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Abstract

We study the problem of identifying the best arm in each otiuedits in a multi-

bandit multi-armed setting. We first propose an algorithifedaGap-based Ex-
ploration (GapE) that focuses on the arms whose mean is o mean of
the best arm in the same bandit (i.e., small gap). We theodntre an algorithm,
called GapE-V, which takes into account the variance of tinesan addition to

their gap. We prove an upper-bound on the probability ofrefwo both algo-

rithms. Since GapE and GapE-V need to tune an exploraticanpeter that de-
pends on the complexity of the problem, which is often unkm@wadvance, we
also introduce variations of these algorithms that eserttais complexity online.
Finally, we evaluate the performance of these algorithnts @mpare them to
other allocation strategies on a number of synthetic proble

1 Introduction

Consider a clinical problem with/ subpopulations, in which one should decide betwEgnop-
tions for treating subjects from each subpopulatianA subpopulation may correspond to patients
with a particular gene biomarker (or other risk categor@es) the treatment options are the available
treatments for a disease. The main objective here is toanst rule, which recommends the best
treatment for each of the subpopulations. These rules alysonstructed using data from clin-
ical trials that are generally costly to run. Thereforesitmportant to distribute the trial resources
wisely so that the devised rule yields a good performanceaceSit may take significantly more
resources to find the best treatment for one subpopulatanftir the others, the common strategy
of enrolling patients as they arrive may not yield an ovegalhd performance. Moreover, applying
treatment options uniformly at random in a subpopulatiom@mot only waste trial resources, but
also it might run the risk of finding a bad treatment for thaiapulation. This problem can be for-
mulated as théest arm identificatiomver M/ multi-armed bandits [1], which itself can be seen as
the problem opure exploratiorj4] over multiple bandits. In this formulation, each subplztion is
considered as a multi-armed bandit, each treatment as grirging a medication on a patient as a
pull, and we are asked to recommend an arm for each bandigafigen number of pulls (budget).
The evaluation can be based bjthe average over the bandits of the reward of the recommended
arms, or2) the average probability of error (not selecting the best)aom3) the maximum prob-
ability of error. Note that this setting is different frometistandard multi-armed bandit problem in
which the goal is to maximize the cumulative sum of rewarde @g., [13, 3]).

Another motivating example is the popular problem of onkdeertisement, where a company uses
a testing phase before deploying its advertisement syst@is.problem can also be formulated as
above, where each bandit is a subpopulation of Internesuygeg., young, old, single, married),
each arm is a category of advertisements, and each pull i®te an advertisement to a user. Here
the goal is to actively learn a rule, which recommends thé¢ (tles one with the highest chance to
be clicked on) category of advertisements for each of thecpblations.



Another motivating example is a brain-computer interfacdjem. A computer has to guess a letter
chosen by a user. The computer arranges the letters in axrdeplayed to the user. At each time-
step, the computer chooses either a row or a column and askséh if the chosen letter belongs to
it. The answer is obtained by recording noisy brain actisignals. This problem can be formalized
as a two-bandit best arm identification problem where thelibgare "rows” and "columns”. In this
problem, the right measure of performance is exactly theimam probability of error, since doing
a mistake in either row or column would lead to choose the wietter.

The pure exploration problem is about designing stratabegsmake the best use of the limited bud-
get (e.g., the total number of patients that can be admittdektclinical trial) in order to optimize the
performance in a decision-making task. Audibert et al. fbjgmsed two algorithms to address this
problem:1) a highly exploring strategy based on upper confidence bouatled UCB-E, in which
the optimal value of its parameter depends on some measthe odbmplexity of the problem, and
2) a parameter-free method based on progressively rejettingrims which seem to be suboptimal,
called Successive Rejects. They showed that both algasigimennearly optimal since their probabil-
ity of returning the wrong arm decreases exponentially att@. rRacing algorithms (e.g., [10, 12])
and action-elimination algorithms [7] address this prablender a constraint on the accuracy in
identifying the best arm and they minimize the budget ne¢dexthieve that accuracy. However,
UCB-E and Successive Rejects are designed for a singletlpantliem, and as we will discuss later,
cannot be easily extended to the multi-bandit case studi¢itis paper. Deng et al. have recently
proposed an active learning algorithm for resource allonatver multiple bandits [5]. However,
they do not provide any theoretical analysis for their altipon and only empirically evaluate its per-
formance. Moreover, the target of their proposed algorighta minimize the maximum uncertainty
in estimating the value of the arms for each bandit. Notetthiatis different than our target, which
is to maximize the quality of the arms recommended for eacidiba

In this paper, we study the problem of best-arm identificatioa multi-armed multi-bandit setting
under a fixed budget constraint, and propose an algorithiledd@aap-based Exploration (GapE), to
solve it. The allocation strategy implemented by GapE fesus the gap of the arms, i.e., the differ-
ence between the mean of the arm and the mean of the best ahat(bandit). The GapE-variance
(GapE-V) algorithm extends this approach taking into aot@lso the variance of the arms. For
both algorithms, we prove an upper-bound on the probalufigrror that decreases exponentially
with the budget. Since both GapE and GapE-V need to tune daraxpn parameter that depends
on the complexity of the problem, which is rarely known in adee, we also introduce their adaptive
version. Finally, we evaluate the performance of theserdlgns and compare them withniform
andUniform+UCB-E strategies on a number of synthetic problems. Our empirgsallts indicate
that1l) GapE and GapE-V have a better performance thaiformandUniform+UCB-E and2) the
adaptive version of these algorithms match the performaht®ir non-adaptive counterparts.

2 Problem Setup

In this section, we introduce the notation used throughuoeipaper and formalize the multi-bandit
best arm identification problem. Lét be the number of bandits arid be the number of arms for
each bandit (we use indices, p, q for the bandits and, i, j for the arms). Each arrh of a bandit
m is characterized by a distributian,;, bounded in0, b] with meany,,,; and variancerfnk. In the
following, we assume that each bandit has a unique best amuenbte by.’, andk;, the meanand
the index of the best arm of bandit (i.e., ), = maxi<k<k fmk, k) = argmax; < g flmk)- IN
each banditn, we define the gap for each armas,;, = | max;4y ftmj — fmk|-

The clinical trial problem described in Sec. 1 can be forpgalias a game between a stochastic multi-
bandit environment and a forecaster, where the distribaffo,,, } are unknown to the forecaster.
At each round: = 1,...,n, the forecaster pulls a bandit-arm pdit) = (m, k) and observes

a sample drawn from the distributiar ;) independent from the past. The forecaster estimates
the expected value of each arm by computing the average citingles observed over time. Let
Tnk(t) be the number of times that arinof banditm has been pulled by the end of round

then the mean of this arm is estimatedas; (t) = ﬁ(t) ZSTQ{““) Xk (s), whereX,, . (s) is the

s-th sample observed from,,;,. Given the previous definitions, we define the estimated gaps
A (t) = | max;zr fm; (t) — mk(t)]. Atthe end of round, the forecaster returns for each bandit
m the arm with the highest estimated mean, i/g,(n) = arg max;, fimr(n), and incurs a regret



Parameters: number of rounds, exploration parameter, maximum rangé
Initialize: T:,%(0) =0, ﬁmk(o) =0 for all bandit-arm pairgm, k)
fort=1,2,...,ndo
ComputeB;,.x(t) = YN (t=1) +b, /74— forall bandit-arm pairgm, k)
Draw [ (t) € arg max, k Bmk(t)
ObSEI’VGX}(t) (T](t)(t — 1) + 1) ~ V(L)
Update Ty (t) = Tr)(t — 1) + 1 and Aok (t) VE of the selected bandit
end for

-----

Figure 1: The pseudo-code of the gap-based ExplorationE§z@gorithm.

| X | M
r(n) = i Z rm(n) = i Z (an - ;u‘me(n))~
m=1 m=1

As discussed in the introduction, other performance meastain be defined for this problem. In
some applications, returning the wrong arm is considerexhasror independently from its regret,
and thus, the objective is to minimize the average prolglfierror

e(n) = % > em(n) = % > P(Tn(n) # k).

Finally, in problems similar to the clinical trial, a reasdne objective is to return the right treatment
for all the genetic profiles and not just to have a small avegbability of error. In this case, the
global performance of the forecaster can be measured as

{(n) = max £y (n) = maxP(Jm(n) # k7).

It is interesting to note the relationship between theseethrerformance measuresin,, A,, X
e(n) < Er(n) < bxe(n) < bx{(n), where the expectation in the regretis w.r.t. the random &snp
As a result, any algorithm minimizing the worst case prolighof error, ¢(n), also controls the
average probability of erroe(n), and the simple regréir(n). Note that the algorithms introduced
in this paper directly target the problem of minimizifg.).

