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Abstract

We study the problem of identifying the best arm in each otiuedits in a multi-

bandit multi-armed setting. We first propose an algorithftedaGap-based Ex-
ploration (GapE) that focuses on the arms whose mean is o mean of
the best arm in the same bandit (i.e., small gap). We theodntre an algorithm,
called GapE-V, which takes into account the variance of tingsan addition to

their gap. We prove an upper-bound on the probability ofrefwo both algo-

rithms. Since GapE and GapE-V need to tune an exploraticanpeter that de-
pends on the complexity of the problem, which is often unkmawadvance, we
also introduce variation of these algorithms that estis#ies complexity online.
Finally, we evaluate the performance of these algorithnts @mpare them to
other allocation strategies on a number of synthetic proble

1 Introduction

Consider a clinical problem with/ subpopulations, in which one should decide betwagnop-
tions for treating subjects from each subpopulatianA subpopulation may correspond to patients
with a particular gene biomarker (or other risk categor@es) the treatment options are the available
treatments for a disease. The main objective here is toanst rule, which recommends the best
treatment for each of the subpopulations. These rules a@lysonstructed using data from clin-
ical trials that are generally costly to run. Thereforesitmportant to distribute the trial resources
wisely so that the devised rule yields a good performanceaceSit may take significantly more
resources to find the best treatment for one subpopulatanftir the others, the common strategy
of enrolling patients as they arrive may not yield an ovegalhd performance. Moreover, applying
treatment options uniformly at random in a subpopulatiom@mot only waste trial resources, but
also it might run the risk of finding a bad treatment for thdiapulation. This problem can be for-
mulated as théest arm identificatiomver M/ multi-armed bandits [1], which itself can be seen as
the problem opure exploratiorj4] over multiple bandits. In this formulation, each subplgtion is
considered as a multi-armed bandit, each treatment as grirging a medication on a patient as a
pull, and we are asked to recommend an arm for each bandiafigen number of pulls (budget).
The evaluation can be based bjthe average over the bandits of the reward of the recommended
arms, or2) the average probability of error (not selecting the best)aom3) the maximum prob-
ability of error. Note that this setting is different frometistandard multi-armed bandit problem in
which the goal is to maximize the cumulative sum of rewarde @&g., [9, 3]).

The pure exploration problem is about designing strateliasmake the best use of the limited
budget (e.g., the total number of patients that can be aglirtittthe clinical trial) in order to optimize
the performance in a decision-making task. Audibert etldlpfoposed two algorithms to address
this problem: 1) a highly exploring strategy based on upper confidence bqualed UCB-E,

in which the optimal value of its parameter depends on somasore of the complexity of the
problem, and?) a parameter-free method based on progressively rejedtmgrims which seem
to be suboptimal, called Successive Reject. They showedddtith algorithms are optimal since
their probability of returning the wrong arm decreases egmially at a rate which is optimal up



to a logarithmic factor. However, these algorithms are glesil for a single bandit problem, and
as we will discuss later, cannot be easily extended to theidpadit case studied in this paper.
Deng et al. have recently proposed an active learning akgoffior resource allocation over multiple
bandits [5]. However, they do not provide any theoreticalgsis for their algorithm and only
empirically evaluate its performance. Moreover, the teofeheir proposed algorithm is to minimize
the maximum uncertainty in estimating the value of the ararsefich bandit. Note that this is
different than our target, which is to maximize the qualityt® arms recommended for each bandit.

In this paper, we study the problem of finding the best arm émhebandit in a multi-armed multi-
bandit setting, and propose an algorithm, called Gap-bEsgtbration (GapE), to solve it. The
allocation strategy implemented by GapE focuses on the §#épecarms, i.e., the difference be-
tween the mean of the arm and the mean of the best arm (in thdithaand do not consider their
variances. In order to take into account both these faci@@ropose the GapE-variance (GapE-V)
algorithm, in which the index of an arm is defined accordingoempirical Bernstein’s inequal-
ity instead of the Chernoff-Hoeffding inequality used byp&a For both algorithms, we prove an
upper-bound on the probability of error that decreases mapiially with the budget. Since both
GapE and GapE-V need to tune an exploration parameter tipginds on the complexity of the
problem, which is rarely known in advance, we also introdilnegr adaptive version. Finally, we
evaluate the performance of these algorithms and compame with Uniform andUniform+UCB-

E strategies on a number of synthetic problems. Our empiresllts indicate that) GapE and
GapE-V have a better performance thamform andUniform+UCB-E and?2) the adaptive version
of these algorithms do not perform worse than their non-agpounterparts.

