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Efficient estimation of conditional covariance matrices for dimension reduction

. We prove that this method provides a new efficient estimator whose asymptotic properties are studied.

Introduction

Consider the nonparametric regression

Y = ϕ(X) + ǫ,
where X ∈ R p , Y ∈ R and E ǫ = 0. The main difficulty with any regression method is that, as the dimension of X becomes larger, the number of observations needed for a good estimator increases exponentially. This phenomena is usually called the curse of dimensionality. All the "classical" methods could break down, as the dimension p increases, unless we have at hand a very huge sample.

For this reason, there have been along the past decades a very large number of methods to cope with this issue. Their aim is to reduce the dimensionality of the problem, using just to name a few, the generalized linear model in [START_REF] Brillinger | A generalized linear model with" gaussian" regressor variables[END_REF], the additive models in [START_REF] Hastie | Generalized Additive Models[END_REF], sparsity constraint models as [START_REF] Li | Sparse sufficient dimension reduction[END_REF] and references therein.

Alternatively, Li (1991a) proposed the procedure of Sliced Inverse Regression (SIR) considering the following semiparametric model,

Y = φ(υ ⊤ 1 X, . . . , υ ⊤ K X, ǫ)
where the υ's are unknown vectors in R p , ǫ is independent of X and φ is an arbitrary function in R K+1 . This model can gather all the relevant information about the variable Y , with only the projection of X onto the K ≪ p dimensional subspace (υ ⊤ 1 X, . . . , υ ⊤ K X). In the case when K is small, it is possible to reduce the dimension by estimating the υ's efficiently. This method is also used to search nonlinear structures in data and to estimate the projection directions υ's. For a review on SIR methods, we refer to Li (1991a,b); [START_REF] Duan | Slicing regression: a link-free regression method[END_REF]; [START_REF] Hardle | Sliced inverse regression for dimension reduction: Comment[END_REF] and references therein. The υ's define the effective dimension reduction (e.d.r) direction and the eigenvectors of E Cov X|Y are the e.d.r. directions. Many estimators have been proposed in order to study the e.d.r directions in many different cases. For example, [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] and [START_REF] Ferré | Smoothed functional inverse regression[END_REF][START_REF] Ferré | Functional sliced inverse regression analysis[END_REF] use kernel estimators, [START_REF] Hsing | Nearest neighbor inverse regression[END_REF] combines nearest neighbor and SIR, [START_REF] Bura | Estimating the structural dimension of regressions via parametric inverse regression[END_REF] assume that E X|Y has some parametric form, [START_REF] Setodji | K-means inverse regression[END_REF] use k-means and [START_REF] Cook | Sufficient dimension reduction via inverse regression[END_REF] transform SIR to least square form.

In this paper, we propose an alternate estimation of the matrix

Cov E X|Y = E E X|Y E X|Y ⊤ -E X E X ⊤ ,
using ideas developed by Da [START_REF] Da Veiga | Efficient estimation of nonlinear conditional functionals of a density[END_REF], inspired by the prior work of [START_REF] Laurent | Efficient estimation of integral functionals of a density[END_REF]. More precisely since E X E X ⊤ can be easily estimated with many usual methods, we will focus on finding an estimator of E E X|Y E X|Y ⊤ .

For this we will show that this estimation implies an estimation of a quadratic functional rather than plugging non parametric estimate into this form as commonly used. This method has the advantage of getting an efficient estimator in a semiparametric framework. This paper is organized as follows. Section 2 is intended to motivate our investigation of Cov E X|Y using a Taylor approximation. In Section 3.1 we set up notation and hypothesis. Section 3.2 is devoted to demonstrate that each coordinate of Cov E X|Y converge efficiently. Also we find the normality asymptotic for the whole matrix. An asymptotic bound of the variance for the quadratic part for the Taylor's expansion of Cov E X|Y is found in Section 4. All technical Lemmas and their proofs are postponed to Sections 6 and 5 respectively.

Methodology

Our aim is to estimate Cov E X|Y efficiently when observing X ∈ R p , for p≥1, and Y ∈ R. For this , write the matrix

Cov E X|Y = E E X|Y E X|Y ⊤ -E X E X ⊤ ,
where A ⊤ means the transpose of A. If E X can be easily estimated by classical methods, the remainder term

E E X|Y E X|Y ⊤ = T * ij i,j
i, j = 1, . . . , p;

is a non linear term whose estimation is the main topic of this paper. Each term of this matrix can be written as

T * ij =
ˆ ´xi f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j ´xj f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j f (x i , x j , y)dx i dx j dy,

(1) where f (x i , x j , y) for i and j fixed, is the joint density of X i , X j , Y i, j = 1, . . . , p.

Hence, we focus on the efficient estimation of the corresponding non linear functional for f ∈ L(dx i , dx j , dy) f → T ij (f ) = ˆ ´xi f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j ´xj f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j f (x i , x j , y)dx i dx j dy.

(2) In the case i = j, this estimation has been considered in Da [START_REF] Da Veiga | Efficient estimation of nonlinear conditional functionals of a density[END_REF]; [START_REF] Laurent | Efficient estimation of integral functionals of a density[END_REF]. Here we extend their methodology to this case. Assume we have at hand an i.i.d sample (X

(k) i , X (k) j , Y (k)
), k = 1, . . . , n such that it is possible to build a preliminary estimator f of f with a subsample of size n 1 < n. Now, the main idea is to make a Taylor's expansion of T ij (f ) in a neighborhood of f which will play the role of a suitable approximation of f . More precisely, define an auxiliar function F : [0, 1] → R;

F (u) = T ij (uf + (1 -u) f ) with u ∈ [0, 1]
. The Taylor's expansion of F between 0 and 1 up to the third order is

F (1) = F (0) + F ′ (0) + 1 2 F ′′ (0) + 1 6 F ′′′ (ξ)(1 -ξ) 3 (3) 
for some ξ ∈ [0, 1]. Moreover, we have

F (1) = T ij (f ) F (0) = T ij ( f ) = ˆ ´xi f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j ´xj f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j f (x i , x j , y)dx i dx j dy.
To simplify the notations, let

m i (f u , y) = ´xi f u (x i , x j , y)dx i dx j ´fu (x i , x j , y)dx i dx j m i (f 0 , y) = m i ( f , y) = ´xi f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j ,
where

f u = uf + (1 -u) f , ∀u ∈ [0, 1].
Then, we can rewrite F (u) as

F (u) = ˆmi (f u , y)m j (f u , y)f u (x i , x j , y)dx i dx j dy.
The Taylor's expansion of T ij (f ) is given in the next Proposition.

Proposition 1 (Linearization of the operator T ). For the functional T ij (f ) defined in (2), the following decomposition holds

T ij (f ) = ˆH1 ( f , x i , x j , y)f (x i , x j , y)dx i dx j dy + ˆH2 ( f , x i1 , x j2 , y)f (x i1 , x j1 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy + Γ n (4)
where

H 1 ( f , x i , x j , y) = x i m j ( f , y) + x j m i ( f , y) -m i ( f , y)m j ( f , y) (5) 
H 2 ( f , x i1 , x j2 , y) = 1 ´f (x i , x j , y)dx i dx j x i1 -m i ( f , y) x j2 -m j ( f , y) (6) 
Γ n = 1 6 F ′′′ (ξ)(1 -ξ) 3 , ( 7 
)
for some ξ ∈]0, 1[. This decomposition has the main advantage of separating the terms to be estimated into a linear functional of f , which can be easily estimated and a second part which is a quadratic functional of f. In this case, Section 4 will be dedicated to estimate this kind of functionals and specifically to control its variance. This will enable to provide an efficient estimator of T ij (f ) using the decomposition of Proposition 1.

Main Results

In this section we build a procedure to estimate T ij (f ) efficiently. Since we used n 1 < n to build a preliminary approximation f , we will use a sample of size n 2 = nn 1 to estimate ( 5) and (6). Since ( 5) is a linear functional of the density f , it can be estimated by its empirical counterpart

1 n 2 n 2 k=1 H 1 f , X (k) i , X (k) j , Y (k) . (8) 
Since ( 6) is a nonlinear functional of f , the estimation is harder. Its estimation will be a direct consequence of the technical results presented in Section 4, where we build an estimator for the general functional

θ(f ) = ˆη(x i1 , x j2 , y)f (x i1 , x j1 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy
where η : R 3 → R is a bounded function. The estimator θn of θ(f ) is an extension of the method developed in Da Veiga & Gamboa (2008).

