through self-induced apsidal precession. Then, following
a dormant period, a dynamical instability occurs, removing all
planets except one, and therefore the remaining object starts to
experience the Kozai resonance. Such a scenario would be con-
siderably more likely, since dynamical instabilities are probably
common among newly-formed planetary systems (Ford & Rasio
2008; Raymond et al. 2009). In particular, over the last decade or
so, it has been realized that a transient dynamical instability has
played an important role in shaping the architecture of the solar
system (Thommes et al. 1999; Tsiganis et al. 2005; Morbidelli
et al. 2007). Moreover, planet-planet scattering has been sug-
gested to be an important process in explaining the eccentricity
distribution of extra-solar planets (Jurić & Tremaine 2008) as
well as the misalignment of planetary orbits with stellar rotation
axes (Morton & Johnson 2011).

The usefulness of analytical methods is limited when it
comes to the particular study of dynamical instabilities, so one
must resort to numerical methods. Below, we demonstrate a nu-
merical proof-of-concept of the scenario outlined above.

The system we considered was a pair of giant planets, both
with mp = 1 MJ around a sun-like (M� = 1 M�) star, perturbed
by a m̃ = 2 M� companion. The planets were initialized on near
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Fig. 5. Orbital evolution of a two-planet system and its transition into
the Kozai resonance via an instability. The figure shows the semi-major
axes, as well as perihelion and aphelion distances as functions of time.
The planets initially start out in a metastable configuration which is pro-
tected from Kozai resonance by apsidal precession, arising from planet-
planet interactions. Following ∼12 Myr of dynamical evolution, the
planets suffer a dynamical instability, during which the initially outer
planet is ejected. Consequently, the remaining planet enters the Kozai
resonance.

circular orbits (e1 = e2 = 0.01) with a1 = 5 AU and a2 = 7.5 AU
in the same plane. The stellar companion was taken to be on a
circular ã = 1000 AU orbit, inclined by i = 80◦ with respect to
the orbital plane of the planets. We performed the simulation us-
ing a modified version of SyMBA (Duncan et al. 1998) in which
a companion star is set on a distant, fixed circular orbit. The
timestep was chosen to be 0.2y and throughout the integration,
the fractional energy error remained below ΔE/E � 10−5. The
system was evolved over 108 years.

The orbital evolution of the system is shown in Fig. 5. As
can be seen, the system appears stable for the first ∼6 Myr, with
no sign of Kozai oscillations. However, at ∼6 Myr, the system
becomes unstable because the planets orbital proximity (initial
orbital separation is only ∼7 Hill radii) prevents them from re-
maining stable on long timescales (Chambers et al. 1996). The
eccentricities of the planetary orbits grow and eventually, the
planets begin to experience close encounters with each other.
At ∼12 Myr, one of the two planets is ejected onto a hyperbolic
orbit. The remaining planet, now alone and with no apsidal pre-
cession, gets captured into the Kozai resonance, and starts un-
dergoing large, coupled oscillations in eccentricity and inclina-
tion. It is noteworthy that had the remaining planet ended up on
an orbit with smaller semi-major axis, general relativistic pre-
cession could have wiped out the Kozai effect (Wu & Murray
2003; Fabrycky & Tremaine 2007). Additionally, although in our
setup, the stellar companion was initialized with a high inclina-
tion, this is not a necessary condition for the scenario, since the
scattering event can generate mutual inclination. The transition
from non-resonant motion to that characterized by Kozai cycles
is depicted in Fig. 6, where orbital parameters prior to the second
planet’s ejection are shown as gray dots and the resonant motion
is shown as a black curve. Note the similarity of resonant motion
computed numerically, to that computed analytically, shown in
Fig. 3.

5. Discussion

In this paper, we have addressed the issue of how planetes-
imals could preserve relative velocities that are slow enough
to allow planet accretion to take place, in binary stellar sys-
tems. Particularly, we focused on highly inclined systems where

Fig. 6. Phase-space plot of the inner planet, corresponding to the orbital
evolution, shown in Fig. 4. Prior to the instability (t < 12 Myr), the
motion of the planet (shown as gray points) is non-resonant. However,
after a the outer planet gets ejected, the remaining planet enters the
Kozai resonance (shown as a black line).