2 Problem Setup

In this section, we introduce the notation used throughuoeipaper and formalize the multi-bandit
best arm identification problem. L&t be the number of bandits arid,,, be the number of arms
for banditm (we use indicesn, p, g for the bandits and, i, j for the arms). In order to simplify the
notation, in the following we consider the case whatg = K for all m, thus having a total number
of arms equal ta\/ K. Each armk of a banditm is characterized by a distributian,,,; bounded
in [0, b] with meang,,,;, and variancerfnk. In the following, we also assume that each bandit has a
unique best arm. We denote py, andk;, the mean and the index of the best arm of bandit.e.,
W= maxi<k<i fimk, ki, = argmaxy << Umk). Similarly, we useu andk;! as the second
best mean and the index of the second best arm of bandite., ui;, = MaXp4ks Mmks k=
arg max, . mi). In each bandiin, we define the gap for all the suboptimaﬁ arms/gs, =
Moy, — Hmk With & # k7 and for the optimal arm a&,.x- = A, = mingg- Ayk. The gap for
both cases may be written as a single formila;, = | max;i ftm; — fmk-

The clinical trial problem described in Sec. 1 may be formedi as a game between a stochastic
multi-bandit environment and a forecaster. At the begignthe distributiong v, } are unknown

to the forecaster. At each round= 1,...,n, the forecaster pulls a bandit-arm pa{t) = (m, k)
and observes a sample drawn from the distributigpy independent from the past. The forecaster
estimates the expected value of each arm by computing thragef the samples observed over

time. LetT,,;(t) be the number of times that arkrof banditrm has been pulled by the end of round
t, then the mean of this arm is estimatediag (1) = 7—; STk Xk (s), whereX,, . (s) is the
s-th sample observed from,,;.. Given the previous definition, we define the index of the laest

the second best estimated arm&3$t) = arg max,, fini(t) andk:: (t) = arg max; _p. ) Lok ().

Finally, we define the estimated gaps/®s () = | Max;4g fm; (t) — mk (£)].

At the end of round:, the forecaster returns for each bandien armJ,,(n) corresponding to the
arm with the highest estimated mean, i.8,,(n) = arg max;, ji,,x(n), and incurs a regret
1 M 1 M
T(n) = M n;rm(n) = M ’mz::l ()u"m - )u"m]m(n))
As discussed in the introduction, other performance meastain be defined for this problem. In
some applications, returning the wrong arm is considerexhasror independently from its regret,
and thus, the objective is to minimize the average prolglufierror

1 M

e(n) =37 > em(n) = % ST B(Jm(n) # k).

m=1 m=1



Parameters: number of rounds, exploration parameter, maximum rangé
Initialize: T:,%(0) =0, ﬁmk(o) =0 for all bandit-arm pairgm, k)
fort=1,2,...,ndo
ComputeB,,.;(t) = —Emk(t —1)+b, /74— forall bandit-arm pairgm, k)
Draw [ (t) € arg max, k Bmk ()
ObSEI’VGX}(t) (T](t) (t — 1) + 1) ~ VIt
Update Ty (t) = Tr)(t — 1) + 1 and A, (t) VE of the selected bandit
end for

-----

Figure 1: The pseudo-code of the gap-based ExplorationE§z@gorithm.

Finally, in problems similar to the clinical trial, a reasdole objective is to return the right treatment
for all the genetic profiles and not just to have a small avemgbability of error. In this case, the
global performance of the forecaster can be measured as

ln) = max L (n) = mn&lmxIF’(Jm (n) # k).

It is interesting to note the relationship between theseethrerformance measuresin,, A,, X
e(n) < Er(n) < bxe(n) < bx{(n),where the expectation in the regretis w.r.t. the random $&snp
As a result, any algorithm minimizing the worst case prolighof error, ¢(n), also controls the
average probability of erroe(n), and the simple regr@ir(n). Note that the algorithms introduced
in this paper directly target the problem of minimizif(g.).