3 The Gap-based Exploration Algorithm

Fig. 1 contains the pseudo-code of the gap-based explor@iapE) algorithm. GapkE flattens the
bandit-arm structure and reduces it to a single-banditlprolwvith A/ K arms. At each time stefy
the algorithm relies on the observations up to time 1 to build an indexB,, (t) for each bandit-
arm pair, and then selects the pa{t) with the highest index. The indek,,,; consists of two
terms. The first term is the negative of the estimated gaprfarkain banditm. Similar to other
upper-confidence bound (UCB) methods [3], the second part é&xploration term which forces the
algorithm to pull arms that have been less explored. As dtrebe algorithm tends to pull arms
with small estimated gap and small number of pulls. The espilon parametes tunes the level
of exploration of the algorithm. As it is shown by the thearat analysis of Sec. 3.1, if the time
horizonn is known,a should be setta = 5275, whereH =Y, , b*/A2 , is thecomplexityof

9 H
the problem (see Sec. 3.1 for further discussion). Note@agiE differs from most standard bandit
strategies in the sense that tBeindex for an arm depends explicitly on the statistics of akteer
arms. This feature makes the analysis of this algorithm nmoate involved.

As we may notice from Fig. 1, GapE resembles the UCB-E algoaritl] designed to solve the pure
exploration problem in the single-bandit setting. Nonkgks, the use of the negative estimated gap
(—ﬁmk) instead of the estimated mean,(x) (used by UCB-E) is crucial in the multi-bandit setting.
In the single-bandit problem, since the best and secondare®t have the same gap fr: =
ming.r- Ari), GApE considers them equivalent and tends to pull thematime smount of time,
while UCB-E tends to pull the best arm more often than thersg@t@st one. Despite this difference,
the performance of both algorithms in predicting the bastaiftern pulls would be the same. Thisis
due to the fact that the probability of error depends on tipabdity of the algorithm to distinguish
optimal and suboptimal arms, and this is not affected by femint allocation over the best and



second best arms as long as the number of pulls allocatedttpdir is large enough w.r.t. their gap.
Despite this similarity, the two approaches become coraplelifferent in the multi-bandit case. In
this case, if we run UCB-E on all thef K arms, it tends to pull more the arm with the highest mean
over all the bandits, i.ek* = argmax,, 1 mi. AS a result, it would be accurate in predicting the
best armk* over bandits, but may have an arbitrarily bad performangeedicting the best arm for
each bandit, and thus, may incur a large effar). On the other hand, GapE focuses on the arms
with the smallest gaps. This way, it assigns more pulls tallianvhose optimal arms are difficult
to identify (i.e., bandits with arms with small gaps), andshewn in the next section, it achieves a
high probability in identifying the best arm in each bandit.

3.1 Theoretical Analysis
In this section, we derive an upper-bound on the probalgfigrror/(n) for the GapE algorithm.

Theorem 1. If we run GapE with parametdr < a < 2 2=2X then its probability of error satisfies

(n) < P(Em s J(n) # k) < 2MKnexp(—25),

in particular fora = 4 2=2% 'we have/(n) < 2M Kn exp(— 5 2=25).

Remark 1 (Analysis of the bound).If the time horizorn is known in advance, it would be possible
to set the exploration parameteas a linear function of, and as a result, the probability of error of
GapE decreases exponentially with the time horizon. Theratiteresting aspect of the bound is the

complexity termH appearing in the optimal value of the exploration paramefee.,a = %";IK .

If we denote byH,,,,, = b?/A? , , the complexity of arnk in banditm, it is clear from the definition
of H that each arm has an additive impact on the overall comple)‘(ithe multi-bandit problem.
Moreover, if we define the complexity of each banditas H,, = Y, b2/A2,, (similar to the
definition of complexity for UCB-E in [1]), the GapE compldax'may berewrittena#l =% H,,
This means that the complexity of GapE is simply the sum ottraplexities of all the bandits.

Remark 2 (Comparison with the static allocation strategy). The main objective of GapE is to
tradeoff between allocating pulls according to the gapsrénpoecisely, according to the complex-
ities H,,;) and the exploration needed to improve the accuracy of gstimates. If the gaps were
known in advance, a nearly-optimal static allocation sfygtassigns to each bandit-arm pair a num-
ber of pulls proportional to its complexity. Let us considestrategy that pulls each arm a fixed
number of times over the horizan The probability of error for this strategy may be bounded as

M

Usaie(n) < P(Fm : Jn(n) # ki) < > P(Jm(n Z > P(fimz, (n) < fimi(n))
m=1 m=1k#k},
M
S Z Z exXp ( - ka mk Z Z eXP - mk )H;‘Li) (1)
m=1k#£k}, m=1k#£k},

Given the constraind ", T,ix(n) = n, the allocation minimizing the last term in Eq. 1 is
T .(n) = nHpy,/H. We refer to this fixed strategy &taticGap Although this is not neces-
sarily the optimal static strategy(’{,, () minimizes an upper-bound), this allocation guarantees
a probability of error smaller tha®/ K exp(—n/H). Theorem 1 shows that, for large enough,
GapE achieves the same performance as the static allo&ttatinGap

Remark 3 (Comparison with other allocation strategies). At the beginning of Sec. 3, we dis-
cussed the difference between GapE and UCB-E. Here we centipaubound reported in Theo-
rem 1 with the performance of théniformand combined)niform+UCB-Eallocation strategies. In
the uniform allocation strategy, the total budgeis uniformly split over all the bandits and arms.
As a result, each bandit-arm pair is pull&g(n) = n/(M K) times. Using the same derivation as
in Remark 2, the probability of errd(n) for this strategy may be bounded as

n Amk n
KUmf Z Z eXp MK b2 ) S MK exp ( N m)
m=1k#k%, '

In the Uniform+UCB-E allocation strategy, i.e., a two-level algorithm that fisgtiects a bandit
uniformly and then pulls arms within each bandit using UCBHe total number of pulls for each



banditm is )", Ty, (n) = n/M, while the number of pull§’,,.(n) over the arms in bandit: is
determined by UCB-E. Thus, the probability of error of thimtegy may be bounded as

_ n/M— K n/M — K
Lunitruce-E(n Z 2nK exp ( 8H. ) < 2nM K exp ( — m),
where the first inequality follows from Theorem 1 in [1] (rédhat H,,, = >, b*/AZ ). Letb =1
(i.e., all the arms have distributions boundeddnl]), up to constants and multiplicative factors in
front of the exponentials, and if is large enough compared f@ and K (so as to approximate
n/M — K andn — K by n), the probability of error for the three algorithms may beibded as

—n/MK —n/M —-n
mag(/Hmk )): £U+UCBE(71) < exp (O(maX/Hm ))7 éGapE(n) < exp (O( Z Hox ))
m, m m,k

Lunit(n) < exp (O(

By comparing the arguments of the exponential terms, we trevérivial sequence of inequalities
MK maxy,  Hynp > M maxey, Y Hpe > Y, . Hmk, Whichimplies that the upper bound on the
probability of error of GapE is usually S|gn|f|cantly small& his relationship, which is confirmed
by the experiments reported in Sec. 4, shows that GapE istalaidapt to the complexity/ of
the overall multi-bandit problem better than the other tWocation strategies. In fact, while the
performance of th&Jniform strategy depends on the mastmplexarm over the bandits and the
strategyUnif+UCB-E is affected by the most complex bandit, the performance @EZ#epends on
the sum of the complexities of all the arms involved in thegpexploration problem.

Proof of Theorem 1Step 1.Let us consider the following event:

£ = {Vm e{l,...,M}, Vke{l,...,K}, Vt € {1,...,n}, |fimk(t) — pim| < bc TL@)}

mk
From Chernoff-Hoeffding's inequality and a union bound,veeeP(¢) > 1—2M Kn exp(—2ac?).
Now we would like to prove that on the evefitwe find the best arm for all the bandits, i.&,,(n) =
kx,, Ym € {1...M}. SinceJ,,(n) is the empirical best arm of bandit, we should prove that for
anyk € {1,..., K}, fmk(n) < lme: (n). By upper-bounding the LHS and lower-bounding the
RHS of this inequality, we note that it would be enough to g /a /T (n) < A,uk/2 on the

eventé, or equivalently, to prove that for any bandit-arm pairk, we havel,,,;(n) > “szi.

mk

Step 2. In this step, we show that in GapE, for any bandtis, ¢) and arms(k, j), and for any
t > MK, the following dependence between the number of pulls oathes holds

a a
A, 1+d)b > Ay +(1—db, | ——,
e (1+d) \/max(ka(t)—l,l) - ai +( ) T, (t)

whered € [0, 1]. We prove this inequality by induction.

)

Base stepWe know that after the first/ K rounds of the GapE algorithm, all the arms have been
pulled once, i.e T, (t) = 1, ¥m, k, thus ifa > 1/4d?, the inequality (2) holds for = M K.

Inductive step.Let us assume that (2) holds at time- 1 and we pull armi of banditp at timet,
e, I(t) = (p,i). So attimet, the inequality (2) trivially holds for every choice ot, ¢, k, and
j, except wher(m, k) = (p,i). As a result, in the inductive step, we only need to prove that
following holds for anyg € {1,...M} andj € {1,... K}

—Ayi d)b “ —Ay b7 3
vt (1F )\/max(Tm() 11) +( 3)

Since arm of banditp has been pulled at timeg we have that for any bandlt—arm pag.if, 7)

_ﬁpi(t_l)"‘b\/ﬁZ-ﬁw(t—l)—i—b“ﬁ. (4)

To prove (3), we first prove an upper-bound feﬁpi(t — 1) and a lower-bound for—ﬁqj(t —-1)

2+/2b¢
1-d Tqﬂ()

—ﬁpi(t—l)g—APi—i— and —Ag(t—1) > —Ag— (5)




We report the proofs of the |nequal|t|es in (5) inin AppenEthhe inequality (3), and as a result,
the inductive step is proved by replacmg&m(t —1)and— qu (t—1)in (4) from (5) and under the
conditions thatl > 12_‘30 andd > 21‘[;. These conditions are satisfied #y= 1/2 andc = \/5/16.

