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Denis GUIBOURG, Loïc HERVÉ, and James LEDOUX ∗
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Abstract

Let P be a Markov kernel on a measurable space X and let V : X→[1,+∞). We

provide various assumptions, based on drift conditions, under which P is quasi-compact

on the weighted-supremum Banach space (BV , ‖ · ‖V ) of all the measurable functions

f : X→C such that ‖f‖V := sup
x∈X

|f(x)|/V (x) < ∞. Furthermore we give bounds for

the essential spectral radius of P . Under additional assumptions, these results allow us

to derive the convergence rate of P on BV , that is the geometric rate of convergence of

the iterates Pn to the stationary distribution in operator norm. Applications to discrete

Markov kernels and to iterated function systems are presented.

AMS subject classification : 60J10; 47B07
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1 Introduction

Let P be a Markov kernel on a measurable space (X,X ). Let us introduce the weighted-
supremum Banach space (BV , ‖ · ‖V ) composed of measurable functions f : X→C such that

‖f‖V := sup
x∈X

|f(x)|
V (x)

<∞

where V : X→[1,+∞). Let (B0, ‖·‖0) be the usual Banach space composed of all the bounded
measurable functions f : X→C equipped with the supremum norm ‖f‖0 := supx∈X |f(x)|.

The first purpose of the paper is to study the quasi-compactness of P on BV with a control
of its essential spectral radius ress(P ). Recall that ress(P ) is the infimum bound of the positive
real numbers r0 for which the following property holds: the spectral values of P of modulus
greater than r0 are finitely many eigenvalues having a finite-dimensional characteristic space.
P is said to be quasi-compact on BV if ress(P ) is strictly less than the spectral radius of P (see
Section 2 for details). The second purpose of the paper is to specify the link between quasi-
compactness and the so-called V -geometric ergodicity [MT93], namely with the convergence
of Pn to π in operator norm on BV , where π denotes the P -invariant probability measure. In
this case, we are interested in finding upper bounds for the convergence rate ρV (P ) defined
by

ρV (P ) := inf
{
ρ ∈ (0, 1), sup

‖f‖V ≤1
‖Pnf − π(f)‖V = O(ρn)

}
. (1)

Finally the third purpose of the paper is to derive the V -geometric ergodicity of P , with a
control of ρV (P ), from some strong ergodicity property assumed to hold on a subspace of BV .

Note that this paper is not directly concerned with the convergence rate of Markov chains,
either with respect to the Lebesgue space L

2(π) (in place of BV ) as studied for instance in
[AP07] for Hastings and Metropolis algorithms using operator methods (see [FHL10, Section 2]
for an overview), or with respect to BV with a bounded function V , that is for uniformly
ergodic Markov chains.

Let us give an account of the main results of the paper in regards to the previous objectives.
Under irreducibility and aperiodicity assumptions, it is well-known that the V -geometric
ergodicity is equivalent to the following so-called drift condition:

∃m0 ∈ N
∗, ∃̺ ∈ (0, 1), ∃M ∈ (0,+∞), Pm0V ≤ ̺V +M 1S , (D)

where S ⊂ X, called a small set, satisfies the minorization condition

∀x ∈ X, ∀A ∈ X , Pm0(x,A) ≥ ν(A) 1S(x), (S)

for some positive measure ν on (X,X ) such that ν(S) > 0 (see [MT93]). In Theorem 1
(Subsection 2.1), without assuming any irreducibility or aperiodicity conditions, the quasi-
compactness of P on BV is proved under Conditions (D)-(S). This is an expected result,
already obtained in [Hen06, Hen07]. We provide a simple and short proof of Theorem 1 which
enables to well understand why the drift condition implies good spectral properties of P on
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BV . Furthermore we obtain the following upper bound for ress(P ) which is more explicit than
in [Hen06]:

ress(P ) ≤
(
̺ ν(1X) +M

ν(1X) +M

) 1
m0

. (2)

In Theorem 2 (Subsection 2.2), assuming that P is a compact operator from B0 to BV ,
P is shown to be power-bounded and quasi-compact on BV under the following weak drift
condition

∃N ∈ N
∗, ∃d ∈ (0,+∞), ∃δ ∈ (0, 1), PNV ≤ δN V + d 1X. (WD)

Such a condition with N = 1 has been introduced in [MT93, Lem. 15.2.8] as an alternative to
the drift condition [MT93, (V4)] under suitable assumption on V . Under Condition (WD),
let us define the real number δV (P ) ∈ (0, 1) as the infimum of the real numbers δ ∈ [0, 1) such
that we have (WD):

δV (P ) := inf
{
δ ∈ [0, 1) : ∃N ∈ N

∗, ∃d ∈ (0,+∞), PNV ≤ δN V + d 1X
}
. (3)

Then the upper bound obtained in Theorem 2 for ress(P ) is more precise than (2), that is:

ress(P ) ≤ δV (P ).

The key idea to prove Theorem 2 is that Condition (WD) yields a Doeblin-Fortet inequality
on the dual of BV . This fact has been already used in [FHL] to study regular perturbations
of V -geometrically ergodic Markov chains.

When the Markov kernel P has an invariant probability distribution, the connection be-
tween the V -geometric ergodicity and the quasi-compactness of P is recalled in Theorem 3
(Subsection 2.3). Namely, P is V -geometrically ergodic if and only if P is a power-bounded
quasi-compact operator on BV for which λ = 1 is a simple eigenvalue and the unique eigen-
value of modulus one. In this case, if V denotes the set of all the eigenvalues λ of P such that
ress(P ) < |λ| < 1, then the convergence rate ρV (P ) is given by:

ρV (P ) = ress(P ) if V = ∅ and ρV (P ) = max{|λ|, λ ∈ V} if V 6= ∅.

This result is valid for any quasi-compact operator, however we have not found such an explicit
result in the literature on V -geometric ergodicity.

Theorem 4 proved in Subsection 2.4 is of great interest to investigate the eigenvalues of
modulus one and the above set V in order to obtain the V -geometric ergodicity of P and,
more importantly, an upper bound for ρV (P ) from Theorem 3. Namely, under Condition
(WD), for any λ ∈ C such that δ ≤ |λ| ≤ 1 where δ is given in (WD), and for any p ∈ N

∗,
we obtain with β(λ) := ln |λ|/ ln δ:

f ∈ BV ∩Ker(P − λI)p ⇒ ∃c ∈ (0,+∞), |f | ≤ c (ln V )p(p−1)/2 V β(λ). (4)

In particular, if λ is an eigenvalue such that |λ| = 1, then any associated eigen-function f is
bounded on X. By contrast, if |λ| is close to δV (P ), then |f | ≤ c V β(λ) with β(λ) close to 1.

In Section 3, applications of Theorems 2-4 to discrete Markov chains are presented. When
X := N and limn V (n) = +∞, any Markov kernel P is compact from B0 to BV from Corol-
lary 1, and Theorem 2-Theorem 3 are then specially relevant: if P satisfies Condition (WD),
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then P is power-bounded and quasi-compact on BV ; if in addition P is irreducible and aperi-
odic, then P is V -geometrically ergodic. In Subsection 3.4, Property (4) is used to compute
the convergence rate ρV (P ) for binary random walks.

In Section 4, we are interested in the following question. Assume that there exists a
subspace B ⊂ BV and a constant κB ∈ (0, 1) such that

∀f ∈ B, ‖Pnf − π(f)1X‖V = O(κnB). (5)

Under what additional conditions do we have the V -geometrical ergodicity of P? Even if (5)
has its own interest, the previous issue is of value when, for instance, the indicator functions
1A, A ∈ X , are not in B, since in this case, (5) does not provide estimates for the probabilities
P(Xn ∈ A |X0 = x) = (Pn1A)(x). In Theorem 5, assuming that P is compact from B0 to BV

and satisfies (WD), we prove that a natural additional condition to derive the V -geometric
ergodicity from (5) is the following one: ∃τ ∈ [0, 1], P (BV τ ) ⊂ B. Furthermore we obtain
that

ρV (P ) ≤ max
(
κB, δV (P )

τ
)
.

Property (4) is useful for proving this result. The case when B is a weighted-Lipschitz space is
specially relevant. Applications to iterated function systems (IFS) are presented in Section 5.

To the best of our knowledge, Theorems 1-2-4 of Section 2 are new, as well as Theorem 5 of
Section 4. Furthermore we try to provide upper bounds of the essential spectral radius ress(P )
and of the convergence rate ρV (P ) as explicit as possible. More precisely, in this work, the
estimates of ρV (P ) are derived from the upper bound ress(P ) ≤ δV (P ) (Theorem 2) and
from the precise study of the eigen-functions of P belonging to the eigenvalues λ such that
δV (P ) < |λ| < 1 (Theorem 4). This approach is original and often provides the exact value
of ρV (P ). But it is worth noticing that this method can only be used for Markov kernels P
assumed to be compact from B0 to BV . Classical instances of V -geometrically ergodic Markov
kernels concern the discrete state-space, the autoregressive models on X = R

q with absolutely
continuous noise with respect to the Lebesgue measure, and finally the MCMC algorithms.
The compactness assumption on P : B0→BV is fulfilled for the two first instances, see
Section 3 and Subsection 5.4. Unfortunately, this assumption does not hold in general for
non-discrete Markov kernels arising from Hastings and Metropolis algorithms. Concerning
the last issue, we refer to the works [Bax05, Lun97, LT96, MT96, MT94, RT99] where the
convergence rate ρV (P ) is investigated by probabilistic methods. The best rates are obtained
in [LT96] under the stochastic monotonicity assumption for P which cannot be compared
with our compactness assumption.

Throughout the paper, when the function V ≡ Vc depends on some parameter c, we use
the notation Bc ≡ BVc so that Bc may stand for different sets from section to section.

2 Quasi-compactness on BV and V -geometric ergodicity

Let (B, ‖ · ‖) be a complex Banach space, and let L be a bounded linear operator on B with
positive spectral radius r(L) := limn ‖Ln‖1/n, where ‖·‖ also stands for the operator norm on
B. For the sake of simplicity, we assume that r(L) := 1 (if not, replace L with r(L)−1L). The
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restriction of L to a L-invariant subspace H is denoted by L|H , and I stands for the identity
operator on B.

The simplest definition of quasi-compactness is the following (compare the definition below
with the reduction of matrices or compact operators).

Definition 2.1 L is quasi-compact on B if there exist r0 ∈ (0, 1) and m ∈ N
∗, λi ∈ C,

pi ∈ N
∗ ( i = 1, . . . ,m) such that:

B =
m
⊕
i=1

Ker(L− λiI)
pi ⊕H, (6a)

where the λi’s are such that

|λi| ≥ r0 and 1 ≤ dimKer(L− λiI)
pi <∞, (6b)

and H is a closed L-invariant subspace such that

sup
h∈H, ‖h‖V ≤1

‖Pnh‖V = O(r0
n). (6c)

Concerning the essential spectral radius of L, denoted by ress(L), here it is enough to have
in mind that, if L is quasi-compact on B, then we have (see for instance [Hen93])

ress(L) := inf
{
r0 ∈ (0, 1) s.t. we have (6a) (6b) (6c)

}

It is also well-known (e.g. see [Nev64, Kre85]) that ress(L) is defined by

ress(L) := lim
n

(
inf ‖Ln −K‖

) 1
n (7)

where the infimum is taken over the ideal of compact operators K on B. Consequently L is
quasi-compact if and only if there exist some n0 ∈ N

∗ and some compact operator K0 on B
such that r(Ln0 −K0) < 1. Under the previous condition we have

ress(L) ≤ (r(Ln0 −K0))
1/n0 . (8)

Indeed, for all k ≥ 1 we have ‖(Ln0 −K0)
k‖1/(n0k) = ‖Ln0k −Kk‖1/(n0k) with some compact

operator Kk on B. Then (7) gives: ress(L) ≤ limn ‖(Ln0 −K0)
k‖1/(n0k) = (r(Ln0 −K0))

1/n0 .

Throughout the paper, we consider a function V : X→[1,+∞) and a Markov kernel P on
(X,X ) such that PV/V is bounded on X (i.e. ‖PV ‖V <∞). So P continuously acts on BV .

2.1 Quasi-compactness on BV under the drift condition

Theorem 1 Let us assume that the Conditions (D)-(S) in Introduction hold true. Then P
is a power-bounded quasi-compact operator on BV with

ress(P ) ≤
(
̺ ν(1X) +M

ν(1X) +M

) 1
m0

. (9)
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The proof of Theorem 1 is based on the next lemma.

Lemma 1 Let Q(x, dy) be a Markov kernel on (X,X ) having a continuous action on BV

(i.e. ‖QV ‖V < ∞) such that Q = A + B for some nonnegative bounded linear operators A
and B on BV . Let r(B) denote the spectral radius of B which is assumed to be positive.
Then, there exists a nontrivial nonnegative continuous linear form η on BV such that η ◦B =
r(B) η and η(A1X) = (1− r(B))η(1X).

Proof. Since B ≥ 0 and r := r(B) > 0, we know from [Sch71, App., Cor.2.6] that there
exists a nontrivial nonnegative continuous linear form η on BV such that η ◦ B = r η (see
also Remark 1 and Appendix A). From Q = A + B, we have η ◦ Q = η ◦ A + r η, thus
η(Q1X) = η(1X) = η(A1X) + r η(1X). Hence η(A1X) = (1− r)η(1X). �

Proof of Theorem 1. Condition (D) implies that Pm0V ≤ ̺V +M 1X. Iterating this in-
equality easily ensures that supk ‖P km0V ‖V <∞. Thus P is power-bounded on BV , namely:
supn ‖PnV ‖V < ∞ (use the Euclidean division of n ∈ N by m0). Then, from P1X = 1X and
1X ∈ BV , we have r(P ) = 1. Besides, since ‖PV ‖V <∞, we deduce from (S) that ν(V ) <∞.
Thus we can define the following rank-one operator on BV : Tf := ν(f) 1S . Let Q := Pm0

and R := Q− T . From T ≥ 0 and from (S), it follows that 0 ≤ R ≤ Q, so r(R) ≤ 1. Let us
set r := r(R). If r = 0, then P is quasi-compact with ress(P ) = 0 from (8). Now assume that
r ∈ (0, 1]. Then, from Lemma 1, there exists a nontrivial nonnegative continuous linear form
η on BV such that η ◦R = r η and η(T1X) = (1− r)η(1X), from which we deduce that

η(1S) =
(1− r)η(1X)

ν(1X)
≤ (1− r)η(V )

ν(1X)
.

Besides, we have RV ≤ QV ≤ ̺V +M 1S , hence

r η(V ) = η(RV ) ≤ ̺ η(V ) +M η(1S) ≤ ̺ η(V ) +
M(1− r)η(V )

ν(1X)
.

Since η 6= 0, we have η(V ) > 0, and since ̺ ∈ (0, 1), we cannot have r = 1. Thus r ∈ (0, 1),
and P is quasi-compact from (8) with

ress(P ) ≤ r1/m0 ≤
(
̺ ν(1X) +M

ν(1X) +M

)1/m0

.

