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Abstract

We study the problem of identifying the best arm in each of thebandits in a multi-
bandit multi-armed setting. We first propose an algorithm called Gap-based Ex-
ploration (GapE) that focuses on the arms whose mean is closeto the mean of
the best arm in the same bandit (i.e., small gap). We then introduce an algorithm,
called GapE-V, which takes into account the variance of the arms in addition to
their gap. We prove an upper-bound on the probability of error for both algo-
rithms. Since GapE and GapE-V need to tune an exploration parameter that de-
pends on the complexity of the problem, which is often unknown in advance, we
also introduce variation of these algorithms that estimates this complexity online.
Finally, we evaluate the performance of these algorithms and compare them to
other allocation strategies on a number of synthetic problems.

1 Introduction
Consider a clinical problem withM subpopulations, in which one should decide betweenKm op-
tions for treating subjects from each subpopulationm. A subpopulation may correspond to patients
with a particular gene biomarker (or other risk categories)and the treatment options are the available
treatments for a disease. The main objective here is to construct a rule, which recommends the best
treatment for each of the subpopulations. These rules are usually constructed using data from clin-
ical trials that are generally costly to run. Therefore, it is important to distribute the trial resources
wisely so that the devised rule yields a good performance. Since it may take significantly more
resources to find the best treatment for one subpopulation than for the others, the common strategy
of enrolling patients as they arrive may not yield an overallgood performance. Moreover, applying
treatment options uniformly at random in a subpopulation could not only waste trial resources, but
also it might run the risk of finding a bad treatment for that subpopulation. This problem can be for-
mulated as thebest arm identificationoverM multi-armed bandits [1], which itself can be seen as
the problem ofpure exploration[4] over multiple bandits. In this formulation, each subpopulation is
considered as a multi-armed bandit, each treatment as an arm, trying a medication on a patient as a
pull, and we are asked to recommend an arm for each bandit after a given number of pulls (budget).
The evaluation can be based on1) the average over the bandits of the reward of the recommended
arms, or2) the average probability of error (not selecting the best arm), or 3) the maximum prob-
ability of error. Note that this setting is different from the standard multi-armed bandit problem in
which the goal is to maximize the cumulative sum of rewards (see e.g., [9, 3]).

The pure exploration problem is about designing strategiesthat make the best use of the limited
budget (e.g., the total number of patients that can be admitted to the clinical trial) in order to optimize
the performance in a decision-making task. Audibert et al. [1] proposed two algorithms to address
this problem: 1) a highly exploring strategy based on upper confidence bounds, called UCB-E,
in which the optimal value of its parameter depends on some measure of the complexity of the
problem, and2) a parameter-free method based on progressively rejecting the arms which seem
to be suboptimal, called Successive Reject. They showed that both algorithms are optimal since
their probability of returning the wrong arm decreases exponentially at a rate which is optimal up
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to a logarithmic factor. However, these algorithms are designed for a single bandit problem, and
as we will discuss later, cannot be easily extended to the multi-bandit case studied in this paper.
Deng et al. have recently proposed an active learning algorithm for resource allocation over multiple
bandits [5]. However, they do not provide any theoretical analysis for their algorithm and only
empirically evaluate its performance. Moreover, the target of their proposed algorithm is to minimize
the maximum uncertainty in estimating the value of the arms for each bandit. Note that this is
different than our target, which is to maximize the quality of the arms recommended for each bandit.

In this paper, we study the problem of finding the best arm for each bandit in a multi-armed multi-
bandit setting, and propose an algorithm, called Gap-basedExploration (GapE), to solve it. The
allocation strategy implemented by GapE focuses on the gap of the arms, i.e., the difference be-
tween the mean of the arm and the mean of the best arm (in that bandit), and do not consider their
variances. In order to take into account both these factors,we propose the GapE-variance (GapE-V)
algorithm, in which the index of an arm is defined according toan empirical Bernstein’s inequal-
ity instead of the Chernoff-Hoeffding inequality used by GapE. For both algorithms, we prove an
upper-bound on the probability of error that decreases exponentially with the budget. Since both
GapE and GapE-V need to tune an exploration parameter that depends on the complexity of the
problem, which is rarely known in advance, we also introducetheir adaptive version. Finally, we
evaluate the performance of these algorithms and compare them withUniform andUniform+UCB-
E strategies on a number of synthetic problems. Our empiricalresults indicate that1) GapE and
GapE-V have a better performance thanUniformandUniform+UCB-E, and2) the adaptive version
of these algorithms do not perform worse than their non-adaptive counterparts.

2 Problem Setup
In this section, we introduce the notation used throughout the paper and formalize the multi-bandit
best arm identification problem. LetM be the number of bandits andKm be the number of arms
for banditm (we use indicesm, p, q for the bandits andk, i, j for the arms). In order to simplify the
notation, in the following we consider the case whereKm = K for all m, thus having a total number
of arms equal toMK. Each armk of a banditm is characterized by a distributionνmk bounded
in [0, b] with meanµmk and varianceσ2

mk. In the following, we also assume that each bandit has a
unique best arm. We denote byµ∗

m andk∗m the mean and the index of the best arm of banditm (i.e.,
µ∗
m = max1≤k≤K µmk, k∗m = argmax1≤k≤K µmk). Similarly, we useµ+

m andk+m as the second
best mean and the index of the second best arm of banditm (i.e., µ+

m = maxk 6=k∗

m
µmk, k+m =

argmaxk 6=k∗

m
µmk). In each banditm, we define the gap for all the suboptimal arms as∆mk =

µ∗
m − µmk with k 6= k∗m and for the optimal arm as∆mk∗

m
= ∆m = mink 6=k∗

m
∆mk. The gap for

both cases may be written as a single formula∆mk = |maxj 6=k µmj − µmk|.
The clinical trial problem described in Sec. 1 may be formalized as a game between a stochastic
multi-bandit environment and a forecaster. At the beginning, the distributions{νmk} are unknown
to the forecaster. At each roundt = 1, . . . , n, the forecaster pulls a bandit-arm pairI(t) = (m, k)
and observes a sample drawn from the distributionνI(t) independent from the past. The forecaster
estimates the expected value of each arm by computing the average of the samples observed over
time. LetTmk(t) be the number of times that armk of banditm has been pulled by the end of round
t, then the mean of this arm is estimated asµ̂mk(t) =

1
Tmk(t)

∑Tmk(t)
s=1 Xmk(s), whereXmk(s) is the

s-th sample observed fromνmk. Given the previous definition, we define the index of the bestand
the second best estimated arms ask̂∗m(t) = argmaxk µ̂mk(t) andk̂+m(t) = argmax

k 6=k̂∗

m(t) µ̂mk(t).

Finally, we define the estimated gaps as∆̂mk(t) = |maxj 6=k µ̂mj(t)− µ̂mk(t)|.
At the end of roundn, the forecaster returns for each banditm an armJm(n) corresponding to the
arm with the highest estimated mean, i.e.,Jm(n) = argmaxk µ̂mk(n), and incurs a regret

r(n) =
1

M

M∑

m=1

rm(n) =
1

M

M∑

m=1

(
µ∗
m − µmJm(n)

)
.

As discussed in the introduction, other performance measures can be defined for this problem. In
some applications, returning the wrong arm is considered asan error independently from its regret,
and thus, the objective is to minimize the average probability of error

e(n) =
1

M

M∑

m=1

em(n) =
1

M

M∑

m=1

P
(
Jm(n) 6= k∗

m

)
.
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Parameters: number of roundsn, exploration parametera, maximum rangeb
Initialize: Tmk(0) = 0, ∆̂mk(0) = 0 for all bandit-arm pairs(m, k)
for t = 1, 2, . . . , n do

ComputeBmk(t) = −∆̂mk(t− 1) + b
√

a

Tmk(t−1)
for all bandit-arm pairs(m,k)

Draw I(t) ∈ argmaxm,k Bmk(t)
ObserveXI(t)

(
TI(t)(t− 1) + 1

)
∼ νI(t)

Update TI(t)(t) = TI(t)(t− 1) + 1 and ∆̂mk(t) ∀k of the selected bandit
end for
ReturnJm(n) ∈ argmaxk∈{1,...,K} µ̂mk(n), ∀m ∈ {1 . . .M}

Figure 1: The pseudo-code of the gap-based Exploration (GapE) algorithm.

Finally, in problems similar to the clinical trial, a reasonable objective is to return the right treatment
for all the genetic profiles and not just to have a small average probability of error. In this case, the
global performance of the forecaster can be measured as

ℓ(n) = max
m

ℓm(n) = max
m

P
(
Jm(n) 6= k∗

m

)
.

It is interesting to note the relationship between these three performance measures:minm ∆m ×
e(n) ≤ Er(n) ≤ b×e(n) ≤ b×ℓ(n),where the expectation in the regret is w.r.t. the random samples.
As a result, any algorithm minimizing the worst case probability of error, ℓ(n), also controls the
average probability of error,e(n), and the simple regretEr(n). Note that the algorithms introduced
in this paper directly target the problem of minimizingℓ(n).

3 The Gap-based Exploration Algorithm

Fig. 1 contains the pseudo-code of the gap-based exploration (GapE) algorithm. GapE flattens the
bandit-arm structure and reduces it to a single-bandit problem withMK arms. At each time stept,
the algorithm relies on the observations up to timet − 1 to build an indexBmk(t) for each bandit-
arm pair, and then selects the pairI(t) with the highest index. The indexBmk consists of two
terms. The first term is the negative of the estimated gap for arm k in banditm. Similar to other
upper-confidence bound (UCB) methods [3], the second part isan exploration term which forces the
algorithm to pull arms that have been less explored. As a result, the algorithm tends to pull arms
with small estimated gap and small number of pulls. The exploration parametera tunes the level
of exploration of the algorithm. As it is shown by the theoretical analysis of Sec. 3.1, if the time
horizonn is known,a should be set toa = 4

9
n−K
H

, whereH =
∑

m,k b
2/∆2

mk is thecomplexityof
the problem (see Sec. 3.1 for further discussion). Note thatGapE differs from most standard bandit
strategies in the sense that theB-index for an arm depends explicitly on the statistics of theother
arms. This feature makes the analysis of this algorithm muchmore involved.