Step 3. In order to prove the condition df,,,;(n) in step 1, we need to find a lower-bound on the
number of pulls of all the arms at time= n (at the end). Let us assume that drof banditm has

been pulled less thaﬁb(li‘i which indicates that- A, + (1 — d)b, /#(n) > 0. From this

result and (2), we have Ay; + (1 + d)b, /7—5— > 0, or equivalentlyl;; (n) < M +1
for any pair(q, ). We also know thad ; 7;(n) = n. From these, we deduce that— MK <

ab?(1+d)* Y, = ar . So, if we select: such tha — MK > ab*(1+d)* Y, . = a7 we contradict

the first assumption thak,,,,.(n) < “bé%‘i), which means that’,,;(n) > 4Zl’2 < for any pair
mk

(m, k), whenl — d > 2¢. This concludes the proof. The condition fotin the statement of the

theorem comes from our choice®in this step and the values e&ndd from the inductive step. [

3.2 Extensions

In this section we propose two variants on the GapE algoritfitin the objective of extending its
applicability and improving its performance.

GapE with variance (GapE-V). The allocation strategy implemented by GapE focuses onthen

arms with small gap and does not take into consideration Waeiance. However, it is clear that the
arms with small variance, even if their gap is small, justth@éew pulls to be correctly estimated. In
order to take into account both the gaps and variances ofthg, ave introduce the GapE-variance

(GapE-V) algorithm. Le&?2, (t) = k(t — > mk(t X2, (s)— 2, (t) be the estimated variance
for armk of banditm at the end of round. GapE- V uses the following B-index for each arm:

20452, (t—1) n Tab
Tmk(t—1) 3(Tmn(t—1)—1)"

Note that the exploration term in the B-index has now two congmts: the first one depends on the
empirical variance and the second one decreas€$B47,,.;.). As a result, arms with low variance
will be explored much less than in the GapE algorithm. Sintdathe difference between UCB [3]
and UCB-V [2], while the B-index in GapE is motivated by Hakbffg's inequalities, the one for
GapE-V is obtained using an empirical Bernstein's inedqu#lil, 2]. The following performance
bound can be proved for GapE-V algorithm. We report the poddheorem 2 in in Appendix C.

Bk (t) = —Amk (t — 1) +

Theorem 2. If GapE-V is run with parametey < a < $2=2MXK then it satisfies

(n) <PEm: Jn(n) # k) < 6nMK exp ( “air 64)

in particular fora = § 2=24K we have/(n) < 6nM K exp ( — g5 o).

In Theorem 2 H? is the complexity of the GapE-V algorithm and is defined as

M K 2

c (Umk + \/O-?nk + (16/3)bAmk)
H = .
Although the variance-complexit/ 7 could be larger than the complexity used in GapE, when-
ever the variances of the arms are small compared to the barfdee distribution, we expedi ? to
be smaller thati/. Furthermore, if the arms have very different variancesntBapE-V is expected
to better capture the complexity of each arm and allocatgtitie accordingly. For instance, in the
case where all the gaps are the same, GapE tends to allodst@nmportionally to the complex-
ity H,,; and it would perform an almost uniform allocation over basdind arms. On the other
hand, the variances of the arms could be very heterogenadu@apE-V would adapt the allocation
strategy by pulling more often the arms whose values are mmrertain.



] “Uniform + UCBE GapE Adapt GapE GapE GapE-V Adapt GapE-V

0.25
L
L
o

0.25

0.20
0.20

3 3
3 ¢ @

Maximum probability of error

Maximum probability of error
0.15

0.15

4 8 16 32 2 4 8 16 18 14 12 1 8 16 32 64 2 4 8 16 14 12 1 2
Parameter n Parameter n

Figure 2:(left) Problem 1: Comparison between GapE, adaptive GapE, andifugra strategies.
(right) Problem 2: Comparison between GapE, GapE-V, and adaptipg-&aalgorithms.

Adaptive GapE and GapE-V. A drawback of GapE and GapE-V is that the exploration paramet
a should be tuned according to the complexitiésand /¢ of the multi-bandit problem, which are
rarely known in advance. A straightforward solution to tissue is to move to an adaptive version
of these algorithms by substitutirig and H° with suitable estimated andH?. At each step of
the adaptive GapE and GapE-V algorithms, we estimate treaplexities as

. b2 ~y ~— (LCBy, (1) + \/LCB,, ()2 + (16/3)b x UCBa4, (1))"
H(t) = 2 UCBA (1" H(t) = 2 UCBA ()2 ., where
UCBa, (t) = Ai(t — 1) + ﬁ and  LCB, (t) = max (07 oi(t—1) — #)

Similar to the adaptive version of UCB-E in []ZJAZ andZ“ are lower-confidence bounds on the true
complexitiesd and H?. Note that the GapE and GapE-V bounds written for the optirakle of

a indicate an inverse relation between the complexity ancepboration. By using a lower-bound
on the trueH andH?, the algorithms tend to explore arms more uniformly and afisvs them to
increase the accuracy of their estimated complexitiehdigh we do not analyze these algorithms,
we empirically show in Sec. 4 that they are in fact able to im#éte performance of the GapE and
GapE-V algorithms.

4 Numerical Simulations

In this section, we report numerical simulations of the paged algorithms presented in this paper,
GapE and GapE-V, and their adaptive versions A-GapE and pEG4 and compare them withinif
andUnif+UCB-E algorithms introduced in Sec. 3.1. The results of our expenits both those in
the paper and those in Appendix A indicate thaGapE successfully adapts its allocation strategy
to the complexity of each bandit and outperforms the unifailocation strategie<) the use of
the empirical variance in GapE-V can significantly improlve performance over GapE, a8jithe
adaptive versions of GapE and GapE-V that estimate the @itips H and H? online attain the
same performance as the basic algorithms, which redéiaad H° as an input.

Experimental setting. We use the following three problems in our experiments. Noatb = 1
and that a Rademacher distribution with parameterg) takes value: or y with probability1,/2.

e Problem 1.n = 700, M = 2, K = 4. The arms have Bernoulli distribution with parameters:
bandit 1= (0.5, 0.45,0.4,0.3), bandit 2= (0.5,0.3,0.2,0.1).

e Problem 2. n = 1000, M = 2, K = 4. The arms have Rademacher distribution with
parameteryx,y): bandit 1 = {(0,1.0),(0.45,0.45), (0.25,0.65), (0,0.9)} and in bandit 2 =
{(0.4,0.6), (0.45,0.45), (0.35,0.55), (0.25,0.65)}.

e Problem 3. n = 1400, M = 4, K = 4. The arms have Rademacher distri-
bution with parametergz,y): bandit 1 = {(0,1.0), (0.45,0.45), (0.25,0.65), (0,0.9)}, ban-
dit 2 = {(0.4,0.6), (0.45,0.45), (0.35,0.55), (0.25,0.65)}, bandit 3 = {(0,1.0), (0.45,0.45),
(0.25,0.65), (0,0.9)}, andbandit 4= {(0.4, 0.6), (0.45,0.45), (0.35, 0.55), (0.25, 0.65) }..

All the algorithms, except the uniform allocation, have apleration parametet. The theoretical
analysis suggests thashould be proportional tg-. Althougha could be optimized according to the
bound, since the constants in the analysis are not accuratgill run the algorithms withw = 74,
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Figure 3: Performance of the algorithms in Problem 3.

wheren is a parameter which is empirically tuned (in the experira@rd report four different values
for n). If H correctly defines the complexity of the exploration problgm, the number of samples
to find the best arms with high probability) should simply correct the inaccuracy of the constants
in the analysis, and thus, the range of its nearly-optimalesashould be constant across different
problems. InUnif+UCB-E, UCB-E is run with the budget of /M and the same parametgfor all

the bandits. Finally, we set ~ H?, since we expect/ ¢ to roughly capture the number of pulls
necessary to solve the pure exploration problem with higtbgbility. In Figs. 2 and 3, we report
the performancé(n), i.e. the probability to identify the best arm in all the basa@ftern rounds,

of the gap-based algorithms as wellldsif andUnif+UCB-E strategies. The results are averaged
over10° runs and the error bars correspond to three times the estinséandard deviation. In all
the figures the performance 0hif is reported as a horizontal dashed line.

The left panel of Fig. 2 displays the performancéoif+UCB-E, GapE, and A-GapE in Probleim

As expectedUnif+UCB-E has a better performance3(9% probability of error) tharunif (29.4%
probability of error)), since it adapts the allocation viitleach bandit so as to pull more often the
nearly-optimal arms. However, the two bandit problems areegually difficult. In fact, their
complexities are very differenf{; ~ 925 and H, ~ 67), and thus, much less samples are needed
to identify the best arm in the second bandit than in the first. oUnlike Unif+UCB-E, GapE
adapts its allocation strategy to the complexities of thedita (on average onli9% of the pulls are
allocated to the second bandit), and at the same time to the@mplexities within each bandit (in
the first bandit the averaged allocation of GapE3ig’%, 36%, 20%, 7%)). As a result, GapE has a
probability of error of15.7%, which represents a significant improvement dyaif+UCB-E.

