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Abstract— This paper deals with exponential stabi-
lization of the class of nonlinear neutral type time-delay
systems that can be transformed into a multi-model
system. The approach is based on Lyapunov-Krasovskii
techniques and uses a descriptor representation. The
exponential stability properties are proved using an
appropriate change of variables associated with a poly-
topic representation. The results are given in terms
of LMIs. As an application example, we determine
an effective stabilizing controller for an oilwell drilling
system.

Keywords: Neutral type time-delay systems, nonlinear
systems, polytopic representation, exponential stabiliza-
tion.

I. Introduction

It is well known that nonlinear systems are indeed
models closer to reality in the sense that their validity
is not necessarily limited to an immediate neighborhood
of an operating point or a reference trajectory.

In [1] the author presents stabilizability results for
nonlinear retarded type time-delay systems which can be
represented in two different ways: as multi-model systems
and as uncertain systems.

We are interested in the stabilization of nonlinear neu-
tral type time-delay systems which can be transformed
into a multi-model system, i.e., a set of linear models non-
linearly weighted. A multi-model neutral type system can
be represented as follows

ẋ(t)−Dẋ(t− τ1) =
∑
i∈Ir

hi(xt) {Aix(t) +Aiτ1x(t− τ1)

+Bτ0u(t− τ0)} (1)

*This work was supported by CONACYT under grant 61076
and scholarship 209927.

where the set Ir is the set of integers {1, ..., r} , r is
the number of subsystems required to describe the multi-
model system. The functions hi(·) are scalar weighting
functions satisfying the convexity conditions:∑

i∈Ir
hi(xt) = 1 ∀i = 1, ..., r, hi(xt) ≥ 0. (2)

The proposal of a Lyapunov-Krasovskii functional and a
descriptor representation of the neutral type time-delay
system allow us to find a stabilizing controller for this
particular kind of nonlinear systems through the solution
of linear matrix inequalities.

Our motivation is the exponential stabilitzation of an
oilwell drilling system. Oilwell drillstrings are mechanisms
that play a key role in the petroleum extraction industry.
These devices are complex dynamic systems with many
unknown and varying parameters due to the fact that
drillstring characteristics change as the drilling opera-
tion makes progress. The drilling system is described by
an hyperbolic partial differential equation with mixed
boundary conditions. Through the D’Alembert method
this model can be easily transformed into a neutral type
delay system which describes the behavior of the system
at the ground level. The torque on the bit is described by a
nonlinear function which depends on the angular velocity
at the bottom extremity. Under an appropriate change of
variables we can obtain a polytopic representation of the
drilling system.

The paper is organized as follows: In Section II we
present the distributed parameter model describing the
drilling system and the nonlinear equivalent neutral type
delay model obtained trough the D’Alembert transfor-
mation. In section III we present the multi-model ap-
proximation of the drilling nonlinear system. Section IV
concerns the α-stability analysis of the open loop multi-
model system, then, we determine the LMI conditions for
the exponential stability of the closed loop system. The
synthesis of the controller gain is obtained. In Section V



we present the numerical analysis of the drilling system.
Conclusions are presented in the last section.

II. Nonlinear model of the drilling system

The main process during well drilling for oil is the
creation of borehole by a rock-cutting tool called bit. The
drillstring consists of the BHA (bottom hole assembly)
and drillpipes screwed end to end to each other to form
a long pipe. The BHA comprises the bit, stabilizers (at
least two spaced apart) which prevent the drillstring from
balancing, and a series of pipe sections which are rela-
tively heavy known as drill collars. While the length of
the BHA remains constant, the total length of the drill
pipes increases as the borehole depth does. An important
element of the process is the drilling mud or fluid which
among others, has the function of cleaning, cooling and
lubricating the bit. The drillstring is rotated from the
surface by an electrical motor. The rotating mechanism
can be of two types: a rotary table or a top drive.