As we may notice from Fig. 1, GapE resembles the UCB-E algorithm [1] designed to solve the pure
exploration problem in the single-bandit setting. Nonetheless, the use of the negative estimated gap
(−∆̂mk) instead of the estimated mean (µ̂mk) (used by UCB-E) is crucial in the multi-bandit setting.
In the single-bandit problem, since the best and second bestarms have the same gap (∆mk∗

m
=

mink 6=k∗

m
∆mk), GapE considers them equivalent and tends to pull them the same amount of time,

while UCB-E tends to pull the best arm more often than the second best one. Despite this difference,
the performance of both algorithms in predicting the best arm aftern pulls would be the same. This is
due to the fact that the probability of error depends on the capability of the algorithm to distinguish
optimal and suboptimal arms, and this is not affected by a different allocation over the best and
second best arms as long as the number of pulls allocated to that pair is large enough w.r.t. their gap.
Despite this similarity, the two approaches become completely different in the multi-bandit case. In
this case, if we run UCB-E on all theMK arms, it tends to pull more the arm with the highest mean
over all the bandits, i.e.,k∗ = argmaxm,k µmk. As a result, it would be accurate in predicting the
best armk∗ over bandits, but may have an arbitrarily bad performance inpredicting the best arm for
each bandit, and thus, may incur a large errorℓ(n). On the other hand, GapE focuses on the arms
with the smallest gaps. This way, it assigns more pulls to bandits whose optimal arms are difficult
to identify (i.e., bandits with arms with small gaps), and asshown in the next section, it achieves a
high probability in identifying the best arm in each bandit.
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3.1 Theoretical Analysis
In this section, we derive an upper-bound on the probabilityof errorℓ(n) for the GapE algorithm.

Theorem 1. If we run GapE with parameter0 < a ≤ 4
9
n−MK

H
, then its probability of error satisfies

ℓ(n) = P
(
∃m : Jm(n) 6= k∗m

)
≤ 2MKn exp(− a

64
),

in particular for a = 4
9
n−MK

H
, we haveℓ(n) ≤ 2MKn exp(− 1

144
n−MK

H
).

Remark 1 (Analysis of the bound).If the time horizonn is known in advance, it would be possible
to set the exploration parametera as a linear function ofn, and as a result, the probability of error of
GapE decreases exponentially with the time horizon. The other interesting aspect of the bound is the
complexity termH appearing in the optimal value of the exploration parametera (i.e.,a = 4

9
n−K
H

).
If we denote byHmk = b2/∆2

mk, the complexity of armk in banditm, it is clear from the definition
of H that each arm has an additive impact on the overall complexity of the multi-bandit problem.
Moreover, if we define the complexity of each banditm asHm =

∑
k b

2/∆2
mk (similar to the

definition of complexity for UCB-E in [1]), the GapE complexity may be rewritten asH =
∑

m Hm.
This means that the complexity of GapE is simply the sum of thecomplexities of all the bandits.

Remark 2 (Comparison with the static allocation strategy).The main objective of GapE is to
tradeoff between allocating pulls according to the gaps (more precisely, according to the complex-
itiesHmk) and the exploration needed to improve the accuracy of theirestimates. If the gaps were
known in advance, a nearly-optimal static allocation strategy assigns to each bandit-arm pair a num-
ber of pulls proportional to its complexity. Let us considera strategy that pulls each arm a fixed
number of times over the horizonn. The probability of error for this strategy may be bounded as

ℓStatic(n) = P
(
∃m : Jm(n) 6= k∗

m

)
≤

M∑

m=1

P
(
Jm(n) 6= k∗

m

)
≤

M∑

m=1

∑

k 6=k∗

m

P
(
µ̂mk∗

m
(n) ≤ µ̂mk(n)

)

≤
M∑

m=1

∑

k 6=k∗

m

exp
(
− Tmk(n)

∆2
mk

b2
)
=

M∑

m=1

∑

k 6=k∗

m

exp
(
− Tmk(n)H

−1
mk

)
. (1)

Given the constraint
∑

mk Tmk(n) = n, the allocation minimizing the last term in Eq. 1 is
T ∗
mk(n) = nHmk/H . We refer to this fixed strategy asStaticGap. Although this is not neces-

sarily the optimal static strategy (T ∗
mk(n) minimizes an upper-bound), this allocation guarantees

a probability of error smaller thanMK exp(−n/H). Theorem 1 shows that, forn large enough,
GapE achieves the same performance as the static allocationStaticGap.

Remark 3 (Comparison with other allocation strategies).At the beginning of Sec. 3, we dis-
cussed the difference between GapE and UCB-E. Here we compare the bound reported in Theo-
rem 1 with the performance of theUniformand combinedUniform+UCB-Eallocation strategies. In
the uniform allocation strategy, the total budgetn is uniformly split over all the bandits and arms.
As a result, each bandit-arm pair is pulledTmk(n) = n/(MK) times. Using the same derivation as
in Remark 2, the probability of errorℓ(n) for this strategy may be bounded as

ℓUnif(n) ≤
M∑

m=1

∑

k 6=k∗

m

exp
(
− n

MK

∆2
mk

b2
)
≤ MK exp

(
− n

MK maxm,k Hmk

)
.

In the Uniform+UCB-E allocation strategy, i.e., a two-level algorithm that firstselects a bandit
uniformly and then pulls arms within each bandit using UCB-E, the total number of pulls for each
banditm is

∑
k Tmk(n) = n/M , while the number of pullsTmk(n) over the arms in banditm is

determined by UCB-E. Thus, the probability of error of this strategy may be bounded as

ℓUnif+UCB-E(n) ≤
M∑

m=1

2nK exp
(
− n/M −K

18Hm

)
≤ 2nMK exp

(
− n/M −K

18maxm Hm

)
,

where the first inequality follows from Theorem 1 in [1] (recall thatHm =
∑

k b
2/∆2

mk). Let b = 1
(i.e., all the arms have distributions bounded in[0, 1]), up to constants and multiplicative factors in
front of the exponentials, and ifn is large enough compared toM andK (so as to approximate
n/M −K andn−K by n), the probability of error for the three algorithms may be bounded as

4



ℓUnif(n) ≤ exp
(
O
( −n/MK

max
m,k

Hmk

))
, ℓU+UCBE(n) ≤ exp

(
O
( −n/M

max
m

Hm

))
, ℓGapE(n) ≤ exp

(
O
( −n∑
m,k

Hmk

))
.

By comparing the arguments of the exponential terms, we havethe trivial sequence of inequalities
MKmaxm,k Hmk ≥ M maxm

∑
k Hmk ≥

∑
m,k Hmk, which implies that the upper bound on the

probability of error of GapE is usually significantly smaller. This relationship, which is confirmed
by the experiments reported in Sec. 4, shows that GapE is ableto adapt to the complexityH of
the overall multi-bandit problem better than the other two allocation strategies. In fact, while the
performance of theUniform strategy depends on the mostcomplexarm over the bandits and the
strategyUnif+UCB-E is affected by the most complex bandit, the performance of GapE depends on
the sum of the complexities of all the arms involved in the pure exploration problem.

Proof of Theorem 1.Step 1.Let us consider the following event:

E =

{
∀m ∈ {1, . . . ,M}, ∀k ∈ {1, . . . ,K}, ∀t ∈ {1, . . . , n},

∣∣µ̂mk(t)− µmk

∣∣ < bc

√
a

Tmk(t)

}
.

From Chernoff-Hoeffding’s inequality and a union bound, wehaveP(ξ) ≥ 1−2MKn exp(−2ac2).
Now we would like to prove that on the eventE , we find the best arm for all the bandits, i.e.,Jm(n) =
k∗m, ∀m ∈ {1 . . .M}. SinceJm(n) is the empirical best arm of banditm, we should prove that for
anyk ∈ {1, . . . ,K}, µ̂mk(n) ≤ µ̂mk∗

m
(n). By upper-bounding the LHS and lower-bounding the

RHS of this inequality, we note that it would be enough to prove bc
√
a/Tmk(n) ≤ ∆mk/2 on the

eventE , or equivalently, to prove that for any bandit-arm pairm, k, we haveTmk(n) ≥ 4ab2c2

∆2
mk

.

Step 2. In this step, we show that in GapE, for any bandits(m, q) and arms(k, j), and for any
t ≥ MK, the following dependence between the number of pulls of thearms holds

−∆mk + (1 + d)b

√
a

max
(
Tmk(t)− 1, 1

) ≥ −∆qj + (1− d)b

√
a

Tqj(t)
, (2)

whered ∈ [0, 1]. We prove this inequality by induction.

Base step.We know that after the firstMK rounds of the GapE algorithm, all the arms have been
pulled once, i.e.,Tmk(t) = 1, ∀m, k, thus ifa ≥ 1/4d2, the inequality (2) holds fort = MK.

Inductive step.Let us assume that (2) holds at timet − 1 and we pull armi of banditp at timet,
i.e., I(t) = (p, i). So at timet, the inequality (2) trivially holds for every choice ofm, q, k, and
j, except when(m, k) = (p, i). As a result, in the inductive step, we only need to prove thatthe
following holds for anyq ∈ {1, . . .M} andj ∈ {1, . . .K}

−∆pi + (1 + d)b

√
a

max
(
Tpi(t)− 1, 1

) ≥ −∆qj + (1− d)b

√
a

Tqj(t)
. (3)

Since armi of banditp has been pulled at timet, we have that for any bandit-arm pair(q, j)

−∆̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ −∆̂qj(t− 1) + b

√
a

Tqj(t− 1)
. (4)

To prove (3), we first prove an upper-bound for−∆̂pi(t− 1) and a lower-bound for−∆̂qj(t− 1)

−∆̂pi(t−1) ≤ −∆pi+
2bc

1− c

√
a

Tpi(t)− 1
and −∆̂qj(t−1) ≥ −∆qj−

2
√
2bc

1− d

√
a

Tqj(t)
. (5)

Due to space limitation, we report the proofs of the inequalities in (5) in Appendix B. The inequal-
ity (3), and as a result, the inductive step is proved by replacing−∆̂pi(t− 1) and−∆̂qj(t− 1) in (4)

from (5) and under the conditions thatd ≥ 2c
1−c

andd ≥ 2
√
2c

1−d
. These two conditions are satisfied

for d = 1/2 andc =
√
2/16.