Hypothesis and Assumptions

The following notations will be used throughout the paper. Let d s and b s for s = 1, 2, 3 be real numbers where d s < b s . Let, for i and j fixed, L 2 (dx i dx j dy) be the squared integrable functions in the cube

[d 1 , b 1 ] × [d 2 , b 2 ] × [d 3 , b 3 ].
Moreover, let (p l (x i , x j , y)) l∈D be an orthonormal basis of L 2 (dx i dx j dy), where D is a countable set. Let a l = ´pl f denote the scalar product of f with p l . Furthermore, denote by L 2 (dx i dx j ) (resp. L 2 (dy)) the set of squared integrable functions in

[d 1 , b 1 ] × [d 2 , b 2 ] (resp. [d 3 , b 3 ]). If α lα (x i , x j ) l α∈D 1 (resp. β l β (y) l β∈D 2 ) is an orthonormal basis of L 2 (dx i dx j ) (resp. L 2 (dy)) then p l (x i , x j , y) = α lα (x i , x j )β l β (y) with l = (l α , l β ) ∈ D 1 × D 2 .
We also use the following subset of L 2 (dx i dx j dy)

E = l∈D e l p l : (e l ) l∈D is such that l∈D e l c l 2 < 1
where (c l ) l∈D is a given fixed sequence. Moreover assume that

(X i , X j , Y ) have a bounded joint density f on [d 1 , b 1 ] × [d 2 , b 2 ] × [d 3 , b 3 ] which lies in the ellipsoid E.
In what follows, X n D -→ X (resp. X n P -→ X) denotes the convergence in distribution or weak convergence (resp. convergence in probability) of X n to X. Additionally, the support of f will be denoted by supp f . Let (M n ) n≥1 denote a sequence of subsets D. For each n there exists M n such that M n ⊂ D. Let us denote by |M n | the cardinal of M n .

We shall make three main assumptions:

Assumption 1. For all n ≥ 1 there is a subset

M n ⊂ D such that sup l / ∈Mn |c l | 2 2 ≈ |M n | /n 2 (A n ≈ B means λ 1 ≤ A n /B ≤
λ 2 for some positives constants λ 1 and λ 2 ). Moreover, ∀f ∈ L 2 (dxdydz), ´(S Mn ff ) 2 dxdydz → 0 when n → 0, where

S Mn f = l∈Mn a l p l Assumption 2. supp f ⊂ [d 1 , b 1 ] × [d 2 , b 2 ] × [d 3 , b 3 ] and ∀(x, y, z) ∈ supp f , 0 < α ≤ f (x, y, z) ≤ β with α, β ∈ R. Assumption 3. It is possible to find an estimator f of f built with n 1 ≈ n/ log (n) observations, such that for ǫ > 0, ∀(x, y, z) ∈ supp f, 0 < α -ǫ ≤ f (x, y, z) ≤ β + ǫ and, ∀ 2 ≤ q ≤ +∞, ∀l ∈ N * , E f f -f l q ≤ C(q, l)n -lλ 1
for some λ > 1/6 and some constant C(q, l) not depending on f belonging to the ellipsoid E.

Assumption 1 is necessary to bound the bias and variance of θn . Assumption 2 and 3 allow to establish that the remainder term in the Taylor expansion is negligible, i.e Γ n = O(1/n) . Assumption 3 depends on the regularity of the density function. For instance for x ∈ R p , s > 0 and L > 0, consider the class H q (s, L) of Nikol'skii of functions f ∈ L q (dx) with partials derivatives up to order r = ⌊s⌋ inclusive, and for each of these derivatives g (r)

f (r) (• + h) -f (r) (•) q ≤ L |h| s-r ∀h ∈ R.
Then, Assumption 3 is satisfied for f ∈ H q (s, L) with s > p 4 .

Efficient Estimation of T ij (f )

As seen in Section 2, T ij (f ) can be decomposed as (4). Hence, using ( 8) and ( 14) we consider the following estimate

T (n) ij = 1 n 2 n 2 k=1 H 1 ( f , X (k) i , X (k) j , Y (k) ) + 1 n 2 (n 2 -1) l∈M n 2 k =k ′ =1 p l X (k) i , X (k) j , Y (k) ˆpl x i , x j , Y (k ′ ) H 3 f , x i , x j , X (k ′ ) i , X (k ′ ) j , Y (k ′ ) dx i dx j - 1 n 2 (n 2 -1) l,l ′ ∈M n 2 k =k ′ =1 p l X (k) i , X (k) j , Y (k) p l ′ X (k ′ ) i , X (k ′ ) j , Y (k ′ ) ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)H 2 f , x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy.
where

H 3 (f, x i1 , x j1 , x i2 , x j2 , y) = H 2 (f, x i1 , x j2 , y) + H 2 (f, x i2 , x j1 , y) and n 2 = n - n 1 .
The remainder Γ n does not appear because we will prove that it is negligible when compared to the other error terms.

The asymptotic behavior of T (n) ij for i and j fixed is given in the next Theorem.

Theorem 1. Let Assumptions 1-3 hold and |M n | /n → 0 when n → ∞. Then:

√ n T (n) ij -T ij (f ) D -→ N (0, C ij (f )) , (9) 
and lim

n→∞ nE T (n) ij -T ij (f ) 2 = C ij (f ), (10) 
where

C ij (f ) = Var H 1 (f, X i , X j , Y )
Note that, in Theorem 1, it appears that the asymptotic variance of T ij (f ) depends only on H 1 (f, X i , X j , Y ). Hence the asymptotic variance of T (n) ij is explained only by the linear part of (4). This will entail that the estimator is naturally efficient as proved in the following. Indeed, the semi-parametric Cramér-Rao bound is given in the next theorem.

Theorem 2 (Semi-parametric Cramér-Rao bound.). Consider the estimation of

T ij (f ) =
ˆ ´xi f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j ´xj f (x i , x j , y)dx i dx j ´f (x i , x j , y)dx i dx j f (x i , x j , y)dx i dx j dy for a random vector X i , X j , Y with joint density f ∈ E. Let f 0 ∈ E be a density verifying the assumptions of Theorem 1. Then, for all estimator T

(n) ij of T ij (f ) and every family {V r (f 0 )} r>0 of neighborhoods of f 0 we have

inf {Vr(f 0 )} r>0 lim inf n→∞ sup f ∈Vr(f 0 ) nE T (n) ij -T ij (f 0 ) 2 ≥ C ij (f 0 ) where V r (f 0 ) = f : f -f 0 2 < r for r > 0.
Consequently, the estimator

T (n) ij is efficient.
In the case of our estimate, its variance is C ij (f ), which proves its asymptotically efficiency.

Remark that Theorem 1 proves asymptotic normality entry by entry of the matrix T (f ) = (T ij (f )) p×p . To extend the result for the whole matrix it is necessary to introduce the half-vectorization operator vech. This operator, stacks only the columns from the principal diagonal of a square matrix downwards in a column vector, that is, for an p × p matrix A = (a ij ),

vech(A) = [a 11 , • • • , a p1 , a 22 , • • • , a p2 , • • • , a 33 , • • • , a pp ] ⊤ .
Let define the estimator matrix T

(n) = T (n) ij
and H 1 (f ) denote the matrix with entries (H 1 (f, x i , x j , y)) i,j . Now we are able to state the following

Corollary 1. Let Assumptions 1-3 hold and |M n | /n → 0 when n → ∞. Then T (n)
has the following properties:

√ n vech T (n) -T (f ) D -→ N (0, C(f )) , (11) 
lim n→∞ nE vech T (n) -T (f ) vech T (n) -T (f ) ⊤ = C(f ) (12) 
where

C(f ) = Cov vech(H 1 (f ))
Previous results depend on the accurate estimation of the quadratic part of the estimator of T (n) ij , which is the issue of the following section.

Estimation of quadratic functionals

As pointed out in Section 2 the decomposition (4) has a quadratic part (6) that we want to estimate. To achieve this we will construct a general estimator of the form:

θ = ˆη(x i1 , x j2 , y)f (x i1 , x j1 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy, for f ∈ E and η : R 3 → R a bounded function. Given M n a subset of D, consider the estimator θn = 1 n(n -1) l∈M n k =k ′ =1 p l (X (k) i , X (k) j , Y (k) ) ˆpl (x i , x j , Y (k ′ ) ) η(x i , X (k ′ ) j , Y (k ′ ) ) + η(X (k ′ ) i , x j , Y (k ′ ) ) dx i dx j - 1 n(n -1) l,l ′ ∈M n k =k ′ =1 p l (X (k) i , X (k) j , Y (k) )p l ′ (X (k ′ ) i , X (k ′ ) j , Y (k ′ ) ) ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy. (13)
In order to simplify the presentation of the main Theorem, let ψ(

x i1 , x j1 , x i1 , x j2 , y) = η(x i1 , x j2 , y) + η(x i2 , x j1 , y) verifying ˆψ(x i1 , x j1 , x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = ˆψ(x i2 , x j2 , x i1 , x j1 , y)dx i1 dx j1 dx i2 dx j2 dy.
With this notation we can simplify (13) in

θn = 1 n(n -1) l∈M n k =k ′ =1 p l (X (k) i , X (k) j , Y (k) ) ˆpl (x i , x j , Y (k ′ ) )ψ(x i , x j , X (k ′ ) i , X (k ′ ) j , Y (k ′ ) )dx i dx j - 1 n(n -1) l,l ′ ∈M n k =k ′ =1 p l (X (k) i , X (k) j , Y (k) )p l ′ (X (k ′ ) i , X (k ′ ) j , Y (k ′ ) ) ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy. (14)
Using simple algebra, it is possible to prove that this estimator has bias equal to

-ˆ(S M f (x i1 , x j1 , y) -f (x i1 , x j1 , y))(S M f (x i2 , x j2 , y) -f (x i2 , x j2 , y)) η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy (15)
The following Theorem gives an explicit bound for the variance of θn .