3 The Gap-based Exploration Algorithm

Fig. 1 contains the pseudo-code of the gap-based explor@iapE) algorithm. GapE flattens the
bandit-arm structure and reduces it to a single-banditlprolwith A/ K arms. At each time stefy
the algorithm relies on the observations up to time 1 to build an indexB,, (t) for each bandit-
arm pair, and then selects the pa{t) with the highest index. The indek,,; consists of two
terms. The first term is the negative of the estimated gaprfarkain banditm. Similar to other
upper-confidence bound (UCB) methods [3], the second part é&xploration term which forces the
algorithm to pull arms that have been less explored. As dtrebe algorithm tends to pull arms
with small estimated gap and small number of pulls. The expilon parametes tunes the level
of exploration of the algorithm. As it is shown by the thearat analysis of Sec. 3.1, if the time
horizonn is known,a should be setta = 5275, whereH =Y, , b*/A2 , is thecomplexityof
the problem (see Sec. 3.1 for further discussion). NoteGagE differs from most standard bandit
strategies in the sense that tBeindex for an arm depends explicitly on the statistics of akteer
arms. This feature makes the analysis of this algorithm nmoate involved.

As we may notice from Fig. 1, GapE resembles the UCB-E algoaritl] designed to solve the pure
exploration problem in the single-bandit setting. Nonkitkg, the use of the negative estimated gap

(—ﬁmk) instead of the estimated mean,(x) (used by UCB-E) is crucial in the multi-bandit setting.
In the single-bandit problem, since the best and secondare®t have the same gap fr: =
ming.r: Ari), GApE considers them equivalent and tends to pull thematime smount of time,
while UCB-E tends to pull the best arm more often than thersg@t@st one. Despite this difference,
the performance of both algorithms in predicting the bastaiftern pulls would be the same. Thisis
due to the fact that the probability of error depends on tipabdity of the algorithm to distinguish
optimal and suboptimal arms, and this is not affected by femint allocation over the best and
second best arms as long as the number of pulls allocateditpdir is large enough w.r.t. their gap.
Despite this similarity, the two approaches become corapylelifferent in the multi-bandit case. In
this case, if we run UCB-E on all thef K arms, it tends to pull more the arm with the highest mean
over all the bandits, i.ek™ = argmax,, » itmi. AS aresult, it would be accurate in predicting the
best armk* over bandits, but may have an arbitrarily bad performangeedicting the best arm for
each bandit, and thus, may incur a large effar). On the other hand, GapE focuses on the arms
with the smallest gaps. This way, it assigns more pulls talianvhose optimal arms are difficult
to identify (i.e., bandits with arms with small gaps), andshewn in the next section, it achieves a
high probability in identifying the best arm in each bandit.



3.1 Theoretical Analysis
In this section, we derive an upper-bound on the probalgfigrror/(n) for the GapE algorithm.

Theorem 1. If we run GapE with parametdr < a < 2 2=2% then its probability of error satisfies

U(n) =P(Im : Jp(n) # k) < QJV[Knexp(—a)

in particular fora = 4 2=2% 'we have/(n) < 2M Kn exp(— 7 2=25).

Remark 1 (Analysis of the bound).If the time horizorn is known in advance, it would be possible
to set the exploration parameteas a linear function of,, and as a result, the probability of error of
GapE decreases exponentially with the time horizon. Therathberesting aspect of the bgun?{is the

complexity termH appearing in the optimal value of the exploration parametee.,a = 5~

If we denote byH,,,,, = b?/A2 ,, the complexity of arnk in banditm, it is clear from the definition
of H that each arm has an additive impact on the overall complexithe multi-bandit problem.
Moreover, if we define the complexity of each banditas H,, = Y, b2/A2 , (similar to the
definition of complexity for UCB-E in [1]), the GapE compléximay be rewrittenasl = > = H,,
This means that the complexity of GapE is simply the sum ottmaplexities of all the bandits.