Step 3. In order to prove the condition ofTmk(n) in step 1, we need to find a lower-bound on the
number of pulls of all the arms at timet = n (at the end). Let us assume that armk of banditm has

5



been pulled less thanab
2(1−d)2

∆2
mk

, which indicates that−∆mk + (1 − d)b
√

a
Tmk(n)

> 0. From this

result and (2), we have−∆qj + (1 + d)b
√

a
Tqj(n)−1 > 0, or equivalentlyTqj(n) <

ab2(1+d)2

∆2
qj

+ 1

for any pair(q, j). We also know that
∑

q,j Tqj(n) = n. From these, we deduce thatn −MK <

ab2(1+d)2
∑

q,j
1

∆2
qj

. So, if we selecta such thatn−MK ≥ ab2(1+d)2
∑

q,j
1

∆2
qj

, we contradict

the first assumption thatTmk(n) < ab2(1−d)2

∆2
mk

, which means thatTmk(n) ≥ 4ab2c2

∆2
mk

for any pair

(m, k), when1 − d ≥ 2c. This concludes the proof. The condition fora in the statement of the
theorem comes from our choice ofa in this step and the values ofc andd from the inductive step.

3.2 Extensions
In this section we propose two variants on the GapE algorithmwith the objective of extending its
applicability and improving its performance.

GapE with variance (GapE-V).The allocation strategy implemented by GapE focuses only onthe
arms with small gap and does not take into consideration their variance. However, it is clear that the
arms with small variance, even if their gap is small, just need a few pulls to be correctly estimated. In
order to take into account both the gaps and variances of the arms, we introduce the GapE-variance
(GapE-V) algorithm. Let̂σ2

mk(t) =
1

Tmk(t)−1

∑Tmk(t)
s=1 X2

mk(s)− µ̂2
mk(t) be the estimated variance

for armk of banditm at the end of roundt. GapE-V uses the following B-index for each arm:

Bmk(t) = −∆̂mk(t− 1) +

√
2a σ̂2

mk(t− 1)

Tmk(t− 1)
+

7ab

3
(
Tmk(t− 1)− 1

) .

Note that the exploration term in the B-index has now two components: the first one depends on the
empirical variance and the second one decreases asO(1/Tmk). As a result, arms with low variance
will be explored much less than in the GapE algorithm. Similar to the difference between UCB [3]
and UCB-V [2], while the B-index in GapE is motivated by Chernoff-Hoeffding inequalities,
the one for GapE-V is obtained using an empirical Bernstein’s inequality [8, 2]. The following
performance bound can be proved for GapE-V algorithm. Due tospace limitation, we report the
proof of Theorem 2 in Appendix C.

Theorem 2. If GapE-V is run with parameter0 < a ≤ 8
9
n−2MK

Hσ , then it satisfies

ℓ(n) = P
(
∃m : Jm(n) 6= k∗m

)
≤ 6nMK exp

(
− 9a

64× 64

)

in particular for a = 8
9
n−2MK

Hσ , we haveℓ(n) ≤ 6nMK exp
(
− 1

64×8
n−2MK

Hσ

)
.

In Theorem 2,Hσ is the complexity of the GapE-V algorithm and is defined as

Hσ =
M∑

m=1

K∑

k=1

(
σmk +

√
σ2
mk + (16/3)b∆mk

)2

∆2
mk

.

Although the variance-complexityHσ could be larger than the complexityH used in GapE, when-
ever the variances of the arms are small compared to the rangeb of the distribution, we expectHσ to
be smaller thanH . Furthermore, if the arms have very different variances, then GapE-V is expected
to better capture the complexity of each arm and allocate thepulls accordingly. For instance, let us
consider the case where all the gaps are the same. In this case, since GapE tends to allocate pulls
proportionally to the complexityHmk, it would perform an almost uniform allocation over bandits
and arms. On the other hand, the variances of the arms could bevery heterogeneous and GapE-V
would adapt the allocation strategy by pulling more often the arms whose values are more uncertain.

Adaptive GapE and GapE-V. A drawback of GapE and GapE-V is that the exploration parameter
a should be tuned according to the complexitiesH andHσ of the multi-bandit problem, which are
rarely known in advance. A straightforward solution to thisissue is to move to an adaptive version
of these algorithms by substitutingH andHσ with suitable estimateŝH andĤσ. At each stept of
the adaptive GapE and GapE-V algorithms, we estimate these complexities as

Ĥ(t) =
∑

m,k

b2

UCB∆i
(t)2

, Ĥσ(t) =
∑

m,k

(
LCBσi

(t) +
√

LCBσi
(t)2 + (16/3)b × UCB∆i

(t)
)2

UCB∆i
(t)2

, where
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Figure 2:(left) Problem 1: Comparison between GapE, adaptive GapE, and the uniform strategies.
(right) Problem 2: Comparison between GapE, GapE-V, and adaptive GapE-V algorithms.

UCB∆i
(t) = ∆̂i(t− 1) +

√
1

2Ti(t− 1)
and LCBσi

(t) = max

(
0, σ̂i(t− 1)−

√
2

Ti(t− 1)− 1

)
.

Similar to the adaptive version of UCB-E in [1],̂H andĤσ are lower-confidence bounds on the true
complexitiesH andHσ. Note that the GapE and GapE-V bounds written for the optimalvalue ofa
indicate an inverse relation between the complexity and theexploration. By using a lower-bound on
the trueH andHσ, wheneverĤ andĤσ are not accurate, the algorithms tend to explore arms more
uniformly and this allows them to increase the accuracy of their estimated complexities. Although
we do not analyze these algorithms in this paper, we empirically show in Sec. 4 that they are in fact
able to match the performance of the GapE and GapE-V algorithms.

4 Numerical Simulations
In this section, we report numerical simulations of the gap-based algorithms presented in this paper,
GapE and GapE-V, and their adaptive versions A-GapE and A-GapE-V, and compare them withUnif
andUnif+UCB-E algorithms introduced in Sec. 3.1. The results of our experiments both those in
this section and those in Appendix A indicate that1) GapE successfully adapts its allocation strategy
to the complexity of each bandit and outperforms the uniformallocation strategies,2) the use of the
empirical variance in GapE-V can significantly improve the performance over GapE, and3) the
adaptive versions of GapE and GapE-V that estimate the complexitiesH andHσ online attain the
same performance as the basic algorithms, which receiveH andHσ as an input.

Experimental setting. We use the following three problems in our experiments. Notethat b = 1
and that a Rademacher distribution with parameters(x, y) takes valuex or y with probability1/2.

• Problem 1.n = 700, M = 2, K = 4. The arms have Bernoulli distribution with parameters:
bandit 1= (0.5, 0.45, 0.4, 0.3), bandit 2= (0.5, 0.3, 0.2, 0.1).
• Problem 2. n = 1000, M = 2, K = 4. The arms have Rademacher distribution
with parameters(a, b): bandit 1= {(0, 1.0), (0.45, 0.45), (0.25, 0.65), (0, 0.9)} and inbandit 2=
{(0.4, 0.6), (0.45, 0.45), (0.35, 0.55), (0.25, 0.65)}.
• Problem 3. n = 1400, M = 4, K = 4. The arms have Rademacher distri-
bution with parameters(a, b): bandit 1 = {(0, 1.0), (0.45, 0.45), (0.25, 0.65), (0, 0.9)}, ban-
dit 2 = {(0.4, 0.6), (0.45, 0.45), (0.35, 0.55), (0.25, 0.65)}, bandit 3 = {(0, 1.0), (0.45, 0.45),
(0.25, 0.65), (0, 0.9)}, andbandit 4= {(0.4, 0.6), (0.45, 0.45), (0.35, 0.55), (0.25, 0.65)}.

All the algorithms, except the uniform allocation, have an exploration parametera. The theoretical
analysis suggests thata should be proportional ton

H
. Althougha could be optimized according to the

bound, since the constants in the analysis are not accurate,we will run the algorithms witha = η n
H

,
whereη is a parameter which is empirically tuned (in the experiments we report four different values
for η). If H correctly defines the complexity of the exploration problem(i.e., the number of samples
to find the best arms with high probability),η should simply correct the inaccuracy of the constants
in the analysis, and thus, the range of its nearly-optimal values should be constant across different
problems. InUnif+UCB-E, UCB-E is run with the budget ofn/M and the same parameterη for all
the bandits. Finally, we setn ≃ Hσ, since we expectHσ to roughly capture the number of pulls
necessary to solve the pure exploration problem with high probability. In Figs. 2 and 3, we report
the performancel(n), i.e. the probability to identify the best arm in all the bandits aftern rounds,
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Figure 3: Performance of the algorithms in Problem 3.

of the gap-based algorithms as well asUnif andUnif+UCB-E strategies. The results are averaged
over105 runs and the error bars correspond to three times the estimated standard deviation. In all
the figures the performance ofUnif is reported as a horizontal dashed line.

The left panel of Fig. 2 displays the performance ofUnif+UCB-E, GapE, and A-GapE in Problem1.
As expected,Unif+UCB-E has a better performance (23.9% probability of error) thanUnif (29.4%
probability of error)), since it adapts the allocation within each bandit so as to pull more often the
nearly-optimal arms. However, the two bandit problems are not equally difficult. In fact, their
complexities are very different (H1 ≃ 925 andH2 ≃ 67), and thus, much less samples are needed
to identify the best arm in the second bandit than in the first one. UnlikeUnif+UCB-E, GapE
adapts its allocation strategy to the complexities of the bandits (on average only19% of the pulls are
allocated to the second bandit), and at the same time to the arm complexities within each bandit (in
the first bandit the averaged allocation of GapE is(37%, 36%, 20%, 7%)). As a result, GapE has a
probability of error of15.7%, which represents a significant improvement overUnif+UCB-E.