Theorem 3. Let Assumption 1 hold. Then if |M n | /n → 0 when n → 0, then θn has the following property nE θn -θ 2 -Λ(f, η) ≤ γ |M n | n + S Mn f -f 2 + S Mn g -g 2 , ( 16 
)
where g(x i , x j , y) = ´f (x i2 , x j2 , y)ψ(x i , x j , x i2 , x j2 , y)dx i2 dx j2 and

Λ(f, η) = ˆg(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy-ˆg(x i , x j , y)f (x i , x j , y)dx i dx j dy 2 ,
where γ is constant depending only on f ∞ , η ∞ , and

∆ x i x j = (b 1 -a 1 )×(b 2 -a 2 ).
Moreover, this constant is an increasing function of these quantities.

Note that equation ( 16) implies that

lim n→∞ nE θn -θ 2 = Λ(f, η).
These results will be stated in order to control the term

Q = ˆH2 ( f , x i1 , x j2 , y)f (x i1 , x j1 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy
which has the form of the quadratic functional θ with the particular choice η(x i1 , x j2 , y) = H 2 ( f , x i1 , x j2 , y). We point out that we also show that in this particular frame, we get Λ(f, η) = 0. This the reason why the asymptotic variance of the estimate

T (n) ij
built in the previous section, is only governed by its linear part, yielding asymptotic efficiency.

Proofs

Proof of Proposition 1.

We need to calculate the three first derivatives of F (u). In order to facilitate the calculation, we are going to differentiate m i (f u , y):

d du (m i (f u , y)) = d du ´xi f u (x i , x j , y)dx i dx j ´fu (x i , x j , y)dx i dx j = ´xi (f (x i , x j , y) -f (x i , x j , y))dx i dx j ´fu (x i , x j , y)dx i dx j - ´xi f u (x i , x j , y)dx i dx j ´f (x i , x j , y) -f (x i , x j , y)dx i dx j ´fu (x i , x j , y)dx i dx j 2 , = ´xi (f (x i , x j , y) -f (x i , x j , y))dx i dx j ´fu (x i , x j , y)dx i dx j - m i (f u , y) ´f (x i , x j , y) -f (x i , x j , y)dx i dx j ´fu (x i , x j , y)dx i dx j , = ´ x i -m i (f u , y) (f (x i , x j , y) -f (x i , x j , y))dx i dx j ´fu (x i , x j , y)dx i dx j . (17) 
Now, using (17) we first compute F ′ (u),

ˆd du (m i (f u , y)) m j (f u, , y)f u (x i , x j , y) + m i (f u , y) d du (m j (f u , y)) f u (x i , x j , y) +m i (f u , y)m j (f u , y) d du (f u (x i , x j , y)) dx i dx j dy, = ˆ[x i m j (f u , y) + x j m i (f u , y) -m i (f u , y)m j (f u , y)] f (x i , x j , y) -f (x i , x j , y) dx i dx j dy.
Taking u = 0 we have

F ′ (0) = ˆ x i m j ( f , y) + x j m i ( f , y) -m i ( f , y)m j ( f , y) f (x i , x j , y)-f (x i , x j , y) dx i dx j dy. (18) 
We derive now m i (f u , y)m j (f u , y) to obtain

d du (m i (f u , y)m j (f u , y)) = d du (m i (f u , y)) m j (f u , y) + m i (f u , y) d du (m j (f u , y)) = m j (f u , y) ´ x i -m i (f u , y) (f (x i , x j , y) -f (x i , x j , y))dx i dx j ´fu (x i , x j , y)dx i dx j + m i (f u , y) ´ x j -m j (f u , y) (f (x i , x j , y) -f (x i , x j , y))dx i dx j ´fu (x i , x j , y)dx i dx j . ( 19 
)
Following with F ′′ (u) and using ( 17) and ( 19) we get,

F ′′ (u) = ˆ x i1 ´ x j2 -m j (f u , y) (f (x i2 , x j2 , y) -f (x i2 , x j2 , y))dx i2 dx j2 ´fu (x i , x j , y)dx i dx j + x j1 ´ x i2 -m i (f u , y) (f (x i2 , x j2 , y) -f (x i2 , x j2 , y))dx i2 dx j2 ´fu (x i , x j , y)dx i dx j -m j (f u , y) ´ x i2 -m i (f u , y) (f (x i2 , x j2 , y) -f (x i2 , x j2 , y))dx i dx j ´fu (x i , x j , y)dx i dx j -m i (f u , y) ´ x j2 -m j (f u , y) (f (x i2 , x j2 , y) -f (x i2 , x j2 , y))dx i2 dx j2 ´fu (x i , x j , y)dx i dx j f (x i1 , x j1 , y) -f (x i1 , x j1 , y) dx i1 dx j1 dy.
Simplifying the last expression we obtain

F ′′ (u) = ˆ1 ´fu (x i , x j , y)dx i dx j x i1 -m i (f u , y) x j2 -m j (f u , y) + x i2 -m i (f u , y) x j1 -m j (f u , y) f (x i1 , x j1 , y) -f (x i1 , x j1 , y) f (x i2 , x j2 , y) -f (x i2 , x j2 , y) dx i1 dx j1 dx i2 dx j2 dy.
Besides, when u = 0

F ′′ (0) = (20) ˆ1 ´f (x i , x j , y)dx i dx j x i1 -m i ( f , y) x j2 -m j ( f , y) + x i2 -m i ( f , y) x j1 -m j ( f , y) f (x i1 , x j1 , y) -f (x i1 , x j1 , y) f (x i2 , x j2 , y) -f (x i2 , x j2 , y) dx i1 dx j1 dx i2 dx j2 dy = ˆ2 ´f (x i , x j , y)dx i dx j x i1 -m i ( f , y) x j2 -m j ( f , y) f (x i1 , x j1 , y) -f (x i1 , x j1 , y) f (x i2 , x j2 , y) -f (x i2 , x j2 , y) dx i1 dx j1 dx i2 dx j2 dy. ( 21 
)
Using the previous arguments we can finally find F ′′′ (u):

F ′′′ (u) = ˆ-6 ´fu (x i , x j , y)dx i dx j x i1 -m j (f u , y) x j2 -m j (f u , y) f (x i1 , x j1 , y) -f (x i1 , x j1 , y) f (x i2 , x j2 , y) -f (x i2 , x j2 , y) f (x i3 , x j3 , y) -f (x i3 , x j3 , y) dx i1 dx j1 dx i2 dx j2 dx i3 dx j3 dy (22)
Replacing ( 18), ( 21) and ( 22) into (3) we get the desired decomposition.

Proof of Theorem 1.

We will first control the remaining term (7),

Γ n = 1 6 F ′′′ (ξ)(1 -ξ) 3 .
Remember that

F ′′′ (ξ) = -6 ˆ(x i1 -m i (f ξ , y)) (x j2 -m j (f ξ , y)) ´fξ (x i , x j , y)dx i dx j 2 f (x i1 , x j1 , y) -f (x i1 , x j1 , y) f (x i2 , x j2 , y) -f (x i2 , x j2 , y) f (x i3 , x j3 , y) -f (x i3 , x j3 , y) dx i1 dx j1 dx i2 dx j2 dx i3 dx j3 dy,
Assumptions 1 and 2 ensure that the first part of the integrand is bounded by a constant µ. Furthermore,

|Γ n | ≤ µ ˆ f (x i1 , x j1 , y) -f (x i1 , x j1 , y) f (x i2 , x j2 , y) -f (x i2 , x j2 , y) f (x i3 , x j3 , y) -f (x i3 , x j3 , y) dx i1 dx j1 dx i2 dx j2 dx i3 dx j3 dy = µ ˆ ˆ f (x i , x j , y) -f (x i , x j , y) dx i dx j 3 dy ≤ µ∆ 3 x i x j ˆ f (x i1 , x j1 , y) -f (x i1 , x j1 , y) 3 dx i dx j dy by the Hölder inequality. Then E Γ 2 n = O(E( ´|f -f | 3 ) 2 ) = O(E f -f 6 3 ). Since f verifies Assumption 3, this quantity is of order O(n -6λ 1
). Since we also assume

n 1 ≈ n/ log(n) and λ > 1/6, then n -6λ 1 = o 1 n .Therefore, we get E Γ 2 n = o(1/n) which implies that the remaining term Γ n is negligible.
To prove the asymptotic normality of

T (n) ij , we shall show that √ n T (n) ij -T ij (f ) and define Z (n) ij = 1 n 2 n 2 k=1 H 1 f, X (k) i , X (k) j , Y (k) -ˆH1 (f, x i , x j , y)f (x i , x j , y))dx i dx j dy (23)
have the same asymptotic behavior. We can get for Z (n) ij a classic central limit theorem with variance 9) and (10). In order to establish our claim, we will show that

C ij (f ) = Var H 1 (f, x i , x j , y) = ˆH1 (f, x i , x j , y) 2 f (x i , x j , y))dx i dx j dy -ˆH1 (f, x i , x j , y)f (x i , x j , y))dx i dx j dy 2 which implies (
R (n) ij = √ n T (n) ij -T ij (f ) -Z (n) ij (24)
has second-order moment converging to 0. Define Z

(n) ij as Z (n) ij with f replaced by f . Let us note that R (n) ij = R 1 + R 2 where R 1 = √ n T (n) ij -T ij (f ) -Z (n) ij R 2 = √ n Z (n) ij -Z (n) ij
.