Remark 2 (Comparison with the static allocation strategy). The main objective of GapE is to
tradeoff between allocating pulls according to the gapsrénpoecisely, according to the complex-
ities H,,;,) and the exploration needed to improve the accuracy of #stimates. If the gaps were
known in advance, a nearly-optimal static allocation sfygtassigns to each bandit-arm pair a num-
ber of pulls proportional to its complexity. Let us considestrategy that pulls each arm a fixed
number of times over the horizan The probability of error for this strategy may be bounded as

M
Usatidn) =P(3Im : Jm(n) # k) < > P(Jm(n) Z > P(fmrs, () < frm (1))
m=1 m=1k#k¥,
M A2 M
< Z Z exp (= Tk (n) k) = Z Z exp (— ka(n)H;i). 1)
m=1k#k¥, m=1k#k¥,
Given the constraind’, , T,.,.(n) = n, the allocation minimizing the last term in Eq. 1 is

T .(n) = nH,/H. We refer to this fixed strategy &taticGap Although this is not neces-
sarily the optimal static strategy(’{,, () minimizes an upper-bound), this allocation guarantees
a probability of error smaller thai/ K exp(—n/H). Theorem 1 shows that, for large enough,
GapE achieves the same performance as the static allo&ttatinGap

Remark 3 (Comparison with other allocation strategies). At the beginning of Sec. 3, we dis-
cussed the difference between GapE and UCB-E. Here we centipaubound reported in Theo-
rem 1 with the performance of théniformand combined)niform+UCB-Eallocation strategies. In
the uniform allocation strategy, the total budgeis uniformly split over all the bandits and arms.
As a result, each bandit-arm pair is pull&g(n) = n/(M K) times. Using the same derivation as
in Remark 2, the probability of errd(n) for this strategy may be bounded as

Corir(n Z > e (- 3 Ab'?k) < MEexp (= gremtmp—).

m=1k#k,

In the Uniform+UCB-E allocation strategy, i.e., a two-level algorithm that fisgtlects a bandit
uniformly and then pulls arms within each bandit using UCBHe total number of pulls for each
banditm is )", Tyux(n) = n/M, while the number of pull§’,,.(n) over the arms in bandit: is
determined by UCB-E. Thus, the probability of error of thimtegy may be bounded as

n/M— K

18H L )

" i exp MKy
unir+uce-g(7 Z NI exp 18 max,;, Hpm

) < 2nMK exp ( —
where the first inequality follows from Theorem 1 in [1] (rédhat H,,, = >, b*/AZ ). Letb =1
(i.e., all the arms have distributions boundeddnl]), up to constants and multiplicative factors in
front of the exponentials, and if is large enough compared f@ and K (so as to approximate
n/M — K andn — K by n), the probability of error for the three algorithms may beibded as



—n/M

_"/ﬂ))7 Lu+ucee(n) < exp (O(max Hm))’ Leape(n) < exp (0(2_71;%))

Lunit(n) < exp (O(maxH .
m,k me

By comparing the arguments of the exponential terms, we tiavérivial sequence of inequalities
MK maxy, jy Hypk > M maxe, Y Hpi > Zm » Hmi, which implies that the upper bound on the
probability of error of GapE is usually S|gn|f|cantly small& his relationship, which is confirmed
by the experiments reported in Sec. 4, shows that GapE istatddapt to the complexityl of
the overall multi-bandit problem better than the other tWocation strategies. In fact, while the
performance of th&Jniform strategy depends on the mastmplexarm over the bandits and the
strategyUnif+UCB-E is affected by the most complex bandit, the performance @EZ#epends on
the sum of the complexities of all the arms involved in thegpexploration problem.

Proof of Theorem 1Step 1.Let us consider the following event:

E= {vm e{l,..., M}, Vke{l,...,K}, Vt € {1,...,n}, |[fimr(t) — pimi| < be TL@)}

mk
From Chernoff-Hoeffding’s inequality and a union bound veweP (&) > 1—2M Kn exp(—2ac?).
Now we would like to prove that on the evefitwe find the best arm for all the bandits, i.&,,(n) =
kX, Ym € {1...M}. SinceJ,,(n) is the empirical best arm of bandit, we should prove that for
anyk € {1,..., K}, limk(n) < lmgx, (n). By upper-bounding the LHS and lower-bounding the
RHS of this inequality, we note that it would be enough to graw/a /Ty (n) < A,.k/2 on the
event&, or equivalently, to prove that for any bandit-arm pairk, we havel,,;(n) > 4—2%2.

mk

Step 2. In this step, we show that in GapE, for any bandits, ¢) and arms(k, j), and for any
t > MK, the following dependence between the number of pulls o&thes holds

—Apr+ (1 +d)b\/maX T -1 1) —Agi+(1—d)b —qu(t),

whered € [0, 1]. We prove this inequality by induction.