The right panel of Fig. 2 compares the performance of GapBES4 and A-GapE-V in Problem 2.

In this problem, all the gaps are equals,{;, = 0.05), thus all the arms (and bandits) have the same
complexity H,,,, = 400. As a result, GapE tends to implement a nearly uniform atlonawhich
results in a small difference betweemif and GapE Z8% and25% accuracy, respectively). The
reason why GapkE is still able to improve ownif may be explained by the difference between static
and dynamic allocation strategies and it is further ingeg&d in Appendix A. Unlike the gaps, the
variance of the arms is extremely heterogeneous. In faetydhiance of the arms of banditis
bigger than in bandi2, thus making it harder to solve. This difference is captungthe definition

of H? (HY ~ 1400 > HJ ~ 600). Note also that#® < H. As discussed in Sec. 3.2, since
GapE-V takes into account the empirical variance of the aitnisable to adapt to the complexity
Hg, of each bandit-arm pair and to focus more on uncertain armepES/ improves the final
accuracy by almost0% w.r.t. GapE. From both panels of Fig. 2, we also notice thatatiaptive
algorithms achieve similar performance to their non-aideptounterparts. Finally, we notice that
a good choice of parameterfor GapE-V is always close td and4 (see also [8] for additional
experiments), while GapE neeglgo be tuned more carefully, particularly in Problem 2 whére t
large values of) try to compensate the fact thAt does not successfully capture the real complexity
of the problem. This further strengthens the intuition thet is a more accurate measure of the
complexity for the multi-bandit pure exploration problem.

While Problems 1 and 2 are relatively simple, we report tisalts of the more complicated Prob-
lem 3 in Fig. 3. The experiment is designed so that the conitglex.t. the variance of each bandit
and within each bandit is strongly heterogeneous. In thiegment, we also introduce UCBE-V
that extends UCB-E by taking into account the empiricalarace similarly to GapE-V. The re-



sults confirm the previous findings and show the improvemehiezed by introducing empirical
estimates of the variance and allocating non-uniformly dandits.

5 Conclusion

In this paper, we studied the problem of best arm identifaceith a multi-bandit multi-armed setting.

We introduced a gap-based exploration algorithm, calledEsand proved an upper-bound for its
probability of error. We extended the basic algorithm t@alsnsider the variance of the arms and
proved an upper-bound for its probability of error. We alstvaduced adaptive versions of these
algorithms that estimate the complexity of the problemmliThe numerical simulations confirmed
the theoretical findings that GapE and GapE-V outperformemdliiocation strategies, and that their
adaptive counterparts are able to estimate the complekitput worsening the global performance.

Although GapE does not know the gaps, the experimentalteeseported in [8] indicate that it
might outperform a static allocation strategy, which kndws gaps in advance, thus suggesting
that an adaptive strategy could perform better than a statc This observation asks for further
investigation. Moreover, we plan to apply the algorithntsdduced in this paper to the problem of
rollout allocation for classification-based policy itécatin reinforcement learning [9, 6], where the
goal is to identify the greedy actioanm) in each of the statebéndi)) in a training set.

AcknowledgmentsExperiments presented in this paper were carried out ubiea@tid’5000 ex-
perimental testbed (https://www.grid5000.fr). This war&s supported by Ministry of Higher Edu-
cation and Research, Nord-Pas de Calais Regional CountHBDER through the “contrat de pro-
jets état region 2007-2013", French National Researcm&géANR) under project LAMPADA
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A Additional Simulations

A.1 Twin Bandits

e Problem 4:n = 3000, M = 4, K = 4. The4 bandits are identical. The arms have Bernoulli
distributions with the following meang0.5,0.45, 0.4, 0.3).

In this problem the bandits are identical. Therefore it se@muitive to allocate the same budget
to all the bandits. So we would expect GapE and Unif+UCB-Eaeehthe same performance. In
Figure A.1, we report their performance and notice that GppEorms significantly better than

Unif+UCB-E.

Maximum probability of error
0.30 0.35 040 045 0.50
[
I

2 4 8 16 2 4 8 16
Parameter n

Figure 4: Problem 4: The benefit of adaptive allocation olwerttandits in the twin bandits problem.

This suggests that dynamic allocation strategies (Gapghtoutperform static allocation strategies
(Unif+UCB-E). A possible explanation for this result is th@apE is able to adapt to trectual
observations. For example, in one bandit, it can happerthiatbservations from best arm lead to
an empirical mean which is bigger than its true mean, whiestiboptimal arms have an empirical
average lower than their true mean. For this specific ra@izathe complexity of the task is much
smaller than expected. The opposite can happen in the o#melitb thus making it harder than
expected. In this case, more pulls should be allocated teetbend bandit because its complexity in
this particular realization of the problem is bigger thae time of the first bandit. As GapE adapts
to the complexity of each realization of the problem, it segmsuccessfully adapt to the specific
“empirical” complexity of the bandits and to obtain a befterformance w.r.t. an allocation which
statically chooses the number of pulls on the basis of the.gap

This result shows a potential advantage of dynamic stresegir.t. static strategies and it asks for a
more thorough investigation.

A.2 Comparing all the algorithms

In the three following problems, we randomly generated drameters andb of the Rademacher
distributions. In order to test the robustness of the atjors we design problems where the number
of arms goes from to 40.

The results mostly confirm the experiments reported in thie paper. In fact, in all this problems
all the gap-based algorithms outperform the Unif+UCB-Bathms. Furthermore, it can be noticed
that taking into account the variance leads to an extra irgment of the performance.

Both in those experiments and those from the main paper, tigertbat GapE-V has its best perfor-
mance when the exploration paramefés in the interval2 — 4]. This strengthens the claim that the
complexity H? is a good measure of the complexity for any given problem. édwer this makes
the algorithms easy to use as it gives a strong a priori on bdwrte the exploration parametgr

11



Unif + UCBE Unif + AUCBE  Unif + UCBE-V_ Unif + A UCBE-V GapE A GapE GapE-V A GapE-V

S
o T
— o
o
£ o
3 o
8
£y .

o *

| m *
[ | *

§ . * P

—
g P ® R *
(] o * * *

° ° ° *
= ® 4 - . o
2 4 816 UBLAL2 1 1 2 4 8 UsWal2 1 1 2 4 8 UBVAL2 1 1 2 4 & 181412 1
Parameter n
Figure 5: Performances of all the algorithms in Problem 5.
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Figure 6: Performances of all the algorithms in Problem 6.

e Problem 5:n = 400, M = 4, K = 4. The arms have R4d, b) distributions with the following
couples of parameters:

Bandit1: {(0.15,0.55), (0.25,0.5), (0.15,0.2), (0.75,0.8) }
Bandit2: {(0.25,0.45), (0.45,0.85), (0.2,0.8), (0.2,0.8) }
Bandit3: {(0.5,1.0), (0.6,0.75), (0.5,0.6), (0.2,0.4) }
Bandit4: {(0,0.9), (0,0.5), (0.5,0.5), (0.3,0.85) }

In Figure 5, we report the performance of all the algorithmBiioblemb.

e Problem 6:n = 700, M = 3, K = 3. The arms have R&d, b) distributions with the following
couples of parameters:

Bandit1: {(0.65,1.0), (0.35,0.95), (0.15,0.6) }
Bandit2: {(0.3,0.5), (0.5, 0.6), (0.3,0.6) }
Bandit3: {(0.0,0.45), (0.3,0.9), (0.55,0.6) }

In Figure 6, we report the performance of all the algorithm$roblem6. In this problem, we
notice that Unif+UCB-E performs worse than Uniform. In barg] the gap between arm and
arm 3 is very small & 0.025). Therefore the complexity H of this bandit is higHz ~ 3000.
However the variance of arfhin bandit3 is really small, thus making/ not representative of the
true hardness to solve this bandit. The budgét this experiment is set t600 and, as a result,
the budget allocated to the bangiin Unif+UCBE is 233. This budget is small with respect to the
complexityH, therefore the exploration term of UCB-E will be small anchast no exploration will
be done in this bandit. This leads Unif+UCB-E to performawoese than Unif. Notice that when

12
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Figure 7: Performances of all the algorithms in Problem 7.

the exploration paramet@rtends to infinity, UCB-E becomes equivalent to the Uniforgoaithm.
Therefore one can still recover the performance of the Wmifalgorithm by setting) > 1.

e Problem 7:n = 1500, M = 10, K = 4. The arms have R&d, b) distributions with the following
couples of parameters:

Bandit1: {(0.9,0.9),(0.5,0.7), (0,0.55), (0.15,0.25) }

Bandit2: {(0.15,0.60), (0.35,0.75), (0.4, 0.85), (0.15, 0.65) }
Bandit3: {(0.4,0.55), (0.05,0.85), (0, 0.45), (0.2,0.25) }
Bandit4: {(0.85,1.0), (0.15,0.35), (0.2,0.4), (0.15,0.9) }
Bandit5: {(0.25,0.75), (0.15,0.75), (0.9,0.95), (0.4,0.95) }
Bandit6: {(0.45,0.65), (0.85,1.0), (0.4,0.8), (0.2,0.9)}
Bandit7: {(0,0.85),(0.3,0.5), (0.4,1.0), (0.35,0.4) }
Bandits: {(0.55,0.85), (0.35,0.75), (0.35,0.5), (0.25,1.0) }

Bandit9: {(0.4,0.6), (0.55,0.95), (0.15,0.6), (0.1,0.8) }
Bandit10: {(0.05,0.3), (0.8,0.85), (0.2,0.75), (0.2,0.75) }.