It only remains to state that E R 2 1 and E R 2 2 converges to 0. We can rewrite R 1 as

R 1 = - √ n Q -Q + Γ n
where we note that

Q = ˆH2 ( f , x i1 , x j2 , y)f (x i1 , x j1 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy H 2 ( f , x i1 , x j2 , y) = 1 ´f (x i , x j , y)dx i dx j x i1 -m i ( f , y) x j2 -m j ( f , y)
has the form of a quadratic functional studied in Section 4 with η(x i1 , x j2 , y) = H 2 ( f , x i1 , x j2 , y). Hence such functional can be estimated as done in Section 4 and let Q be its corresponding estimator. Since E Γ 2 n = o(1/n), we only have to control the term

√ n( Q -Q) which is such that lim n→∞ nE Q -Q 2 = 0 by Lemma 7. This Lemma implies that E R 2 1 → 0 as n → ∞. For R 2 we have E R 2 2 = n n 2 ˆ H 1 (f, x i , x j , y) -H 1 ( f , x i , x j , y) 2 f (x i , x j , y))dx i dx j dy - n n 2 ˆH1 (f, x i , x j , y)f (x i , x j , y))dx i dx j dy -ˆH1 ( f , x i , x j , y) 2 f (x i , x j , y))dx i dx j dy 2 .
The same arguments as the ones of Lemma 7 (mean value and Assumptions 2 and 3) show that E R 2 2 → 0.

Proof of Theorem 2 . To prove the inequality we will use the usual framework described in [START_REF] Ibragimov | Asymptotically normal families of distributions and efficient estimation[END_REF]. The first step is to calculate the Fréchet derivative of T ij (f ) at some point f 0 ∈ E. Assumptions 2 and 3 and equation (4), imply that

T ij (f ) -T ij (f 0 ) = ˆ x i m j (f 0 , y) + x j m i (f 0 , y) -m i (f 0 , y)m j (f 0 , y) f (x i , x j , y) -f 0 (x i , x j , y) dx i dx j dy + O ˆ(f -f 0 ) 2
where m i (f 0 , y) = ´xi f 0 (x i , x j , y)dx i dx j dy/ ´f0 (x i , x j , y)dx i dx j dy. Therefore, the Fréchet derivative of

T ij (f ) at f 0 is T ′ ij (f 0 ) • h = H 1 (f 0 , •), h with H 1 (f 0 , x i , x j , y) = x i m j (f 0 , y) + x j m i (f 0 , y) -m i (f 0 , y)m j (f 0 , y).
Using the results of [START_REF] Ibragimov | Asymptotically normal families of distributions and efficient estimation[END_REF], denote H(f 0 ) = u ∈ L 2 (dx i dx j dy), ´u(x i , x j , y) f 0 (x i , x j , y)dx i dx j dy = 0 the set of functions in L 2 (dx i dx j dy) orthogonal to f 0 , f ∈ E is differentiable in quadratic mean at f 0 and therefore locally asymptotically normal at all points f 0 ∈ E in the direction H(f 0 ) with normalizing factor A n (f 0 ) (see the details in [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF]). Then, by the results of [START_REF] Ibragimov | Asymptotically normal families of distributions and efficient estimation[END_REF] say that under these conditions, denoting

√ f 0 , Pr H(f 0 ) the projection onto H(f 0 ), A n (t) = ( √ f 0 )t/ √ n and P (n) f 0 the joint distribution of X (k) i , X (k) j k = 1, . . . , n under f 0 . Since X (k) i , X (k) 
K n = B n θ ′ (f 0 )A n Pr H(f 0 ) with B n = √ nu, if K n D -→ K and if K(u) = t, u , then for every estimator T (n) ij of T ij (f ) and every family V(f 0 ) of vicinities of f 0 , we have inf {V(f 0 )} lim inf n→∞ sup f ∈V(f 0 ) nE T (n) ij -T ij (f 0 ) 2 ≥ t 2 L 2 (dx i dx j dy) .
Here,

K n (u) = √ nT ′ (f 0 ) • √ f 0 √ n Pr H(f 0 ) (u) = T ′ (f 0 ) f 0 u -f 0 ˆu f 0 ,
since for any u ∈ L 2 (dx i dx j dy) we can write it as u = √ f 0 √ f 0 , u + Pr H(f 0 ) (u). In this case K n (u) does not depend on n and

K(h) = T ′ (f 0 ) • f 0 u -f 0 ˆh f 0 = ˆH1 (f 0 , •) f 0 u -ˆH1 (f 0 , •) f 0 ˆu f 0 = t, u with t(x i , x j , y) = H 1 (f 0 , x i , x j , y) f 0 -ˆH1 (f 0 , x i , x j , y)f 0 f 0 .
The semi-parametric Cramér-Rao bound for this problem is thus

t L 2 (dx i ,dx j ,dy) = ˆH1 (f 0 , x i , x j , y) 2 f 0 dx i dx j dy-ˆH1 (f 0 , x i , x j , y)f 0 dx i dx j dy 2 = C ij (f 0 )
and we recognize the expression C ij (f 0 ) found in Theorem 1.

Proof of Corollary 1. The proof is based in the following observation. Employing equation ( 24) we have

T (n) -T (f ) = Z (n) (f ) + R (n) √ n
where Z (n) (f ) and R (n) are matrices with elements Z 23) and ( 24), respectively.

(n) ij and R (n) ij , defined in (
Hence we have,

nE vech T (n) -T (f ) -Z (n) (f ) 2 = E vech R (n) 2 = i≤j E R (n) ij 2 .
We see by Lemma 7 that E R 2 ij → 0 as n → 0. It follows that

nE vech T (n) -T (f ) -Z (n) (f ) 2 → 0 as n → 0.
We know that if X n , X and Y n are random variables, then if

X n D -→ X and (X n -Y n ) P -→ 0, follows that Y n D -→ X.
Remember also that convergence in L 2 implies convergence in probability, therefore

√ n vech T (n) -T (f ) -Z (n) (f ) P -→ 0.
By the multivariate central limit theorem we have that

√ n vech Z (n) (f ) D -→ N (0, C(f )). Therefore, √ n vech T (n) -T (f ) D -→ N (0, C(f )).
Proof of Theorem 3. For abbreviation, we write M instead of M n and set m = |M n |. We first compute the mean squared error of θn as E θnθ 2 = Bias 2 θn + Var θn

where Bias = E θnθ.

We begin the proof by bounding Var θn . Let A and B be m × 1 vectors with components a l = ˆpl (x i , x j , y)f (x i , x j , y)dx i dx j dy l = 1, . . . , m, b l = ˆpl (x i1 , x j1 , y)f (x i2 , x j2 , y)ψ(x i1 , x j1 , x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = ˆpl (x i , x j , y)g(x i , x j , y)dx i dx j dy l = 1, . . . , m where g(x i , x j , y) = ´f (x i2 , x j2 , y)ψ(x i , x j , x i2 , x j2 , y)dx i2 dx j2 . Let Q and R be m×1 vectors of centered functions q l (x i , x j , y) = p l (x i , x j , y)a l r l (x i , x j , y) = ˆpl (x i2 , x j2 , y)ψ(x i , x j , x i2 , x j2 , y)dx i2 dx j2b l for l = 1, . . . , m. Let C a m × m matrix of constants c ll ′ = ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy l, l ′ = 1, . . . , m.

Let us denote by U n the process

U n h = 1 n(n -1) n k =k ′ =1 h X (k) i , X (k) j , Y (k) , X (k ′ ) i , X (k ′ ) j , Y (k ′ )
and P n the empirical measure

P n h = 1 n n k=1 h X (k) i , X (k) j , Y (k)
for some h in L 2 (dx i , dx j , dy). With these notations, θn has the Hoeffding's decomposition

θn = 1 n(n -1) l∈M n k =k ′ =1 q l (X (k) i , X (k) j , Y (k) ) + a l r l (X (k ′ ) i , X (k ′ ) j , Y (k ′ ) ) + b l - 1 n(n -1) l,l ′ ∈M n k =k ′ =1 q l (X (k) i , X (k) j , Y (k) ) + a l q l ′ (X (k ′ ) i , X (k ′ ) j , Y (k ′ ) ) + a l ′ c ll ′ = U n K + P n L + A ⊤ B -A ⊤ CA where K (x i1 , x j1 , y 1 , x i2 , x j2 , y 2 ) = Q ⊤ (x i1 , x j1 , y 1 )R(x i2 , x j2 , y 2 ) -Q ⊤ (x i1 , x j1 , y 1 )CQ(x i2 , x j2 , y 2 ) L(x i , x j , y) = A ⊤ R(x i , x j , y) + BQ(x i , x j , y) -2A ⊤ CQ(x i , x j , y).
Therefore Var θn = Var U n K +Var P n L -2 Cov U n K, P n L . These three terms are bounded in Lemmas 2 -4, which gives

Var θn ≤ 20 n(n -1) η 2 ∞ f 2 ∞ ∆ 2 x i x j (m + 1) + 12 n η 2 ∞ f 2 ∞ ∆ 2 x i x j .
For n enough large and a constant γ ∈ R,

Var θn ≤ γ η 2 ∞ f 2 ∞ ∆ 2 x i x j m n 2 + 1 n .
The term Bias θn is easily computed, as proven in Lemma 5, is equal to

-ˆ(S M f (x i1 , x j1 , y) -f (x i1 , x j1 , y)) (S M f (x i2 , x j2 , y) -f (x i2 , x j2 , y))
η(x i1 , x j1 , x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy.