The drill pipe is considered as a beam in torsion. A
lumped inertia IB is chosen to represent the assembly at
the bottom hole and a damping β ≥ 0 which includes
the viscous and structural damping, is assumed along the
structure. The drillstring is rotated from the surface (ξ =
0) by an electrical motor, Ω is the angular velocity coming
from the rotor that does not match the rotational speed
of the load ∂θ

∂t (0, t). This sliding speed results in the local
torsion of the drillstring. The other extremity (ξ = L),
is subject to a torque T, which is a function of the bit
speed. The mechanical system is described by the following
partial differential equation:

GJ
∂2θ

∂ξ2
(ξ, t)− I ∂

2θ

∂t2
(ξ, t)− β ∂θ

∂t
(ξ, t) = 0, (3)

ξ ∈ (0, L), t > 0,

with boundary conditions

GJ
∂θ

∂ξ
(0, t) = ca

(
∂θ

∂t
(0, t)− Ω(t)

)
;

GJ
∂θ

∂ξ
(L, t) + IB

∂2θ

∂t2
(L, t) = −T

(
∂θ

∂t
(L, t)

)
,

where θ(ξ, t) is the angle of rotation, I is the inertia, G
is the shear modulus and J is the geometrical moment of
inertia.

Considering that the damping β is negligible, the dis-
tributed parameter model (3) reduces to the unidimen-
sional wave equation. Using the D’Alembert transfor-
mation we can describe the drilling behavior with the
following neutral type delay equation:

ẅ(t)−Υẅ(t− 2Γ) + Ψ
·
w(t) + ΨΥẇ(t− 2Γ) =

− 1

IB
T
(
·
w(t)

)
+

1

IB
ΥT

(
·
w(t− 2Γ)

)
(4)

+ΠΩ(t− Γ),

where ẇ(t) is the angular velocity at the bottom extremity,

and Υ = ca−
√
IGJ

ca+
√
IGJ

, Ψ =
√
IGJ
IB

, Γ =
√

I
GJL, Π = 2Ψca

ca+
√
IGJ

.

For the details of the transformation the reader is
referred to [3], [4].

The drillstring interaction with the borehole gives rise
to a wide variety of non-desired oscillations which are
classified depending on the direction they appear. Three
main types of vibrations can be distinguished: torsional
(stick-slip oscillations), axial (bit bouncing phenomenon)
and lateral (whirl motion due the out-of-balance of the
drillstring). Torsional drillstring vibrations appear due to
downhole conditions, such as significant drag, tight hole,
and formation characteristics. It can cause the bit to stall
in the formation while the rotary table continues to rotate.
When the trapped torsional energy (similar to a wound-
up spring) reaches a level that the bit can no longer resist,
the bit suddenly comes loose, rotating and whipping at
very high speeds. This stick-slip behavior can generate a
torsional wave that travels up the drillstring to the rotary
top system. Because of the high inertia of the rotary table,
it acts like a fixed end to the drillstring and reflects the
torsional wave back down the drillstring to the bit. The
bit may stall again, and the torsional wave cycle repeats
as explained in [6]. The whipping and high speed rotations
of the bit in the slip phase can generate both severe
axial and lateral vibrations at the bottom-hole assembly.
The vibrations can originate problems such as drill pipe
fatigue problems, drillstring components failures, wellbore
instability. They contribute to drillpipe fatigue and are
detrimental to bit life.

The following nonlinear equation introduced in [5] ap-
proximates the physical phenomenon at the bottom hole

T
(
·
w(t)

)
= cbẇ(t) +WobRbµsbe

− γb
vf

·
w(t)

sgn (ẇ(t)) . (5)

The term cbẇ(t) is a viscous damping torque at the bit
which approximates the influence of the mud drilling and

the term WobRbµsbe
− γb
vf

·
w(t)

sgn (ẇ(t)) is a dry friction
torque modelling the bit-rock contact. Rb > 0 is the bit
radius, Wob > 0 the weight on the bit, µsb ∈ (0, 1) is the
static friction coefficient and 0 < γb < 1 is a constant
defining the velocity decrease rate. The constant velocity
vf > 0 is introduced in order to have appropriate units.