The right panel of Fig. 2 compares the performance of GapE, GapE-V, and A-GapE-V in Problem 2.
In this problem, all the gaps are equals (∆mk = 0.05), thus all the arms (and bandits) have the same
complexityHmk = 400. As a result, GapE tends to implement a nearly uniform allocation, which
results in a small difference betweenUnif and GapE (28% and25% accuracy, respectively). The
reason why GapE is still able to improve overUnif may be explained by the difference between static
and dynamic allocation strategies and it is further investigated in Appendix A. Unlike the gaps, the
variance of the arms is extremely heterogeneous. In fact, the variance of the arms of bandit1 is
bigger than in bandit2, thus making it harder to solve. This difference is capturedby the definition
of Hσ (Hσ

1 ≃ 1400 > Hσ
2 ≃ 600). Note also thatHσ ≤ H . As discussed in Sec. 3.2, since

GapE-V takes into account the empirical variance of the arms, it is able to adapt to the complexity
Hσ

mk of each bandit-arm pair and to focus more on uncertain arms. GapE-V improves the final
accuracy by almost10% w.r.t. GapE. From both panels of Fig. 2, we also notice that the adaptive
algorithms achieve similar performance to their non-adaptive counterparts. Finally, we notice that
a good choice of parameterη for GapE-V is always close to2 and4 (see also Appendix A for
additional experiments), while GapE needsη to be tuned more carefully, particularly in Problem 2
where the large values ofη try to compensate the fact thatH does not successfully capture the real
complexity of the problem. This further strengthens the intuition thatHσ is a more accurate measure
of the complexity for the multi-bandit pure exploration problem.

While Problems 1 and 2 are relatively simple, we report the results of the more complicated Prob-
lem 3 in Fig. 3. The experiment is designed so that the complexity w.r.t. the variance of each bandit
and within each bandit is strongly heterogeneous. In this experiment, we also introduce UCBE-V
that extends UCB-E by taking into account the empirical variance similarly to GapE-V. The re-
sults confirm the previous findings and show the improvement achieved by introducing empirical
estimates of the variance and allocating non-uniformly over bandits. Additional experiments are
reported in Appendix A.

5 Conclusion
In this paper, we studied the problem of best arm identification in a multi-bandit multi-armed setting.
We introduced a gap-based exploration algorithm, called GapE, and proved an upper-bound for its
probability of error. We extended the basic algorithm to also consider the variance of the arms
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and proved an upper-bound for its probability of error. We also introduced adaptive versions of
these algorithms that estimate the complexity of the problem online. The numerical simulations
confirmed the theoretical findings that GapE and GapE-V outperform other allocation strategies,
and moreover, their adaptive counterparts are able to estimate the complexity without worsening the
global performance.

Although GapE does not know the gaps, the experimental results reported in Appendix A indicate
that it might outperform a static allocation strategy, which knows the gaps in advance. This evidence
suggests that an adaptive strategy could perform better than a static one, however, this observation
asks for further investigation. Moreover, we plan to apply the algorithms introduced in this paper
to the problem of rollout allocation for classification-based policy iteration in reinforcement learn-
ing [7, 6], where the goal is to identify the greedy action (arm) in each of the states (bandit) in a
training set.
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perimental testbed (https://www.grid5000.fr). This workwas supported by Ministry of Higher Edu-
cation and Research, Nord-Pas de Calais Regional Council and FEDER through the “contrat de pro-
jets état region 2007–2013”, French National Research Agency (ANR) under project LAMPADA
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A Additional Simulations

A.1 Twin Bandits

• Problem 4:n = 3000, M = 4, K = 4. The4 bandits are identical. The arms have Bernoulli
distributions with the following means:(0.5, 0.45, 0.4, 0.3).

In this problem the bandits are identical. Therefore it seems intuitive to allocate the same budget
to all the bandits. So we would expect GapE and Unif+UCB-E to have the same performance. In
Figure A.1, we report their performance and notice that GapEperforms significantly better than
Unif+UCB-E.
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Figure 4: Problem 4: The benefit of adaptive allocation over the bandits in the twin bandits problem.

This suggests that dynamic allocation strategies (GapE) might outperform static allocation strategies
(Unif+UCB-E). A possible explanation for this result is that GapE is able to adapt to theactual
observations. For example, in one bandit, it can happen thatthe observations from best arm lead to
an empirical mean which is bigger than its true mean, while the suboptimal arms have an empirical
average lower than their true mean. For this specific realization, the complexity of the task is much
smaller than expected. The opposite can happen in the other bandit, thus making it harder than
expected. In this case, more pulls should be allocated to thesecond bandit because its complexity in
this particular realization of the problem is bigger than the one of the first bandit. As GapE adapts
to the complexity of each realization of the problem, it seems to successfully adapt to the specific
“empirical” complexity of the bandits and to obtain a betterperformance w.r.t. an allocation which
statically chooses the number of pulls on the basis of the gaps.

This result shows a potential advantage of dynamic strategies w.r.t. static strategies and it asks for a
more thorough investigation.

A.2 Comparing all the algorithms

In the three following problems, we randomly generated the parametersa andb of the Rademacher
distributions. In order to test the robustness of the algorithms we design problems where the number
of arms goes from9 to 40.

The results mostly confirm the experiments reported in the main paper. In fact, in all this problems
all the gap-based algorithms outperform the Unif+UCB-E algorithms. Furthermore, it can be noticed
that taking into account the variance leads to an extra improvement of the performance.

Both in those experiments and those from the main paper, we notice that GapE-V has its best perfor-
mance when the exploration parameterη is in the interval[2−4]. This strengthens the claim that the
complexityHσ is a good measure of the complexity for any given problem. Moreover this makes
the algorithms easy to use as it gives a strong a priori on how to tune the exploration parameterη .
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Figure 5: Performances of all the algorithms in Problem 5.
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Figure 6: Performances of all the algorithms in Problem 6.

• Problem 5:n = 400, M = 4, K = 4. The arms have Rad(a, b) distributions with the following
couples of parameters:

Bandit1:
{
(0.15, 0.55), (0.25, 0.5), (0.15, 0.2), (0.75, 0.8)

}

Bandit2:
{
(0.25, 0.45), (0.45, 0.85), (0.2, 0.8), (0.2, 0.8)

}

Bandit3:
{
(0.5, 1.0), (0.6, 0.75), (0.5, 0.6), (0.2, 0.4)

}

Bandit4:
{
(0, 0.9), (0, 0.5), (0.5, 0.5), (0.3, 0.85)

}

In Figure 5, we report the performance of all the algorithms in Problem5.

• Problem 6:n = 700, M = 3, K = 3. The arms have Rad(a, b) distributions with the following
couples of parameters:

Bandit1:
{
(0.65, 1.0), (0.35, 0.95), (0.15, 0.6)

}

Bandit2:
{
(0.3, 0.5), (0.5, 0.6), (0.3, 0.6)

}

Bandit3:
{
(0.0, 0.45), (0.3, 0.9), (0.55, 0.6)

}

In Figure 6, we report the performance of all the algorithms in Problem6. In this problem, we
notice that Unif+UCB-E performs worse than Uniform. In bandit 3, the gap between arm2 and
arm 3 is very small (= 0.025). Therefore the complexity H of this bandit is high,H3 ≃ 3000.
However the variance of arm3 in bandit3 is really small, thus makingH not representative of the
true hardness to solve this bandit. The budgetn in this experiment is set to700 and, as a result,
the budget allocated to the bandit3 in Unif+UCBE is233. This budget is small with respect to the
complexityH , therefore the exploration term of UCB-E will be small and almost no exploration will
be done in this bandit. This leads Unif+UCB-E to performanceworse than Unif. Notice that when
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Figure 7: Performances of all the algorithms in Problem 7.

the exploration parameterη tends to infinity, UCB-E becomes equivalent to the Uniform algorithm.
Therefore one can still recover the performance of the Uniform algorithm by settingη ≫ 1.

• Problem 7:n = 1500,M = 10,K = 4. The arms have Rad(a, b) distributions with the following
couples of parameters:

Bandit1:
{
(0.9, 0.9), (0.5, 0.7), (0, 0.55), (0.15, 0.25)

}

Bandit2:
{
(0.15, 0.60), (0.35, 0.75), (0.4, 0.85), (0.15, 0.65)

}

Bandit3:
{
(0.4, 0.55), (0.05, 0.85), (0, 0.45), (0.2, 0.25)

}

Bandit4:
{
(0.85, 1.0), (0.15, 0.35), (0.2, 0.4), (0.15, 0.9)

}

Bandit5:
{
(0.25, 0.75), (0.15, 0.75), (0.9, 0.95), (0.4, 0.95)

}

Bandit6:
{
(0.45, 0.65), (0.85, 1.0), (0.4, 0.8), (0.2, 0.9)

}

Bandit7:
{
(0, 0.85), (0.3, 0.5), (0.4, 1.0), (0.35, 0.4)

}

Bandit8:
{
(0.55, 0.85), (0.35, 0.75), (0.35, 0.5), (0.25, 1.0)

}

Bandit9:
{
(0.4, 0.6), (0.55, 0.95), (0.15, 0.6), (0.1, 0.8)

}

Bandit10:
{
(0.05, 0.3), (0.8, 0.85), (0.2, 0.75), (0.2, 0.75)

}
.

In Figure 7, we report the performance of all the algorithm inProblem7.
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B Proof of Theorem 1

Part 1. Upper Bound

Here we prove that−∆̂pi(t−1) ≤ −∆pi+
2bc
1−c

√
a

Tpi(t)−1 , where armi of banditp is the arm pulled

at timet. This means thatTpi(t−1) = Tpi(t)−1. We consider the following four cases for this proof.

Case 1. i = k̂∗p(t− 1) and i = k∗p

The pulled armi is both the best arm and the best empirical arm at timet of banditp. Here we may
write

−∆̂pi(t− 1) = µ̂
pk̂

+
p (t−1)

(t− 1)− µ̂pi(t− 1) ≤ µ
pk̂

+
p (t−1)

− µpi + bc

√
a

T
pk̂

+
p (t−1)

(t− 1)
+ bc

√
a

Tpi(t− 1)

(a)
≤ µ

pk̂
+
p (t−1)

− µpi + 2bc

√
a

Tpi(t− 1)

≤ µ
pk

+
p
− µpi + 2bc

√
a

Tpi(t− 1)

= −∆pi + 2bc

√
a

Tpi(t)− 1
≤ −∆pi +

2bc

1− c

√
a

Tpi(t)− 1
.

(a) Since armi of banditp is pulled at timet, from (4) we have

−∆̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ −∆̂

pk̂
+
p (t−1)

(t− 1) + b

√
a

T
pk̂

+
p (t−1)

(t− 1)
.