From Lemma 5, the bias of θn is bounded by

Bias θn ≤ ∆ x i x j η ∞ sup l / ∈M |c l | 2 .
The assumption of sup l / ∈M |c i | 2 2 ≈ m/n 2 and since m/n → 0, we deduce that

E θn -θ 2 has a parametric rate of convergence O (1/n).
Finally to prove ( 16), note that

nE θn -θ 2 = n Bias 2 θn + n Var θn = n Bias 2 θn + n Var U n K + n Var P n L .
We previously proved that for some

λ 1 , λ 2 ∈ R n Bias 2 θn ≤ λ 1 ∆ 2 x i x j η 2 ∞ m n n Var U n K ≤ λ 2 ∆ 2 x i x j f 2 ∞ η 2 ∞ m n .
Thus, Lemma 6 implies

n Var P n L -Λ(f, η) ≤ λ S M f -f 2 + S M g -g 2 ,
where λ is a increasing function of

f 2 ∞ , η 2 
∞ and ∆ x i x j . From all this we deduce (16) which ends the proof of Theorem 3.

Technical Results

Lemma 1 (Bias of θn ). The estimator θn defined in (14) estimates θ with bias equal to -ˆ(S M f (x i1 , x j1 , y)f (x i1 , x j1 , y)) (S M f (x i2 , x j2 , y)f (x i2 , x j2 , y)) η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy.

Proof. Let θn = θ1

n -θ2 n where

θ1 n = 1 n(n -1) l∈M k =k ′ =1 p l (X (k) i , X (k) j , Y (k) ) ˆpl (x i , x j , Y (k ′ ) )ψ(x i , x j , X (k ′ ) i , X (k ′ ) j , Y (k ′ ) )dx i dx j θ2 n = - 1 n(n -1) l,l ′ ∈M n k =k ′ =1 p l (X (k) i , X (k) j , Y (k) )p l ′ (X (k ′ ) i , X (k ′ ) j , Y (k ′ ) ) ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy.

Let us first compute E θ1

n .

E θ1 n = l∈M ˆpl (x i1 , x j1 , y)f (x i1 , x j1 , y)dx i1 dx j1 dy ˆpl (x i1 , x j1 , y)ψ(x i1 , x j1 , x i2 , x j2 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = l∈M a l ˆpl (x i1 , x j1 , y)ψ(x i1 , x j1 , x i2 , x j2 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = ˆ l∈M a l p l (x i2 , x j2 , y) ψ(x i1 , x j1 , x i2 , x j2 , y)f (x i2 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = ˆSM f (x i1 , x j1 , y)f (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy + ˆSM f (x i2 , x j2 , y)f (x i1 , x j1 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy
Now for θ2 n , we get

E θ2 n = l,l ′ ∈M ˆpl (x i , x j , y)f (x i , x j , y)dx i dx j dy ˆpl ′ (x i , x j , y)f (x i , x j , y)dx i dx j dy ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = l,l ′ ∈M a l a l ′ ˆpl (x i1 , x j1 , y)p l ′ (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = ˆ l∈M a l p l (x i1 , x j1 , y) l ′ ∈M a l ′ p l ′ (x i2 , x j2 , y) η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy = ˆSM f (x i1 , x j1 , y)S M f (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy.
Arranging these terms and using

Bias θn = E θn -θ = E θ1 n -E θ2 n -θ
we obtain the desire bias.

Lemma 2 (Bound of Var U n K ). Under the assumptions of Theorem 3, we have

Var U n K ≤ 20 n(n -1) η 2 ∞ f 2 ∞ ∆ 2 x i x j (m + 1) Proof. Note that U n K is centered because Q and R are centered and (X (k) i , X (k) j , Y (k) ), k = 1, . . . , n is an independent sample. So Var U n K is equal to E U n K 2 = E 1 (n(n -1)) 2 n k 1 =k ′ 1 =1 n k 2 =k ′ 2 =1 K X (k 1 ) i , X (k 1 ) j , Y (k 1 ) , X (k ′ 1 ) i , X (k ′ 1 ) j , Y (k ′ 1 ) K X (k 2 ) i , X (k 2 ) j , Y (k 2 ) , X (k ′ 2 ) i , X (k ′ 2 ) j , Y (k ′ 2 ) = 1 n(n -1) E K 2 X (1) i , X (1) 
j , Y (1) , X (2) 
i , X

(2)

j , Y (2) +K X (1) i , X (1) 
j , Y (1) , X (2) 
i , X

(2)

j , Y (2) K X (2) i , X (2) j , Y (2) , X (1) 
i , X

(1)

j , Y (1)
By the Cauchy-Schwarz inequality, we get

Var U n K ≤ 2 n(n -1) E K 2 X (1) i , X (1) 
j , Y (1) , X (2) 
i , X

(2) 2) .

j , Y ( 
Moreover, using the fact that 2

E XY ≤ E X 2 + E Y 2 , we obtain E K 2 X (1) i , X (1) 
j , Y (1) , X (2) 
i , X

(2)

j , Y (2) ≤ 2 E Q ⊤ (X (1) i , X (1) 
j , Y (1) )R(X (2) i , X (2) 
j , Y (2) ) 2 +E Q ⊤ (X (1) 
i , X

(1)

j , Y (1) )CQ(X (2) i , X (2) j , Y (2) ) 2 .
We will bound these two terms. The first one is

E Q ⊤ (X (1) 
i , X

(1)

j , Y (1) )R(X (2) i , X (2) j , Y (2) ) 2 = l,l ′ ∈M ˆpl (x i , x j , y)p l ′ (x i , x j , y)f (x i , x j , y)dx i dx j dy -a l a l ′ ˆpl (x i2 , x j2 , y)p l ′ (x i3 , x j3 , y)ψ(x i1 , x j1 , x i2 , x j2 , y) ψ(x i1 , x j1 , x i3 , x j3 , y)f (x i1 , x j1 , y)dx i1 dx j1 dx i2 dx j2 dx i3 dx j3 dy -b l b l ′ =W 1 -W 2 -W 3 + W 4
where

W 1 = ˆ l,l ′ ∈M p l (x i1 , x j1 , y)p l ′ (x i1 , x j1 , y)p l (x i2 , x j2 , y ′ )p l ′ (x i3 , x j3 , y ′ )ψ(x i4 , x j4 , x i2 , x j2 , y ′ ) ψ(x i4 , x j4 , x i3 , x j3 , y ′ )f (x i1 , x j1 , y)f (x i4 , x j4 , y ′ )dx i1 dx j1 dx i2 dx j2 dx i3 dx j3 dx i4 dx j4 dydy ′ W 2 = ˆ l,l ′ ∈M b l b l ′ p l (x i1 , x j1 , y)p l ′ (x i1 , x j1 , y)f (x i1 , x j1 , y)dx i1 dx j1 dy W 3 = ˆ l,l ′ ∈M a l a l ′ p l (x i2 , x j2 , y ′ )p l ′ (x i3 , x j3 , y ′ ) ψ(x i4 , x j4 , x i2 , x j2 , y ′ )ψ(x i4 , x j4 , x i3 , x j3 , y ′ )f (x i4 , x j4 , y ′ )dx i2 dx j2 dx i3 dx j3 dx i4 dx j4 dy ′ W 4 = l,l ′ ∈M a l a l ′ b l b l ′ .
W 2 and W 3 are positive, hence

E 2Q ⊤ (X (1) 
i , X

(1)

j , Y (1) )R(X (2) i , X (2) j , Y (2) ) 2 ≤ W 1 + W 4 . W 1 = ˆ l,l ′ ∈M p l (x i1 , x j1 , y)p l ′ (x i1 , x j1 , y) ˆpl (x i2 , x j2 , y ′ )ψ(x i4 , x j4 , x i2 , x j2 , y ′ )dx i2 dx j2 ˆpl ′ (x i3 , x j3 , y ′ )ψ(x i4 , x j4 , x i3 , x j3 , y ′ )dx i3 dx j3 f (x i1 , x j1 , y)f (x i4 , x j4 , y ′ )dx i1 dx j1 dx i4 dx j4 dydy ′ ≤ f 2 ∞ l,l ′ ∈M ˆpl (x i1 , x j1 , y)p l ′ (x i1 , x j1 , y)dx i1 dx j1 dy ˆ ˆpl (x i2 , x j2 , y ′ )ψ(x i4 , x j4 , x i2 , x j2 , y ′ )dx i2 dx j2 ˆpl ′ (x i3 , x j3 , y ′ )ψ(x i4 , x j4 , x i3 , x j3 , y ′ )dx i3 dx j3 dx i2 dx j2 dx i4 dx j4 dy ′
Since p l 's are orhonormal we have