�

Remark 1 The proof of Lemma 1 is based on the following result [Sch71, App., Cor.2.6]: if
L is a positive operator on a Banach lattice B whose positive cone is normal and has interior
points, then there exists a nontrivial nonnegative continuous linear form e′ on B such that
e′ ◦L = r(L) e′. In fact BV is the simplest (and generic) example of Banach lattices satisfying
the last conditions, and we give in Appendix A a proof of the previous statement in this
special case. Mention that this result also provides that the quasi-compactness of P on BV is
equivalent to the mean ergodicity with finite rank limit projection (see [Her08]).
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2.2 Quasi-compactness on BV under the weak drift condition (WD)

Recall that (B0, ‖ · ‖0) denotes the Banach space of all the bounded measurable functions
f : X→C, equipped with the supremum norm ‖f‖0 := supx∈X |f(x)|, and that δV (P ) is the
infimum of the real numbers δ ∈ [0, 1) such that we have (WD) (see (3)).

Theorem 2 If Condition (WD) holds true and if P : B0 →BV is compact, then P is a
power-bounded quasi-compact operator on BV , and we have

ress(P ) ≤ δV (P ).

Proof. Iterating (WD) shows that P is power-bounded on BV (proceed as in the beginning
of the proof of Theorem 1).

Now let (B′
V , ‖ · ‖V ) (resp. (B′

0, ‖ · ‖0)) denote the dual space of BV (resp. of B0). Note
that we make a slight abuse of notation in writing again ‖ · ‖V and ‖ · ‖0 for the dual norms.
Let P ∗ denote the adjoint operator of P on B′

V . In fact, we prove that P ∗ is a quasi-compact
operator on B′

V with ress(P ∗) ≤ δV (P ), so that P satisfies the same properties on BV . Since
P : B0 →BV is assumed to be compact, then so is P ∗ : B′

V →B′
0. Moreover P ∗ satisfies a

Doeblin-Fortet inequality from Lemma 2 below. Then we deduce from Lemma 2 and [Hen93]
that P ∗ is a quasi-compact operator on B′

V , with ress(P ∗) ≤ δ for any δ ∈ (δV (P ), 1), so that
ress(P

∗) ≤ δV (P ). �

For the sake of simplicity we consider the same usual bracket notation 〈·, ·〉 in both B′
V ×BV

and B′
0 × B0. Recall that BV ,B0 are Banach lattices, so are B′

V , B′
0. For each g′ ∈ B′

V

(resp. g′ ∈ B′
0), one can define the modulus |g′| of g′ in B′

V (resp. in B′
0), see [Sch71]. For

the next arguments, it is enough to have in mind that g′ and |g′| have the same norm in B′
V

(resp. in B′
0), more precisely:

∀g′ ∈ B′
0, ‖g′‖0 = 〈|g′|, 1X〉 and ∀g′ ∈ B′

V , ‖g′‖V = 〈|g′|, V 〉.

Lemma 2 Let δ ∈ (δV (P ), 1). Then, there exist N ∈ N
∗ and d ∈ (0,+∞) such that for all

f ′ ∈ B′
V we have: ‖P ∗Nf ′‖V ≤ δN‖f ′‖V + d‖f ′‖0.

Proof. Let f ′ ∈ B′
V and n ≥ 1. Since Pn is a nonnegative operator on BV , so is its adjoint

operator P ∗n on B′
V , and we have for all f ∈ BV such that ‖f‖V ≤ 1 (ie. |f | ≤ V ):

∣∣〈(P ∗)nf ′, f〉
∣∣ ≤

〈
(P ∗)n|f ′|, |f |

〉
≤

〈
(P ∗)n|f ′|, V

〉
= 〈|f ′|, PnV 〉.

By definition of δV (P ) and from δ ∈ (δV (P ), 1), there exist N ∈ N
∗ and d ∈ (0,+∞) such

that PNV ≤ δN V + d 1X. Thus

‖(P ∗)Nf ′‖V := sup
f∈BV ,‖f‖V ≤1

∣∣〈(P ∗)Nf ′, f〉
∣∣

≤ 〈|f ′|, PNV 〉
≤ δN 〈|f ′|, V 〉+ d 〈|f ′|, 1X〉 = δN‖f ′‖V + d‖f ′‖0.

�
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The following lemma is useful to prove that P : B0 →BV is compact.

Lemma 3 Assume that (X, d) is a metric space in which every closed ball is compact, that
limd(x,x0)→+∞ V (x) = +∞ for some x0 ∈ X, and finally that {Pf, ‖f‖0 ≤ 1} is equicontinu-
ous. Then P is a compact operator from B0 into BV .

Proof. Let (fn)n ∈ BN
0 such that ‖fn‖0 ≤ 1. Since X is separable, it follows from Ascoli’s

theorem that there exists a subsequence (Pfnk
)k converging pointwise to some continuous

function g ∈ B0, ‖g‖0 ≤ 1, with uniform convergence on each compact set of X. Let ε > 0. We
know from the assumptions that there exists A > 0 such that: d(x, x0) > A ⇒ V (x)−1 < ε/2.
Next, let n0 ∈ N be such that: ∀k ≥ n0, supd(x,x0)≤A |(Pfnk

)(x) − g(x)| < ε. Since V ≥ 1
and P is a contraction on B0, we obtain:

sup
x∈X

|(Pfnk
)(x)− g(x)|
V (x)

≤ max

(
sup

d(x,x0)≤A
|(Pfnk

)(x)−g(x)|, sup
d(x,x0)>A

|(Pfnk
)(x)− g(x)|
V (x)

)
< ε.

Thus limk Pfnk
= g in BV . We have proved that P : B0→BV is compact. �

As shown in the next corollary, Theorem 2 is relevant in the case when P (x, dy) is absolutely
continuous with respect to some positive measure on a metric space X equipped with its Borel
σ-algebra X .

Corollary 1 Assume that (X, d) is a metric space in which every closed ball is compact, and
that V : X→[1,+∞) satisfies limd(x,x0)→+∞ V (x) = +∞ for some x0 ∈ X. Furthermore
assume that Condition (WD) holds true and that there exist a positive measure η on (X,X )
and a function K : X2→[0,+∞), supposed to be continuous in the first variable, such that

∀x ∈ X, P (x, dy) = K(x, y) dη(y). (10)

Then P is a power-bounded quasi-compact operator on BV , and we have ress(P ) ≤ δV (P ).

Proof. Thanks to Theorem 2, we only have to prove that P : B0→BV is compact. Let f ∈ B0

such that ‖f‖0 ≤ 1 (ie. |f | ≤ 1). Then we have for all (x, x′) ∈ X
2:

∣∣(Pf)(x′)− (Pf)(x)
∣∣ ≤

∫

X

∣∣K(x′, y)−K(x, y)
∣∣ dη(y).

Since we have K(·, ·) ≥ 0,
∫
K(·, y)dη(y) = 1, and limx′ → xK(x′, y) = K(x, y), we deduce

from Scheffé’s theorem that limx′ → x

∫
X
|K(x′, y) − K(x, y)| dη(y) = 0. This proves that

{Pf, ‖f‖0 ≤ 1} is equicontinuous. Thus P : B0 →BV is compact from Lemma 3. �

2.3 From quasi-compactness on BV to V -geometrical ergodicity

Recall that a Markov chain (Xn)n∈N with transition kernel P is V -geometrically ergodic if P
has an invariant probability measure π such that

(VG1) π(V ) <∞

9



(VG2) limn→∞ supf∈BV ,‖f‖V ≤1 ‖Pnf − π(f)‖V = 0.

Let Π denotes the rank-one projection defined on BV by: Πf = π(f)1X. Note that the
condition (VG2) is equivalent to the convergence to 0 of ‖Pn − Π‖V , the operator norm
associated with ‖ · ‖V . Moreover, using Pn − Π = (P − Π)n, it can be shown that the
convergence is geometric, that is, there exists ρ ∈ (0, 1) and cρ ∈ (0,+∞) such that

‖Pn −Π‖V ≤ cρ ρ
n. (11)

The infimum bound of the positive real numbers ρ such that (11) holds is denoted by ρV (P ).
It will be called the convergence rate of P on BV .

In this subsection we propose a result which makes explicit the relationship between the
quasi-compactness of P and the V -geometric ergodicity of the Markov chain (Xn)n∈N with
transition kernel P . Moreover, we provide an explicit formula for ρV (P ) in terms of the
spectral elements of P . A key element is the essential spectral radius ress(P ).

Theorem 3 Let P be a transition kernel which has an invariant probability measure. The
two following assertions are equivalent:

(a) P is V -geometrically ergodic.

(b) P is a power-bounded quasi-compact operator on BV , for which λ = 1 is a simple eigen-
value (i.e. Ker(P − I) = C · 1X) and the unique eigenvalue of modulus one.

Under any of these conditions, we have ress(P ) ≤ ρV (P ). In fact, for r0 ∈ (ress(P ), 1),
denoting the set of all the eigenvalues λ of P such that r0 ≤ |λ| < 1 by Vr0, we have:

• either ρV (P ) ≤ r0 when Vr0 = ∅,

• or ρV (P ) = max{|λ|, λ ∈ Vr0} when Vr0 6= ∅.

Moreover, if Vr0 = ∅ for all r0 ∈ (ress(P ), 1), then ρV (P ) = ress(P ).

From Definition 2.1, for any r0 ∈ (ress(P ), 1), the set of all the eigenvalues of λ of P such
that r0 ≤ |λ| ≤ 1 is finite.

Remark 2 The property that P admits a spectral gap on BV in the recent paper [KM11]
corresponds here to the quasi-compactness of P (which is a classical terminology in spectral
theory). The spectral gap in [KM11] corresponds to the value 1 − ρV (P ). Then, [KM11,
Prop. 1.1]) is a reformulation of the equivalence of properties (a) and (b) in Theorem 3
under ψ-irreducibility and aperiodicity assumptions (see also [KM11, Lem. 2.1]). The last
statements in Theorem 3 provide the value of the convergence rate ρV (P ) for V -geometrically
ergodic Markov chains from the essential spectral radius ress(P ) and the (possible) eigenvalues
λ such that ress(P ) < |λ| < 1.

10



Proof. Note that we have BV = C 1X ⊕ H0, with H0 := {f ∈ BV : π(f) = 0} (write
f = π(f)1X + (f − π(f)1X)). Since π(V ) < ∞, π defines a bounded linear form on BV , so
that H0 is a closed subspace of BV . From the invariance of π, we obtain that P (H0) ⊂ H0.

Now assume that (a) is fulfilled. Then for any ρ ∈ (ρV (P ), 1) we have from (11):

sup
h∈H0, ‖h‖V ≤1

‖Pnh‖V = O(ρn).

It follows from Definition 2.1 that P is quasi-compact on BV , with ress(P ) ≤ ρV (P ). The
fact that P is power-bounded on BV easily follows from (a).

Conversely, assume that (b) holds and prove that Property (a), together with the claimed
properties on ρV (P ), are fulfilled. Since P is Markov and power-bounded on BV , we have
r(P ) = 1. From Definition 2.1 and the assumption on the peripheral eigenvalues of P , we
obtain for any r0 ∈ (ress(P ), 1):

BV = C 1X ⊕
(
⊕λ∈Vr0

Ker(P − λI)pλ
)
⊕H, (12)

where H is a closed P -invariant subspace of BV such that suph∈H, ‖h‖V ≤1 ‖Pnh‖V = O(r0
n).

Let f ∈ BV . Then we have
f − π(f)1X =

∑

λ∈Vr0

fλ + h, (13)

with fλ ∈ Ker(P − λI)pλ and h ∈ H, and there exist some constants cλ and cH (independent
of f) such that ‖fλ‖V ≤ cλ‖f‖V and ‖h‖V ≤ cH‖f‖V (since the projections associated with
the decomposition (12) are continuous).

When Vr0 = ∅, then (13) yields

‖Pnf − π(f)1X‖V = ‖Pn
(
f − π(f)1X

)
‖V ≤ O(r0

n) ‖f‖V .

Thus Property (a) holds and ρV (P ) ≤ r0. If Vr0 = ∅ for all r0 ∈ (ress(P ), 1), then ρV (P ) ≤
ress(P ), so that ρV (P ) = ress(P ) from the proof of (a) ⇒ (b).

When Vr0 6= ∅, define ν := max{|λ|, λ ∈ Vr0}. We have for λ ∈ Vr0 and n ≥ pλ

‖Pnfλ‖V = ‖(P − λI + λI)nfλ‖V ≤
pλ−1∑

k=0

(
n

k

)
|λ|n−k‖(P − λI)k‖V ‖fλ‖V

≤ cλ

( pλ−1∑

k=0

(
n

k

)
|λ|n−k‖(P − λI)k‖V

)
‖f‖V .

Then for each k = 0, . . . , pλ−1, we have
(
n
k

)
|λ|n−k = O(nk|λ|n) ≤ O(nkνn). Thus ‖Pnfλ‖V =

O(ρn) ‖f‖V for any ρ ∈ (ν, 1). From (13) and r0 ≤ ρ, we obtain:

‖Pnf − π(f)1X‖V ≤
∑

λ∈Vr0

‖Pnfλ‖+ ‖Pnh‖V ≤
(
O(ρn) +O(r0

n)
)
‖f‖V = O(ρn) ‖f‖V .

Since ρ ∈ (ν, 1) is arbitrary, this gives ρV (P ) ≤ ν. Conversely, given any λ ∈ Vr0 and f ∈ BV

such that Pf = λf , we have π(f) = 0 (use the invariance of π), and from Pnf = λnf and
the definition of ρV (P ), we easily deduce that |λ| ≤ ρV (P ). Thus ν ≤ ρV (P ). �
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The next lemma provides the existence of the P -invariant probability measure under the
weak drift condition Condition (WD). This well-known statement (see Appendix B) will be
of interest in our examples for the use of Theorem 3.

Lemma 4 Assume that (X, d) is a separable complete metric space and that V : X→[1,+∞)
is continuous and such that the set {V ≤ α} is compact for every α ∈ (0,+∞). Under
Condition (WD), there exists a P -invariant probability measure π such that π(V ) <∞.

2.4 Study of characteristic functions

As explained in Introduction, the next theorem plays an important role in our work. For the
sake of simplicity, we write δV for δV (P ) in (3).

Theorem 4 Assume that the weak drift condition (WD) holds true. If λ ∈ C is such that
δ ≤ |λ| ≤ 1, with δ given in (WD), and if f ∈ BV ∩ Ker(P − λI)p for some p ∈ N

∗, then
there exists c ∈ (0,+∞) such that

|f | ≤ c V
ln |λ|
ln δ (lnV )

p(p−1)
2 .

The proof of Theorem 4 is based on the following lemma.

Lemma 5 Let λ ∈ C be such that δ ≤ |λ| ≤ 1. Then

∀f ∈ BV , ∃c ∈ (0,+∞), ∀x ∈ X, |λ|−n(x)
∣∣(Pn(x)f)(x)

∣∣ ≤ c V (x)
ln |λ|
ln δ (14)

with, for any x ∈ X, n(x) :=
⌊− lnV (x)

ln δ

⌋
, where ⌊·⌋ denotes the integer part function.