We also know by definition that∆̂pi(t − 1) = ∆̂
pk̂

+
p (t−1)(t − 1), which gives us√

a
Tpi(t−1) ≥

√
a

T
pk̂

+
p (t−1)

(t−1) .

Case 2. i = k̂∗p(t− 1) and i 6= k∗p

The pulled armi is the best empirical arm at timet, but not the best arm, of banditp. Here we may
write

−∆̂pi(t− 1) = µ̂
pk̂

+
p (t−1)

(t− 1)− µ̂pi(t− 1) ≤ µ̂
pk̂∗

p(t−1)(t− 1) − µ̂pk∗

p

≤ µpi − µpk∗

p
+ bc

√
a

Tpi(t− 1)
+ bc

√
a

Tpk∗

p
(t− 1)

(b)
≤ µpi − µpk∗

p
+ bc

√
a

Tpi(t− 1)
+ bc

1 + c

1− c

√
a

Tpi(t− 1)

= −∆pi +
2bc

1− c

√
a

Tpi(t− 1)
.

(b) Since armi of banditp is pulled at timet, from (4) we have

−∆̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ −∆̂pk∗

p
(t− 1) + b

√
a

Tpk∗

p
(t− 1)

µ̂
pk̂

+
p (t−1)

(t− 1) + b

√
a

Tpi(t− 1)
≥ µ̂pk∗

p
(t− 1) + b

√
a

Tpk∗

p
(t− 1)

µ̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ µ̂pk∗

p
(t− 1) + b

√
a

Tpk∗

p
(t− 1)
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µpi + (1 + c)b

√
a

Tpi(t− 1)
≥ µpk∗

p
+ (1− c)b

√
a

Tpk∗

p
(t− 1)

.

We also know that by definitionµpk∗

p
> µpi, which gives us1+c

1−c

√
a

Tpi(t−1) >
√

a
Tpk∗

p
(t−1) .

Case 3. i 6= k̂∗p(t− 1) and i = k∗p

The pulled armi is the best arm, but not the best empirical arm at timet, of banditp. Here we may
write

−∆̂pi(t− 1) = µ̂pi(t− 1) − µ̂
pk̂∗

p(t−1)(t− 1) ≤ µ̂
pk̂∗

p(t−1)(t− 1) − µ̂pk∗

p
(t− 1)

≤ µ
pk̂∗

p(t−1) − µpk∗

p
+ bc

√
a

T
pk̂∗

p(t−1)(t− 1)
+ bc

√
a

Tpi(t− 1)

(c)
≤ µ

pk
+
p
− µpk∗

p
+ bc

√
a

Tpi(t− 1)
+ bc

√
a

Tpi(t− 1)

= −∆pi + 2bc

√
a

Tpi(t− 1)
≤ −∆pi +

2bc

1− c

√
a

Tpi(t− 1)
.

(c) Since armi of banditp is pulled at timet, from (4) we have

−∆̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ −∆̂

pk̂∗

p(t−1)(t− 1) + b

√
a

T
pk̂∗

p(t−1)(t− 1)

We also know that by definition−∆̂
pk̂∗

p(t−1)(t − 1) ≥ −∆̂pi(t − 1), which gives us
√

a
Tpi(t−1) ≥

√
a

T
pk̂∗

p(t−1)
(t−1) .

Case 4. i 6= k̂∗p(t− 1) and i 6= k∗p

The pulled armi is neither the best arm nor the best empirical arm at timet of banditp. Here we
may write

−∆̂pi(t− 1) = µ̂pi(t− 1) − µ̂
pk̂∗

p(t−1)(t− 1) ≤ µpi − µ̂pk∗

p
(t− 1) + bc

√
a

Tpi(t− 1)

≤ µpi − µpk∗

p
+ bc

√
a

Tpi(t− 1)
+ bc

√
a

Tpk∗

p
(t− 1)

(d)
≤ µpi − µpk∗

p
+ bc

√
a

Tpi(t− 1)
+ bc

1 + c

1− c

√
a

Tpi(t− 1)

= −∆pi +
2bc

1− c

√
a

Tpi(t− 1)
.

(d) Since armi of banditp is pulled at timet, from (4) we have

−∆̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ −∆̂pk∗

p
(t− 1) + b

√
a

Tpk∗

p
(t− 1)

. (6)

If k∗p = k̂∗p(t− 1), we may write (6) as

µ̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ µ̂

pk̂
+
p (t−1)

(t− 1) + b
√

a

Tpk∗

p
(t− 1)

.
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We also know that by definition̂µ
pk̂

+
p (t−1)(t − 1) ≥ µ̂pi(t − 1), which gives us

√
a

Tpi(t−1) ≥
√

a
Tpk∗

p
(t−1) .

Now if k∗p 6= k̂∗p(t− 1), we may write (6) as

µ̂pi(t− 1) + b

√
a

Tpi(t− 1)
≥ µ̂pk∗

p
(t− 1) + b

√
a

Tpk∗

p
(t− 1)

µpi + (1 + c)b

√
a

Tpi(t− 1)
≥ µpk∗

p
+ (1− c)b

√
a

Tpk∗

p
(t− 1)

.

We also know that by definitionµpk∗

p
> µpi, which gives us1+c

1−c

√
a

Tpi(t−1) >
√

a
Tpk∗

p
(t−1) .

Part 2. Lower Bound

Here we prove that−∆̂qj(t − 1) ≥ −∆qj − 2
√
2bc

1−d

√
a

Tqj(t)
for all banditsq ∈ {1, . . .M}

and all armsj ∈ {1, . . .K}, such that the armj of bandit q is not the one pulled at timet,
i.e., (q, j) 6= (p, i). This means thatTqj(t − 1) = Tqj(t). Similar to the proof for the upper-bound
in Part 1, we consider the following four cases here.

Case 1. j = k̂∗q (t− 1) and j = k∗q

The armj is both the best arm and the best empirical arm at timet of banditq. Here we may write

−∆̂qj(t− 1) = µ̂
qk̂

+
q (t−1)

(t− 1)− µ̂qj(t− 1) ≥ µ̂
qk

+
q
− µqj − bc

√
a

Tqj(t− 1)

≥ µ
qk

+
q
− µqj − bc

√
a

T
qk

+
q
(t− 1)

− bc

√
a

Tqj(t− 1)

(e)
≥ −∆qj −

√
2bc

1 + d

1− d

√
a

Tqj(t)
− bc

√
a

Tqj(t)
≥ −∆qj − 2

√
2bc

1− d

√
a

Tqj(t)
.

(e)From the inductive assumption, we have

−∆qj + (1 + d)b
√

a

max
(
Tqj(t− 1)− 1, 1

) ≥ −∆
qk

+
q
+ (1− d)b

√
a

T
qk

+
q
(t− 1)

.

We know that by definition−∆qk
+
q

= −∆qj , which gives us1+d
1−d

√
a

max
(
Tqj(t−1)−1,1

) ≥
√

a
T
qk

+
q
(t−1) . Finally, we have

a

max
(
Tqj(t− 1) − 1, 1

) =
Tqj(t− 1)

max
(
Tqj(t− 1)− 1, 1

) a

Tqj(t− 1)
≤ 2

a

Tqj(t− 1)
, (7)

which gives us the result.

Case 2. j = k̂∗q (t− 1) and j 6= k∗q

The armj is the best empirical arm at timet, but not the best arm, of banditq. Here we may write

−∆̂qj(t− 1) = µ̂
qk̂

+
q (t−1)

(t− 1)− µ̂qj(t− 1) ≥ µ̂qk∗

q
(t− 1)− µ̂qj(t− 1)

≥ µqk∗

q
− µqj − bc

√
a

Tqk∗

q
(t− 1)

− bc

√
a

Tqj(t− 1)
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(f)
≥ −∆qj −

√
2bc

1 + d

1− d

√
a

Tqj(t)
− bc

√
a

Tqj(t)
≥ −∆qj −

2
√
2bc

1− d

√
a

Tqj(t)
.

(f) From the inductive assumption, we have

−∆qj + (1 + d)b
√

a

max
(
Tqj(t− 1)− 1, 1

) ≥ −∆qk∗

q
+ (1− d)b

√
a

Tqk∗

q
(t− 1)

.

We know that by definition−∆qk∗

q
≥ −∆qj , which gives us1+d

1−d

√
a

max
(
Tqj(t−1)−1,1

) ≥
√

a
Tqk∗

q
(t−1) . The claim follows using Eq. 7.

Case 3. j 6= k̂∗q (t− 1) and j = k∗q

The armj is the best arm, but not the best empirical arm at timet, of banditq. Here we may write

−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1) ≥ µqk∗

q
− µ

qk̂∗

q (t−1) − bc

√
a

Tqj(t− 1)
− bc

√
a

T
qk̂∗

q (t−1)(t− 1)

(g)
≥ ∆

qk̂∗

q (t−1) +
c

1− d
(∆qj −∆

qk̂∗

q (t−1))− bc

√
a

Tqj(t− 1)
−

√
2bc

1 + d

1− d

√
a

Tqj(t− 1)

≥ c

1− d
∆qj + (1− c

1− d
)∆

qk̂∗

q (t−1) − bc

√
a

Tqj(t)
−

√
2bc

1 + d

1− d

√
a

Tqj(t)

(h)
≥ −∆qj − bc

√
a

Tqj(t)
−

√
2bc

1 + d

1− d

√
a

Tqj(t)
≥ −∆qj −

2
√
2bc

1− d

√
a

Tqj(t)
.

(g) From the inductive assumption, we have

−∆qj + (1 + d)b
√

a

max
(
Tqj(t− 1)− 1, 1

) ≥ −∆
qk̂∗

q (t−1) + (1− d)b

√
a

T
qk̂∗

q (t−1)(t− 1)
,

or equivalently

−bc

√
a

T
qk̂∗

q (t−1)(t− 1)
≥ c

1− d

(
∆qj −∆

qk̂∗

q (t−1)

)
− bc

1 + d

1− d

√
a

max
(
Tqj(t− 1)− 1, 1

) . (8)

The claim follows using Eqs. 8 and 7.

(h) This passage is true when0 ≤ c
1−d

≤ 1.