Kozai resonance with the perturbing stellar companion have
been thought to disrupt the protoplanetary disk and inhibit planet
formation (Marzari et al. 2009). Here, we have shown, from ana-
lytical considerations, that fast apsidal precession, which results
from the disk self-gravity, wipes out the Kozai resonance and
ensures rigid precession of the disk’s nodal reference plane.

It is useful to consider the domain of applicability of the cri-
teria discussed here. Namely, the trade-off between stellar bi-
nary separation and the perturbing companion’s mass should be
quantified. The region of parameter space (binary separation ã vs
disk mass to perturber mass ratio) where self-gravity suppresses
secular excitation from the binary companion is delineated in
Fig. 7. The red curve shows the dividing line between disk-
dominated and stellar companion-dominated apsidal precession
(as in Sect. 2). The three purple curves illustrate the disappear-
ance of the Kozai separatrix, for various choices of maximal in-
clination (as in Sect. 3). The black curve delineates the boundary
between rigid precession of the disk’s mid-plane and a warped
structure (as in Sect. 4).

As can be deduced from Fig. 7, for distant stellar compan-
ions (ã ∼ 1000 AU), the required total disk mass is of order
Mdisk ∼ 1–10 MJ (depending on the perturber’s mass), consider-
ably less than or comparable to, the total mass of the minimum
mass solar nebula. This implies that generally, protoplanetary
disks in binary stars can maintain roughly circular, unwarped
and untwisted structures. Consequently, we can conclude that
planetary formation in wide binary systems is qualitatively no
different from planetary formation around single stars.

After the formation of planets is complete and the gaseous
nebula has dissipated, the Kozai effect can continue to be inhib-
ited as a result of orbital precession induced by planet-planet
interactions. However, as the numerical experiment presented
here suggests, if a planetary system experiences a transient dy-
namical instability that leaves the planets on sufficiently well-
separated orbits, the planets can start undergoing Kozai cycles.
An evolutionary sequence of this kind can explain the existence
of orbital architectures characterized by highly eccentric plan-
ets, such as those of HD 80606 and 16 Cygni B (Eggleton &
Kiseleva-Eggleton 2001; Wu & Murray 2003).

The work presented here resolves, at least in part, a pressing
dynamical issue of planetary formation in highly inclined binary
systems. As an avenue for further studies, the analytical results
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Fig. 7. Domain of applicability of the arguments presented in this paper.
The red curve shows the dividing line between disk-dominated and stel-
lar companion-dominated apsidal precession (as in Sect. 2). The three
purple curves illustrate the disappearance of the Kozai separatrix, for
various choices of maximal inclination (as in Sect. 3). The black curve
delineates the boundary between rigid precession of the disk’s mid-
plane and a warped structure (as in Sect. 4). Successful formation of
planets can take place in well-separated binary systems where disk self-
gravity dominates over perturbations from the stellar companion.

presented here should be explored numerically in grater detail.
Particularly, hydrodynamic simulations, such as those presented
by Fragner et al. (2011) can be used to quantitatively map out
the parameter space that allows for planetary systems to form
successfully.

The study presented here has further consequences beyond
an explanation of planet formation in wide binary systems.
Particularly, the model of instability-driven evolution of newly-
formed systems into the Kozai resonance has substantial impli-
cations for orbital misalignment with the parent star’s rotation
axis. In fact, Kozai cycles with tidal friction produce a particular
distribution of orbit-spin axis angles (Fabrycky & Tremaine
2007). This distribution differs significantly from that produced
by the planet-planet scattering scenario (Nagasawa et al. 2008).
This distinction has been used to statistically infer the dominant
process by which misaligned hot Jupiters form (Morton &
Johnson 2011). However, the model presented here suggests
that the two distributions should be intimately related, as planet-
planet scattering provides the initial condition from which Kozai
cycles originate. Consequently, a quantitative re-examination of
the orbit-spin axis misalignment angle distribution, formed by
Kozai cycles with tidal friction that originate from a scattered

orbital architecture, and subsequent comparison of the results
with observations of the Rossiter-McLaughlin effect will likely
yield new insights into dynamical evolution histories of mis-
aligned hot Jupiters.
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