)

Base stepWe know that after the first/ K rounds of the GapE algorithm, all the arms have been
pulled once, i.e.T}.x(t) = 1, ¥m, k, thus ifa > 1/4d?, the inequality (2) holds for = M K.

Inductive step.Let us assume that (2) holds at time- 1 and we pull armi of banditp at timet,
i.e.,I(t) = (p,i). So at timet, the inequality (2) trivially holds for every choice @f, ¢, k, and
Jj, except wher(m, k) = (p,i). As a result, in the inductive step, we only need to prove that
following holds for anyg € {1,...M} andj € {1,... K}

a [a
“Ap (4 d)b\/max (Tpi(t) -1, 1) Bag £ ®)

Since arm of banditp has been pulled at timeg we have that for any bandlt-arm p@i[, 7)

—A(t—1)+ TG —T 2 —Ag(t b RO 4)

To prove (3), we first prove an upper-bound feApi(t —1)anda Iower-bound for—ﬁqj(t -1)

~ 2+/2bc
_Am'(t—l) < _Am"" \/ qJ (t—1) = —Agj— 1-a\T (t) )
qJ

Due to space limitation, we report the proofs of the meqlmlun (5)in Append|x B. The inequal-
ity (3), and as a result, the inductive step is proved by mpga—Am(t —1)and— qu (t—1)in(4)

from (5) and under the conditions that> 12_‘30 andd > 21{;. These two conditions are satisfied
ford = 1/2 andc = /2/16.

Step 3.In order to prove the condition df,,;(n) in step 1, we need to find a lower-bound on the
number of pulls of all the arms at time= n (at the end). Let us assume that drof banditm has




been pulled less thaﬁb(li‘i which indicates that- A, + (1 — d)b /#(n) > 0. From this

result and (2), we have A, + (1 + d)b > 0, or equivalentlyT,;(n) < M +1

\ T =1
for any pair(q, ). We also know thad_, ; 7;(n) = n. From these, we deduce that— MK <
ab®(1+d)* Y, = ar . So, if we select: such thatt — MK > ab*(1+d)* . we contradict

ab?(1—d)>
A2

q,j A2 !
the first assumption thak,,,.(n) < , which means that,(n) > 42# for any pair
k

(m, k), whenl — d > 2¢. This concludes the proof. The condition foiin the 'statement of the
theorem comes from our choice®in this step and the values @&ndd from the inductive step. [

3.2 Extensions

In this section we propose two variants on the GapE algorithittn the objective of extending its
applicability and improving its performance.

GapE with variance (GapE-V). The allocation strategy implemented by GapE focuses onthen

arms with small gap and does not take into consideration Waeiance. However, it is clear that the
arms with small variance, even if their gap is small, justth@éw pulls to be correctly estimated. In
order to take into account both the gaps and variances ofthg, ave introduce the GapE-variance

(GapE-V) algorithm. Le&? , (t) = k(t — > ’”’“(t) X2, (s)—i2,,.(t) be the estimated variance
for armk of banditm at the end of round. GapE- V uses the following B-index for each arm:

2052, (t—1) n Tab

T (t — 1) 3(Tmn(t—1)—1)"
Note that the exploration term in the B-index has now two congnmts: the first one depends on the
empirical variance and the second one decreas@$B47,,,;.). As a result, arms with low variance
will be explored much less than in the GapE algorithm. Sintdathe difference between UCB [3]
and UCB-V [2], while the B-index in GapE is motivated by CheffrHoeffding inequalities,
the one for GapE-V is obtained using an empirical Bernsteiméquality [8, 2]. The following
performance bound can be proved for GapE-V algorithm. Duspsxe limitation, we report the
proof of Theorem 2 in Appendix C.