Case 4. j 6= k̂∗q (t− 1) and j 6= k∗q

The pulled armj is neither the best arm nor the best empirical arm at timet of banditq. Here we
may write

−∆̂qj(t−1) = µ̂qj(t−1)− µ̂
qk̂∗

q (t−1)(t−1) ≥ µqj−µ
qk̂∗

q (t−1)−bc

√
a

Tqj(t− 1)
−bc

√
a

T
qk̂∗

q (t−1)(t− 1)
.

(9)

If k̂∗q (t− 1) = k∗q , we may write (9) as
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−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1) ≥ µqj − µ
qk̂∗

q (t−1) − bc

√
a

Tqj(t− 1)
− bc

√
a

T
qk̂∗

q (t−1)(t− 1)

≥ −∆qj − bc

√
a

Tqj(t− 1)
− bc

√
a

T
qk̂∗

q (t−1)(t− 1)

(I)
≥ −∆qj − bc

√
a

Tqj(t)
−

√
2bc

1 + d

1− d

√
a

Tqj(t)
≥ −∆qj − 2

√
2bc

1− d

√
a

Tqj(t)
.

(I) From the inductive assumption, we have

−∆qj + (1 + d)b
√

a

max
(
Tqj(t− 1)− 1, 1

) ≥ −∆
qk̂∗

q (t−1) + (1− d)b

√
a

T
qk̂∗

q (t−1)(t− 1)
.

We know that by definition−∆
qk̂∗

q (t−1) = −∆qk∗

q
> −∆qj , and thus,1+d

1−d

√
a

max
(
Tqj (t−1)−1,1

) >
√

a
T
qk̂∗

q (t−1)
(t−1) . The claim follows using Eq. 7.

Now if k̂∗q (t− 1) 6= k∗q , we may write (9) as

−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1) ≥ µqj − µ
qk̂∗

q (t−1) − bc

√
a

Tqj(t− 1)
− bc

√
a

T
qk̂∗

q (t−1)(t− 1)

≥ −∆qj +∆
qk̂∗

q (t−1) − bc

√
a

Tqj(t− 1)
− bc

√
a

T
qk̂∗

q (t−1)(t− 1)

(J)
≥ (1− c

1− d
)
(
−∆qj +∆

qk̂∗

q (t−1)

)
− bc

√
a

Tqj(t− 1)
−

√
2bc

1 + d

1− d

√
a

Tqj(t− 1)

(K)
≥ −∆qj − bc

√
a

Tqj(t)
−

√
2bc

1 + d

1− d

√
a

Tqj(t)
≥ −∆qj − 2

√
2bc

1− d

√
a

Tqj(t)
.

(J) From the inductive assumption, we have

−∆qj + (1 + d)b
√

a

max
(
Tqj(t− 1)− 1, 1

) ≥ −∆
qk̂∗

q (t−1) + (1− d)b

√
a

T
qk̂∗

q (t−1)(t− 1)
,

or equivalently

−bc

√
a

T
qk̂∗

q (t−1)(t− 1)
≥ −c

1− d

(
−∆qj +∆

qk̂∗

q (t−1)

)
− bc

1 + d

1− d

√
a

max
(
Tqj(t− 1)− 1, 1

) . (10)

The claim follows using Eqs. 10 and 7.

(K) This passage is true when0 ≤ c
1−d

≤ 1.
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C The GapE-V Algorithm and Analysis

C.1 The GapE-V algorithm

Fig. 8 contains the pseudo-code of the GapE-V algorithm.

Parameters: number of roundsn, exploration parametera
Initialize: Tmk(0) = 0, ∆̂mk(0) = 0 for any bandit-arm pair

for t = 1, 2, . . . , n do

ComputeBmk(t) = −∆̂mk(t− 1) +

√
2a σ̂2

mk
(t−1)

Tmk(t−1)
+ 7ab

3
(
Tmk(t−1)−1

)

Draw I(t) ∈ argmaxm,k Bmk(t)
ObserveXmk(Tmk(t− 1) + 1) ∼ νmk

Update ∆̂mk(t) and Tmk(t) = Tmk(t− 1) + 1
end for
ReturnJm(n) ∈ argmaxk∈{1,...,K} µ̂mk(n), ∀m ∈ {1 . . .M}

Figure 8: The pseudo-code of the GapE-V algorithm.

C.2 Theorem

We first define the complexity of the GapE-V algorithm as

Hσ =

M∑

m=1

K∑

k=1

(
σmk +

√
σ2
mk + 16

3 b∆mk

)2

∆2
mk

.

Theorem 3. If GapE-V is run with parameter0 < a ≤ 8
9
n−2MK

Hσ , then it satisfies

ℓ(n) = P
(
∃m : Jm(n) 6= k∗m

)
≤ 6nMK exp

(
− 9a

64× 64

)

in particular for a = 8
9
n−2MK

Hσ , we haveℓ(n) ≤ 6nMK exp
(
− 1

64×8
n−2MK

Hσ

)
.

Proof. Step 1.Let us consider the following events:

E =

{
∀m ∈ {1, . . .M}, ∀k ∈ {1, . . .K}, |µ̂mk

(
Tmk(t)

)
− µmk| <

√
2ac σ2

mk

Tmk(t)
+

abc

3Tmk(t)

}
,

E ′ =

{
∀m ∈ {1, . . .M}, ∀k ∈ {1, . . .K}, |σ̂mk − σmk(s)| < b

√
2ac

Tmk(t)− 1

}
,

E ′′ =

{
∀m ∈ {1, . . .M}, ∀k ∈ {1, . . .K}, |µ̂mk(s)− µmk| <

√
2ac σ̂2

mk(t)

Tmk(t)
+

7abc

3
(
Tmk(t)− 1

)
}
.

From Bennett inequality, Theorem 10 in [8], and a union bound, we haveP(ξ ∩ ξ′) ≥ 1 −
6NK exp(−ac). Moreover, we know thatξ ∩ ξ′ =⇒ ξ′′. Now we would like to prove that on
the eventξ′′, we find the best arm for all the bandits, i.e.,Jm(n) = k∗m, ∀m ∈ {1, . . . ,M}. Since
Jm(n) is the empirical best arm of banditm, we should prove that

µ̂mk

(
Tmk(n)

)
≤ µ̂mk∗

m

(
Tmk∗

m
(n)

)
, ∀k ∈ {1, . . . ,K}. (11)
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On the eventE , by upper-bounding the LHS and lower-bounding the RHS of Eq.11, we obtain

µmk +

√
2ac σ2

mk

Tmk(n)
+

abc

3Tmk(n)
≤ µmk∗

m
−

√
2ac σ2

mk∗

m

Tmk∗

m
(n)

− abc

3Tmk∗

m
(n)

, (12)

and thus, it would be enough for us to prove that on the eventE
√

2ac σ2
mk

Tmk(n)
+

abc

3Tmk(n)
≤ ∆mk

2
, ∀m ∈ {1, . . . ,M}, ∀k ∈ {1, . . . ,K},

or equivalently,

Tmk(n) ≥
2ac

(
σmk +

√
σ2
mk + b∆mk

3

)2

∆2
mk

, ∀m ∈ {1, . . . ,M}, ∀k ∈ {1, . . . ,K}. (13)

Step 2.In this step, we prove the following inequality that shows a dependence between the number
of pulls of the arms in the GapE-V algorithm:

∀(m, q) ∈ {1, . . . ,M}2, ∀(k, j) ∈ {1, . . . ,K}2, and ∀t ≥ 2MK

−∆mk + (1 + d)

(√
2a σ2

mk

Tmk(t)− 1
+

8ab

3max
(
Tmk(t)− 2, 1

)
)

≥ −∆qj + (1− d)

(√
2a σ2

qj

Tqj(t)
+

6ab

3
(
Tqj(t)− 1

)
)
, (14)

whered ∈ [0, 1]. We prove this inequality by induction.

Base step.We know that after the first2MK rounds of the GapE-V algorithm, all the arms have been
pulled twice, i.e.,Tmk(t) = 2, ∀m ∈ {1, . . . ,M}, ∀k ∈ {1, . . . ,K}, thus ifa ≥ max( 1

8d2 ,
1
2d ),

the inequality (2) holds fort = 2MK.

Inductive step. Let us assume that (14) holds at timet − 1 and we pull armi of bandit p at
time t, i.e., I(t) = (p, i). So at timet, the inequality (14) trivially holds for every choice ofm,
q, k, andj, except when(m, k) = (p, i). As a result, in the inductive step, we only need to prove that

∀q ∈ {1, . . . ,M}, ∀j ∈ {1, . . . ,K}

−∆pi + (1 + d)

(√
2a σ2

pi

Tpi(t)− 1
+

8ab

3max
(
Tpi(t)− 2, 1

)
)

≥

−∆qj + (1− d)

(√
2a σ2

qj

Tqj(t)
+

6ab

3
(
Tqj(t)− 1

)
)
. (15)

Since armi of banditp has been pulled at timet, we have

−∆̂pi(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

) ≥
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−∆̂qj(t− 1) +

√
2a σ̂2

qj(t− 1)

Tqj(t− 1)
+

7ab

3
(
Tqj(t− 1)− 1

) . (16)

In order to prove (16), we first prove an upper-bound for−∆̂pi(t − 1) and a lower-bound for
−∆̂qj(t− 1) as follows:

−∆̂pi(t− 1) ≤ −∆pi +
2
√
c

1−√
c

(√
2a σ2

pi

Tpi(t− 1)
+

8ab

3
(
Tpi(t− 1)− 1

)
)
,

(17)

−∆̂qj(t− 1) ≥ −∆qj − 16

3

√
c

1− d

(√
2a σ2

qj

Tqj(t− 1)
+

6ab

3
(
Tqj(t− 1) − 1

)
)
.

The inequality (15), and as a result, the inductive step is proved by replacing−∆̂pi(t − 1) and

−∆̂qj(t − 1) in (16) from (17) and under the conditions thatd ≥ 2c
1−c

andd ≥ 16
3

√
c

1−d
andc ≤ 1

36 .
These two conditions are satisfied ford = 1/2 andc = (3/64)2.