W 1 ≤ f 2 ∞ l∈M ˆ ˆpl (x i2 , x j2 , y ′ )ψ(x i4 , x j4 , x i2 , x j2 , y ′ )dx i2 dx j2 2 dx i4 dx j4 dy ′ .
Moreover by the Cauchy-Schwarz inequality and

ψ ∞ ≤ 2 η ∞ ˆpl (x i2 , x j2 , y ′ )ψ(x i4 , x j4 , x i2 , x j2 , y ′ )dx i2 dx j2 2 ≤ ˆpl (x i2 , x j2 , y ′ ) 2 dx i2 dx j2 ˆψ(x i4 , x j4 , x i2 , x j2 , y ′ ) 2 dx i2 dx j2 ≤ ψ 2 ∞ ∆ x i x j ˆpl (x i2 , x j2 , y ′ ) 2 dx i2 dx j2 ≤4 η 2 ∞ ∆ x i x j ˆpl (x i2 , x j2 , y ′ ) 2 dx i2 dx j2 ,
and then

ˆ ˆpl (x i2 , x j2 , y ′ )ψ(x i4 , x j4 , x i2 , x j2 , y ′ )dx i2 dx j2 2 dx i4 dx j4 dy ′ ≤ 4 η 2 ∞ ∆ 2 x i x j ˆpl (x i2 , x j2 , y ′ ) 2 dx i2 dx j2 dy ′ = 4 η 2 ∞ ∆ 2 x i x j . Finally, W 1 ≤ 4 η 2 ∞ f 2 ∞ ∆ 2 x i x j m.
For the term W 4 using the facts that S M f and S M g are projection and that ´f = 1, we have

W 4 = l∈M a l b l 2 ≤ l∈M a 2 l l∈M b 2 l ≤ f 2 2 g 2 2 ≤ f ∞ g 2 2 .
By the Cauchy-Schwartz inequality we have g

2 2 ≤ 4 η 2 ∞ f ∞ ∆ 2 x i x j and then W 4 ≤ 4 η 2 ∞ f 2 ∞ ∆ 2 x i x j which leads to E Q ⊤ (X (1) 
i , X

j , Y (1) )R(X (1) 
i , X

j , Y (2) ) 2 ≤ 4 η 2 ∞ f 2 ∞ ∆ 2 x i x j (m + 1). (2) 
The second term

E Q ⊤ (X (1) 
i , X

j , Y (1) )CQ(X (2) i , X (1) 
j , Y (2) ) = W 5 -2W 6 + W 7 where

W 5 = ˆ l 1 ,l ′ 1 l 2 ,l ′ 2 c l 1 l ′ 1 c l 2 l ′ 2 p l 1 (x i1 , x j1 , y)p l 2 (x i1 , x j1 , y)p l ′ 1 (x i2 , x j2 , y ′ )p l ′ 2 (x i2 , x j2 , y ′ ) f (x i1 , x j1 , y)f (x i2 , x j2 , y ′ )dx i1 dx j1 dx i2 dx j2 dy ′ dy W 6 = ˆ l 1 ,l ′ 1 l 2 ,l ′ 2 c l 1 l ′ 1 c l 2 l ′ 2 a l 1 a l 2 p l ′ 1 (x i , x j , y)p l ′ 2 (x i , x j , y)dx i dx j dy W 7 = l 1 ,l ′ 1 l 2 ,l ′ 2 c l 1 l ′ 1 c l 2 l ′ 2 a l 1 a l ′ 1 a l 2 a l ′ 2 .
Using the previous manipulation, we show that W 6 ≥ 0. Thus

E Q ⊤ (X (1) i , X (1) 
j , Y (1) )CQ(X (2) i , X (2) 
j , Y (2) ) ≤ W 5 + W 7 .
First, observe that

W 5 = l 1 ,l ′ 1 l 2 ,l ′ 2 c l 1 l ′ 1 c l 2 l ′ 2 ˆpl 1 (x i1 , x j1 , y)p l 2 (x i1 , x j1 , y)f (x i1 , x j1 , y)dx i1 dx j1 dy ˆpl ′ 1 (x i2 , x j2 , y ′ )p l ′ 2 (x i2 , x j2 , y ′ )f (x i2 , x j2 , y ′ )dx i2 dx j2 dy ′ ≤ f 2 ∞ l 1 ,l ′ 1 l 2 ,l ′ 2 c l 1 l ′ 1 c l 2 l ′ 2 ˆpl 1 (x i1 , x j1 , y)p l 2 (x i1 , x j1 , y)dx i1 dx j1 dy ˆpl ′ 1 (x i2 , x j2 , y ′ )p l ′ 2 (x i2 , x j2 , y ′ )dx i2 dx j2 dy ′ = f 2 ∞ l,l ′ c 2 ll ′
agin using the orthonormality of the the p l 's. Besides given the decomposition

p l (x i , x j , y) = α lα (x i , x j )β l β (y), l,l ′ c 2 ll ′ = ˆ l β ,l ′ β β l β (y)β l ′ β (y)β l β (y ′ )β l ′ β (y ′ ) lα,l ′ α ˆαlα (x i1 , x j1 )α l ′ α (x i2 , x j2 )η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 ˆαlα (x i3 , x j3 )α l ′ α (x i4 , x j4 )η(x i3 , x j4 , y ′ )dx i3 dx j3 dx i4 dx j4 dydy ′ But lα,l ′ α ˆαlα (x i1 , x j1 )α l ′ α (x i2 , x j2 )η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 ˆαlα (x i3 , x j3 )α l ′ α (x i4 , x j4 )η(x i3 , x j4 , y ′ )dx i3 dx j3 dx i4 dx j4 = lα,l ′ α ˆαlα (x i1 , x j1 )α l ′ α (x i2 , x j2 )η(x i1 , x j2 , y)α lα (x i3 , x j3 ) α l ′ α (x i4 , x j4 )η(x i3 , x j4 , y ′ )dx i1 dx j1 dx i2 dx j2 dx i3 dx j3 dx i4 dx j4 = ˆ lα ˆαlα (x i1 , x j1 )η(x i1 , x j2 , y)dx i1 dx j1 α lα (x i3 , x j3 ) l ′ α ˆαl ′ α (x i4 , x j4 )η(x i3 , x j4 , y ′ )dx i4 dx j4 α l ′ α (x i2 , x j2 )dx i2 dx j2 dx i3 dx j3 ≤ ˆη(x i3 , x j3 , x i2 , x j2 , y)η(x i3 , x j2 , y ′ )dx i2 dx j2 dx i3 dx j3 ≤ ∆ 2 x i x j η
using the orthonormality of the basis α lα . Then we get

l,l ′ c 2 ll ′ ≤ ∆ 2 x i x j η 2 ∞   ˆ l β ,l ′ β β l β (y)β l ′ β (y)β l β (y ′ )β l ′ β (y ′ )dydy ′   = ∆ 2 x i x j η 2 ∞ l β ,l ′ β ˆβl β (y)β l ′ β (y)dy 2 ≤ ∆ 2 x i x j η 2 ∞ l β ˆβ2 l β (y)dy 2 ≤ ∆ 2 x i x j η 2 ∞ m
since the β l β are orthonormal. Finally

W 5 ≤ f 2 ∞ η 2 ∞ ∆ 2 x i x j m.
Now for W 7 we first will bound,

l,l ′ c ll ′ a l a l ′ = ˆ l,l ′ ∈M a l a l ′ p l 2 (x i1 , x j1 , y)p l ′ 1 (x i2 , x j2 , y)η(x i1 , x j2 , y)dx i1 dx j1 dx i2 dx j2 dy ≤ ˆ|S M (x i1 , x j1 , y)S M (x i2 , x j2 , y)η(x i1 , x j2 , y)| dx i1 dx j1 dx i2 dx j2 dy ≤ η ∞ ˆ ˆ|S M (x i1 , x j1 , y)S M (x i2 , x j2 , y)| dy dx i1 dx j1 dx i2 dx j2 .
Taking squares in both sides and using the Cauchy-Schwartz inequality twice, we get

l,l ′ c ll ′ a l a l ′ 2 = η 2 ∞ ˆ ˆ|S M (x i1 , x j1 , y)S M (x i2 , x j2 , y)| dy dx i1 dx j1 dx i2 dx j2 2 ≤ η 2 ∞ ∆ 2 x i x j ˆ ˆ|S M (x i1 , x j1 , y)S M (x i2 , x j2 , y)| dy 2 dx i1 dx j1 dx i2 dx j2 ≤ η 2 ∞ ∆ 2 x i x j ˆ ˆSM (x i1 , x j1 , y) 2 dy ˆSM (x i2 , x j2 , y ′ ) 2 dy ′ dx i1 dx j1 dx i2 dx j2 = η 2 ∞ ∆ 2 x i x j ˆSM (x i1 , x j1 , y) 2 S M (x i1 , x j1 , y ′ ) 2 dx i1 dx j1 dx i2 dx j2 dydy ′ = η 2 ∞ ∆ 2 x i x j ˆSM (x i , x j , y) 2 dx i dx j dy ≤ η 2 ∞ ∆ 2 x i x j f 2 ∞ .
Finally,

E Q ⊤ (X (1) 
i , X

(1)

j , Y (1) )CQ(X (2) i , X (2) 
j , Y (2) ) 2 ≤ η 2 ∞ f 2 ∞ ∆ 2 x i x j (m + 1). ( 26 
)
Collecting ( 25) and ( 26), we obtain

Var U n K ≤ 20 n(n -1) η 2 ∞ f 2 ∞ ∆ 2 x i x j (m + 1)
which concludes the proof of Lemma 2.