Proof. First note that the iteration of (WD) gives

∀k ≥ 1, P kNV ≤ δkN V + d
( k−1∑

j=0

δjN
)
1X ≤ δkN V +

d

1− δN
1X. (15)

Let g ∈ BV and x ∈ X. Using (15), the positivity of P and |g| ≤ ‖g‖V V , we obtain with
b := d/(1 − δN ):

∀k ≥ 1, |(P kNg)(x)| ≤ (P kN |g|)(x) ≤ ‖g‖V (P kNV )(x) ≤ ‖g‖V
(
δkNV (x) + b

)
. (16)

The previous inequality is also fulfilled with k = 0. Next, let f ∈ BV and n ∈ N. Writing
n = kN + r, with k ∈ N and r ∈ {0, 1, . . . , N − 1}, and applying (16) to g := P rf , we obtain
with ξ := max0≤ℓ≤N−1 ‖P ℓf‖V (use Pnf = P kN (P rf)):

∣∣(Pnf)(x)
∣∣ ≤ ξ

[
δkNV (x) + b

]
≤ ξ

[
δ−r

(
δnV (x) + b

)]
≤ ξ δ−N

(
δnV (x) + b

)
. (17)

Using the inequality

− lnV (x)

ln δ
− 1 ≤ n(x) ≤ − lnV (x)

ln δ

12



and the fact that ln δ ≤ ln |λ| < 0, Inequality (17) with n := n(x) gives:

|λ|−n(x)
∣∣(Pn(x)f)(x)

∣∣ ≤ ξ δ−N

((
δ|λ|−1

)n(x)
V (x) + b |λ|−n(x)

)

= ξ δ−N

(
en(x)(ln δ−ln |λ|) elnV (x) + b e−n(x) ln |λ|

)

≤ ξ δ−N

(
e(

ln V (x)
ln δ

+1) (ln |λ|−ln δ) elnV (x) + b e
lnV (x)

ln δ
ln |λ|

)

= ξ δ−N

(
e

ln |λ|
ln δ

lnV (x) eln |λ|−ln δ + b V (x)
ln |λ|
ln δ

)

= ξ δ−N
(
eln |λ|−ln δ + b

)
V (x)

ln |λ|
ln δ .

This gives the desired conclusion with c = ξ δ−N (eln |λ|−ln δ + b). �

Proof of Theorem 4. If f ∈ BV ∩ Ker(P − λI), then |λ|−n(x)|(Pn(x)f)(x)| = |f(x)|, so that
(14) gives the expected conclusion when p = 1. Next, let us proceed by induction. Assume
that the conclusion of Theorem 4 holds for some p ≥ 1. Let f ∈ BV ∩ Ker(P − λI)p+1. We
can write

Pnf = (P − λI + λI)nf = λn f +

min(n,p)∑

k=1

(
n

k

)
λn−k (P − λI)kf. (18)

For k ∈ {1, . . . , p}, we have fk := (P − λI)kf ∈ Ker(P − λI)p+1−k ⊂ Ker(P − λI)p, thus we
have from the induction hypothesis :

∃c′ ∈ (0,+∞), ∀k ∈ {1, . . . , p}, ∀x ∈ X, |fk(x)| ≤ c′ V (x)
ln |λ|
ln δ (lnV (x))

p(p−1)
2 . (19)

Now, we obtain from (18) (with n := n(x)), (19) and Lemma 5 that for all x ∈ X:

|f(x)| ≤ |λ|−n(x)
∣∣(Pn(x)f)(x)

∣∣+ c′ V (x)
ln |λ|
ln δ (lnV (x))

p(p−1)
2 |λ|−min(n,p)

min(n,p)∑

k=1

(
n(x)

k

)

≤ c V (x)
ln |λ|
ln δ + c1 V (x)

ln |λ|
ln δ (lnV (x))

p(p−1)
2 n(x)p

≤ c2V (x)
ln |λ|
ln δ (lnV (x))

p(p−1)
2

+p

with some constants c1, c2 ∈ (0,+∞) independent of x. Since p(p − 1)/2 + p = p(p + 1)/2,
this gives the expected result. �

To conclude this section, notice that the V -geometrical ergodicity clearly implies Condi-
tion (WD). However Condition (WD) is not sufficient for P to be V -geometrically ergodic,
even if P is assumed to be compact from B0 from BV . In fact, the previous statements provide
the following procedure to check the V -geometric ergodicity of P and to compute an upper
bound for its convergence rate ρV (P ). Let P be a transition kernel which has an invariant
probability measure. Theorem 2 shows that, if P is compact from B0 into BV and satisfies the
weak drift condition (WD), then P is quasi-compact on BV and ress(P ) ≤ δV (P ). Next The-
orem 3 ensures that the V -geometric ergodicity of P can be deduced from quasi-compactness
provided that the following properties are satisfied :

13



(i) λ = 1 is a simple eigenvalue of P on BV , namely Ker(P − I) = C · 1X;

(ii) λ = 1 is the unique eigenvalue of P of modulus one on BV .

Finally Theorem 4 can be useful to check (i)-(ii), and in a more general way to investigate
the sets Vr0 of eigenvalues of P given in Theorem 3 in order to obtain an upper bound for
the convergence rate ρV (P ). This procedure is applied in the next section.

3 Applications to discrete Markov chains

In this section, we are concerned with discrete Markov chains. For the sake of simplicity, we
assume that X := N throughout the section. Let P be a Markov kernel on N. The main focus
is on the estimation of the essential spectral radius ress(P ) from Condition (WD): a general
statement is derived from Corollary 1 in Subsection 3.1, and applications to random walks
(RW) with bounded state-dependent increments are presented in Subsection 3.2.

For irreducible and aperiodic discrete Markov chains, criteria for the V -geometrical er-
godicity are well-known from the literature using, either the equivalence between geometric
ergodicity and V -geometric ergodicity of N-valued Markov chains [HS92, Prop. 2.4], or the
strong drift Conditions (D)-(S) of Introduction [MT93]. In Subsection 3.3, we just explain
as an alternative way how the quasi-compactness combined with irreducibility and aperiodic-
ity conditions provide the V -geometrical ergodicity. Finally the procedure mentioned at the
end of the previous section (see (i))-(ii)) is applied to compute the convergence rate of some
random walks (see Example 4 and Subsection 3.4).

3.1 Quasi-compactness of discrete Markov chains

Let P = (P (i, j))i,j∈N2 be a Markov kernel on N. The function V : N→[1,+∞) is assumed
to satisfy

lim
n
V (n) = +∞ and sup

n∈N

(PV )(n)

V (n)
<∞.

Corollary 2 The two following conditions are equivalent:

(a) Condition (WD) holds with V ;

(b) L := inf
N≥1

(ℓN )
1
N < 1 where ℓN := lim supn→+∞(PNV )(n)/V (n).

In this case, P is power-bounded and quasi-compact on BV with

ress(P ) ≤ δV (P ) = L.
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Proof. The last assertion follows from Corollary 11. Let us prove the equivalence (a)⇔(b),
as well as the equality δV (P ) = L. First, Condition (WD) clearly gives ℓN ≤ δN < 1 (with
δ in (WD)), thus L ≤ δV (P ) by definition of δV (P ). Conversely, assume that L < 1: there
exists N ≥ 1 such that ℓN < 1. Let δ be such that ℓN < δN < 1. Then there exists n0 ∈ N

such that: ∀n > n0, (P
NV )(n)/V (n) ≤ δN . Hence

PNV ≤ δNV + d, with d := max
0≤i≤n0

(PNV )(i)

V (i)
.

This proves (WD), and δV (P ) ≤ (ℓN )1/N since δ is arbitrary close to (ℓN )1/N . In fact, the
last argument shows that δV (P ) ≤ (ℓN )1/N provided that ℓN < 1. From definition of L, there
exists a sequence (Nk)k≥0 such that L = limk(ℓNk

)1/Nk . Thus we have δV (P ) ≤ (ℓNk
)1/Nk for

k large enough. Thus δV (P ) ≤ L. �

In the next subsections, Corollary 2 is applied to random walks on N with the following
special sequence Vγ := (γn)n∈N for some γ ∈ (1,+∞). The associated weighted-supremum
space Bγ ≡ BVγ is defined by:

Bγ :=
{
(f(n))n∈N ∈ C

N : sup
n∈N

γ−n|f(n)| <∞
}
. (20)

3.2 Quasi-compactness of RW with bounded state-dependent increments

Let us fix b ∈ N
∗, and assume that the kernel P on X := N satisfies the following conditions:

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j) = 1;

∀i ≥ b,∀j ∈ N, P (i, j) =

{
0 if |i− j| > b

aj−i(i) if |i− j| ≤ b
(21)

where (a−b(i), . . . , ab(i)) ∈ [0, 1]2b+1 satisfies
∑b

k=−b ak(i) = 1 for all i ≥ b. This kind of
kernels arises, for instance, from time-discretization of Markovian queueing models (see a
basic example in Remark 4).

Proposition 1 Assume that for every k ∈ Z such that |k| ≤ b

lim
n
ak(n) = ak ∈ [0, 1], (22a)

and that γ ∈ (1,+∞) is such that

φ(γ) :=

b∑

k=−b

ak γ
k < 1 (22b)

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j)γj <∞. (22c)

1Note that the compactness of P : B0 →BV can be directly deduced from Cantor’s diagonal argument,
which ensures that the canonical injection from B0 into BV is compact (use limn V (n) = +∞).
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Then P is power-bounded and quasi-compact on Bγ with

ress(P ) ≤ φ(γ).

Proof. Set φn(γ) :=
∑b

k=−b ak(n) γ
k. We have (PVγ)(n) = φn(γ)Vγ(n) for each n ≥ b, hence

we obtain from (22a)

lim sup
n

(PVγ)(n)

Vγ(n)
≤ φ(γ).

The conclusion of Proposition 1 then follows from Corollaries 2 using (22b)-(22c). �

Assume that a0 6= 1. Let φ(k) be the k-th derivative of φ. It is checked in Appendix C.2
that there exists 1 ≤ ℓ ≤ 2b such that

∀k ∈ {1, . . . , ℓ− 1}, φ(k)(1) = 0 and φ(ℓ)(1) 6= 0, (23)

according that the first condition is removed when ℓ = 1. Since φ(1) = 1, a sufficient condition
for (22b) to hold for some γ ∈ (1,+∞) is that

φ(ℓ)(1) < 0. (24)

Example 1 (State-dependent birth-and-death Markov chains) When b := 1 in (21),
we obtain the standard class of state-dependent birth-and-death Markov chains. Namely, the
stochastic kernel P is defined by:

∀n ≥ 1, P (n, n − 1) := pn, P (n, n) := rn, P (n, n+ 1) := qn,

where the real numbers (pn, rn, qn) ∈ [0, 1]2 and pn + rn + qn = 1. Assume that the following
limits exist:

lim
n
pn := p ∈ (0, 1], lim

n
rn := r ∈ [0, 1), lim

n
qn := q.

If γ ∈ (1,+∞) is such that

φ(γ) :=
p

γ
+ r + qγ < 1 and

∑

n≥0

P (0, n)γn <∞,

then it follows from Proposition 1 that P is power-bounded and quasi-compact on Bγ with

ress(P ) ≤
p

γ
+ r + qγ.

The condition p/γ + r+ qγ < 1 is equivalent to the following ones (use r = 1− p− q for (i)):

(i) either p > q > 0 and 1 < γ < p/q; (ii) or q = 0 and γ > 1.

• When p > q > 0 and 1 < γ < p/q: if
∑

n≥0 P (0, n)γ
n < ∞, then P is power-bounded

and quasi-compact on Bγ with ress(P ) ≤ φ(γ). Set γ̂ :=
√
p/q. Then

min
γ>1

φ(γ) = φ(γ̂) = r + 2
√
pq ∈ (r2, 1). (25)

Consequently, if
∑

n≥0 P (0, n)(γ̂)
n <∞, then the previous conclusions holds for γ := γ̂,

with essential spectral radius on Bγ̂ satisfying

ress(P ) ≤ r + 2
√
pq.
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• When q := 0 and γ > 1: if
∑

n≥0 P (0, n)γ
n < ∞, then for P is power-bounded and

quasi-compact on Bγ with
ress(P ) ≤ φ(γ) = p/γ + r.

Such a case is illustrated by the next example.

Example 2 (Simulation of a Poisson distribution with parameter one) The Markov
kernel P on X := N defined by

P (0, 0) = P (0, 1) =
1

2

∀n ≥ 1, P (n, n− 1) :=
1

2
, P (n, n) :=

n

2(n+ 1)
, P (n, n + 1) :=

1

2(n+ 1)
.

arises from a Hastings-Metropolis sampler of a Poisson distribution. We have p = r = 1/2
and q = 0 with the notations of Example 1. Hence, for each γ ∈ (1,+∞), P is power-bounded
and quasi-compact on Bγ and

ress(P ) ≤ 1/2 + 1/(2γ).

Remark 3 (Random walks with i.d. bounded increments) Consider the case when the
increments ak(n) do not depend on the state n, that is when the kernel P is

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j) = 1; ∀i ≥ b,∀j ∈ N, P (i, j) =

{
aj−i if |i− j| ≤ b
0 if |i− j| > b

where (a−b, . . . , ab) ∈ [0, 1]2b+1 and
∑b

k=−b ak = 1. Obviously the statements of Example 1
apply but some additional facts can be deduced for such Markov chains. First note that

∀γ ∈ (1,+∞), ∀N ≥ 1, ∀n ≥ Nb, (PNVγ)(n) = φ(γ)N Vγ(n). (26)

Consequently, under the assumptions φ(γ) < 1 and (22c), we obtain from Corollary 2 that
Condition (WD) is fulfilled with Vγ and

δVγ (P ) = φ(γ). (27)

Besides, it is shown in Appendix C.2.2 that, under the assumptions a0 6= 1 and (22c), Condi-
tion (WD) holds true with Vγ0 for some γ0 ∈ (1, γ] if and only if φ(ℓ)(0) < 1 (see (23)-(24)).
Finally, for the birth-and-death Markov chains, that is when b := 1, the convergence rate can
be computed (see Subsection 3.4).

3.3 V -geometrical ergodicity for discrete Markov chains

Let P = (P (i, j))i,j∈N2 be a Markov kernel on N. The following irreducibility and aperiodicity
conditions for discrete Markov chains are well-known. For any (i, j) ∈ N

2, define

Ri,j :=
{
n ≥ 1 : Pn(i, j) > 0

}
,
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where Pn denotes the n-step Markov transition kernel. The Markov kernel P is said to be
irreducible if

∀(i, j) ∈ N, Ri,j 6= ∅, (I)

and to be aperiodic if

∃ i ∈ N, Ri,i −Ri,i := {n −m, (m,n) ∈ Ri,i ×Ri,i} = Z. (A)

Since Ri,i is stable under addition from the Chapman-Kolmogorov equation, the subgroup
of Z generated by Ri,i coincides with Ri,i − Ri,i. Hence the aperiodicity Condition (A) is
equivalent to the usual one: the largest element d = d(i) ∈ N

∗ such that Ri,i ⊂ d ·N∗ (i.e. the
g.c.d. of Ri,i), called the period of i, is equal to 1. If P is irreducible then each state j ∈ N

has the same period.

Corollary 3 Under Condition (b) of Corollary 2, P has an invariant probability measure π
such that π(V ) <∞. If the additional Conditions (I)-(A) hold true, then P is V -geometrically
ergodic.

As already mentioned, the previous statement is well-known. It can also be derived from
quasi-compactness (note that the first assertion of Corollary 3 follows from Lemma 4): apply
Corollary 2 and Theorem 3 with Conditions (I)-(A) (see Appendix C.1 for completeness).

Under the additional Conditions (I)-(A), all the statements of Subsection 3.2 can be
completed in order to find again the Vγ-geometric ergodicity. For instance, in Example 1,
the Vγ-geometrical ergodicity holds when P (0, 0) ∈ (0, 1) and pn, qn > 0 for all n ≥ 1 2.
In Example 2, Conditions (I)-(A) are automatically fulfilled so that P is Vγ-geometrically
ergodic without additional assumptions.