The friction torque (5) leads to a decreasing torque-on-
bit with increasing bit angular velocity for low velocities
which acts as a negative damping (Stribeck effect) and
is the cause of stick-slip self-excited vibrations. The expo-
nential decaying behavior of T coincides with experimental
torque values.

With the introduction of the torque on the bit model
we obtain the following nonlinear expression to describe



the drilling behavior at the ground level:

ẅ(t)−Υẅ(t− 2Γ) +

(
Ψ +

cb
IB

)
ẇ(t) (6)

+Υ

(
Ψ− cb

IB

)
ẇ(t− 2Γ) = −c2e

− γb
vf
ẇ(t)

sgn (ẇ(t))

+Υc2e
− γb
vf
ẇ(t−2Γ)

sgn (ẇ(t− 2Γ)) + ΠΩ(t− Γ)

where c2 = WobRb(µsb−µcb)
IB

.

III. Multi-model approximation of the
nonlinear system

Consider a nonlinear control system of the form

ẋ(t)−Dẋ(t− τ1) = f(t, xt) + g(t, xt)u(t) (7)

+h(t, xt)u(t− τ0)

x(t) = φ(t) ∀t ∈ [−τ1, 0]

where f ∈ Rn is a real-valued functional which depends on
t and the function xt, xt(θ) = x(t + θ), θ ∈ [−τ1, 0] , the
functionals f and g take values in Rn×m, the function φ(t)
stands for the initial condition, it is defined on [−τ1, 0].

In order to simplify the analysis, we can transform the
nonlinear initial system (7) into a multi-model system
described by (1).

We choose the following change of variables to represent
the nonlinear model of the drilling system (6) as a multi-
model system: 

x1(t) = w(t)
x2(t) = ẇ(t)

x3(t) = e
− γb
vf
x2(t)

therefore,
ẋ1(t) = ẇ(t)
ẋ2(t) = ẅ(t)

ẋ3(t) = − γb
vf
ẋ2(t)e

− γb
vf
x2(t)

= − γb
vf
ẋ2(t)x3(t).

System (6) can be written as

ẋ(t)−Dẋ(t−τ1) = A(x)x(t)+Aτ1(x)x(t−τ1)+Bτ0u(t−τ0)
(8)

where τ0 = Γ, τ1 = 2Γ, u(t) = Ω,

x = [x1 x2 x3]
T

D =

 0 0 0
0 Υ 0
0 0 0

 , Bτ0 =

 0
Π
0

 ,

Aτ1(x) =

 0 0 0

0 Υ
(
cb
IB
−Ψ

)
c2Υsgn(x2(t− τ1))

0 0 0

 ,

A(x) =

 0 1 0

0 −
(

Ψ + cb
IB

)
−c2sgn(x2(t))

0 0 − γb
vf
ẋ2(t)

 .

Notice that the entries of the matrices D, Bτ0 are constant,
and the entry c2Υsgn(x2(t− τ1)) of the matrix Aτ1(x) is
bounded. If we consider that ẋ2(t) is a bounded variable
then, so is the matrix A(x).

In this case, we can obtain a polytopic representation of
the matrices A(x), Aτ1(x) as:

A(x)x(t) +Aτ1(x)x(t− τ1) = (9)∑
i∈Ir

hi(xt) (Aix(t) +Aiτ1x(t− τ1))

where Ai, Aiτ1 have only constant coefficients [1]. The
functions hi(xt), i ∈ Ir are scalar not necessarily known
weighting functions satisfying the convexity property (2).

The non-linear drilling system (6) can be written in the
polytopic form (1) .

IV. Main result

Firstly, we are going to analyze the α-stability of the
open loop system, i.e., the system:

ẋ(t)−Dẋ(t− τ1) =
∑
i∈Ir

hi(xt) {Aix(t) +Aiτ1x(t− τ1)} .

(10)
To guarantee that the difference operator is stable we

assume |D| < 1.
The change of variable xα(t) = eαtx(t) transforms the

system (10) into:

ẋα(t)−Deατ1 ẋα(t− τ1) =
∑
i∈Ir

hi(xt) {(Ai + αIn)xα(t)

+eατ1 (Aiτ1 − αD)xα(t− τ1)} . (11)

The proposal is to find conditions for which the solution
xα = 0 of the transformed system (11) is asymptotically
stable. Clearly, these conditions will assure the exponential
stability of the original system (10).