Step 3. In order to prove (13), we need to find a lower-bound on the number of pulls of
the arms at timet = n. Let us assume that armk of bandit m has been pulled less than

(1− d)2a
(σmk+

√
σ2
mk

+4b∆mk)
2

2∆2
mk

, which indicates that−∆mk + (1− d)
(√ 2a σ2

mk

Tmk(n)
+ 6ab

3Tmk(n)

)
≥ 0.

From this result and (14), we have−∆qj + (1 + d)
(√ 2a σ2

qj

Tqj(n)−1 + 8ab
3Tqj(n)−2

)
≥ 0,

or equivalently Tqj(n) ≤ (1 + d)2a
(σqj+

√
σ2
qj

+ 16
3 b∆qj)

2

2∆2
qj

+ 2, ∀q ∈ {1, . . . ,M}
and ∀j ∈ {1, . . . ,K}. We also know that

∑
q,j Tqj(n) = n. From these, we de-

duce thatn − 2MK <
∑

q,j(1 + d)2a
(σqj+

√
σ2
qj

+ 16
3 b∆qj)

2

2∆2
qj

. So if we selecta such

that n − 2MK ≥ ∑
q,j(1 + d)2a

(σqj+
√

σ2
qj

+ 16
3 b∆qj)

2

2∆2
qj

, we contradict the first assump-

tion that Tmk(n) < (1 − d)2a
(σmk+

√
σ2
mk

+4b∆mk)
2

2∆2
mk

, which means thatTmk(n) ≥

(1 − d)2a
(σmk+

√
σ2
mk

+4b∆mk)
2

2∆2
mk

, ∀m ∈ {1, . . .M}, k ∈ {1, . . .K}, which concludes the

proof.

Here we report the proof of the inequalities (17).

Part 1. Upper Bound

Here we prove that−∆̂pi(t − 1) ≤ −∆pi +
2
√
c

1−
√
c

(√
2a σ2

pi

Tpi(t)−1 + 8ab

3
(
Tpi(t)−2

)
)

, where armi of

banditp is the arm pulled at timet. This means thatTpi(t − 1) = Tpi(t) − 1. We consider the
following four cases for this proof.

Case 1. i = k̂∗p(t− 1) and i = k∗p

The pulled armi is both the best arm and the best empirical arm at timet of banditp. Here we may
write

−∆̂pi(t− 1) = µ̂
pk̂

+
p (t−1)

(t− 1)− µ̂pi(t− 1)

≤ µ
pk̂

+
p (t−1)

− µpi +

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7abc

3
(
Tpi(t− 1) − 1

) +

√√√√
2ac σ̂2

pk̂
+
p

(t− 1)

T
pk̂

+
p
(t− 1)

+
7abc

3
(
T
pk̂

+
p
(t− 1)− 1

)
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(a)
≤ µ

pk̂
+
p (t−1)

− µpi + 2
√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

)
)

≤ µ
pk

+
p
− µpi + 2

√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

)
)

= −∆pi + 2
√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t)− 1
+

7ab

3
(
Tpi(t)− 2

)
)
.

Replacing the empirical standard deviation with the true one andc < 1
36 , we obtain the upper-bound

−∆̂pi(t− 1) ≤ −∆pi + 2
√
c

(√
2a σ2

pi

Tpi(t)− 1
+

ab(7 + 6
√
c)

3
(
Tpi(t)− 2

)
)

≤ −∆pi +
2
√
c

1−√
c

(√
2a σ2

pi

Tpi(t)− 1
+

8ab

3
(
Tpi(t)− 2

)
)
.

(a) Since armi of banditp is pulled at timet, from (4) we have

−∆̂pi(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

)

≥ −∆̂
pk̂

+
p (t−1)

(t− 1) +

√√√√
2a σ̂2

pk̂
+
p (t−1)

(t− 1)

T
pk̂

+
p (t−1)

(t− 1)
+

7ab

3
(
T
pk̂

+
p (t−1)

(t− 1)− 1)
.

We also know by definition that−∆̂pi(t− 1) = −∆̂
pk̂

+
p (t−1)(t− 1), which gives us

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

) ≥

√√√√
2a σ̂2

pk̂
+
p (t−1)

(t− 1)

T
pk̂

+
p (t−1)

(t− 1)
+

7ab

3
(
T
pk̂

+
p (t−1)

(t− 1) − 1)
.

Case 2. i = k̂∗p(t− 1) and i 6= k∗p

The pulled armi is the best empirical arm at timet, but not the best arm, of banditp. Here we may
write

−∆̂pi(t− 1) = µ̂
pk̂∗

p(t−1)(t− 1)− µ̂pi(t− 1) ≤ µ̂
pk̂∗

p(t−1)(t− 1) − µ̂pk∗

p

≤ µpi − µpk∗

p
+

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7abc

3
(
Tpi(t− 1)− 1

) +

√√√√2ac σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7abc

3
(
Tpk∗

p
(t− 1)− 1

)

(b)
≤ µpi − µpk∗

p
+

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab
√
c

3
(
Tpi(t− 1)− 1

) +
1 +

√
c

1−√
c

√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

)
)

≤ −∆pi +
2
√
c

1−√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t)− 1
+

7ab

3
(
Tpi(t)− 2

)
)

Replacing the empirical standard deviation with the true one andc < 1
36 , we obtain the upper-bound

−∆̂pi(t− 1) ≤ −∆pi +
2
√
c

1−√
c

(√
2a σ2

pi

Tpi(t)− 1
+

8ab

3
(
Tpi(t)− 2

)
)
.

(b) Since armi of banditp is pulled at timet, from (16) we have
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−∆̂pi(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

) ≥ −∆̂pk∗

p
(t− 1) +

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

)

µ̂
pk̂

+
p (t−1)

(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

) ≥ µ̂pk∗

p
(t− 1) +

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

)

µ̂pi(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

) ≥ µ̂pk∗

p
(t− 1) +

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

)

µpi + (1 +
√
c)

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

)
)

≥ µpk∗

p
+ (1−

√
c)

(
√√√√2a σ̂2

pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

)
)
.

We also know that by definitionµpk∗

p
> µpi, which gives us

1 +
√
c

1−√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

)
)

≥

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

) .

Case 3. i 6= k̂∗p(t− 1) and i = k∗p

The pulled armi is the best arm, but not the best empirical arm at timet, of banditp. Here we may
write

−∆̂pi(t− 1) = µ̂pi(t− 1) − µ̂
pk̂∗

p(t−1)(t− 1) ≤ µ̂
pk̂∗

p(t−1)(t− 1) − µ̂pk∗

p
(t− 1)

≤ µ
pk̂∗

p(t−1) − µpk∗

p
+

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7abc

3
(
Tpi(t− 1)− 1

) +

√√√√
2ac σ̂2

pk̂∗

p(t−1)
(t− 1)

T
pk̂∗

p(t−1)(t− 1)
+

7abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)

(c)
≤ µ

pk
+
p
− µpk∗

p
+

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab
√
c

3
(
Tpi(t− 1)− 1

)
)
+

√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

)
)

= −∆pi + 2
√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t)− 1
+

7ab

3
(
Tpi(t)− 2

)
)

Replacing the empirical standard deviation with the true one andc < 1
36 , we obtain the upper-bound

−∆̂pi(t− 1) ≤ −∆pi + 2
√
c

(√
2a σ2

pi

Tpi(t)− 1
+

(7 + 6
√
c)ab

3
(
Tpi(t)− 2

)
)

≤ −∆pi +
2
√
c

1−√
c

(√
2a σ2

pi

Tpi(t)− 1
+

8ab

3
(
Tpi(t)− 2

)
)
.

(c) Since armi of banditp is pulled at timet, from (16) we have

−∆̂pi(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

)

≥ −∆̂
pk̂∗

p(t−1)(t− 1) +

√√√√
2a σ̂2

pk̂∗

p(t−1)
(t− 1)

T
pk̂∗

p(t−1)(t− 1)
+

7ab

3
(
T
pk̂∗

p(t−1)(t− 1)− 1)
.

We also know by definition that−∆̂
pk̂∗

p(t−1)(t− 1) ≥ −∆̂pi(t− 1), which gives us
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√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

) ≥

√√√√
2a σ̂2

pk̂∗

p(t−1)
(t− 1)

T
pk̂∗

p(t−1)(t− 1)
+

7ab

3
(
T
pk̂∗

p(t−1)(t− 1)− 1)
.

Case 4. i 6= k̂∗p(t− 1) and i 6= k∗p

The pulled armi is neither the best arm nor the best empirical arm at timet of banditp. Here we
may write

−∆̂pi(t− 1) = µ̂pi(t− 1) − µ̂
pk̂∗

p(t−1)(t− 1) ≤ µpi − µ̂pk∗

p
(t− 1) +

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7abc

3
(
Tpi(t− 1) − 1

)

≤ µpi − µpk∗

p
+

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7abc

3
(
Tpi(t− 1)− 1

) +

√√√√2ac σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7abc

3
(
Tpk∗

p
(t− 1)− 1

)

(d)
≤ µpi − µpk∗

p
+

√
2ac σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab
√
c

3(Tpi(t− 1)− 1)
+

1 +
√
c

1−√
c

√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

)
)

= −∆pi +
2
√
c

1−√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t)− 1
+

7ab

3
(
Tpi(t)− 2

)
)

Replacing the empirical standard deviation with the true one andc < 1
36 , we obtain the upper-bound

−∆̂pi(t− 1) ≤ −∆pi +
2
√
c

1−√
c

(√
2a σ2

pi

Tpi(t)− 1
+

8ab

3
(
Tpi(t)− 2

)
)
.

(d) Since armi of banditp is pulled at timet, from (16) we have

−∆̂pi(t−1)+

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

) ≥ −∆̂pk∗

p
(t−1)+

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

) .

(18)

If k∗p = k̂∗p(t− 1), we may write (18) as

µ̂pi(t−1)+

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

) ≥ µ̂
pk̂

+
p (t−1)

(t−1)+

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

) .

We also know that by definition̂µ
pk̂

+
p (t−1)(t− 1) ≥ µ̂pi(t− 1), which gives us

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

) ≥

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1) − 1

) .

Now if k∗p 6= k̂∗p(t− 1), we may write (18) as

µ̂pi(t− 1) +

√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

) ≥ µ̂pk∗

p
(t− 1) +

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

)
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µpi + (1 +
√
c)

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1) − 1

)
)

≥ µpk∗

p
+ (1−

√
c)

(
√√√√2a σ̂2

pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

)
)
.