Note that the irreducibility condition is not necessary for P to be V -geometrically ergodic:
in this case the use of Theorem 3 (via Corollary 2) is of interest to obtain the V -geometric
ergodicity as illustrated in the following simple example.

Example 3 (An instance of binary RW) Assume that

∀n ≥ 1, P (n, n− 1) := p ∈ (0, 1], P (n, n) := r = 1− p.

We know from Example 1 that, under the assumptions γ > 1 and
∑

n≥0 P (0, n)γ
n < ∞, P

is power-bounded and quasi-compact on Bγ with ress(P ) ≤ p/γ + r. Note that Condition (I)
is not automatically fulfilled in this instance. Anyway, without additional assumptions, P is
Vγ-geometrically ergodic. Indeed Theorem 3 applies. First the equation Pf = f leads to:
∀n ≥ 1, f(n) = f(n− 1), so that f is constant. Hence 1 is a simple eigenvalue of P . Second,
given λ ∈ C, |λ| = 1, λ 6= 1, any solution of Pf = λf is of the form: f = (f(0)zλ

n)n∈N
with zλ := p/(λ − r). From |λ − r| > 1 − r = p, we obtain |zλ| < 1, so that the equality
(Pf)(0) = λf(0), namely λf(0) = f(0)

∑
n≥0 P (0, n)zλ

n is only possible when f(0) = 0.
Hence 1 is the only eigenvalue of modulus one.

2Note that, if P (0, 0) = 0, then the period d(0) of i := 0 may be equal to 2. For instance this fact holds when
P (0, 1) = 1, and λ = −1 is then an eigenvalue of P : P is quasi-compact on Bγ̂ , but it is not Vγ̂-geometrically
ergodic.
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Finally recall that, as it was outlined at the end of Section 2, quasi-compactness is espe-
cially of interest for bounding the convergence rate of P . Example 4 below is a first simple
illustration of this fact. Other applications to birth-and-death Markov chains are proposed in
the next Subsection.

Example 4 (An instance of RW with unbounded increments) Let us point out that
Corollary 2 and Theorem 3 may be also useful for random walks on X := N with unbounded
increments. For instance, let P be defined by [MS95]

∀n ≥ 1, P (0, n) := qn, ∀n ≥ 1, P (n, 0) := p, P (n, n+ 1) := q = 1− p,

with p ∈ (0, 1) and qn ∈ [0, 1] such that
∑

n≥1 qn = 1. For γ ∈ (1,+∞) and Vγ := (γn)n∈N,

we have: ∀n ≥ 1, (PVγ)(n) = p + qγn+1 = (p/γn + qγ)Vγ(n). Thus, if γ ∈ (1, 1/q) and∑
n≥1 qnγ

n <∞, then Condition (WD) holds with Vγ and we have δVγ (P ) ≤ qγ. Therefore,
under the previous conditions, if follows from Corollary 2 that P is power-bounded, quasi-
compact on Bγ and

ress(P ) ≤ qγ.

No additional assumptions are required to obtain the Vγ-geometric ergodicity: P is Vγ-
geometrically ergodic provided that γ ∈ (1, 1/q) and

∑
n≥1 qnγ

n < ∞, and the convergence
rate ρVγ (P ) of P on Bγ satisfies:

ρVγ (P ) ≤ max(qγ, p). (28)

Proof of (28). Theorem 3 is applied with any r0 > max(qγ, p). Let λ ∈ C be such that
max(qγ, p) < |λ| ≤ 1, and let f ∈ Bγ , f 6= 0, be such that Pf = λf . We obtain f(n) =
(λ/q)f(n− 1)− pf(0)/q for any n ≥ 2, so that

∀n ≥ 2, f(n) = f(1)

(
λ

q

)n−1

− pf(0)

q

(
1− (λq )

n−1

1− λ
q

)

=

(
λ

q

)n−1(
f(1)− pf(0)

λ− q

)
+
pf(0)

λ− q
.

Since f ∈ Bγ and |λ|/q > γ, we must have f(1) = pf(0)/(λ − q), and consequently: ∀n ≥
1, f(n) = pf(0)/(λ − q). Next the equality λf(0) = (Pf)(0) =

∑
n≥1 qnf(n) gives: λf(0) =

pf(0)/(λ − q) since
∑

n≥1 qn = 1. We have f(0) 6= 0 since we look for a solution f 6= 0.

Thus λ satisfies λ2 − qλ− p = 0, namely: λ = 1 or λ = −p. The case λ = −p has not to be
considered from assumption. If λ = 1, we have f(n) = f(0) for each n ∈ N, so that 1 is a
simple eigenvalue. We have proved that 1 is a simple eigenvalue of P on Bγ and that λ = 1
is the only eigenvalue of P on Bγ such that max(qγ, p) < |λ| ≤ 1. Then Theorem 3 gives the
estimate (28) of the convergence rate. Note that p cannot be dropped in (28) since λ = −p
is an eigenvalue of P on Bγ with corresponding eigenvector (up to a multiplicative constant)
fp := (1,−p,−p, . . . ).
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3.4 Study of the convergence rate for the birth-and-death Markov chains

We consider real numbers p, q, r ∈ [0, 1] such that p + r + q = 1, p > q > 0, and we assume
that P is defined on X := N by

∀n ≥ 1, P (n, n− 1) := p, P (n, n) := r ∈ [0, 1), P (n, n+ 1) := q,

P (0, 0) ∈ (0, 1),
∑

n≥0

P (0, n) (γ̂)n <∞ where γ̂ :=

√
p

q
∈ (1,+∞).

(29)

Let Vγ̂ := (γ̂n)n∈N. The weighted-supremum space Bγ̂ := BVγ̂
associated to Vγ̂ is defined in

(20). Note that Conditions (I)-(A) hold true. We know from Example 1 and Corollary 3
that P is Vγ̂-geometrically ergodic and from (25) (27) that

ress(P ) ≤ δVγ̂
(P ) = r + 2

√
pq.

As illustrated afterwards, thanks to Theorem 3 and Lemmas 6-7 below, the last bound
on the essential spectral radius ress(P ) is relevant to compute the convergence rate ρVγ̂

(P )
(see (11)).

Lemma 6 Assume that Conditions (29) hold true. If f is a nontrivial eigenvector in Bγ̂

associated with a complex eigenvalue λ of P such that r + 2
√
pq < |λ| ≤ 1 then

∃α1 ∈ C \ {0}, ∀n ≥ 0, f(n) = α1 zλ
n, (30)

with zλ satisfying the following conditions:

|zλ| < γ̂, (31a)

qzλ
2 + (r − λ)zλ + p = 0, (31b)
∑

n≥0

P (0, n)zλ
n = λ. (31c)

Proof. Let λ ∈ C be such that r + 2
√
pq < |λ| ≤ 1. Let f ∈ Bγ̂ , f 6= 0 such that Pf = λf so

that
∀n ≥ 1, λf(n) = pf(n− 1) + rf(n) + qf(n+ 1). (32)

Let us denote by zλ, z′λ the two complex solutions of the characteristic equation

qz2 + (r − λ)z + p = 0.

Observe that zλz′λ = p/q = γ̂2. Recall that the solutions of (32) are of the form, either
f(n) = α1zλ

n + α2z
′
λ
n if zλ 6= z′λ, or f(n) = α1zλ

n + α2nzλ
n if zλ = z′λ, with α1, α2 ∈ C.

We have |zλ| 6= |z′λ|. Indeed, Theorem 4 with p := 1 and δ := r + 2
√
pq implies that

|f | ≤ cV τ with τ := ln |λ|/ ln δ ∈ (0, 1) and some constant c. Consequently we have |α1zλ
n +

α2z
′
λ
n| ≤ c γ̂τn in case zλ 6= z′λ, and |α1zλ

n + α2nzλ
n| ≤ c γ̂τn in case zλ = z′λ. If |zλ| = |z′λ|,

then we would have |zλ| = |z′λ| = γ̂, but the two previous inequalities then easily imply that
α1 = α2 = 0, that is f = 0.
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From |zλ| 6= |z′λ|, we can suppose that (for instance) |zλ| < γ̂ and |z′λ| > γ̂. Since f , (zλn)n
are in Bγ̂ and (z′λ

n)n is not in Bγ̂ , we obtain: ∀n ≥ 0, f(n) = α1zλ
n. Since f 6= 0 (i.e. α1 6= 0),

the equation (Pf)(0) = λf(0) implies that zλ must satisfy (31c). �

Lemma 7 Under assumptions (29), we have: ρVγ̂
(P ) ≥ r + 2

√
pq.

Proof. From (26), we have: ∀i ≥ n, (PnVγ̂)(i) = (r+2
√
pq)n Vγ̂(i). Also recall that γ̂ :=

√
p/q

and φ(γ̂) = r + 2
√
pq (see (25)), where φ(γ) := p

γ + r + qγ. We have

∀γ ∈ (1,+∞), γ φ(γ)− 1 = (γ − 1)(qγ + 1− p) > 0,

thus γ̂ φ(γ̂) = (r
√
p + 2p

√
q)/

√
q > 1. Now, the definition of ρVγ̂

(P ) ensures that, for each
ρ ∈ (ρVγ̂

(P ), 1), we can write |(PnVγ̂)(n) − π(Vγ̂)|/Vγ̂(n) ≤ cρn for some constant c ≡ c(ρ).
Thus we have

|(PnVγ̂)(n)− π(Vγ̂)|
Vγ̂(n)

=
∣∣(r + 2

√
pq)n − π(Vγ̂)

(√q
√
p

)n∣∣

= (r + 2
√
pq)n

∣∣∣∣1− π(Vγ̂)

( √
q

r
√
p+ 2p

√
q

)n∣∣∣∣
≤ cρn,

Hence we have r + 2
√
pq ≤ ρ, thus r + 2

√
pq ≤ ρVγ̂

(P ). �

Proposition 2 In addition to Conditions (29), the boundary transition probabilities are as-
sumed to satisfy, for some a ∈ (0, 1):

P (0, 0) := a, P (0, 1) := 1− a.

Then P is Vγ̂-geometrically ergodic. Furthermore, defining a0 := 1− q−√
pq, the convergence

rate ρVγ̂
(P ) of P is given by:

• when a ∈ [a0, 1),
ρVγ̂

(P ) = r + 2
√
pq ; (33)

• when a ∈ (0, a0], we have

(a) in case 2p ≤
(
1− q +

√
pq
)2

:

ρVγ̂
(P ) = r + 2

√
pq ; (34)

(b) in case 2p >
(
1− q +

√
pq
)2

, setting a1 := p−√
pq −

√
r
(
r + 2

√
pq
)
:

ρVγ̂
(P ) =

∣∣∣∣a+
p(1− a)

a− 1 + q

∣∣∣∣ when a ∈ (0, a1] (35a)

ρVγ̂
(P ) = r + 2

√
pq when a ∈ [a1, a0). (35b)
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When r := 0 in the previous lemma, we have a0 = a1 = p − √
pq = (p − q)/(1 +

√
q/p),

and it can be easily checked that 2p > (1 − q +
√
pq)2. The properties (33) (35a) (35b) then

rewrite as:

ρVγ̂
(P ) =

pq + (a− p)2

|a− p| when a ∈ (0, a0] (36a)

ρVγ̂
(P ) = 2

√
pq when a ∈ (a0, 1). (36b)

Using Kendall’s theorem, the properties (36a)-(36b) have been proved for a < p in [RT99]
and [Bax05, Ex. 8.4]. For a ≥ p, (36b) can be derived from [LT96] using the fact that P is
stochastically monotone. Our method gives a unified and simple proof of (36a)-(36b), and
encompasses the case r 6= 0.

Proof of Proposition 2. By elimination, given some λ ∈ C, a necessary and sufficient condition
for the two following equations:

qz2 + (r − λ)z + p = 0, (37a)

a+ (1− a)z = λ. (37b)

to have a common solution z ∈ C is that

0 =

∣∣∣∣∣∣

1− a a− λ 0
0 1− a a− λ
q r − λ p

∣∣∣∣∣∣
= (1− λ)

∣∣∣∣∣∣

1− a 1 0
0 1 a− λ
q 1 p

∣∣∣∣∣∣

= (1− λ)
[
(λ− a)(1 − a− q) + p(1− a)

]
. (38)

Assume that a 6= 1 − q. Then λ = 1 is a solution of (38), and the other solution of (38),
say λ(a), and the associated complex number in (37b), say z(a), are given by:

λ(a) := a+
p(1− a)

a− 1 + q
∈ R and z(a) :=

p

a+ q − 1
∈ R. (39)

Now, let λ ∈ C be such that r + 2
√
pq < |λ| < 1, and assume that there exists f ∈ Bγ̂ ,

f 6= 0, such that Pf = λf . Then Lemma 6 gives f := (zλ
n)n≥0 (up to a multiplicative

constant), with zλ ∈ C satisfying |zλ| < γ̂ and Equations (37a)-(37b). Thus we have λ = λ(a)
and zλ = z(a), with λ(a) and z(a) given by (39). Conversely, we have Pfa = λ(a)fa with
fa = (z(a)n)n≥0 since, by definition, z(a) satisfies the equations (37a)-(37b) associated with
λ = λ(a). Now we must find the values a ∈ (0, 1) for which we have r + 2

√
pq < |λ(a)| < 1

and |z(a)| ≤ γ̂. This is the relevant question since Theorem 3 gives the following properties:

(i) if r + 2
√
pq < |λ(a)| < 1 and |z(a)| < γ̂, then we have ρVγ̂

(P ) = |λ(a)| since λ(a) is the
only eigenvalue λ of P on Bγ̂ such that r + 2

√
pq < |λ| < 1 (apply Theorem 3 with any

r0 such that r + 2
√
pq < r0 < |λ(a)|),

(ii) if λ(a) or z(a) do not satisfy the previous conditions, then we have ρVγ̂
(P ) = r + 2

√
pq

since there is no eigenvalue λ of P on Bγ̂ such that r+2
√
pq < |λ| < 1 (apply Theorem 3

with any r0 such that r + 2
√
pq < r0 < 1).
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First, observe that
|z(a)| ≤ γ̂ ⇔ |a− 1 + q| ≥ √

pq. (40)

Hence, if a ∈ (a0, 1) (recall that a0 := 1− q −√
pq), then |z(a)| > γ̂. Then (ii) gives (33).

Second consider the case a ∈ (0, a0]. Then we have |z(a)| ≤ γ̂, and we have to study λ(a).
Note that λ′(a) = 1−pq/(a−1+ q)2, so that the function a 7→ λ(a) is increasing on (−∞, a0]
from −∞ to λ(a0) = r − 2

√
pq. Thus

∀a ∈ (0, a0], λ(a) ≤ r − 2
√
pq < r + 2

√
pq.

and the equation λ(a) = −(r + 2
√
pq) has a unique solution a1 ∈ (−∞, a0). For the

continuation, it suffices to have in mind that a1 < a0 and λ(a1) = −(r + 2
√
pq), that

λ(0) = p/(q − 1) ∈ [−1, 0) and finally that

λ(0)− λ(a1) = p/(q − 1) + r + 2
√
pq =

(q −√
pq − 1)2 − 2p

1− q
.

When 2p ≤ (1− q +
√
pq)2, (34) follows from (ii). Indeed |λ(a)| < r + 2

√
pq since

∀a ∈ (0, a0], −(r + 2
√
pq) = λ(a1) ≤ λ(0) < λ(a) < r + 2

√
pq.