In Figure 7, we report the performance of all the algorithrinblem?.
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B Proof of Theorem 1

Part 1. Upper Bound

Here we prove tha%ﬁpi(t— 1) < —=Api+72% 2be - /W where arm of banditp is the arm pulled
attimet. This meansthdf,,;(t—1) = T, (¢ ) 1. We consider the following four cases for this proof.

Casel.i= @;(t —1) andi=k;

The pulled arm is both the best arm and the best empirical arm at timibanditp. Here we may
write

“Rpi(t = 1) = Py o1yt = 1) = i (8 = 1) < pr (,yy — Hpi + be T D /Tmt_1

()

<p — ppi + 2bc

pic\; (t—1) t _ 1

S upk+ Mpi + 2bc

pz
= —Api o+ 2bey [ < —Api 5 2be T
_ Tpi(t) — 1

(a) Since arm of banditp is pulled at timet, from (4) we have

a ~ a

N " > _A -~ — e ——
St =Dy oy 2 TS e T D T
We also know by definition thatﬁpi(t -1 = Eng(tfl)(t — 1), which gives us
Tpi(t—1) Z Tpg;(tfl)(tfl).

Case2.i=kyj(t—1) and i # k,

The pulled arm is the best empirical arm at timebut not the best arm, of bandit Here we may
write

~Rpilt = 1) = Ayt oy (= 1) = it — 1) < iz H)<t—1>—ﬁpk*

< iy = iy + bey | 7= 4 be, [ —r—

= Hpt upkp +oe p'L t—l pk}* t—l

(b) 1+c
S"”Z'_"”‘“I*JJFI’C\/ t—1 T t—l

2bc

t—l

(b) Since armi of banditp is pulled at timet, from (4) we have

«(t—1 b
t—1 Ao )+ \/ pk*t—l
/J‘pk+(t 1) \/ t—l _,“pk* -1)+b / pk* t—l
by s 2 Ry (t b |— &
t—l i (t = 1) + pk*t—l
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a a
Mpi“‘(l*"db“mzﬂpk;-F(l—C)b /m.
We also know that by definition,- > p,;, which gives u%‘ /ﬁ > /%.
P c i Pk}

Case3.i # @;(t —1) and i = kj

The pulled arm is the best arm, but not the best empirical arm at thad banditp. Here we may
write

—Api(t = 1) =Tpi(t — 1) — 25 (t— 1)(t -1 < B (t— 1)( 1) — :“pk* (t—=1)

< e .+ b / e ]—%
Frples (t—1) — Mok £ 0C pk*(t NC Tpi( t—l

(©)
< et be | —— A pe | ——
Mpw Hpks, + C\/Tpi(t—l) + c\/Tw_

2bc a
= —A,; + 2b i _—
it e Ty S At T oD

(c) Since armi of banditp is pulled at timet, from (4) we have

~ a ~ a
—Apit—1)+ by /s > —A -, t—1)+b | ———
pil ) Tpi(t—1) — pkp(til)( )t Tpi*(tfl)(t_l)

P

We also know that by definition-A - )(t -1 > —ﬁpi(t — 1), which gives us

k*tl

a > a
Tpi(tfl) — ijc\z(tfl)(tfl).

Case4.i # E;;(t —1) and i # k;

The pulled armi is neither the best arm nor the best empirical arm at timebanditp. Here we
may write

—Api(t —1) = fipi(t — 1) —ﬁpk\-;(t—l)(t—l) < ppi — Npk* (t—1) —|—bc”
Supz‘—upk;—kbC,/ t—1 + bc T t—1
(d) 1+c
< lpi — Hpx + b
= Hri “”‘“PJFC\/ t—1 “T—¢ t—l

2bc

t—1

(d) Since armi of banditp is pulled at timet, from (4) we have

~ a ~
—A i(t — — > A, — .
pi(t—1)+b Tp(t—1) = pky (t=1)+ b,/ pk* t—1) (6)

If ky =k,(t—1), we may write (6) as

~ a ~
sz(t—1)+b m /,L (t 1)( 1)+b/ pk*t—l.
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We also know that by definitioﬁp@+(t_l)(t — 1) > ppi(t — 1), which gives us /Tm(‘;_l) >

_a
\/ Tor =1)
Now if &, # k;(t — 1), we may write (6) as
_ > « (T —
it = 1) T t—1 i, (=D 40y ™) T ( t—1
Hpi + (1+¢) Tmt—l Z ppy + (1= )by pk*t—1
We also know that by def|n|t|oppk* > i, Which gives us}ﬂ, /Tm(t 0 >/ T (=1 pk*(t g

Part 2. Lower Bound

Here we prove that—ﬁqj(t -1) > -A

... M)}

and all armsj € {1,... K}, such that the armj of banditq is not the one pulled at time
i.e.,(g,j) # (p,i). This means thafy;(t — 1) = T,;(t). Similar to the proof for the upper-bound
in Part 1, we consider the following four cases here.

Casel.j :Ej;(t— 1) and j = k;

The armj is both the best arm and the best empirical arm at timigbanditq. Here we may write

a

“Agi(t—1) = 1 > = _
qJ( ) i, aky (t— 1)( ) Nq]( ) 1% ak Haqj q](t—l)

Z Hopt — Haj — be, / Y
QJ
©_ 1+ d /— /— 2\/ be
- ‘IJ \/_bc QJ QJ e d TQJ (t) ‘

(e) From the inductive assumption, we have

a a
~Agj + (1+d)b > —A 1—d)b, [——.
wt (1 )\/max(qu(t—1)—1,1)* o T =) Ty (0 =1)

akq
We know that by definition—Aqk; = —Ay;, which gives uslid — (qu(i —
/T Finally, we have
a4 To5(t—1) a a

max (Ty;(t —1) —1,1) ~ ax (To;(t —1) —1,1) Ty (t — 1) = 2qu(t -1)’ ™

which gives us the result.

Case2.j :E;‘(t— 1) and j # kj

The armj is the best empirical arm at timtebut not the best arm, of bandit Here we may write

i (t = 1) = Bggs o1y (t = 1) = Fas (¢ = 1) = Figry (8 = 1) = Figs (t = 1)

a a
> * — i —b [ —— R
= /’quq Haj c qu:; (t _ 1) c qu (t _ 1)
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O /it ‘_2\/_bc
B “ 1_d Tq] Toi( ! —d Tq](t)‘

(f) From the inductive assumption, we have

a a
—Agj + (1 +d)b > —Agpr + (1= d)b, [ ——.
o+ (F )\/maX(qu(t—l)—l,l) =z ~Bag +(1=d) Tyrx (t— 1)

We know that by definition—Ag.. > —Ag;, which gives us”d\/ >

(t—1)—1 1)
/W. The claim follows using Eq. 7.

Case 3.j #Ej;(t— 1) and j = kj

The armj is the best arm, but not the best empirical arm at tipaf banditg. Here we may write

—Agi(t—1) =g (t — 1) — //qu;(tfn(t -1) = Pakg = Pk (t-1) bc (t— 1
o ( qk*(t 1)

) c 1+d
= AqE;(t—U + 1= d(AQJ - Aqk*(t 1)) bc” q](t 1) — V2be—— 1-4 Ty t—1)
c 1—|—d

> A+ (1——)A -, bey | s =

~1-d a + 1—d) akg(t=1) — Tq, b4 qu(t)

Q) a 1+d 2v/2be a
be, | —— — V/2be=—— > Ay — .

- V Ty; (t) 1—dy qu(t) - Y 1-d Ty

(g) From the inductive assumption, we have

a a

—Agi + (1 +d)b >-A-, +1-db | m————,
ai + )\/maX(qu(t—l)—l,l) kg (t=1) ( ) quz(til)(t—l)

or equivalently

a C

1+d
—b > Agi — A, 8
¢ qgé(H)(t—l)—l—d( W = Aign) \/max q]t—l)—ll) ®

T

The claim follows using Eqgs. 8 and 7.

Case 4. j #E;‘(t— 1) and j # kj

The pulled arny is neither the best arm nor the best empirical arm at timebanditq. Here we
may write

—~ a a
R (t—1) = Figi (b= 1) =T rery 1y (E=1) > fraj — oz iy 11 —bey | e b |
v v i =) W TN T =) Y Ty - D)

9)

If k;(t—1)=k;, we may write (9) as
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~ a a
—Agj(t —1) = fig;(t — 1) — [i_z. t—1) > flgj — 1,7 —be, | —be |
QJ( ) y“l]( ) /’quq(t—l)( )7/’1‘(1] uqkq(tfl) c qu(t—l) c Tq/k\z(tfl)(t—l)
a a
> Ay —bey | —r— —be |
o T,i(t —1) Ty ey (t—1)

_ Vapeltd . 2f be ‘
QJ 1- d TQJ d Tq} (t)

(I) From the inductive assumption, we have

o a
—Ag; 1+d)b > A -, 1-db | —m—-.
o +(1+d) \/max (qu (t—1)—1, 1) n akq(t=1) * ) TqE:;(tfl)(t -1

We know that by definition-A 7., ;) = —Agk; > —A,j, and thus,ﬁj\/ - (‘z ) >

T D" The claim follows using Eq. 7.