We also know that by definitionµpk∗

p
≥ µpi, which gives us

1 +
√
c

1−√
c

(√
2a σ̂2

pi(t− 1)

Tpi(t− 1)
+

7ab

3
(
Tpi(t− 1)− 1

)
)

≥

√√√√2a σ̂2
pk∗

p
(t− 1)

Tpk∗

p
(t− 1)

+
7ab

3
(
Tpk∗

p
(t− 1)− 1

) .

Part 2. Lower Bound

Here we prove that−∆̂qj(t−1) ≥ −∆qj − 16
3

a
√
c

1−d

(√
2a σ2

qj
(t−1)

Tqj(t−1) + 6ab

3
(
Tqj(t−1)−1

)
)

for all bandits

q ∈ {1, . . .M} and all armsj ∈ {1, . . .K}, such that the armj of banditq is not the one pulled
at timet, i.e., (q, j) 6= (p, i). This means thatTqj(t − 1) = Tqj(t). Similar to the proof for the
upper-bound in Part 1, we consider the following four cases here.

Case 1. j = k̂∗q (t− 1) and j = k∗q

The armj is both the best arm and the best empirical arm at timet of banditq. Here we may write

−∆̂qj(t− 1) = µ̂
qk̂

+
q (t−1)

(t− 1)− µ̂qj(t− 1) ≥ µ̂
qk

+
q
− µqj −

√
2ac σ2

qj

Tqj(t− 1)
− abc

3
(
Tqj(t− 1) − 1

)

≥ µ
qk

+
q
− µqj −

√
2ac σ2

qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1)− 1

) −

√√√√
2ac σ2

pk
+
p

T
pk

+
p
(t− 1)

− 6abc

3
(
T
pk

+
p
(t− 1)− 1

)

(e)
≥ −∆qj −

√
2ac σ2

qj

Tqj(t− 1)
− 8ab

√
c

3
(
Tqj(t− 1) − 1

) − 2
1 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1) − 1

)
)

≥ −∆qj − 3 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1)− 1

)
)

(e)From the inductive assumption, we have

−∆qj + (1 + d)

(√
2a σ2

qj

Tqj(t− 1)− 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

−∆
qk

+
q
+ (1− d)

(
√√√√

2a σ2

pk
+
p

T
pk

+
p
(t− 1)

+
6ab

3
(
T
pk

+
p
(t− 1) − 1

)
)
.

We know that by definition−∆qk
+
q
= −∆qj , which gives us

1 + d

1− d

(√
2a σ2

qj

Tqj(t− 1)− 1
+

8ab

3max
(
Tqj(t− 1) − 2, 1

)
)

≥

√√√√
2a σ2

pk
+
p

T
pk

+
p
(t− 1)

+
6ab

3
(
T
pk

+
p
(t− 1) − 1

) .

Finally, we have

√
1

Tqj(t− 1)− 1
=

√
Tqj(t− 1)

Tqj(t− 1) − 1
×

√
1

Tqj(t− 1)
≤

√
2

√
1

Tqj(t− 1)
≤ 2

√
1

Tqj(t− 1)
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(19)

1

max
(
Tqj(t− 1)− 2, 1

) =
Tqj(t− 1)− 1

max
(
Tqj(t− 1) − 2, 1

) × 1

Tqj(t− 1) − 1
≤ 2

1

Tqj(t− 1)− 1
,

which gives us the result.

Case 2. j = k̂∗q (t− 1) and j 6= k∗q

The armj is the best empirical arm at timet, but not the best arm, of banditq. Here we may write

−∆̂qj(t− 1) = µ̂
qk̂

+
q (t−1)

(t− 1)− µ̂qj(t− 1) ≥ µ̂qk∗

q
(t− 1)− µ̂qj(t− 1)

≥ µqk∗

q
− µqj −

√√√√ 2ac σ2
pk∗

p

Tpk∗

p
(t− 1)

− 6abc

3
(
Tpk∗

p
(t− 1) − 1

) −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1) − 1

)

(f)
≥ −∆qj − 2

1 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1) − 1

)
)
−

√
2ac σ2

qj

Tqj(t− 1)
− 8ab

√
c

3
(
Tqj(t− 1)− 1

)

≥ −∆qj −
3 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1)− 1

)
)
.

(f) From the inductive assumption, we have

−∆qj + (1 + d)

(√
2a σ2

qj

Tqj(t− 1) − 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

−∆qk∗

q
+ (1− d)

(
√√√√ 2a σ2

pk∗

p

Tpk∗

p
(t− 1)

+
6ab

3
(
Tpk∗

p
(t− 1)− 1

)
)

We know that by definition−∆qk∗

q
≥ −∆qj , which gives us

1 + d

1− d

(√
2a σ2

qj

Tqj(t− 1)− 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

√√√√ 2a σ2
pk∗

p

Tpk∗

p
(t− 1)

+
6ab

3
(
Tpk∗

p
(t− 1)− 1

)

The claim follows using Eq. 19.

Case 3. j 6= k̂∗q (t− 1) and j = k∗q

The armj is the best arm, but not the best empirical arm at timet, of banditq. Here we may write

−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1)

≥ µqk∗

q
− µ

qk̂∗

q (t−1) −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1) − 1

) −

√√√√
2ac σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
− 6abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)

(g)
≥ ∆

qk̂∗

q (t−1) −
√

2ac σ2
qj

Tqj(t− 1)
− 8ab

√
c

3
(
Tqj(t− 1)− 1

) +

√
c

1− d

(
∆qj −∆

qk̂∗

q (t−1)

)

− 2
1 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1)− 1

)
)
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(h)
≥ −∆qj − 3 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1)− 1

)
)
.

(g) From the inductive assumption, we have

−∆qj + (1 + d)

(√
2a σ2

qj

Tqj(t− 1)− 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

−∆
qk̂∗

q (t−1) + (1− d)

(
√√√√

2a σ2
pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
+

6ab

3
(
T
pk̂∗

p(t−1)(t− 1) − 1
)
)
,

or equivalently,

−
(
√√√√

2a σ2
pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
+

8ab

3
(
T
pk̂∗

p(t−1)(t− 1) − 1
)
)

≥ (20)

1

1− d

(
∆qj −∆

qk̂∗

q (t−1)

)
− 1 + d

1− d

(√
2a σ2

qj

Tqj(t− 1)− 1
+

6ab

3max
(
Tqj(t− 1)− 2, 1

)
)
.

The claim follows from Eqs. 20 and 19.

(h) This passage is true when0 ≤
√
c

1−d
≤ 1.

Case 4. j 6= k̂∗q (t− 1) and j 6= k∗q

The pulled armj is neither the best arm nor the best empirical arm at timet of banditq. Here we
may write

−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1) (21)

≥ µqj − µ
qk̂∗

q (t−1) −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1)− 1

) −

√√√√
2ac σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
− 6abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
) .

If k̂∗q (t− 1) = k∗q , we may write (21) as

−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1)

≥ µqj − µ
qk̂∗

q (t−1) −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1)− 1

) −

√√√√
2ac σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
− 6abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)

≥ −∆qj −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1) − 1

) −

√√√√
2ac σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
− 6abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)

(I)
≥ −∆qj −

√
2ac σ2

qj

Tqj(t− 1)
− 8ab

√
c

3
(
Tqj(t− 1) − 1

) − 2
1 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1) − 1

)
)

≥ −∆qj −
3 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1)− 1

)
)
.
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(I) From the inductive assumption, we have

−∆qj + (1 + d)

(√
2a σ2

qj

Tqj(t− 1)− 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

−∆
qk̂∗

q (t−1) + (1− d)

(
√√√√

2a σ2
pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
+

6ab

3
(
T
pk̂∗

p(t−1)(t− 1) − 1
)
)
.

We know that by definition−∆
qk̂∗

q (t−1) = −∆qk∗

q
> −∆qj , and thus

1 + d

1− d

(√
2a σ2

qj

Tqj(t− 1) − 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

√√√√
2a σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
+

6ab

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
) .

The claim follows using Eq. 19.

Now if k̂∗q (t− 1) 6= k∗q , we may write (21) as

−∆̂qj(t− 1) = µ̂qj(t− 1)− µ̂
qk̂∗

q (t−1)(t− 1)

≥ µqj − µ
qk̂∗

q (t−1) −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1)− 1

) −

√√√√
2ac σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
− 6abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)

≥ −∆qj +∆
qk̂∗

q (t−1) −
√

2ac σ2
qj

Tqj(t− 1)
− 8abc

3
(
Tqj(t− 1) − 1

) −

√√√√
2ac σ2

pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
− 6abc

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)

(J)
≥ (1−

√
c

1− d
)
(
−∆qj +∆

qk̂∗

q (t−1)

)
−

√
2ac σ2

qj

Tqj(t− 1)
− 8ab

√
c

3
(
Tqj(t− 1)− 1

)

− 2
1 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1)− 1

)
)

(K)
≥ −∆qj −

3 + d

1− d

√
c

(√
2a σ2

qj

Tqj(t− 1)
+

8ab

3
(
Tqj(t− 1) − 1

)
)
.

(J) From the inductive assumption, we have

−∆qj + (1 + d)

(√
2a σ2

qj

Tqj(t− 1)− 1
+

8ab

3max
(
Tqj(t− 1)− 2, 1

)
)

≥

−∆
qk̂∗

q (t−1) + (1− d)

(
√√√√

2a σ2
pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
+

6ab

3
(
T
pk̂∗

p(t−1)(t− 1) − 1
)
)
,

or equivalently

−
(
√√√√

2a σ2
pk̂∗

p(t−1)

T
pk̂∗

p(t−1)(t− 1)
+

8ab

3
(
T
pk̂∗

p(t−1)(t− 1)− 1
)
)

≥ (22)

1

1− d

(
∆qj −∆

qk̂∗

q (t−1)

)
− 1 + d

1− d

(√
2a σ2

qj

Tqj(t− 1)− 1
+

6ab

3max
(
Tqj(t− 1) − 2, 1

)
)
.
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The claim follows from Eqs. 22 and 19.

(K) This passage is true when0 ≤
√
c

1−d
≤ 1.
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