When 2p > (1− q +
√
pq)2, we have a1 ∈ (0, a0] and:

• if a ∈ (0, a1), then (35a) follows from (i). Indeed r + 2
√
pq < |λ(a)| < 1 since

∀a ∈ (0, a1], −1 ≤ λ(0) < λ(a) < λ(a1) = −(r + 2
√
pq) ;

• if a ∈ [a1, a0], then (35b) follows (ii). Indeed |λ(a)| < r + 2
√
pq since

−(r + 2
√
pq) = λ(a1) ≤ λ(a) < r + 2

√
pq.

It remains to study the special case a = 1 − q. Then λ = 1 is the only solution of (38).
Again let λ ∈ C be such that r + 2

√
pq < |λ| < 1, and let f ∈ Bγ̂ , f 6= 0, such that

Pf = λf . Then Lemma 6 gives f := (zλ
n)n≥0, with zλ ∈ C satisfying Equations (37a)-(37b),

thus Equation (38). Consequently there is no eigenvalue of P such that r + 2
√
pq < |λ| < 1.

Theorem 3 applied with any r0 ∈ (r + 2
√
pq, 1) then gives ρVγ̂

(P ) = r + 2
√
pq. �

Remark 4 Let us consider the time-discretised M/M/1 queue obtained using the uniformiza-
tion technique [HS92, Section 4.1]. The arrival and service rates are denoted by β > 0 and
µ > 0 respectively. For 0 < h < 1/(β + µ), the kernel Ph is defined by Ph = I + hQ where
Q is the generator of the continuous time birth-and-death process (Xt)t≥0 of the number of
customers in a M/M/1 queue, so that

Ph(0, 0) := 1− βh, Ph(0, 1) := βh;

∀n ≥ 1, Ph(n, n− 1) = µh, Ph(n, n) := 1− h(β + µ), Ph(n, n+ 1) = βh.

Assume that β/µ < 1 which is the ergodicity condition of the M/M/1 queue. Note that
µh, βh, 1 − h(β + µ), 1 − βh stand for p, q, r, a with the notations of Proposition 2 and that
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p > q, a = Ph(0, 0) ∈ (0, 1) and a+ q − 1 = 0. Therefore, for any 0 < h < 1/(β + µ), Ph is
Vγ̂-geometrically ergodic with γ̂ =

√
µ/β and

ρVγ̂
(Ph) = 1− h(

√
µ−

√
β)2.

Note that ρVγ̂
(Ph) is decreasing as h growth to 1/(β + µ). The minimum (not attained)

2
√
pq = 2h

√
µβ = 2

√
µβ/(µ+ β) would be obtained as h := 1/(β + µ) but in this case r := 0

and we retrieve a binary random walk (and its convergence rate ρVγ̂
= 2

√
µβ) corresponding to

the embedded Markov chain associated with the birth-and-death Markov process. This last value
was found to be the L

1-convergence rate in [LT96] using the monotone structure of the Markov
chain and to be the L

2-convergence rate in [RT01] from the equality of the two rates using the
reversibility of the model. Finally, note that exponential bounds for (Xt)t≥0 are easily derived
using that its semi-group (Pt)t≥0 satisfies Pt = exp(Qt) =

∑∞
k=0 Ph

k exp(−t/h)(t/h)k/k! and
that Ph has the same invariant probability measure than (Xt)t≥0 for any h < 1/(β + µ).
Indeed, we obtain that for any 0 < ρ < (

√
µ−√

β)2:

∀f ∈ Bγ̂ , ‖Ptf − π(f)‖Vγ̂
= sup

n∈N

|(Ptf)(n)− π(f)|
Vγ̂(n)

= O
(
exp(−tρ)

)
.

Note that (
√
µ−√

β)2 is the L
2(π)-spectral gap for such a process (see e.g. [Kar00]).

4 From convergence on a subspace of BV to V -geometrical er-
godicity

In this subsection, P is assumed to have an invariant probability measure π on (X,X ) such
that π(V ) < ∞. We give another procedure to get an upper bound for the convergence rate
ρV (P ). This method is based on Theorem 2 which involves the compactness of P from B0 to
BV and Condition (WD), and on the new following conditions:

Conditions (B). There exists a subspace B of BV such that we have:

(a) ∃κB ∈ (0, 1) such that ∀f ∈ B, ∃ cf ∈ [0,+∞), ‖Pnf − π(f)1X‖V ≤ cf κB
n,

(b) ∃τ ∈ [0, 1] such that P (BV τ ) ⊂ B, where

BV τ :=
{
f : X→C measurable such that sup

x∈X
|f(x)|/V (x)τ <∞.

}

Note that, for τ = 0, the space BV τ corresponds to the space B0 of all the bounded measurable
C-valued functions on X.

Theorem 5 The transition kernel P is assumed to satisfy Conditions (WD) and (B) and
to be compact from B0 to BV . Then P is V -geometrically ergodic, and we have, with δV (P )
defined in (3):

ρV (P ) ≤ max
(
κB, δV (P )

τ
)
. (41)

Proof. From Theorem 2, P is a power-bounded quasi-compact operator on BV , with in
addition ress(P ) ≤ δV (P ). It follows from Theorem 3 that 1) P is V -geometrically ergodic;
2) Property (41) is fulfilled, provided that
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(i) λ = 1 is a simple eigenvalue of P on BV ;

(ii) λ = 1 is the unique eigenvalue of P on BV in {z ∈ C : max(κB, (δV (P ))
τ ) < |z| ≤ 1} for

τ 6= 0 and in {z ∈ C : |z| = 1} for τ = 0.

For (ii), if τ 6= 0, note that ress(P ) ≤ δV (P ) ≤ (δV (P ))
τ ≤ max(κB, (δV (P ))

τ ), so that
Theorem 3 can be applied with any r0 such that max(κB, (δV (P ))

τ ) < r0 < 1. If τ := 0, then
only the equivalence (a) ⇔ (b) of Theorem 3 is needed.

Let us prove (i)-(ii). Let f ∈ BV such that Pf = λf with r0 ≤ |λ| ≤ 1 in case τ 6= 0, and
with |λ| = 1 in case τ = 0. Let δ ∈ (δV (P ), 1) be such that δτ ≤ |λ|. From Theorem 4 with
p := 1, there exists c ∈ (0,+∞) such that

|f | ≤ c V
ln |λ|
ln δ ≤ c V τ .

Thus f ∈ BV τ . The equality Pf = λf and Condition (B)(b) then give f ∈ B. Besides, since
|λ| > κB, we deduce from Condition (B)(a) the following properties: first, if λ = 1, then f
is constant on X ; second, if λ 6= 1, then f = 0 (use Condition (B)(a) and the fact π(f) = 0
easily derived from Pf = λf). This proves (i) and (ii). �

Remark 5 The real number cf in Condition (B)(a) is not necessarily of the form c‖f‖V (with
fixed c > 0). In other words Condition (B)(a) does not involve (a priori) the operator norm
on BV . This fact occurs for instance in the following case. Suppose that there exists a space
(B, ‖ · ‖) such that B ⊂ BV with continuous inclusion (i.e. ∃d > 0, ∀f ∈ B, ‖f‖V ≤ d ‖f‖)
and such that P continuously acts and is strongly ergodic on (B, ‖ · ‖), namely there exist
κ ∈ (0, 1) and c > 0 such that

∀f ∈ B, ‖Pnf − π(f)1X‖ ≤ c κn ‖f‖.

Then Condition (B)(a) is fulfilled with cf = c d‖f‖.

Remark 6 If Condition (B)(a) holds and V ∈ B, then Condition (WD) is fulfilled and

δV (P ) ≤ κB.

Indeed let δ ∈ (κB, 1) and let N ∈ N
∗ be such that cV

1/NκB ≤ δ. Then Condition (B)(a)
applied to f := V gives: PNV ≤ cV κ

N
B V + π(V ) ≤ δNV + π(V ).

Remark 7 Assume that Condition (B)(a) holds true and that f : X→R is such that P ℓf ∈ B
for some ℓ ∈ N

∗. Then we have

∀n ≥ ℓ, ‖Pnf − π(f)1X‖V ≤ cP ℓf κB
n−ℓ.

Although this is not directly connected with the V -geometric ergodicity, such estimate may
be of interest when the constant cP ℓf is explicit. This is illustrated in the next section (see
Remark 9 and Corollary 7).
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5 V -geometrical ergodicity of iterated function systems

In this section we assume that (X, d) is a metric space equipped with its borel σ-algebra X .
Let (V,V) be a measurable space. Let us first recall the definition of an iterated function
system (IFS) of Lipschitz maps (see [DF99, Duf97]).

Definition 1 (IFS of Lipschitz maps) Let (ϑn)n≥1 be a sequence of V-valued i.i.d. random
variables, with common distribution denoted by ν. Let X0 be a X-valued r.v. which is assumed
to be independent of the sequence (ϑn)n≥1. Finally, let F : (V × X,X ⊗ V)→(X,X ) be
jointly measurable and Lipschitz continuous with respect to the second variable. The associated
iterated function system (IFS) is the sequence of random variables (Xn)n∈N which, given X0,
is recursively defined by:

∀n ≥ 1, Xn := F (ϑn,Xn−1). (42)

Clearly (Xn)n∈N is a Markov chain, with transition kernel P :

∀x ∈ X, ∀A ∈ X , P (x,A) = E[1A
(
F (ϑ1, x)

)
] =

∫

V

1A
(
F (v, x)

)
dν(v). (43)

Let x0 ∈ X be fixed. For any b ∈ [0,+∞), we set

∀x ∈ X, p(x) := 1 + d(x, x0) and Vb(x) := p(x)b.

We simply denote by (Bb, | · |b) the weighted-supremum Banach space BVb
associated with

Vb(·), that is

Bb :=

{
f : X→C measurable such that |f |b := sup

x∈X

|f(x)|
p(x)b

<∞
}
. (44)

If ψ : (X, d)→(X, d) is a Lipschitz continuous function, we define

L(ψ) := sup

{
d
(
ψ(x), ψ(y)

)

d(x, y)
, (x, y) ∈ X

2, x 6= y

}
. (45)

Let a ∈ [1,+∞). We denote by La the following space:

La :=

{
f : X→C : ma(f) := sup

{ |f(x)− f(y)|
d(x, y) (p(x) + p(y))a−1

, (x, y) ∈ X
2, x 6= y

}
< ∞

}
.

(46)
Such Lipschitz-weighted spaces have been introduced in [LP83] to obtain quasi-compactness
of Lipschitz kernels, see also [MR89, Duf97, Ben98, HH01].

Note that, for f ∈ La, we have for all x ∈ X: |f(x)| ≤ |f(x0)|+ 2a−1ma(f) p(x)
a. Thus:

∀f ∈ La, |f |a := sup
x∈X

|f(x)|
p(x)a

<∞ and La ⊂ Ba.

In this section we apply the results of Section 4. More specifically, in Subsection 5.1 we
give standard contraction/moment conditions for P to satisfy Assertion (a) of Conditions (B)
with V := Va and B := La for some a ∈ [1,+∞). In Subsection 5.3 the passage to the
Va-geometric ergodicity is investigated under Conditions (B).
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5.1 Basic inequalities for IFS

For all x ∈ X, v ∈ V and (v1, . . . , vn) ∈ V
n (n ∈ N

∗), define:

Fvx := F (v, x) and L(v) := L(Fv) (47a)

Fvn:v1 := Fvn ◦ · · · ◦ Fv1 and L(vn : v1) := L(Fvn:v1). (47b)

By hypothesis we have L(v) <∞, and so L(vn : v1) <∞. Note that the limit

κ̂a := lim
n→+∞

E [L(Fϑn:ϑ1)
a]

1
na

exists in [0,+∞], since the sequence (E[L(ϑn : ϑ1)
a])n∈N∗ is submultiplicative. Let us consider

the following classical moment/contraction conditions:

Conditions (Ca). For some a ∈ [1,+∞):

E [d(Fϑ1x0, x0)
a] <∞ (48a)

κ̂a < 1. (48b)

Proposition 3 (see [Duf97, Ben98]) Under Conditions (Ca), there exists a unique P -invariant
distribution, denoted by π, on (X,X ), and we have π(d(x0, ·)a) <∞.

Proposition 4 ([Duf97]) Under Conditions (Ca), the transition kernel P continuously acts
on La, and for any κ ∈ (κ̂a, 1), there exists a constant c ≡ cκ such that we have:

∀n ≥ 1, ∀f ∈ La, |Pnf − π(f)1X|a ≤ c κnma(f). (49)

In particular, if κ1 := E[L(ϑ1)
a]

1
a < 1, then

∀f ∈ La, ∀n ≥ 1, |Pnf − π(f)1X|a ≤ c1 κ
n
1 ma(f), (50)

where the constant c1 is defined by c1 := ξ(a−1)/a ‖π‖1
(
1 + ‖π‖a

)a−1
, with

ξ := sup
n≥1

sup
x∈X

(PnVa)(x)

Va(x)
<∞ and ‖π‖b :=

(∫

X

p(y)b dπ(y)

)1/b

for b := 1, a.

Property (49) can be derived from the results of [Duf97, Chapter 6]. For convenience we give
the proof of (50) in Appendix D. The proof of (49) is similar (replace P by PN with N such
that E[L(FϑN :ϑ1)

a] < 1).

Note that the properties (49) and (50) do not provide the Va-geometric ergodicity since
they are only established for f ∈ La. Indeed, in general the spaces La and Ba do not coincide,
even for countable Markov chains.

Remark 8 Under the conditions (Ca) and E[L(ϑ1)
a]

1
a < 1, the proof of (50) (see Appendix D)

gives the following bound for the constant ξ of Proposition 4. Given any real number δ satis-
fying E[L(ϑ1)

a] < δ < 1, choose r such that

d(x, x0) > r ⇒ E

[(
1 + L(ϑ1) d(x, x0) + d(Fϑ1x0, x0)

1 + d(x, x0)

)a]
≤ δ.
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Then we have, with ξ1 := E
[(

max(1, L(ϑ1)) + d(Fϑ1x0, x0)
)a]

,

ξ ≤ 1 +
ξ1(1 + r)a

1− δ
.

Remark 9 From Proposition 4 and Remark 7 we deduce the following fact. Assume that
Conditions (Ca) holds and that f : X→R is such that P ℓf ∈ La for some ℓ ∈ N

∗. Then, for
any κ ∈ (κ̂a, 1), we have

∀n ≥ ℓ, |Pnf − π(f)1X|a ≤ c κn−ℓma(P
ℓf), (51)

where c ≡ cκ is the constant of Proposition 4. If κ = κ1 := E[L(ϑ1)
a]1/a < 1, then c = c1.

Example 5 (A simple example) Let (Xn)n∈N be the real-valued IFS

X0 ∈ R, ∀n ≥ 1, Xn := ϑnXn−1,

associated with Fvx := vx and with a sequence (ϑn)n≥1 of i.i.d. random variables assumed to
be independent of X0. This kind of multiplicative Markov models are popular in finance. Let
us assume that ϑn’s have a uniform probability distribution on [0, 1]. The transition kernel
P (x, dy) of (Xn)n≥0 is the uniform distribution on [0, x] if x > 0 (resp. on [x, 0] if x < 0). The
Dirac distribution δ0 at 0 is clearly P -invariant. Finally, setting x0 := 0 and d(x, y) := |x−y|,
we have: ∀a ∈ [1,+∞)

E[d(Fϑ10, 0)
a] = 0 and κ1 := E[L(ϑ1)

a]
1
a = E[ϑ1

a]
1
a =

(
1

a+ 1

) 1
a

.