Bmk (t) = —Amk (t - 1) +

Theorem 2. If GapE-V is run with parametey < a < $2=2MK then it satisfies

l(n) = P(Elm s Jm(n) # k;‘n) < 6nMK exp < _ gia)

64 x 64
in particular fora = § 2=2K 'we have/(n) < 6nM K exp ( — g5 o).

In Theorem 2 H? is the complexity of the GapE-V algorithm and is defined as

M K 2
. (omk + Vomi + (16/3)bAn)
H° = .
Although the variance-complexitf/  could be larger than the complexity used in GapE, when-
ever the variances of the arms are small compared to the bafdke distribution, we expedi ? to
be smaller thari/. Furthermore, if the arms have very different variancesntBapE-V is expected
to better capture the complexity of each arm and allocatgtitie accordingly. For instance, let us
consider the case where all the gaps are the same. In thisstiase GapE tends to allocate pulls
proportionally to the complexity4,,.x, it would perform an almost uniform allocation over bandits
and arms. On the other hand, the variances of the arms couldripdneterogeneous and GapE-V
would adapt the allocation strategy by pulling more oftemdahms whose values are more uncertain.

Adaptive GapE and GapE-V. A drawback of GapE and GapE-V is that the exploration paramet
a should be tuned according to the complexittésand 7 of the multi-bandit problem, which are
rarely known in advance. A straightforward solution to tisisue is to move to an adaptive version
of these algorithms by substitutirig and H° with suitable estimated andH°. At each step of
the adaptive GapE and GapE-V algorithms, we estimate th@splexities as

_ b2 . (LCB., (t) + /LCB, (£)2 + (16/3)b x UCBa, (1))
H(t) = g:k UCBA (" Ho(t) =" UCBA ()2 . where

m,k




Uniform + UCBE GapE Adapt GapE GapE GapE-V Adapt GapE-V

0.16 0.18 0.20 0.22 0.24 0.26

3 3
E3 LK

Maximum probability of error

Maximum probability of error
0.16 0.18 0.20 0.22 0.24 0.26 0.28

4 8 16 32 2 4 8 16 18 U4 12 1 8 16 32 64 2 4 8 16 14 12 1 2
Parameter n Parameter n

Figure 2:(left) Problem 1: Comparison between GapE, adaptive GapE, andifugra strategies.
(right) Problem 2: Comparison between GapE, GapE-V, and adaptipg-&aalgorithms.

1

UCBa, (1) = Ai(t— 1) + 2T (t—1)

and LCB;,(t) = max (07 oi(t—1) - ﬁ)

Similar to the adaptive version of UCB-E in []ZJAZ andZ are lower-confidence bounds on the true
complexitiesH and H?. Note that the GapE and GapE-V bounds written for the optirakle ofa
indicate an inverse relation between the complexity an@xpdoration. By using a lower-bound on

the trueH andH?, wheneveid andH? are not accurate, the algorithms tend to explore arms more
uniformly and this allows them to increase the accuracy eirtbstimated complexities. Although
we do not analyze these algorithms in this paper, we empyrishow in Sec. 4 that they are in fact
able to match the performance of the GapE and GapE-V algasith

4 Numerical Simulations

In this section, we report numerical simulations of the paged algorithms presented in this paper,
GapE and GapE-V, and their adaptive versions A-GapE and pEG4 and compare them withinif
andUnif+UCB-E algorithms introduced in Sec. 3.1. The results of our expenits both those in
this section and those in Appendix A indicate thaGapE successfully adapts its allocation strategy
to the complexity of each bandit and outperforms the unifaliocation strategie®) the use of the
empirical variance in GapE-V can significantly improve thefprmance over GapE, ar8) the
adaptive versions of GapE and GapE-V that estimate the eoditipls / and H/? online attain the
same performance as the basic algorithms, which redéiaad H° as an input.