Now if &7 (¢t — 1) # k;, we may write (9) as

Aq](t_l) Jigs(t — 1) — ﬁ T (t— 1)( 1) = pgj — p Farze—1) — \/ t—l 1/
Tai( qk*(t 1)

> Aq]+Aqk*(t 1) 1/ q] k*(t 1)
\l q

) c 1+d
> -
>(1 1—d)( A]—G-Aqk*(t 1) VTCU _1 —V2be 1—d\/Tq] t—1
(K)
S bc/ a _\/5 1+d __2\/_bc ‘

Toj (t) 1- d Tq] —d Toj (t)

(J) From the inductive assumption, we have

a a
A 1+d)b > A -, 1-d)b | ——F,
o +(1+d) \/max (qu (t—1)—1, 1) - akq(t=1) * ) TqE(’;(tfl)(t -1

or equivalently

a —C

1 +d
—b > A A 10
‘ Tq@;(tfl)(t -1 ~1- d( @i F Bk - 1) \/max Ty (t — 1) -1,1)° (10)

The claim follows using Eqgs. 10 and 7.
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C The GapE-V Algorithm and Analysis

C.1 The GapE-V algorithm

Fig. 8 contains the pseudo-code of the GapE-V algorithm.

Parameters: number of rounds:, exploration parameter
Initialize: T,x(0) = 0, Ak (0) = 0 for any bandit-arm pair

fort=1,2,...,ndo

N —
ComputeB,, i (t) = —Api(t — 1 20 70, (B—1) 7ab
i 0 A A 3(Tpr(t-1)—1)

Draw [ (t) € arg max, k Bmk(t)
Observeka(ka(t — 1) + 1) ~ Umk
Update A,k (t) and Tpi(t) = To(t — 1) + 1
end for
ReturnJi, (n) € arg max¢

K} Hmk(n), Ym € {1... M}

-----

Figure 8: The pseudo-code of the GapE-V algorithm.

C.2 Theorem

We first define the complexity of the GapE-V algorithm as

Theorem 3. If GapE-V is run with parametey < a < $2=2MK then it satisfies

((n) =P(Im : Jp(n) # k) < 6nMK exp ( - 649;64)

in particular fora = 8 2=2MK 'we have/(n) < 6nMK exp ( — o5 T2AE).

Proof. Step 1.Let us consider the following events:

2ac 02, abe }
b

&= {Vm € {1, M}, Yk € {1,... K}, [fim (T (t)) = pmi| < Tor(t) | 3Toe(D)

2ac
I s _ _
& —{Vme{l,...M}, Vk e{l,...K}, [Omk — omr(s)| < b ka(t)—l}’

2ac 52, (t) Tabe
5”={Vme L...M}, Ve e{l,... K}, |lmk(s) — k| < X }
{ } { b (imi(5) = proni Tk () 3(Tpi(t) — 1)

From Bennett inequality, Theorem 10 in [11], and a union llhume haveP(¢ N &) > 1 —
6N K exp(—ac). Moreover, we know thaf N ¢’ = ¢”. Now we would like to prove that on
the event”, we find the best arm for all the bandits, i.&.,(n) = k,, Ym € {1,..., M}. Since
Jm(n) is the empirical best arm of bandit, we should prove that

ﬁmk (ka (TL)) S ﬁmkjn (kajn (n))7 Vk S {17 LRI K} (11)
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On the event, by upper-bounding the LHS and lower-bounding the RHS oflHgwe obtain

abc < 2ac Ugnk;*n abc
< Hmkx, — -
Hmkin =\ Togs (n) ~ 3Tonps. (n)

2
2ac oy,

ka (n) 3ka (n)

and thus, it would be enough for us to prove that on the egent

2ac o2, abc Ak

<
ka (n) 3ka (n) B 2 ’

vYme{l,...,M}, Vke{l,...,K},

or equivalently,

2
2QC<0'mk +4/02, + I’AT’“")
ka(n) >

> A2 , vme{l,...,M}, Vke{l,...,K}. 13)
mk

Step 2.In this step, we prove the following inequality that showspehdence between the number
of pulls of the arms in the GapE-V algorithm:

V(m,q) € {1,...,M}2, V(k,j)e{l,...,K}?, and Vt>2MK

2
At (14 d)( 2a 02, 8ab )

Tk (t) — 1 T e (Tomr(t) — 2,1)

2a 03, 6ab
Z 8 - d)<\/ Tor(t)  3(Tny () 1))’ ()

whered € [0, 1]. We prove this inequality by induction.

Base stepWe know that after the fir&\ K rounds of the GapE-V algorithm, all the arms have been
pulled twice, i.e. T (t) = 2, Vm € {1,...,M}, Vk € {1,..., K}, thusifa > max(gh, o),
the inequality (2) holds fot = 2M K.

Inductive step. Let us assume that (14) holds at time- 1 and we pull armi of banditp at
timet, i.e.,I(t) = (p,i). So at timet, the inequality (14) trivially holds for every choice of,
q, k, andj, exceptwherim, k) = (p, ). As aresult, in the inductive step, we only need to prove that

Vge{l,...,M}, Vje{l,..., K}

2a 02, 8ab
AV 1+d Pt >
ot Tpi<t>—1+3max(Tpi(t>—271))

2a o, 6ab
~ha (1 ‘”( T () T 3(Ty(6) = 1))‘ (13)

Since armi of banditp has been pulled at time we have

N 2a 52,(t — 1) Tab
—Api(t—1)+ P + >
= Tpi(t=1)  3(Tpi(t—1)—1) ~
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2a 55;(t—1) N Tab
Ttu( ) 3(qu(t - 1) - 1) .

—Ng(t—1)+ (16)

In order to prove (16), we first prove an upper-bound #&Epi(t — 1) and a lower-bound for
—A,;(t — 1) as follows:

- 2./c 2a 02, 8ab
—Api(t—1) < —Ay; - 7
pi(t—1) < ”+1—\/E< Tpi(t—1)+3(TPi(t_1)_1)>
17
R 16 \/E 2@0’2'. 6ab
“Agi(t—1)> Ay — — - .
ai( ) > w3 1—d< Tyt —1) +3(qu(t—1)—1))

The inequality (15), and as a result, the inductive step @veul by replacing—ﬁpz(t - 1) and
—A,;(t — 1) in (16) from (17) and under the conditions tha 2% andd > 2 f andec < o=
These two conditions are satisfied tbe= 1/2 ande = (3/64)2.

Step 3. In order to prove (13), we need to find a lower-bound on the remdf pulls of
the arms at timg = n. Let us assume that ar of banditm has been pulled less than

(1 — d)2a T VTt WA | \hich indicates that Ay, + (1 — d) (/2 %mk 1 _6ab_) >

AT, o (m) ()
a o2,
From this result and (14), we haveA, + (1 + d)(\/T2 (nffl + artm=s) 2 0,
16 2
or equivalently 7,;(n) < (1 + d)?a (U‘“J”';‘Zj 3 0%ai) Vg € {1,...,M}
andVj < {1,...,K}. We also know thatz qu( n) = n. From these, we de-
G’ A/ O 2 .
duce thatn — 2MK < 3 (1 + d)’a wl 2"5_‘ 2u). S0 if we selecta such
(0qi+ 02.+Ebquﬂ)2 . .
that n — 2MK > 3 (1 + d)’a 2 ;”M £ —=~, we contradict the first assump-

tion that Tj,x(n) < (1 — d)?a (U’”’“J”QZ;HMM) , Which means thatT,,.(n) >

1 - d)%a “’"““*VQgg*‘*bAW , Vm € {1,...M}, k € {1,...K}, which concludes the
proof.

Here we report the proof of the inequalities (17).

Part 1. Upper Bound

2a o2

Here we prove tha%ﬁpi(t —-1) < =Ap + 2y/e ( P - 8‘“’ )> where armi of

1—y/c Tpi(t)— (
banditp is the arm pulled at timeé. This means thal,; (¢ — 1) = Ty ( ) — 1. We consider the
following four cases for this proof.