Consequently Inequality (50) is valid. If a := 1, then the constant c1 in (50) is equal to 1
since we have p(x) = 1 + |x| and π = δ0.

Example 6 (Autoregressive model) In this example, we prove that Inequality (50) is ful-
filled with the (optimal) value κ1 := κ̂a. Let (Xn)n∈N be the real-valued IFS

X0 ∈ R, ∀n ≥ 1, Xn := αXn−1 + ϑn,

associated with Fvx := αx + v where α ∈ (−1, 1) is fixed and with a sequence (ϑn)n≥1 of
centered random variables. This is the so-called autoregressive model of order 1 with an
arbitrary centered noise. We take d(x, y) := |x − y| and x0 := 0, so that L(vn : v1) = |α|n
and |Fv0| = |v|. Then, we have κ̂a = |α| for all a ∈ (1,+∞). In particular we have κ̂a =
E[L(ϑ1)

a]1/a < 1. Therefore, Conditions (Ca) reduce to the moment condition E[|ϑ1|a] < ∞,
and under this condition, Inequality (50) holds for κ1 := |α|.

Next, let us check that |α| is the minimal value of κ (and κ1) such that Inequality (49)
(and Inequality (50)) is valid. Since ϑ1 is centered, we have: ∀x ∈ X, E[X1 | X0 = x] =
E[αx + ϑ1] = αx. In other words, we have Pφ = αφ where φ is the identity function on R

(i.e. φ(x) := x). Note that φ is in La for every a ≥ 1, and that π(φ) = 0 using Pφ = αφ.
Consequently, under the condition E[|ϑ1|a] <∞, Inequality (49) holds for f := φ, and we can
deduce from Pnφ = αnφ that Inequality (49) cannot be valid with some κ < |α|.
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5.2 Application to discrete Lindley’s random walk

Recall that a Lindley random walk is defined on X := [0,+∞) by Xn := max(0,Xn−1 + ϑn),
where (ϑn)n≥1 is a sequence of R-valued i.i.d. random variables independent of X0. The rate of
convergence of Lindley’s random walks with respect to ‖ · ‖V is investigated in [Lun97, LT96].
More specifically, under the assumptions E[γϑ1

0 ] <∞ for some γ0 ∈ (1,+∞) and E[ϑ1] < 0, it
is proved that there exists γ ∈ (1, γ0] such that E[γϑ1 ] < 1, that P is V -geometrically ergodic
with V (x) = γx, and that ρV (P ) = E[γϑ1 ]. The constant cρ of (11) associated with any
ρ ∈ (E[γϑ1 ], 1) is not computed in [Lun97, LT96].

This subsection is devoted to the special case of discrete Lindley’s random walks. More
specifically, under the above assumption, setting Vγ := (γn)n∈N, we prove that the Vγ-
geometric ergodicity property (11) holds true with the optimal rate ρ := E[γϑ1 ] and with
an explicit (and simple) constant cρ. This result is based on Proposition 3 and Proposition 4
using the distance d(i, j) := |γi − γj|, (i, j) ∈ N

2.

Let X0 be a N-valued r.v. and (ϑn)n≥1 be a sequence of i.i.d. Z-valued r.v., independent
of X0. Let us introduce the sequence of N-valued r.v. (Xn)n∈N defined by

∀n ≥ 1, Xn := max(0,Xn−1 + ϑn).

The common distribution ν := (νj)j∈N of the ϑn’s is assumed to be such that

∃γ0 ∈ (1,+∞), E[γϑ1
0 ] =

∑

j≥0

νj γ
j
0 <∞ and E[ϑ1] =

∑

j∈Z

j νj < 0. (52)

Proposition 5 Under the assumptions (52), there exists γ ∈ (1, γ0] such that

κ1 := E[γϑ1 ] < 1,

and (Xn)n≥0 is Vγ-geometrically ergodic with Vγ := (γn)n∈N. More precisely, we have the
following properties:

∀f ∈ BVγ , ∀n ≥ 1, ∀i ∈ N, |(Pnf)(i)− π(f)| ≤ c1 κ1
nm1(f) γ

i (53a)

∀(i, j) ∈ N
2, ∀n ≥ 1,

∣∣P[Xn = j |X0 = i]− π({j})
∣∣ ≤ c1 γ

i+1

(γ − 1) γj
κ1

n (53b)

with c1 := π(V ). In particular we have ρV (P ) ≤ κ1. More precisely, Inequality (11) is fulfilled
with ρ := κ1 and cρ := π(V )(γ + 1)/(γ − 1).

Proof. The first assertion holds sinceG(γ) := E[γϑ1 ] satisfiesG(1) = 1 andG ′(1) = E[ϑ1] < 0.
To prove (53a)-(53b), we apply Proposition 4 with the distance3

∀(i, j) ∈ N
2, d(i, j) := |γi − γj |. (54)

3The fact that, in Proposition 5, the geometrical ergodicity is directly deduced from Proposition 4 is very
particular. This is due to the choice of the distance in (54).
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Note that we have with x0 = 0: ∀i ∈ N, p(i) := 1 + d(i, 0) = γi. Thus the space BVγ

corresponds to B1 in (44). Next observe that the spaces B1 and L1 coincide. Indeed, for all
f = (f(n))n∈N such that |f |1 := supn∈N |f(n)|/γn <∞, we have (use supn∈N∗(γn + 1)/(γn −
1) = (γ + 1)/(γ − 1))

m1(f) := sup

{ |f(i)− f(j)|
|γi − γj | , (i, j) ∈ N

2, i 6= j

}
≤ γ + 1

γ − 1
|f |1. (55)

Next we have: ∀(v, i) ∈ Z × N, Fvi := max(0, i + v). Besides we compute the Lipschitz
(random) coefficient L(ϑ1) with respect to the distance d(i, j) := |γi − γj |. We obtain for
(i, j) ∈ N

2 such that i < j and for all v ∈ Z:

(a) d
(
Fvi, Fvj

)
= γv

∣∣γi − γj
∣∣ when i+ v ≥ 0 and j + v ≥ 0;

(b) d
(
Fvi, Fvj

)
=

∣∣1− γj+v
∣∣ = γv

∣∣γ−v − γj
∣∣ when i+ v < 0 and j + v ≥ 0;

(c) d
(
Fvi, Fvj

)
= 0 when i+ v < 0 and j + v < 0.

In Case (b), we have i < −v ≤ j, thus |γ−v − γj| ≤ |γi − γj |. Thus

L(v) := sup
(i,j)∈N2,i 6=j

d
(
Fvi, Fvj

)

|γi − γj| = γv.

Finally, we obtain E[d(Fϑ10, 0)] = E[|γmax(0,ϑ1) − 1|] ≤ E[γϑ1 ]. Thus Conditions (52) implies
that Conditions (C1) holds with E[L(ϑ1)] = E[γϑ1 ] < 1. Consequently, P has an invariant
distribution π such that π(V ) < ∞ from Proposition 3. Then, Property (53a) follows from
(50) with a := 1 (note that c1 =

∫
X
p(y) dπ(y)). To obtain (53b), use the fact that m1(1{j}) =

(γ − 1)−1γ1−j . �

Example 7 (Simulation of a geometric distribution) The Markov kernel P on X := N

defined for p ∈ (0, 1) by

P (0, 0) := 1− p/2, P (0, 1) := p/2

∀i ∈ N
∗, P (i, i − 1) := 1/2, P (i, i) := (1− p)/2, P (i, i + 1) := p/2.

arises from a Hastings-Metropolis sampler of a geometric distribution with parameter p. In
[MT96, Example 2], P is shown to be V -geometrically ergodic with V = (p−n/2)n≥0 and to have
a convergence rate satisfying ρV (P ) ≤ ρ0 :=

√
p+ (1− p)/2. More specifically: Property (11)

holds for any ρ ∈ (ρ0, 1) with some constant cρ such that limρ→ ρ0 cρ = +∞. Proposition 5
allows us to improve this result.

Indeed, P can also be viewed as the Markov kernel of the discrete Lindley random walk
where ϑ1 is distributed as: P(ϑ1 = −1) = 1/2, P(ϑ1 = 0) = (1 − p)/2 and P(ϑ1 = 1) = p/2.
Consequently the estimates (53a)-(53b) are valid for this kernel, with here γ := p−1/2 and
κ1 := E[γϑ1 ] = ρ0. In particular, Property (11) holds true with ρ := ρ0 and cρ0 := (1 +√
p)2/(1−√

p), namely we have for all f = (f(n))n∈N such that |f |1 := supn |f(n)| pn/2 <∞:

∀n ≥ 1, ∀i ∈ N, pi/2
∣∣Pnf(i)− π(f)

∣∣ ≤ (1 +
√
p)2

1−√
p

|f |1
(√

p+
1− p

2

)n

.
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5.3 Va-Geometrical ergodicity of IFS

Recall that we have set: ∀x ∈ X, Va(x) := p(x)a. Let (Xn)n∈N be an IFS. Under Condi-
tions (Ca), Alsmeyer proved that, when (Xn)n∈N is Harris recurrent and the support of π
has a non-empty interior, (Xn)n∈N is Va-geometrically ergodic, see [Als03, Prop. 5.2]4. In
this subsection, we provide additional conditions to (Ca) for (Xn)n∈N, first to have a quasi-
compact kernel P on Ba with an essential spectral radius such that ress(P ) ≤ κ̂a, second to be
Va-geometrically ergodic with a convergence rate such that ρV (P ) ≤ (κ̂a)

τ for some τ ∈ (0, 1].
Our additional conditions are stronger and quite different from those of [Als03]. In particular
P is here assumed to be compact from B0 into Ba.

If Conditions (Ca) are fulfilled, then Property (49) with f := Va and n := 1 gives PVa ≤
ξ1 Va for some ξ1 ∈ (0,+∞), and so P continuously acts on Ba. Besides Inequality (49) is
nothing else but Condition (B)(a) of Section 4 with B := La and any κB ∈ (κ̂a, 1). Moreover,
P satisfies Condition (WD) with the function Va since Va ∈ La (see Remark 6) and the real
number δVa(P ) associated with Va via the definition (3) satisfies:

δVa(P ) ≤ κ̂a. (57)

We deduce the following statement from Theorem 2.

Corollary 4 Assume that Conditions (Ca) hold true for some a ∈ [1,+∞) and that P is
compact from B0 to Ba. Then P is a power-bounded quasi-compact operator on Ba, and

ress(P ) ≤ δVa(P ) ≤ κ̂a.

Next Theorem 5 gives the following.

Corollary 5 Assume that Conditions (Ca) hold true for some a ∈ [1,+∞), that P is compact
from B0 to Ba and satisfies the following condition:
(b)′ ∃τ ∈ [0, 1] such that P (Bτa) ⊂ La.
Then P is Va-geometrically ergodic and its convergence rate on Ba verifies

ρVa(P ) ≤ max
(
κ̂a, δVa(P )

τ
)
≤ (κ̂a)

τ . (58)

Remark 10 In simple examples (as in Example 6), the optimal rate in (49) is equal to κ̂a.
In this case, we have ρVa(P ) ≥ κ̂a since La ⊂ Ba.

Remark 11 Inequality (58) means that, for any real number κ such that max(κ̂a, (δVa(P ))
τ ) <

κ < 1, there exists a constant e ≡ eκ such that

∀n ≥ 1, ∀f ∈ Ba, |Pnf − π(f) 1X|a ≤ e κn |f |a. (59)

It is worth noticing that Theorem 5 does not give any information on the constant e of (59).
Inequality (51) is more precise but in general is only valid for a smaller class of functions f .

4Under Conditions (Ca), we have Pm0Va ≤ ̺Va+M 1Br
where m0 ∈ N

∗, ̺ ∈ (0, 1), M ∈ (0,+∞) and Br is
the ball in X centered at x0 with some suitable radius r > 0 (see Appendix D). Under Alsmeyer’s conditions,
Br is a small set (see [MT93]), so that the usual drift condition holds.
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5.4 Applications to autoregressive models

Assume that X := R
q and denote the Lebesgue measure on R

q by dy. Let ‖·‖ denote any norm
of Rq, and define d(x, y) := ‖x−y‖ the associated distance on R

q. Set p(x) := 1+‖x‖ (x0 := 0)
and let us consider Va(x) := (1+‖x‖)a with a ∈ (1,+∞). We have lim‖x‖→∞ Va(x) = ∞. We
know from the proof of Corollary 1 that any Markov kernel P (x, dy) = K(x, y) dy, associated
with a continuous (in the first variable) function K : Rq × R

q →[0,+∞), is compact from B0

to Ba. This fact allows us to apply Corollaries 4-5 to some classical IFSs. As an illustration,
Properties (51) and (58) are detailed below for affine autoregressive (AR) models. Such
applications can be easily extended for others IFSs, as for instance for functional autoregressive
models and AR processes with ARCH errors (see Examples 9-10).

Let (Xn)n∈N be the IFS

X0 ∈ R
q, ∀n ≥ 1, Xn := AXn−1 + ϑn, (60)

associated with F (v, x) := Ax + v where A = (aij) is a fixed real q × q-matrix. We have
L(v) = ‖A‖ where ‖A‖ denotes the matrix norm of A associated with ‖·‖, and d(Fv0, 0) = ‖v‖.
Consequently, Conditions (Ca) hold for a ∈ [1,+∞) provided that we have:

‖A‖ < 1 and E
[
‖ϑ1‖a

]
<∞. (61)

Under these conditions, P has an invariant probability measure from Proposition 3, and we
can easily prove that lim sup‖x‖→+∞ PVa(x)/Va(x) ≤ ‖A‖a. Thus

κ̂a = ‖A‖ = E[L(ϑ1)
a]

1
a and δVa(P ) ≤ ‖A‖a.

Corollary 6 Assume that Conditions (61) hold true for some a ∈ [1,+∞) and that the
common distribution of (ϑn)n≥1 has a density with respect to the Lebesgue measure on R

q.
Then P is a power-bounded quasi-compact operator on Ba, and we have

ress(P ) ≤ ‖A‖a.

Proof. From Corollary 4, it remains to prove that P is compact from B0 to Ba. Let ν(·)
denote the density of ϑ1. Note that P has the form (10) with the Lebesgue measure on R

q

and K(x, y) := ν
(
y−Ax

)
for (x, y) ∈ R

q×R
q. If ν(·) is continuous, then the desired property

follows from the proof of Corollary 1. In the general case we can proceed as follows. Let
f ∈ B0 such that ‖f‖0 ≤ 1. Then we have

∀(x, x′) ∈ R
q × R

q,
∣∣(Pf)(x′)− (Pf)(x)

∣∣ ≤
∫

Rq

∣∣ν(y −A(x′ − x))− ν(y)
∣∣ dy.