Theorem 1: The solution x(t) = 0 of the system (10)
is α-stable if there exist matrices 0 < P1 = PT1 , P2, P3,
Q = QT and R = RT , such that for all i ∈ Ir the following
linear matrix inequality (LMI) is satisfied Ψi PT

(
0

eατ1 (Aiτ1 − αD)

)
PT
(

0
eατ1D

)
∗ −R/τ1 0
∗ ∗ −Q

 < 0

(12)
where

P : =

(
P1 0
P2 P3

)
, P1 = PT1 > 0,

,

Ψi : = PT
(

0 In
Λi −In

)
+

(
0 In
Λi −In

)T
P

+

(
0 0
0 τ1R+Q

)
Λi : = Ai + αIn + eατ1 (Aiτ1 − αD)



Proof: According to the Leibniz formula,

xα(t− τ1) = xα(t)−
∫ t

t−τ1
ẋα(s)ds,

then, we can write the system (11) as

ẋα(t)−Deατ1 ẋα(t− τ1) =∑
i∈Ir

hi(xt) {(Ai + αIn + eατ1 (Aiτ1 − αD))xα(t)

−eατ1 (Aiτ1 − αD)

∫ t

t−τ1
ẋα(s)ds

}
.

Using the descriptor form introduced in [2] we have

ẋα(t) = y(t)

y(t) =
∑
i∈Ir

hi(xt) {Deατ1y(t− τ1) + Λixα(t)

−eατ1 (Aiτ1 − αD)

∫ t

t−τ1
y(s)ds

}
,

where
Λi := Ai + αIn + eατ1 (Aiτ1 − αD)

then, we can write

E

(
ẋα(t)
ẏ(t)

)
=

(
y(t)∑

i∈Ir
hi(xt) · λ

)
where E = diag {In, 0} , λ = −y(t) + Deατ1y(t − τ1) +
Λixα(t)− eατ1 (Aiτ1 − αD)

∫ t
t−τ1 y(s)ds.

Following [2], we use the Lyapunov-Krasovskii func-
tional

Vα(t) =
(
xTα(t) yT (t)

)
EP

(
xα(t)
y(t)

)
+

∫ 0

−τ1

∫ t

t+θ

yT (s)Ry(s)dsdθ +

∫ t

t−τ1
yT (s)Qy(s)ds

P =

(
P1 0
P2 P3

)
, P1 = PT1 > 0, R > 0, Q > 0.

The functional Vα(t) is positive definite since(
xTα(t) yT (t)

)
EP

(
xα(t)
y(t)

)
= xTα(t)P1xα(t).

Notice that EP = PTE, taking the derivative in t of Vα(t)
we obtain

V̇α(t) = 2
(
xTα(t) yT (t)

)
PT

(
y(t)∑

i∈Ir
hi(xt) · λ

)

+ τ1y
T (t)Ry(t)−

∫ t

t−τ1
yT (s)Ry(s)ds

+ yT (t)Qy(t)− yT (t− τ1)Qy(t− τ1).

Setting ξ =
(
xα(t) y(t) y(t− τ1)

)
we can write

V̇α(t) = ξT

 Ψ̃i PT
(

0
eατ1D

)
(

0 eατ1DT
)
P −Q

 ξ

+η −
∫ t

t−τ1
yT (s)Ry(s)ds (13)

where

η = −2

∫ t

t−τ1

(
xTα(t) yT (t)

)
· PT ·

·
(

0
eατ1 (Aiτ1 − αD)

)
y(s)ds,

Ψ̃i : =
∑
i∈Ir

hi(xt)

{
PT
(

0 In
Λi −In

)

+

(
0 In
Λi −In

)T
P +

(
0 0
0 τ1R+Q

)}
.

In order to obtain an upper bound on η, we use the
following property.

For all vectors a, b ∈ Rn and positive definite matrix
Rn×n, the following inequality is satisfied

±2aT b ≤ aTR−1a+ bTRb.