Lemma 3 (Bound for Var P n L ). Under the assumptions of Theorem 3, we have

Var P n L ≤ 12 n η 2 ∞ f 2 ∞ ∆ 2 x i x j .
Proof. First note that given the independence of

X (k) i , X (k) j , Y (k) k = 1, . . . , n we have Var P n L = 1 n Var L X (1) i , X (1) 
j , Y (1) we can write L X

(1)

i , X

(1) 1) as

j , Y ( 
A ⊤ R X (1) i , X (1) 
j , Y (1) + B ⊤ Q X (1) i , X (1) 
j , Y (1) -2A ⊤ CQ X (1) i , X (1) 
j , Y (1) = l∈M a l ˆpl (x i , x j , Y (1) )ψ(x i , x j , X (1) 
i , X

(1)

j , Y (1) )dx i dx j -b l + l∈M b l p l (X (1) 
i , X

j , Y (1) ) -a l -2 l,l ′ ∈M c ll ′ a l ′ p l (X (1) 
i , X

j , Y (1) ) -a l = ˆ l∈M a l p l (x i , x j , Y (1) )ψ(x i , x j , X (1) 
i , X

j , Y (1) )dx i dx j + l∈M b l p l (X (1) 
i , X

(1)

j , Y (1) ) -2 l,l ′ ∈M c ll ′ a l ′ p l (X (1) 
i , X

(1)

j , Y (1) ) -2A t B -2A t CA. = ˆSM f (x i , x j , Y (1) )ψ(x i , x j , X (1) 
i , X

(1) j , Y (1) )dx i dx j + S M g(X

i , X

(1)

j , Y (1) ) -2 l,l ′ ∈M c ll ′ a l ′ p l (X (1) 
i , X

(1)

j , Y (1) ) -2A ⊤ B -2A ⊤ CA.
Let h(x i , x j , y) = ´SM f (x i2 , x j2 , y)ψ(x i , x j , x i2 , x j2 , y)dx i2 dx j2 , we have

S M h(x i , x j , y) = l∈M ˆh(x i2 , x j2 , y)p l (x i2 , x j2 , y)dx i2 dx j2 dy p l (x i , x j , y) = l∈M ˆSM f (x i3 , x j3 , y)ψ(x i2 , x j2 , x i3 , x j3 , y)p l (x i2 , x j2 , y)dx i2 dx j2 dx i3 dx j3 dy p l (x i , x j , y) = l,l ′ ∈M ˆal ′ p l ′ (x i3 , x j3 , y)ψ(x i2 , x j2 , x i3 , x j3 , y)p l (x i2 , x j2 , y)dx i2 dx j2 dx i3 dx j3 dy p l (x i , x j , y) = 2 l,l ′ ∈M ˆal ′ p l ′ (x i3 , x j3 , y)η(x i2 , x j3 , y)p l (x i2 , x j2 , y)dx i2 dx j2 dx i3 dx j3 dy p l (x i , x j , y) = 2 l,l ′ ∈M a l ′ c ll ′ p l (x i , x j , y)
and we can write L X

(1) i , X

(1)

j , Y (1) = h X (1) i , X (1) 
j , Y (1) + S M g X

(1) i , X

(1)

j , Y (1) -S M h X (1) i , X (1) j , Y (1) -2A ⊤ B -2A ⊤ CA. Thus, Var L X (1) i , X (1) j , Y (1) = Var h X (1) i , X (1) j , Y (1) + S M g X (1) i , X (1) j , Y (1) + S M h X (1) i , X (1) j , Y (1) ≤ E h X (1) i , X (1) j , Y (1) + S M g X (1) i , X (1) j , Y (1) + S M h X (1) i , X (1) j , Y (1) 2 ≤ E h X (1) i , X (1) j , Y (1) 2 + S M g X (1) i , X (1) j , Y (1) 2 + S M h X (1) i , X (1) j , Y (1) 2 .
Each of these terms can be bounded

E h X (1) i , X (1) j , Y (1) 2 = ˆ ˆSM f (x i2 , x j2 , y)ψ(x i1 x j2 , x i2 , x j2 , y)dx i2 dx j2 2 f (x i1 , x j1 , y)dx i1 dx j1 dy ≤ ∆ x i x j ˆSM f (x i2 , x j2 , y) 2 ψ(x i1 x j2 , x i2 , x j2 , y) 2 f (x i1 , x j1 , y)dx i1 dx j1 dx i2 dx j2 dy ≤ 4∆ 2 x i x j f ∞ η 2 ∞ ˆSM f (x i , x j , y) 2 dx i dx j dy = 4∆ 2 x i x j f ∞ η 2 ∞ S M f 2 2 ≤ 4∆ 2 x i x j f ∞ η 2 ∞ f 2 2 ≤ 4∆ 2 x i x j f 2 ∞ η 2 ∞
and similar calculations are valid for the others two terms,

E S M g X (1) i , X (1) 
j , Y (1) 2 ≤ f ∞ S M g 2 2 ≤ f ∞ g 2 2 ≤ 4∆ 2 x i x j f 2 ∞ η 2 ∞ E S M h X (1) i , X (1) 
j , Y (1) 2 ≤ f ∞ S M h 2 2 ≤ f ∞ h 2 2 ≤ 4∆ 2 x i x j f 2 ∞ η 2 ∞ .
Finally we get,

Var P n L ≤ 12 n η 2 ∞ f 2 ∞ ∆ 2 x i x j .
Lemma 4 (Computation of Cov U n K, P n L ). Under the assumptions of Theorem 3, we have Cov U n K, P n L = 0.

Proof of Lemma 4. Since U n K and P n L are centered, we have

Cov U n K, P n L = E U n KP n L = E 1 n 2 (n -1) n k =k ′ =1 K X (k) i , X (k) j , Y (k) , X (k ′ ) i , X (k ′ ) j , Y (k ′ ) n k=1 L X (k) i , X (k) j , Y (k) = 1 n E K X (1) i , X (1) 
j , Y (1) , X

i , X

(2)

j , Y (2) L X (1) i , X (1) 
j , Y (1) + L X (2) i , X (2) 
j , Y (2) = 1 n E Q ⊤ (X (1) 
i , X

(1)

j , Y (1) )R(X (2) i , X (2) 
j , Y (2) ) -Q ⊤ (X (1) 
i , X

(1)

j , Y (1) )CQ(X (2) i , X (2) 
j , Y (2) ) A ⊤ R(X (1) 
i , X

(1)

j , Y (1) ) + B ⊤ Q(X (1) 
i , X

(1)

j , Y (1) ) -2A ⊤ CQ(X (1) 
i , X

(1)

j , Y (1) ) +A ⊤ R(X (2) i , X (2) j , Y (2) ) + B ⊤ Q(X (2) i , X (2) j , Y (2) ) -2A ⊤ CQ(X (2) i , X (2) j , Y (2) ) = 0.
Since K, L, Q and R are centered.

Lemma 5 (Bound of Bias θn ). Under the assumptions of Theorem 3, we have

Bias θn ≤ ∆ x i x j η ∞ sup l / ∈M |c l | 2 . Proof. Bias θn ≤ η ∞ ˆ ˆ|S M f (x i1 , x j1 , y) -f (x i1 , x j1 , y)| dx i1 dx j1 ˆ|S M f (x i2 , x j2 , y) -f (x i2 , x j2 , y)| dx i2 dx j2 dy = η ∞ ˆ ˆ|S M f (x i , x j , y) -f (x i , x j , y)| dx i dx j 2 dy ≤ ∆ x i x j η ∞ ˆ(S M f (x i , x j , y) -f (x i , x j , y)) 2 dx i dx j dy = ∆ x i x j η ∞ l,l ′ / ∈M a l a l ′ ˆpl (x i , x j , y)p l ′ (x i , x j , y)dx i dx j dy = ∆ x i x j η ∞ l / ∈M |a l | 2 ≤ ∆ x i x j η ∞ sup l / ∈M |c l | 2 .
We use the Hölder's inequality and the fact that

f ∈ E then l / ∈M |a l | 2 ≤ sup l / ∈M |c l | 2 .
Lemma 6 (Asymptotic variance of √ n P n L .). Under the assumptions of Theorem 3, we have

n Var P n L → Λ(f, η)
where Λ(f, η) = ˆg(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy-ˆg(x i , x j , y)f (x i , x j , y)dx i dx j dy 2 .