Since t 7→ ν(· − t) is continuous from R
q to the Lebesgue space L

1(Rq), it follows that
{Pf, ‖f‖0 ≤ 1} is equicontinuous. Lemma 3 gives the desired property. �

That the model is Va-geometrically ergodic under Conditions (61) is well-known. However,
to the best of our knowledge, the rates of convergence obtained in the next statement are
new. Recall that the total variation distance between two probability measures µ1 and µ2 on
X is defined by ‖µ1 − µ2‖TV = supB∈X |µ1(B)− µ2(B)|. The gradient is denoted by ∇.
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Corollary 7 Assume that the assumptions of Corollary 6 are fulfilled, that the density ν(·)
of ϑ1 is continuously differentiable on R

q, and that there exist some positive constants β and
b such that

∀v ∈ R
q, ‖∇ν(v)‖ ≤ b

(1 + ‖v‖)β . (62)

Then the following assertions hold true:

(i) If β > q + γ for some γ ∈ [0, a − 1], then for each f ∈ Bγ, we have Pf ∈ La and

∀n ≥ 2, ∀x ∈ R
q,

∣∣Ex[f(Xn)]− π(f)
∣∣ ≤ c1 df ‖A‖n−1 (1 + ‖x‖)a, (63)

where df := ma(Pf) and c1 is the constant of Proposition 4.

(ii) If β > q and if the initial distribution µ is such that Iµ :=
∫
(1+ ‖x‖)adµ(x) <∞, then:

∀n ≥ 2, ‖Pµ(Xn ∈ ·)− π(·)‖TV ≤ c1 d0 Iµ ‖A‖n−1 (64)

where c1 is the constant of Proposition 4, and the constant d0 can be easily expressed in
function of the matrix A and the derivative of ν (in link with the norm ‖·‖). For instance,
if ‖ · ‖ is the supremum norm on R

q then: d0 := q
(
maxk

∑q
i=1 |aik|

) ∫
Rq ‖∇ν(y)‖ dy.

(iii) If β > q + γ for some γ ∈ [0, a − 1], then P is Va-geometrically ergodic and

ρVa(P ) ≤ max(‖A‖, ‖A‖γ ).

Proof. Recall that P (x, dy) = K(x, y) dy with K(x, y) := ν
(
y − Ax

)
so that the partial

derivative of K in the direction x satisfies: ∂xK(x, y) = −A∗∇ν
(
y − Ax

)
where A∗ is the

adjoint matrix of A.

Assertion (i) holds from Remark 9, if we prove that P (Bγ) ⊂ La. This is deduced from
Proposition E.1 if we check Conditions (75)-(76) for τ := γ/a. From (62) it can be easily seen
that, for any r > 0, there exists a constant ar such that we have for all x ∈ R

q satisfying
‖x‖ ≤ r: ∀y ∈ R

q, ‖∂xK(x, y)‖ ≤ ar (1 + ‖y‖)−β . Since β − γ > q, Condition (75) holds
with τ := γ/a. Next, set J(x, y) := (1 + ‖y‖)γ ‖∂xK(x, y)‖ for y ∈ R

q. We have
∫

Rq

J(x, y) dy =

∫

Rq

(
1 + ‖Ax+ v‖

)γ ‖A∗∇ν(v)‖ dv

≤ C
(
(1 + ‖x‖)γ

∫

Rq

‖∇ν(v)‖ dv +
∫

Rq

‖v‖γ ‖∇ν(v)‖ dv
)

≤ C ′ (1 + ‖x‖)γ , (65)

which proves Condition (76) (with τ := γ/a). Thus Proposition E.1 gives P (Bγ) ⊂ La.

Under the assumptions of (ii), setting dB := d1B , we deduce from (i) (case γ = 0) that:

∀B ∈ X , ∀n ≥ 2, ∀x ∈ R
q,

∣∣Px(Xn ∈ B)− π(B)
∣∣ ≤ c1 dB ‖A‖n−1 (1 + ‖x‖)a. (66)

Assuming (for simplicity) that ‖ · ‖ is the supremum norm on R
q, it follows from (77) that we

have for all B ∈ X :

∀x ∈ R
q,

∥∥∇(P1B)(x)
∥∥ ≤

(
max
k

q∑

i=1

|aik|
) ∫

Rq

‖∇ν(y −Ax)‖ dy.
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Thus dB := ma(P1B) ≤ d0 with d0 given in Corollary 7, and (64) easily follows from (66).

Finally, we know from the proof of Corollary 6 that P is compact from B0 to Ba, and under
the condition of (iii) we have P (Bγ) ⊂ La from the proof of Assertion (i). Then the desired
statement follows from Corollary 5 (with τ := γ/a). �

Remark 12 Under the conditions of Assertion (i), an upper bound of the constant df :=
ma(Pf) for f ∈ Bγ can be easily derived (see Appendix E for details):

df := ma(Pf) ≤ q|f |γ bCγ,β

(
max
k

q∑

i=1

|aik|
)

with Cγ,β := sup
x∈Rq

(1 + ‖x‖)−γ

∫

Rq

(1 + ‖y +Ax‖)γ
(1 + ‖y‖)β dy <∞.

Remark 13 The constant c1 in (63)-(64) is that of Proposition 4. Let us give an upper bound
of c1 under Conditions (61). Set

M := E[‖ϑ1‖a]1/a, ε0 :=
1− ‖A‖

2
and r := max

(
0,

1 +M − ε0
ε0

)
.

Recall that x0 := 0 here. Then we have for any x ∈ R
q such that ‖x‖ ≥ r

E

[(
1 + L(ϑ1) d(x, x0) + d(Fϑ1x0, x0)

1 + d(x, x0)

)a] 1
a

= E

[(
1 + ‖A‖ ‖x‖ + ‖ϑ1‖

1 + ‖x‖

)a] 1
a

≤ 1 + ‖A‖ ‖x‖
1 + ‖x‖ +

E
[
‖ϑ1‖a

]1/a

1 + r

≤ ‖A‖ + 1 +M

1 + r
≤ 1 + ‖A‖

2
.

Set ρ :=
(
(1 + ‖A‖)/2

)a
, ξ1 := E

[
(‖A‖+ ‖ϑ1‖)a

]
and ξ := 1 + ξ1(1 + r)a/(1− ρ). Recall that

‖π‖b :=
( ∫

X
(1+‖x‖)b dπ(y)

)1/b
for b := 1, a. Then we have from Proposition 4 and Remark 8

c1 ≤ ξ
a−1
a ‖π‖1(1 + ‖π‖a)a−1.

Example 8 (Contracting normals) Assume that X := R and that P (x, dy) is the Gaus-
sian distribution N (θx, 1 − θ2) for θ ∈ (−1, 1). This kernel was studied in [Bax05, Ex-
ample 8.3], in the specific case θ := 1/2 in [Kol00] and the convergence of its ergodic av-
erages in [RT99, Example 4]. Note that P is the transition kernel of the IFS defined by
∀n ≥ 1, Xn := θXn−1 + ϑn, where (ϑn)n≥1 is a sequence of R-valued i.i.d. random vari-
ables, with common distribution N (0, 1 − θ2). It can be easily checked that P has the stan-
dard Gaussian distribution N (0, 1) as invariant probability measure π. Here Ba := {f :
R→C, supx∈R |f(x)|/(1 + |x|)a <∞}.

Let a ∈ [1,+∞). Since Conditions (61) hold, we have ress(P ) ≤ |θ|a with P considered as
an operator on Ba. Concerning the geometric ergodicity, since Condition (62) holds for any
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β > 0, Assertion (iii) of Corollary 7 ensures that the convergence rate of P on Ba satisfies
ρVa(P ) ≤ |θ|a−1 when a ∈ [1, 2], ρVa(P ) = |θ| when a ∈ [2,+∞) (also use Remark 6 to obtain
the last equality). This improves all the earlier bounds obtained for ρVa(P ) in this example
(compare with [Bax05] in case a := 2).

Furthermore, for this example, Property (64) enables us to improve and simplify the results
of [RT99, Section 5] concerning the total variation convergence bounds. In fact, for any initial
distribution µ such that Iµ :=

∫
(1 + |x|)dµ(x) < ∞, Inequality (64) with a := 1 gives (use

c1 := 1 +
√

2/π, d0 := 2|θ|/
√

2π(1 − θ2)):

∀n ≥ 2, ‖µPn − π‖TV ≤
√
2π + 2

π
√
1− θ2

Iµ |θ|n.

Finally Assertion (i) of Corollary 7 provides an interesting alternative result between the
last one and the Va-geometrical ergodicity. For instance, in case a := 2, Property (63) ensures
that, for all f ∈ B1, we have Pf ∈ L2 and:

∀n ≥ 2, ∀x ∈ R
q,

∣∣Ex[f(Xn)]− π(f)
∣∣ ≤ c df |θ|n (1 + |x|)2, (67)

with c := 2
(
1 +

√
2/

√
π
)(
1 +

√
2 + 2

√
2/

√
π

)
/|θ| (first use that PnW2(x) = 2(1 − θ2n) +

θ2nW2(x) for n ≥ 1 with W2(x) = 1+x2, so that supn≥1 supx∈R P
nW2(x)/W2(x) = 2; second

deduce from V2/2 ≤ W2 ≤ V2 that ξ ≤ 4; third check that ‖π‖1 = 1 +
√

2/π, ‖π‖22 :=
2(1 +

√
2/π)). Note that (67) does not involve the Va-geometrical ergodicity (either on B1,

or on B2). However the rate of convergence in (67) is optimal and the associated constant C
is explicit. The weighted-Lipschitz constant df := m2(Pf) can be easily computed thanks to
Remark 12.

The two last examples are classical extensions of the affine ARs.

Example 9 (The functional autoregressive process) Let (Xn)n∈N be the IFS

X0 ∈ R
q, ∀n ≥ 1, Xn := ψ(Xn−1) + ϑn, (68)

associated with F (v, x) := ψ(x) + v where ψ : Rq →R
q is a fixed differentiable function and

ϑ1 has a density ν(·). Assume that

α := sup
x∈Rq

‖ψ′(x)‖ < 1 and ∃a ∈ (1,+∞), E
[
‖ϑ1‖a

]
<∞. (69)

Then Corollary 6 extends to the IFS model (68) with α in place of ‖A‖, and a direct adaptation
of the above arguments allows us to prove that, if the density ν(·) of ϑ1 satisfies (62), then all
the conclusions of Corollary 7 hold true with again α in place of ‖A‖.

Example 10 (Autoregressive process with ARCH(1) error) Let (Xn)n∈N be the real-
valued IFS

X0 ∈ R, ∀n ≥ 1, Xn := aXn−1 + σ(Xn−1)ϑn, (70)

where σ : R→R is defined by σ(x) :=
√
b+ cx2 with fixed a, b > 0. It can be easily seen that

the associated Markov kernel is of the form P (x, dy) = K(x, y)dy, provided that the probability
distribution of ϑ1 has a density ν(·). The conclusions of Corollaries 6-7 are still valid under
suitable assumptions on ν(·).
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A Positive eigenvectors of the adjoint of a nonnegative operator
on BV

Proposition A.1 If L is a positive bounded linear operator on BV such that r(L) = 1, then
there exists a nontrivial nonnegative continuous linear form η on B such that η ◦ L = η.

Proof. Since r(L) = 1 and the spectrum σ(L) of L is closed, there exists λ ∈ σ(L) such that
|λ| = 1. Set λn := λ(1 + 1/n). From the Banach-Steinhaus theorem, there exists f0 ∈ BV ,
f0 ≥ 0, such that ‖(λnI−L)−1f0‖V →+∞ when n→+∞. Using the Neumann series, namely

|z| > 1 ⇒ (zI − L)−1 =
∑

k≥0

z−(k+1) Lk,

the positivity of L (which gives |Lkf0| ≤ Lk|f0|), and finally the fact that BV is a Banach
lattice (∀(f, g) ∈ B2

V : |f | ≤ |g| ⇒ ‖f‖V = ‖ |f | ‖V ≤ ‖ |g| ‖V = ‖g‖V ), we obtain:

‖(λnI − L)−1f0‖V ≤ ‖(|λn|I − L)−1|f0| ‖V →+∞ as n→+∞.

This implies that 1 ∈ σ(L). Now, let B′
V denote the dual space of BV with the associated

norm also denoted by ‖ · ‖V , and let L∗ be the adjoint of L. Since σ(L∗) = σ(L), we have
1 ∈ σ(L∗).

Let us set βn := 1+1/n. We deduce from the Banach-Steinhaus theorem that there exists
f ′0 ∈ B′

V , f ′0 ≥ 0, (i.e. ∀f ∈ BV : f ≥ 0 ⇒ f ′0(f) ≥ 0) such that

bn := ‖(βn I − L∗)−1 f ′0‖V →+∞ as n→+∞,

where I denotes here the identity map on B′
V . Let us define the following positive elements

in the unit ball of B′
V :

f ′n :=
1

bn
(βn I − L∗)−1f ′0 =

1

bn

∑

k≥0

β−(k+1)
n (L∗)kf ′0 (n ∈ N

∗).

We have f ′n ≥ 0, thus ‖f ′n‖V = f ′n(V ) = 1. Thanks to the Banach-Alaoglu theorem, the
sequence (f ′n)n has a limit point, say η, in the unit ball of B′

V for the weak topology in B′
V ,

that is: for all neighborhood W of η and for all N ≥ 1, there exists n > N such that f ′n ∈W .
Now, given f ∈ BV , consider the following special neighborhoods of η with respect to the
weak topology of B′

V :

W (f, p) =

{
f ′ ∈ B′

V :
∣∣f ′(f)− η(f)

∣∣ < 1

p
,
∣∣f ′(Lf)− η(Lf)

∣∣ < 1

p

}
.

Let us denote by (np)p ≡ (np(f))p any increasing sequence of integer numbers such that we
have f ′np

∈ W (f, p) for all p ≥ 1. First, pick any f ∈ BV , f ≥ 0: then it follows from
f ′np

(f) ≥ 0 and |f ′np
(f)−η(f)| < 1/p that η(f) ≥ 0. So η ≥ 0. Second, consider f := V : then

we obtain η(V ) = 1 from f ′np
(V ) = 1 and |f ′np

(V )− η(V )| < 1/p, so η 6= 0. Finally, let us fix
any f ∈ BV . We have

βn(f
′
n − η)(f)− (f ′n − η)(Lf) = (βn I − L∗)(f ′n)(f)− (βn I − L∗)(η)(f)

=
1

bn
f ′0(f)− (βn I − L∗)(η)(f).

Replacing n with np ≡ np(f) gives (I − L∗)(η)(f) = 0 as p→+∞. Namely: η ◦ L = η. �
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B Proof of lemma 4

We know from (WD) that P is power-bounded on BV . Let x0 ∈ X. Then we have K :=
supn(P

nV )(x0) < ∞. Let πn, n ≥ 1, be the probability measure on (X,X ) defined by:
∀B ∈ X , πn(1B) = 1

n

∑n−1
k=0(P

k1B)(x0). Then Markov’s inequality gives

∀n ≥ 1, ∀α ∈ (0,+∞), πn
(
1{V >α}

)
≤ πn(V )

α
≤ K

α
.

Thus the sequence (πn)n is tight, and we can select a subsequence (πnk
)k weakly converging

to a probability measure π, which is clearly P -invariant. Next, for p ∈ N
∗, define Vp(·) =

min(V (·), p). Then ∀k ≥ 0, ∀p ≥ 0, πnk
(Vp) ≤ πnk

(V ) ≤ K. Since Vp is continuous and
bounded on X, we obtain: ∀p ≥ 0, limk πnk

(Vp) = π(Vp) ≤ K. The monotone convergence
theorem then gives π(V ) <∞.

C Additional material for discrete Markov chains

C.1 Complements for the proof of Corollary 3

Lemma 8 Under Conditions (I)-(A), 1 is a simple eigenvalue and the unique eigenvalue of
modulus one of P on BV .