Then, we have that

η ≤
(
xTα(t) yT (t)

)
· PT ·

·
(

0
eατ1 (Aiτ1 − αD)

)
· τ1R−1 · (14)(

0 eατ1 (Aiτ1 − αD)
T
)
· P ·

(
xα(t)
y(t)

)
+

∫ t

t−τ1
yT (s)Ry(s)ds

From (13) and (14),

V̇α(t) ≤ ξT

 Ψ̃i PT
(

0
eατ1D

)
(

0 eατ1DT
)
P −Q

 ξ

+
(
xTα(t) yT (t)

)
· PT ·

·
(

0
eατ1 (Aiτ1 − αD)

)
·
(
τ1R

−1
)
·(

0 eατ1 (Aiτ1 − αD)
T
)
· P ·

(
xα(t)
y(t)

)
Finally, using Schur complements, the system (10) is

asymptotically stable if every matrix, i ∈ Ir Ψi PT
(

0
eατ1 (Aiτ1 − αD)

)
PT
(

0
eατ1D

)
∗ −R/τ1 0
∗ ∗ −Q

 ,

is negative definite, i.e., if the LMI condition (12) is
satisfied.

Having determined the criteria for exponential stability
for the open loop system (10), the next step is to define
an algorithm that allows the synthesis of a gain K such
that the feedback control law

u(t− τ0) = Kx(t− τ1). (15)



exponentially stabilizes the closed loop system

ẋ(t)−Dẋ(t− τ1) =
∑
i∈Ir

hi(xt) {Aix(t) (16)

+ (Aiτ1 +Bτ0K)x(t− τ1)}

with a guaranteed rate of convergence α.
Replacing the matrix Aiτ1 by the matrix Aiτ1 +Bτ0K in

Theorem 1, that the solution x(t) = 0 of the system (16)
is α-stable if there exist matrices 0 < P1 = PT1 , P2, P3,
Q = QT , R = RT such that for all i ∈ Ir the following
bilinear matrix inequality is satisfied Ψi PT

(
0

eατ1χ

)
PT
(

0
eατ1D

)
∗ −R/τ1 0
∗ ∗ −Q

 < 0 (17)

where

P : =

(
P1 0
P2 P3

)
, P1 = PT1 > 0,

Ψi : = PT
(

0 In
Λi −In

)
+

(
0 In
Λi −In

)T
P

+

(
0 0
0 τ1R+Q

)
Λi : = Ai + αIn + eατ1 (Aiτ1 +Bτ0K − αD) ,

χ : = (Aiτ1 +Bτ0K − αD) .

A well known synthesis gain technique which overcome
the bilinearity of the conditions was introduced by [7]. It
consists in to set

P3 = εP2, ε ∈ R

where P2 is a nonsingular matrix, and

P̄ = P−1
2 .

Define P̄1 = P̄TP1P̄ , R̄ = P̄TRP̄ , and Y = KP̄ .
Multiplying the right side of (17) by ∆3 = diag

{
P̄ , P̄ , P̄

}
and the left side by ∆T

3 , we obtain the LMI stabilization
condition stated in the following theorem.

Theorem 2: The system (16) is α-stabilizable if there
exist a real number ε > 0 and n × n matrices P̄1 > 0, P̄ ,
Q̄ = Q̄T , R̄ = R̄T , and Y such that for all i ∈ Ir the
following linear matrix inequality (LMI) is satisfied Φi

(
eατ1ϑ
εeατ1ϑ

) (
eατ1DP̄
εeατ1DP̄

)
∗ −R̄/τ1 0
∗ ∗ −Q̄

 < 0

where

ϑ : = (Aiτ1 − αD) P̄ +Bτ0Y

Φi =

(
Φ11 Φ12

∗ Φ22

)

Φ11 = (Ai + αIn + eατ1 (Aiτ1 − αD)) P̄

+P̄T (Ai + αIn + eατ1 (Aiτ1 − αD))
T

+Bτ0Y + Y TBTτ0

Φ12 = P̄T1 − P̄ + εP̄T (Ai + αIn + eατ1 (Aiτ1 − αD))
T

+εY TBTτ0
Φ22 = −ε

(
P̄ + P̄T

)
+ τ1R̄+ Q̄.