Proof. We proved in Lemma 3 that

Var L X (1) i , X (1) j , Y (1) = Var h X (1) i , X (1) j , Y (1) + S M g X (1) i , X (1) j , Y (1) + S M h X (1) i , X (1) j , Y (1) = Var A 1 + A 2 + A 3 = 3 k,l=1 Cov A k , A l .
We claim that ∀k, l ∈ {1, 2, 3} 2 , we have

Cov A k , A l -ǫ kl ˆg(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy -ˆg(x i , x j , y)f (x i , x j , y)dx i dx j dy 2 ≤ λ S M f -f 2 + S M g -g 2 (27)
where

ǫ kl = -1 if k = 3 or l = 3 and k = l 1 otherwise ,
and where λ depends only on f ∞ , η ∞ and ∆ x i x j . We will do the details only for the case k = l = 3 since the calculations are similar for others configurations.

Var A 3 = ˆS2 M h (x i , x j , y) f (x i , x j , y)dx i dx j dy-ˆSM h (x i , x j , y) f (x i , x j , y)dx i dx j dy 2 .

The computation will be done in two steps. We first bound the quantity by the Cauchy-Schwartz inequality

ˆS2 M h (x i , x j , y) f (x i , x j , y)dx i dx j dy -ˆg(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy ≤ ˆ S 2 M h (x i , x j , y) f (x i , x j , y) -S 2 M g (x i , x j , y) f (x i , x j , y) dx i dx j dy + ˆ S 2 M g (x i , x j , y) f (x i , x j , y) -g(x i , x j , y) 2 f (x i , x j , y) dx i dx j dy ≤ f ∞ S M h + S M g 2 S M h -S M g 2 + f ∞ S M g + g 2 S M g -g 2 .
Using several times the fact that since S M is a projection, S M g 2 ≤ g 2 , the sum is bounded by

f ∞ h + g 2 h -g 2 + 2 f ∞ g 2 S M g -g 2 ≤ f ∞ h 2 + g 2 h -g 2 + 2 f ∞ g 2 S M g -g 2 .
We saw previously that g

2 ≤ 2∆ x i x j f 1/2 ∞ η ∞ and h 2 ≤ 2∆ x i x j f 1/2 ∞ η ∞ .
The sum is then bound by

4∆ x i x j f 3/2 ∞ η ∞ h -g 2 + 4∆ x i x j f 3/2 ∞ η ∞ S M g -g 2 .
We now have to deal with hg 2 :

h -g 2 2 = ˆ ˆ(S M f (x i2 , x j2 , y) -f (x i2 , x j2 , y)) ψ(x i1 , x j1 , x i2 , x j2 , y)dx i2 dx j2 2 dx i1 dx j1 dy ≤ ˆ ˆ(S M f (x i2 , x j2 , y) -f (x i2 , x j2 , y)) 2 dx i2 dx j2 ˆψ2 (x i1 , x j1 , x i2 , x j2 , y)dx i2 dx j2 dx i1 dx j1 dy ≤ 4∆ 2 x i x j η 2 ∞ S M f -f 2 2 .
Finally this first part is bounded by ˆS2 M h (x i , x j , y) f (x i , x j , y)dx i dx j dy -ˆg(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy

≤ 4∆ x i x j f 3/2 ∞ η ∞ 2∆ x i x j η ∞ S M f -f 2 + S M g -g 2 .
Following with the second quantity ˆSM h (x i , x j , y) f (x i , x j , y)dx i dx j dy 2 -ˆg(x i , x j , y)f (x i , x j , y)dx i dx j dy 2 = ˆ(S M h (x i , x j , y)g(x i , x j , y)) f (x i , x j , y)dx i dx j dy ˆ(S M h (x i , x j , y) + g(x i , x j , y)) f (x i , x j , y)dx i dx j dy .

By using the Cauchy-Schwartz inequality, it is bounded by

f 2 S M h -g 2 f 2 S M h + g 2 ≤ f 2 2 h 2 + g 2 S M h -S M g 2 + S M g -g 2 ≤4∆ x i x j f 3/2 ∞ η ∞ h -g 2 + S M g -g 2 ≤4∆ x i x j f 3/2 ∞ η ∞ 2∆ x i x j η ∞ S M f -f 2 + S M g -g 2
using the previous calculations. Collecting the two inequalities gives (27) for k = l = 3. Finally, since by assumption ∀t ∈ L 2 (dµ), S M tt 2 → 0 when n → ∞ a direct consequence of ( 27 = ˆg2 (x i , x j , y)f (x i , x j , y)dx i dx j dy -ˆg(x i , x j , y)f (x i , x j , y)dx i dx j dy 2 =Λ(f, η).

We conclude by noting that Var √ n P n L = Var L X

(1) i , X

(1) j , Y (1) .

Lemma 7 (Asymptotics for √ n( Q -Q) ). Under the assumptions of Theorem 1, we have lim

n→∞ nE Q -Q 2 = 0.
Proof. The bound given in ( 16) states that if |M n | /n → 0 we have nE Q -Q 2 | f -ˆĝ(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy -ˆĝ(x i , x j , y)f (x i , x j , y)dx i dx j dy

2 ≤ γ f ∞ , η ∞ , ∆ x i x j |M n | n + S M f -f 2 + S M ĝ -ĝ 2
where ĝ(x i , x j , y) = ´H3 ( f , x i , x j , x i2 , x j2 , y)f (x i2 , x j2 , y)dx i2 dx j2 , where we recall that H 3 (f, x i1 , x j1 , x i2 , x j2 , y) = H 2 (f, x i1 , x j2 , y)+H 2 (f, x i2 , x j1 , y) with H 2 ( f , x i1 , x j2 , y) = 1 ´f (x i ,x j ,y)dx i dx j

x i1m i ( f , y) x j2m j ( f , y) . By deconditioning we get nE Q -Q

2 -E ˆĝ(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy -ˆĝ(x i , x j , y)f (x i , x j , y)dx i dx j dy

2 ≤ γ f ∞ , η ∞ , ∆ x i x j |M n | n + S M f -f 2 + E S M ĝ -ĝ 2
Note that

E S Mn ĝ -ĝ 2 ≤ E S M ĝ -S M g 2 + E ĝ -g 2 + E S Mn g -g 2 ≤ 2E ĝ -g 2 + E S Mn g -g 2
where g(x i , x j , y) = ´H3 (f, x i , x j , x i2 , x j2 , y)f (x i2 , x j2 , y)dx i2 dx j2 . The second term converges to 0 since g ∈ L 2 (dxdydz) and ∀t ∈ L 2 (dxdydz), ´(S M tt) 2 dxdydz → 0 . Moreover ĝg 2 2 = ˆ[ĝ(x i , x j , y)g(x i , x j , y)] 2 dx i dx j dy = ˆ ˆ H 3 ( f , x i , x j , x i2 , x j2 , y) -H 3 (f, x i , x j , x i2 , x j2 , y) f (x i2 , x j2 , y)dx i2 dx j2 2 dx i dx j dy ≤ ˆ ˆ H 3 ( f , x i , x j , x i2 , x j2 , y) -H 3 (f, x i , x j , x i2 , x j2 , y) 2 dx i2 dx j2 ˆf (x i2 , x j2 , y) 2 dx i2 dx j2 dx i dx j dy

≤ ∆ x i x j f 2 ∞
ˆ H 2 ( f , x i , x j , x i2 , x j2 , y) -H 2 (f, x i , x j , x i2 , x j2 , y)

2 dx i dx j dx i2 dx j2 dy ≤ δ∆ 2 x i x j f 2 ∞
ˆ f (x i , x j , y)f (x i , x j , y) 2 dx i dx j dy for some constant δ that comes out of applying the mean value theorem to H 3 ( f , x i , x j , x i2 , x j2 , y)-H 3 (f, x i , x j , x i2 , x j2 , y). The constant δ was taken under Assumptions 1-3. Since E f -f 2 → 0 then E gĝ 2 → 0. Now show that the expectation of ˆĝ(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy -ˆĝ(x i , x j , y)f (x i , x j , y)dx i dx j dy converges to 0. We develop the proof for only the first term. We get ˆĝ(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy -ˆg(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy ≤ ˆ ĝ(x i , x j , y) 2g(x i , x j , y) 2 f (x i , x j , y)dx i dx j dy ≤λ ˆ(ĝ(x i , x j , y)g(x i , x j , y)) 2 dx i dx j dy =λ ĝg 2 2

for some constant λ. By taking the expectation of both sides, we see it is enough to show that E ĝg 2 2 → 0. Besides, we can verify g(x i , x j , y) = ˆH3 (f, x i , x j , x i2 , x j2 , y)f (x i2 , x j2 , y)dx i2 dx j2 = 2 ´f (x i , x j , y)dx i dx j (x imi (y))

ˆxj2 f (x i2 , x j2 , y)dx i2 dx j2mj (y) ˆf (x i2 , x j2 , y)dx i2 dx j2 = 0 which proves that the expectation of ´ĝ(x i , x j , y) 2 f (x i , x j , y)dx i dx j converges to 0. Similar computations shows that the expectation of ´ĝ(x i , x j , y)f (x i , x j , y)dx i dx j 2 also converges to 0. Finally we have

lim n→∞ nE Q -Q 2 = 0.

  j k = 1, . . . , n are i.i.d., the family P (n)

∞