Proof. First prove that the support of π coincides with N. We have

∀j ∈ N, ∀n ≥ 1, π(j) := π(Pn1{j}) =
∑

i≥0

π(i)Pn(i, j).

Hence, if π(j) = 0 for some j ∈ N, then we would obtain π(i) = 0 whenever Pn(i, j) > 0, thus
π(i) = 0 for all i ∈ N from Condition (I), which is impossible.

Second, we have the following implication: ∀λ ∈ C, |λ| = 1, ∀f ∈ BV ,

Pf = λf ⇒ P |f | = |f |. (71)

Indeed, we deduce that |f | ≤ P |f | from Pf = λf and the positivity of P . Then it follows
from π(P |f | − |f |) = 0 that P |f | = |f | π-a.s. Thus P |f | = |f | since the support of π is N.

Third, we prove that 1 is a simple eigenvalue of P on BV . Let g ∈ BV such that Pg = g,
and set f := g − g(0)1N. Then Pf = f so that P |f | = |f |. We have: ∀n ≥ 1, 0 = |f(0)| =∑

j≥0 P
n(0, j) |f(j)|. Condition (I) then yields f ≡ 0, namely g is constant.

Finally, let λ ∈ C, |λ| = 1, and let f ∈ BV , f 6= 0, be such that Pf = λf . It follows
from (71) and the last statement that, ∀n ∈ N, |f(n)| = 1 (up to a multiplicative constant).
From |λ| = 1, |f | ≡ 1, and ∀n ≥ 1, λn f(0) =

∑
j≥0 P

n(0, j) f(j), we obtain: Pn(0, j) >
0 ⇒ λn f(0) = f(j). In particular: n ∈ R0,0 ⇒ λn f(0) = f(0). This gives: ∀(m,n) ∈
R0,0 ×R0,0, λ

n−m = 1, hence λ = 1 by Condition (A). �
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C.2 Random walks with bounded increments

C.2.1 Proof that the integer ℓ in (23) is well-defined

Set A(γ) := φ(γ)γb =
∑2b

k=0 a−b+kγ
k where φ(γ) is defined in (22b) and a0 6= 1. The integer

ℓ in (23), if well-defined, can be equivalently characterized from Leibniz’s formula by

∀k ∈ {1, . . . , ℓ−1}, φ(k)(1) = A(k)(1)−
k∏

j=0

(b−j) = 0 and φ(ℓ)(1) = A(ℓ)(1)−
ℓ−1∏

j=0

(b−j) 6= 0,

according that the first condition is removed when ℓ = 1. To prove the existence of such an
integer ℓ, observe that, if A(k)(1) =

∏k−1
j=0(b−j) for k = 1, . . . , 2b, then Taylor’s formula would

give

A(γ) = A(1) +
2b∑

k=1

( k−1∏

j=0

(b− j)

)
(γ − 1)k

k!
= 1 +

b∑

k=1

(
b

k

)
(γ − 1)k = γb,

which is impossible since a0 6= 1.

C.2.2 Condition (WD) for random walks with i.d. bounded increments

Let P be defined on X = N by

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j) = 1; ∀i ≥ b,∀j ∈ N, P (i, j) =

{
aj−i if |i− j| ≤ b
0 if |i− j| > b

where b ∈ N
∗, (a−b, . . . , ab) ∈ [0, 1]2b+1 and

∑b
k=−b ak = 1. Assume that a0 < 1 and that

there exists γ ∈ (1,+∞) such that

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j)γj <∞.

The integer ℓ in the next proposition is defined by (23), it is well-defined from Subsection C.2.1.

Proposition 6 The following conditions are equivalent:

(a) There exists γ0 ∈ (1, γ] such that P satisfies Condition (WD) with Vγ0 := (γ0
n)n∈N, and

we have

δVγ0
(P ) =

A(γ0)

γg0
= φ(γ0);

(b) A(ℓ)(1) <
ℓ−1∏

j=0

(b− j), i.e. φ(ℓ)(1) < 0.
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Proof. Let us prove the equivalence (a) ⇔ (b). Assume that A(ℓ)(1) >
∏ℓ−1

j=0(b − j), i.e.

φ(ℓ)(1) > 0, and prove that, for all γ0 ∈ (1, γ], P does not satisfy (WD) with V := Vγ0 . From
the definition of ℓ and from φ(ℓ)(1) > 0, there exists γ2 ∈ (1, γ] such that φ(γ′) > φ(1) = 1
for all γ′ ∈ (1, γ2), so that (26) gives

∀γ′ ∈ (1, γ2), ∀N ≥ 1, lim sup
n→+∞

(PNVγ′)(n)

Vγ′(n)
= φ(γ′)N > 1.

Hence, from Corollary 2, for all γ′ ∈ (1, γ2), P does not satisfy Condition (WD) with V := Vγ′ .
This proves the desired result. Indeed, if (WD) holds with V := Vγ0 for some γ0 ∈ (1, γ],
then (WD) would be fulfilled for all γ′ ∈ (1, γ0] from Jensen’s inequality, which contradicts
the last conclusion.

Conversely, assume that φ(ℓ)(1) < 0. Then there exists γ1 ∈ (1, γ] such that φ(γ0) < 1 for
all γ0 ∈ (1, γ1). Let γ0 ∈ (1, γ1). From (26) with k = 1, we obtain (PVγ0)(n) = φ(γ0)Vγ0(n)

for all n ≥ b. Since by assumption we have
∑

j≥0 P (i, j)γ
j
0 < ∞ for each 0 ≤ i ≤ b − 1, it

follows from Corollary 2 that P satisfies (WD) with V := Vγ0 and that δVγ0
(P ) ≤ φ(γ0). The

converse inequality follows from (26) and Corollary 2. �

D Proof of Formula (50)

First, we prove that the constant ξ in Proposition 4 is well defined. Second, we obtain a
basic estimate (74) of the distance between functional of the states occupied at time n of
the IFS from two different initial probability distributions. Then, we complete the proof of
Formula (50).

First, we have for any x ∈ X

(PVa)(x)

Va(x)
= E

[(
1 + d(Fϑ1x, x0)

1 + d(x, x0)

)a]
≤ E

[(
1 + d(Fϑ1x, Fϑ1x0) + d(Fϑ1x0, x0)

1 + d(x, x0)

)a]

≤ E

[(
1 + L(ϑ1) d(x, x0)

1 + d(x, x0)
+
d(Fϑ1x0, x0)

1 + d(x, x0)

)a]
.

Since E[(max(1, L(ϑ1)) + d(Fϑ1x0, x0))
a] < ∞, we obtain ξ1 := supx∈X(PVa)(x)/Va(x) < ∞.

Next Lebesgue’s theorem ensures that lim sup(PVa)(x)/Va(x) converges to E[L(ϑ1)
a] when

d(x, x0)→+∞. Now let δ be such that E[L(ϑ1)a] < δ < 1. Then there exists r > 0 such that
we have for all x ∈ X satisfying d(x, x0) > r: PVa(x) ≤ δVa(x). Besides, if d(x, x0) ≤ r, then
we obtain (PVa)(x) ≤ ξ1Va(x) ≤ ξ1(1 + r)a. Thus: PVa ≤ δVa + ξ1(1 + r)a1X. Therefore

PnVa ≤ δn Va +
ξ1(1 + r)a

1− δ
1X ≤

(
1 +

ξ1(1 + r)a

1− δ

)
Va. (72)

This prove that the bound ξ given in Proposition 4 is finite.

Second, let us introduce some additional notations. If µ is a probability measure on X and
X0 ∼ µ, we make a slight abuse of notation in writing (Xµ

n )n∈N for the associated IFS. We
simply write (Xx

n)n∈N when µ := δx is the Dirac mass at some x ∈ X. We denote by Ma
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the set of all the probability measures µ on X such that ‖µ‖a := (
∫
X
Va(y) dµ(y))

1/a < ∞.
Finally, for n ∈ N and for any probability measures µ1 and µ2 on X, define:

∆n(µ1, µ2) := d
(
Xµ1

n ,Xµ2
n

) (
p(Xµ1

n ) + p(Xµ2
n )

)a−1
.

Lemma D.1 We have: ∀n ≥ 1, ∀(µ1, µ2) ∈ Ma ×Ma

E
[
∆n(µ1, µ2)

]
≤ ξ

a−1
a κn1 E[d(X

µ1
0 ,Xµ2

0 )]
(
‖µ1‖a + ‖µ2‖a

)a−1
. (73)

Furthermore we have for all f ∈ La:

E
[
|f(Xµ1

n )− f(Xµ2
n )|

]
≤ ξ

a−1
a ma(f)κ

n
1 E[d(X

µ1
0 ,Xµ2

0 )]
(
‖µ1‖a + ‖µ2‖a

)a−1
. (74)

Proof. If a = 1, then (73) follows from the independence of the ϑn’s and from the definition
of L(v) and κ1. Now assume that a ∈ (1,+∞). Without loss of generality, one can suppose
that the sequence (ϑn)n≥1 is independent from (Xµ1

0 ,Xµ2
0 ). Also note that, if µ ∈ Ma, then

we have

E
[
p(Xµ

n )
a
]
=

∫

X

(PnVa)(x)dµ(x) ≤ ξ ‖µ‖aa.

From Holder’s inequality (use 1 = 1/a+ (a− 1)/a), we obtain

E
[
∆n(µ1, µ2)

]
= E

[
d
(
Fϑn:ϑ1X

µ1
0 , Fϑn:ϑ1X

µ2
0

) (
p(Xµ1

n ) + p(Xµ2
n )

)a−1
]

≤ E[d(Xµ1
0 ,Xµ2

0 )]E
[
L(ϑn : ϑ1)

(
p(Xµ1

n ) + p(Xµ2
n )

)a−1
]

≤ E[d(Xµ1
0 ,Xµ2

0 )]E
[
L(ϑn : ϑ1)

a
] 1
a E

[(
p(Xµ1

n ) + p(Xµ2
n )

)a] a−1
a

≤ E[d(Xµ1
0 ,Xµ2

0 )]E
[
L(ϑ1)

a
]n

a ξ
a−1
a (‖µ1‖a + ‖µ2‖a)a−1.

This proves (73). Property (74) follows from (73) and the definition of ma(f). �

Finally, we can prove (50). Property (74), applied to µ1 := δx and µ2 := π gives
∣∣(Pnf)(x)− π(f)

∣∣ =
∣∣E[f(Xx

n)]− E[f(Xπ
n )]

∣∣
≤ E

[
|f(Xx

n)− f(Xπ
n )|

]

≤ ξ
a−1
a ma(f)κ

n
1 E[d(x,X

π
0 )]

(
‖δx‖a + ‖π‖a

)a−1
.

Finally observe that ‖δx‖a = p(x) and

E[d(x,Xπ
0 )] ≤ E

[
d(x, x0) + d(x0,X

π
0 )
]
≤ p(x) + π(d(x0, ·)) ≤ p(x) ‖π‖1.

Hence E[d(x,Xπ
0 )] (‖δx‖a+‖π‖a)a−1 ≤ p(x)a‖π‖1 (1+‖π‖a)a−1. The proof of (50) is complete.

E Additional material for P defined by a kernel K

Here (Xn)n∈N is a Markov chain with state space X = R
q (q ∈ N

∗) equipped with any norm
‖ · ‖, and we assume that there exists K : Rq × R

q →[0,+∞) measurable such that, for all
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x ∈ X, P (x, dy) is absolutely continuous with respect to the Lebesgue measure on R
q, namely:

P (x, dy) = K(x, y) dy.

Let a ∈ (1,+∞) and τ ∈ [0, a−1
a ]. The next result is useful to obtain the set inclusion

P (Bτa) ⊂ La, where Bτa, La are defined by (44) and (46) page 26.

Proposition E.1 Assume that, for all x0 ∈ R
q, there exist a Lebesgue-integrable function

gx0 : Rq →[0,+∞) and an open neighborhood Ux0 of x0 in R
q such that:

∀x ∈ Ux0 , k = 1, . . . , q,
(
1 + ‖y‖

)τa ∣∣ ∂K
∂xk

(x, y)
∣∣ ≤ gx0(y) for a.e. y ∈ R

q (75)

and assume in addition that there exists a constant d such that

k = 1, . . . , q, ∀x ∈ R
q,

∫

Rq

(1 + ‖y‖)τa
∣∣ ∂K
∂xk

(x, y)
∣∣ dy ≤ d (1 + ‖x‖)a−1. (76)

Then we have P (Bτa) ⊂ La.

Proof. Let f ∈ Bτa. From Lebesgue’s theorem, one can easily deduce that the function
Pf : Rq →C is differentiable on R

q, and that its derivative is given by:

∀k = 0, . . . , q, ∀x ∈ R
q,

∂(Pf)

∂xk
(x) =

∫

Rq

f(y)
∂K

∂xk
(x, y) dy. (77)

For the sake of simplicity assume that ‖ · ‖ is the euclidean norm on R
q. By (77) and (76)

we obtain: ∀x ∈ R
q, ‖∇(Pf)(x)‖ ≤ d

√
q |f |τa

(
1 + ‖x‖

)a−1
, where ∇ stands for the gradient

operator. Then Taylor’s inequality gives for any (x1, x2) ∈ R
q × R

q

∣∣Pf(x1)− Pf(x2)
∣∣ ≤ ‖x1 − x2‖ sup

t∈[0,1]
‖∇(Pf)(tx1 + (1− t)x2)‖

≤ d
√
q |f |τa ‖x1 − x2‖ sup

t∈[0,1]

(
1 + ‖tx1 + (1− t)x2‖

)a−1

≤ d
√
q |f |τa ‖x1 − x2‖

(
1 + ‖x1‖+ ‖x2‖

)a−1
.

It follows that Pf ∈ La. �

The following statement gives a simple sufficient condition for (76) to hold true.

Proposition E.2 Let a ∈ [1,+∞) and Va−1(·) := (1 + ‖ · ‖)a−1. Assume that PVa−1/Va−1

is bounded, and

M := sup
(x,y)∈Rq×Rq

∣∣(∂xK)(x, y)
∣∣

|K(x, y)| <∞. (78)

Then, for each τ ∈ [0, (a − 1)/a], Condition (76) is fulfilled.

Proof. Let x ∈ R
q. We have

∫

Rq

(1 + ‖y‖)τa
∣∣∂xK(x, y)

∣∣ dy ≤M

∫

Rq

(1 + ‖y‖)a−1K(x, y) dy = (PVa−1)(x) ≤ C Va−1(x)

for some constant C. �
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Proof of Remark 12. Assume that ‖ · ‖ is the supremum norm on R
q. We obtain from (77)

with K(x, y) := ν
(
y −Ax

)
and from (62): ∀f ∈ Bγ , ∀x ∈ R

q,

∥∥∇(Pf)(x)
∥∥ ≤ |f |γ

(
max
k

q∑

i=1

|aik|
) ∫

Rq

(1 + ‖y‖)γ ‖∇ν(y −Ax)‖ dy

≤ |f |γ
(
max
k

q∑

i=1

|aik|
) ∫

Rq

(1 + ‖y +Ax‖)γ b

(1 + ‖y‖)β dy

≤ bCγ,β |f |γ
(
max
k

q∑

i=1

|aik|
)
(1 + ‖x‖)γ .

We easily deduce that ma(Pf) ≤ q bCγ,β |f |γ (maxk
∑q

i=1 |aik|). �
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