Moreover, the feedback gain is given by

K = Y P̄−1.

V. Numerical result

Now, we are able to find a stabilizing control law for the
oilwell drilling system using the results of Section IV.

The model parameters used in the sequel are:

G = 79.3x109N/m2, I = 0.095Kg ·m, L = 1172m,
J = 1.19x10−5m4 Rb = 0.155575, vf = 1,
Wob = 97347N, IB = 89Kgm2 ca = 2000Nms,

cb = 0.03Nms/rad, µsb = 0.8, γb = 0.9
vref = 20rad/s Decmax = −50 Accmax = 50

and the simulations are performed using the variable step
Matlab-Simulink solver ode45 (Dormand Prince Method).

Using the above parameters, the matrices A(x), Aτ1(x),
Bτ0 and D of the oilwell drilling model (8) take the
following values:

D =

 0 0 0
0 0.7396 0
0 0 0

 , Bτ0 =

 0
5.8523

0

 ,

A(x) =

 0 1 0
0 −3.3645 −136.1327sgn(x2(t))
0 0 −0.9ẋ2(t)


Aτ1(x) =

 0 0 0
0 −2.4878 100.6802sgn(x2(t− τ1))
0 0 0

 .

In order to obtain a polytopic representation of the
system, A(x) and Aτ1(x) must be bounded functions.

There are three independent functions involved: ẋ2(t),
sgn(x2(t)) and sgn(x2(t− τ1)).

The variable ẋ2(t) represents the angular acceleration at
the bottom end of the drillstring, this is clearly a bounded
variable in real applications. The variables sgn(x2(t)) and
sgn(x2(t− τ1)) take only the values 1 and 0.

Under the assumption that A(x) and Aτ1(x) are
bounded, we can obtain a polytopic representation in the
form (9), where i ∈ Ir = 23 = 8.

We can write

Ai =

 0 1 0
0 −3.3645 ai23(x)
0 0 ai33(x)





with

−136.1327 = a1
23 ≤ ai23(x) ≤ a2

23 = 0

−0.9Accmax = a1
33 ≤ ai33(x) ≤ a2

33 = −0.9Decmax

where Accmax and Decmax stand for the maximum accel-
eration and deceleration respectively, and

Aiτ1(x) =

 0 0 0
0 −2.4878 aiτ123(x)
0 0 0


with

0 = a1
τ123(x) ≤ aiτ123(x) ≤ a2

τ123(x) = 100.6802.

The simulation results of Figure 1 show the angular
velocity at the bottom end of the drillstring (x2(t)) for
Ω = 20rad/s.

Applying the result of Theorem 2 to system (1) in closed
loop with the control law

u(t− τ0) = Kx(t− τ1), (18)

we obtain feasible results with

K = Y P̄−1 =
(

0 0.44 −4.25
)
.

Then, the stabilizing control law for the drilling system
(6) is given by

Ω(t) = u(t) = 0.44ẇ(t)− 4.25e
− γb
vf
ẇ(t)

+ vref . (19)

The simulation results of Figure 2 show the expected
exponential convergence of the variable ẇ(t) (x2(t)) of the
system (6) in closed loop with the control law (19) where
vref is the angular velocity reference.

Fig. 1. Simulation of trajectory ẇ(t) of the drilling system (6) for
Ω = 20rad/s.

VI. Conclusion

The exponential stabilizability of the class of nonlinear
neutral type time-delay systems which can be transformed
into a multi-model system is investigated in this paper. We
have extended the results presented in [1] to the case of
neutral type time-delay systems, and we have applied the
main result of this paper to the oilwell drilling system.

We have found an effective stabilizing controller which
substantially eliminates the oscillations in the angular
velocity at the bottom end of the drill string.

Fig. 2. Simulation of traectory ẇ(t) of the drilling system (6) in
closed loop with the control law (19).
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