Casel.i= @;(t —1) and i = kj

The pulled arm is both the best arm and the best empirical arm at timibanditp. Here we may
write

~Bilt = 1) = g oy (= 1)~ Fipa(t — 1)

2ac o O' - (t —-1) Tabe

R _ - 2(16 O' (t — 1) n Tabe n I
phy (t—1) — Hpi sz(t —1) 3(Tpi(t —1) — 1) Tyt (t -1)

P

s p 3T (- 1)~ 1)
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@) 2a 62,(t—1) Tab
< g — Hpi + 2 'r +
S Hpkt -1y ~ Pe \/E< Tt — 1) 3Tl — 1) = 1)>

2a 62,(t—1) Tab
< — fpi + 2 L
S Hprf — Hpi + ‘/E< Tpi(t —1) +3(Tpi(t—1)—1)>
2a 52,(t —1) 7ab
SNy I ER )
g T (t) -1 3(Tpi (t) - 2)

Replacing the empirical standard deviation with the true amde < % we obtain the upper-bound

~ 2a 07, ab(7 + 6,/c) 2\/¢ 2a o2, 8ab
—Api(t —1) < —Ay; © < —Ay = .
Apilt =1) < =4y +2‘/E< Tpi(t)—1+3(Tpi(t)—2)) S heit 1—x/5< : 5T >

(a) Since arm of banditp is pulled at timet, from (4) we have

N 20 52,(t — 1) Tab
—Api(t—1) + & +
P ( ) Tpi(t — 1) 3(Tpi(t — 1) — 1)
2a 52 (t—1)
~ B (t—1) 7ab
> A (= )y [ + :
php (1=1) TpE;(t—l)(t -1 S(Tpk\';(tfl)(t -H-1
We also know by definition thafeﬁpi(t -1)= _EpEJr(t 1)(t — 1), which gives us
P
~ A2 -
2a52,(t — 1) N 7ab - 205 syt 1) N 7ab
Tpi(t —1) 3(Tpi(t -1) - 1) B Tpic\;r(tfl)(t -1 3(TpE:{(t71)(t -1)- 1).

Case 2.i = E;;(t —1) and i # k;

The pulled arm is the best empirical arm at timebut not the best arm, of bandit Here we may
write

—~

—Api(t—1) = ﬁpig;(t—l)(t = 1) —fpi(t—1) < ﬁpig;(t—l)(t -1) - ﬁpk;

<y p— 2ac 312)2. (t—1) Tabe 2ac aik; (t-1) n Tabe
~ i k*
P PRy, Tpi(t — 1) 3(Tm(t — 1) — 1) Tpk; (t — 1) 3(Tpk; (t — 1) — 1)
(<b)u~—uk*+ 2(1(;63;2.(@—1)+ Tab\/c +1+\/E\/E< 2aa,2;z~(1t—1)+ Tab
= Hpi = Hpky Tpi(t—1) 3(Tpi(t—1)—1)  1—y/e Tpi(t=1)  3(Tpi(t —1) = 1)
2/C 20 52,(t — 1) Tab )
< —Ay; 2
- pi Tt 1—\/E< Tpi(t)—l +3(Tpi(t)—2)

Replacing the empirical standard deviation with the true amde < % we obtain the upper-bound

R 2/ 2a agi 8ab
—Api(t—1) < =Api + = \/E< Tpi(t) — 1 * 3(Tpi(t) — 2))

(b) Since armi of banditp is pulled at timet, from (16) we have
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2a52,(t — 1) 7ab . 2057, (t—1) Tab

“A(t—1 pi + > —Apps(t—1) + +
pil ) Tpi(t —1) 3(Tpi(t —1)—1) — ok ( ) Tprx (t — 1) 3(Tpus(t —1) = 1)
20 62,(t — 1) 7ab 2057, (t—1) 7ab
oo -1 pi > Tprs (8 — 1 L
P (-1 )+ Tpi(t — 1) + 3(Tpi(t —1) —1) — i (= 1)+ Tpr (t — 1) - 3(Tps(t—1) = 1)
2%, 32~(t— 1) 7ab 2a ng* (t— 1) Tab
fipi(t — 1) + = + > fprx (t = 1) + > +
fpi(t—1) Tpi(t — 1) 3(Tpi(t —1) —1) ~ Aoy (= 1) Ty (t = 1) 3(Tpkx (t — 1) — 1)

2062, (t—1) Tab 2a Ezk; (t—1) 7ab
Mm‘+(1+\/5)< (=1 +3(Tpi(t_1)_1)>Zupk;+(1_\/5)< Tyrs (£ — 1) +3(Tpk;(t—1)—1)>'

We also know that by definitioppkz > [ipi, Which gives us

1+\/E< 2a3gi(t—1)+ 7ab )> 2a3§k;(t—1)+ 7ab
1—+/c Tpi(t — 1) 3(Tpi(t—1)—1) ) — Tprs (t — 1) 3(Tprs(t—1) = 1)

Case 3.7 # E;(t —1) andi =k,

The pulled arm is the best arm, but not the best empirical arm at tipad banditp. Here we may
write

—Api(t = 1) = ipi(t — 1) — ﬁpzz(pl)(t -1 < ﬁpz (tfl)(t -1)- ﬁpk; (t—1)

*
P

=2
2aco2,(t—1) Tabe 2ac T ke (t—1) (t-1) Tabc

S MPE* (t—1) - ,ulpk:; + P + L +

b Tpi(t — 1) 3(Tpi(t —1) — 1) Tpgz(til)(t -1) 3(szz(t71)(t -1)-1)
© 2ac o2, (t —1) Taby/c 2a 02,(t —1) 7ab
< — ppks + - + = +
= Py — Hoks Tpi(t—1) 3(Tpi(t—1)—1)) \/E< Tpi(t = 1) 3(Tpi(t_1)_1)>

2a 52,(t—1) Tab

=—Api+2 - +

P ‘/E< Tpi(t) — 1 3(Tpi(t) — 2))

Replacing the empirical standard deviation with the true @amdc < 3—16 we obtain the upper-bound

~ 2a 0y, (7 + 6+/c)ab 2,/c
Bt 1) < =+ 25(y gt + SO ) < -

(c) Since armi of banditp is pulled at timef, from (16) we have

~ 2a52,(t—1) Tab
—Api(t—1 £
it —1)+ Tpi(t — 1) * 3(Tpi(t—1) — 1)
2a 02 (t—1)
~ k5 (t—1) Tab
>-A - (t—1)+ P + .
ey J Tge =0 3T (=1 = 1)
We also know by definition thatﬁp@*(t_l)(t -1 > —ﬁpi(t — 1), which gives us
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2a Egi(t —1) N 7ab < 2a Giig(t—l)(t -1 n Tab
Tpi(t - 1) 3(Tpl(t - 1) - 1) B Tp%;(t—l)(t - 1) 3(TpE;(t71)(t - 1) - 1) .
Cased.i # @;(t —1) and i # ky,

The pulled armi is neither the best arm nor the best empirical arm at timgebanditp. Here we
may write

N 2ac 52, (t—1) Tabe
—Api(t—1) =[pi(t — 1) — i 7. t—1) < ppi — Oprx (t—1 s
pilt =) = Bps(E = 1) = Py ey (0= 1) S ppe = iy (0= D)y | == sy o)
- N 2ac 312)2. (t—1) Tabe 2ac aik; (t—1) n Tabe
= Hpi = Hokg Tpi(t—1) 3(Tpi(t—1)—1) Tory(t=1)  3(Torg (t—1) — 1)
) 2ac 52,(t — 1) Taby/c 14 /e 2a57,(t—1) 7ab
< i — . pi p?
S Hpi = Pk Ti(t—1) +3(Tpi(t—1)—1) * 1—\5\/E< Tpi(t —1) +3(sz‘(t—1)_1)>

—ve\\ T -1 3T - 2)

Replacing the empirical standard deviation with the true @amdc < 3—16 we obtain the upper-bound

) 2./ 2 ggi 8ab
—Api(t —1) < —Api + 1— \/E< Tpi(t) — 1 " 3(Tpi(t) — 2))

(d) Since armi of banditp is pulled at timet, from (16) we have

N 2a 52,(t — 1) Tab ~ 2a G55, (t—1) Tab
“Ai(t—1)+ pi + > —Apes (E—1)+ 7 + :
pit=1) Tpi(t—1)  3(Tpi(t—1)—1) ~ iy (0=1) Tory (t = 1) 3(Tpws(t —1) — 1)
(18)
If kr =k (t — 1), we may write (18) as
20 52,(t — 1) Tab _ 2055, (t—1) Tab

Bpi(t—1)+ ) z upE;(tfl)(t—l)_F

Tpi(t — 1) +3(Tm-(t -1 -1 Tpry(t—=1)  3(Tpry(t—1) — 1)

We also know that by definitioﬁpg+(t71)(t — 1) > [y (t — 1), which gives us

2a 8;2)2' (t—1) n Tab - 2a a\ik; t—-1) " Tab
Tpi(t — 1) 3(Tpi(t—1)—1) — T (t — 1) 3(Tprs(t—1) —1)°

Now if &, # @;(t — 1), we may write (18) as

2052 (1 — 1 2062, (t— 1)
pt—1) Tab S B (- 1) 4 Pk N 7ab
Tpi(t—1)  3(Tp(t—1) — 1) P Torg(t—1)  3(Tprs(t —1) — 1)

ﬁpi(t - 1) +
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2062, (t—1) Tab
_|_
Tpi(t — 1) 3(Tpi(t—1) — 1)

2a Egk; (t — 1) Tab )

upi+(1+\@)< T (t— 1) + 3(Tory (t — 1) — 1)

>2Mpk;+(1—\/5)<

We also know that by definitioppkz > pi, Which gives us

1+\ﬁ( 2055t —-1) 7ab )> 2a5§k;(t—1)+ 7ab
1—+/c Tpi(t — 1) 3(Tpi(t—1)—1)) — Tk (t — 1) 3(Tprs(t=1) = 1)

Part 2. Lower Bound

~ av/c 2a 02 (t—1 a .
Here we prove that Ag;(t —1) > —Ay; — 22 lf; ( quq(]t(fl) ) 3(qu(ib1)1)) for all bandits
g € {1,...M}andall armsj € {1,... K}, such that the arnj of banditq is not the one pulled
at timet, i.e., (¢,j) # (p,4). This means thal,;(t — 1) = T,;(¢). Similar to the proof for the
upper-bound in Part 1, we consider the following four case h

Casel.j =E’;(t— 1) and j = k;

The armj is both the best arm and the best empirical arm at timibanditg. Here we may write

2
~ 2ac 04j abe

~Ra (=) = g o (0 D) = Rag (0= 1) 2 oy = s =\ oy ~ 57— 1) < 1)

2ac o

> i 2ac o2; 8abc pki 6abc
>l — e — _ _ —
akg aj Tyi(t—1)  3(Ty(t—1) —1) Tpk; (t—1) 3(Tpk; (t—1)—1)
(© A 2ac a'gj B 8aby/c 14 d\/5< 2a Ugj N Sab >
- 7% Tyi(t—1)  3(Ty(t—1)—1) 1-d Tyt —1)  3(Ty(t—1)—1)

%

3+d | 200} 8ab )
_A P 97
o 1—d*/5< Tyt —1) +3(qu(t—1)—1)

(e) From the inductive assumption, we have

2a 02, Sab
—Agi+(1+d aJ >
ai +(1+ )< qu(t—l)—l+3max(qu(t—1)—2,1))_

2a o
IS 6ab
—A .++(1—d)< Prp + )
akg T (6 =1) " 3(T,,+ (t—1) — 1)

We know that by definitior-A ,+ = —A,;, which gives us

2
14d ( 2a 02, 8ab ) 2004 6ab
AT

+ + :
1—d\\ Ty;(t—1) =1 " 3max (Ty;(t — 1) — 2,1) g (=1 3(T4(t=1) — 1)

Finally, we have

1 | Tyt—1) 1 1 1
\/Tqm—l) = \/qu<t—1> 1 \/qu<t—1> = ﬁ\/mt— D= 2\/qu@_1)
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(19)

1 _ Tyi(t—1)—1 y 1 <> 1
max (Ty;(t — 1) —2,1)  max (Ty;(t —1) —2,1) = Tyt —1) =1 = "Ty(t —1) = 1’

which gives us the result.

Case2.j =E’;(t— 1) and j # k;

The armj is the best empirical arm at timtebut not the best arm, of bandit Here we may write

=Dt = 1) = By ooyt = 1) = Bigj (£ = 1) = Figry (£ — 1) — Figs (¢ — 1)

2 2
2ac Tpi, 6abc 2ac oy 8abc

> « — lhgj — — — _
Z Haky = Haj Ty (£ — 1) 3(Tpk; (t—1)—1) Tt —1)  3(Ty(t—1)—1)

N __21+d\/_< 2a 02 N 8ab )_ 2ac o}, 8aby/c
W14 Tyi(t—1) * 3(Ty;(t—1) — 1) Ty(t—1)  3(Ty(t—1) —1)
34+d 2a o2, 8ab >
> Ay — = :
= % 1—d‘/5< Tyt —1) * 3(Ty(t—1)—1)

(f) From the inductive assumption, we have

2
2a Oqj 8ab ) >

~Aa+ (1 +d)< Tyt —1) —1 T 3 max (Ty;(t—1) —2,1)

2
2a Opks 6ab )

—Aqk; +(1- d)< Tpk; (t—1) + 3(Tpk;(t -1) - 1)

We know that by definition-Ag: > —Ag;, which gives us

14+d ( 2a 07 N 8ab ) 2a 012"“2 T Gab
1-d Toi(t—1) =1 Bmax (Ty(t—1)—2,1) ) = \ Tprs (t = 1) 3(Tpk;(t—1)—1)

The claim follows using Eq. 19.

Case 3.j # @;;(t —1) andj=k;
The armj is the best arm, but not the best empirical arm at tihgd banditg. Here we may write
—qu(t —1) =Jig;(t = 1) — ﬁqﬁz(tfm(t -1)

2
2ac Ur?j 8abc 2ac Gpﬁz(tfl) 6abc

> ks = Hgfx(t—1) — - - -
aky ~ Haky(-1) Tyi(t—1)  3(Ty(t—1)—1) Tt —=1)  3(T E;(tfl)(t—l)—l)

P

Q) 2ac o2, 8aby/c Ve

2 A1) — s~ Ay — Az,

= Takg(t-1) qu(t - 1) 3(qu(t - 1) — 1) + 1-— d( I qkq(tfl))
1+d 2a 0} 8ab )

—2——/c +
1—d\/_< Tyt —1)  3(Ty(t—1)—1)
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Q) 3+d 2a o2, 8ab
> Ay — 47 .
- 7% 1—d‘/5< Tyt —1) +3(qu(t—1)—1)

(g) From the inductive assumption, we have

2a 02, 8ab
Ay +(1+d o + ) 2
aj +( )< Tyt —1) =1  3max (Ty(t—1)—2,1)/) ~
2a o2
E*(t—1) 6ab
—A o +(1—d)< P + )7
gks (t-1) Tise =1 3(Tn -1 -1)
or equivalently,
2a
phx(t—1) 8ab )
_ + 2 (20)
< Tpic\;‘)(tfl)(t -1 3(Tp§;(t*1)(t -b- 1)
1 14+d 2a 2. 6ab
1 A o A . _ a7
1—d( aj qkq(tfl)) 1_d< T,;t—1)—1 +3maX(qu(t—1)—271))

The claim follows from Egs. 20 and 19.

(h) This passage is true when< 2% < 1.

Case 4. j ;zé@j;(t— 1) and j # k;

The pulled armyj is neither the best arm nor the best empirical arm at tirmeEbanditq. Here we
may write

—Agj(t—1) =THg;(t—1) — ﬁqﬁz(tfm(t —1) (21)
2
2ac Ugj 8abc 2ac UPE*(tfl) 6abc

> Paj = Bgfr (1) — - - - .
7 qkg (t—1) Toi(t—1)  3(Ty(t—1)—1) TE st —=1) 3(Tp;;(t71)(t—1)—1)

If k;(t—1)=k;, we may write (21) as

—Ag(t = 1) =g (t = 1) — ﬁqﬁz(tfm(t -1)

2

S s — gy~ _ 2ac Ugj _ 8abc _ 2ac Upgz(tfl) B 6abce
SR TN TG T 0-1) \ Tgge (-0 3T - D - 1)
N 2ac agj Sabc 2ac 02, ph (t—1) 6abc
Z T /g5 T - - -

Tyt =1 3(T(t = 1) 1) Toige-n (=1 3(Tgyny(t—1) = 1)
O [ @0y 8aby/c _21+d\/—< 2a 0} N 8ab )
= T2 Tyt —1)  3(Ty(t—1) —1) 1—d Toi(t—=1)  3(Ty(t—1) —1)

3 +d 2a o2, 8ab

> —Ay;
= ‘/E< Tyj t—l 3(qu(t—1)—1)>
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() From the inductive assumption, we have

2a 02, 8ab
A, +(1+4d s + ) 2
ai +( )< Tyi(t—1)—1 " 3max (Ty(t—1) —2,1) ) =
2a o2
kX (t—1) 6ab
A~ +(1—d)( i + )
aky (t—1) TpE;(tfl)(t -1) 3(Tp§;(t71)(t -1)-1)

We know that by definitioprAq@Z(t_l) = —Agkz > —Ag;, and thus

2
2a Upﬁg(tfl) 6ab

+ .
Lot =1 (T oyt = 1) = 1)

1+d< 2a o2 N 8ab S
T—d\ | Ty(t—1) =1 3max (Ty;(t—1)—2,1) ) ~

The claim follows using Eq. 19.

Now if E;‘(t — 1) # Kk, we may write (21) as

—Agi(t = 1) =g (t — 1) — ﬁqﬁz(tfm(t -1)

B 6abc
Myt D 1)

o B 2ac o7, B Sabe
= Hai = Hoksi-1) Ty (t—1) 3(qu t—1)— 1)

2 g + Aoy ~ Tjj;igji) - 3(qu(fa_bc1) —1) 3(Trs e T(btc— -1
20 P8 o)\ T

_ 2%;\5( Tj?tg_gjl) + 3(Tw (tgibl) _ 1))

2 -a,- ?J—rg‘/g< sztg—gjl) + 3(qu(t8ib1) —1) )

(J) From the inductive assumption, we have

2a 02, S8ab
—A,j+(1+d 4 >
a +(1+ )< qu(t—l)—l+3max(qu(t—1)—271))_

2a 02
Ex(t—1) 6ab
A +(1—d)< P + )
ak; (t—1) Torgeny (=1 3(Typs oy (t—1) — 1)

or equivalently

2
2a apE;(t—l) Sab

- n ) >
( Tpﬁz(tfl)(t -1 3(TpE;(t71)(t -1)- 1)

1 14+4d 2a 02, 6ab )
— (Ay — A - - @y .
1—d( ‘“ qkq“*l)) 1—d< Tyi(t—1) =1 3max (Ty;(t—1) —2,1)

(22)
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The claim follows from Egs. 22 and 19.

(K) This passage is true whén< < < 1.

1-d —
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