Experimental setting. We use the following three problems in our experiments. Noatb = 1
and that a Rademacher distribution with parameterg) takes value: or y with probability1 /2.

e Problem 1.n = 700, M = 2, K = 4. The arms have Bernoulli distribution with parameters:
bandit 1= (0.5, 0.45,0.4,0.3), bandit 2= (0.5,0.3,0.2,0.1).

e Problem 2. n = 1000, M = 2, K = 4. The arms have Rademacher distribution
with parameterga, b): bandit 1= {(0,1.0), (0.45,0.45), (0.25,0.65), (0,0.9)} and inbandit 2=
{(0.4,0.6), (0.45,0.45), (0.35,0.55), (0.25,0.65)}.

e Problem 3. n = 1400, M = 4, K = 4. The arms have Rademacher distri-
bution with parameterga,b): bandit 1 = {(0,1.0), (0.45,0.45), (0.25,0.65), (0,0.9)}, ban-
dit 2 = {(0.4,0.6), (0.45,0.45), (0.35,0.55), (0.25,0.65)}, bandit 3 = {(0,1.0), (0.45,0.45),
(0.25,0.65), (0,0.9)}, andbandit 4= {(0.4, 0.6), (0.45, 0.45), (0.35, 0.55), (0.25, 0.65) }.

All the algorithms, except the uniform allocation, have apleration parametei. The theoretical
analysis suggests thashould be proportional tg-. Althougha could be optimized according to the
bound, since the constants in the analysis are not accwaigill run the algorithms with, = 74,
wheren is a parameter which is empirically tuned (in the experira@rd report four different values
for n). If H correctly defines the complexity of the exploration problgm, the number of samples
to find the best arms with high probability) should simply correct the inaccuracy of the constants
in the analysis, and thus, the range of its nearly-optimalesashould be constant across different
problems. InUnif+UCB-E, UCB-E is run with the budget of /M and the same parametgfor all

the bandits. Finally, we set ~ H?, since we expect/ ? to roughly capture the number of pulls
necessary to solve the pure exploration problem with higtbability. In Figs. 2 and 3, we report
the performancé(n), i.e. the probability to identify the best arm in all the basaftern rounds,
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Figure 3: Performance of the algorithms in Problem 3.

of the gap-based algorithms as wellldsif andUnif+UCB-E strategies. The results are averaged
over10° runs and the error bars correspond to three times the estinsgandard deviation. In all
the figures the performance 0hif is reported as a horizontal dashed line.

The left panel of Fig. 2 displays the performancéoif+UCB-E, GapE, and A-GapE in Probleim

As expectedUnif+UCB-E has a better performanc23(9% probability of error) tharunif (29.4%
probability of error)), since it adapts the allocation viritleach bandit so as to pull more often the
nearly-optimal arms. However, the two bandit problems areegually difficult. In fact, their
complexities are very differenf{; ~ 925 and H, ~ 67), and thus, much less samples are needed
to identify the best arm in the second bandit than in the firsg. oUnlike Unif+UCB-E, GapE
adapts its allocation strategy to the complexities of thedita (on average onli9% of the pulls are
allocated to the second bandit), and at the same time to the@mplexities within each bandit (in
the first bandit the averaged allocation of GapE3i&%, 36%, 20%, 7%)). As a result, GapE has a
probability of error of15.7%, which represents a significant improvement dyaif+UCB-E.

The right panel of Fig. 2 compares the performance of GappES4 and A-GapE-V in Problem 2.

In this problem, all the gaps are equals,(;, = 0.05), thus all the arms (and bandits) have the same
complexity H,,, = 400. As a result, GapE tends to implement a nearly uniform atlonawhich
results in a small difference betweemmif and GapE 8% and25% accuracy, respectively). The
reason why GapE is still able to improve ounif may be explained by the difference between static
and dynamic allocation strategies and it is further ingedggd in Appendix A. Unlike the gaps, the
variance of the arms is extremely heterogeneous. In faetydhiance of the arms of banditis
bigger than in bandi2, thus making it harder to solve. This difference is captungthe definition

of H? (HY ~ 1400 > HJ ~ 600). Note also that{® < H. As discussed in Sec. 3.2, since
GapE-V takes into account the empirical variance of the aitnisable to adapt to the complexity
H¢ . of each bandit-arm pair and to focus more on uncertain arnepES/ improves the final
accuracy by almost0% w.r.t. GapE. From both panels of Fig. 2, we also notice thatatiaptive
algorithms achieve similar performance to their non-aideptounterparts. Finally, we notice that
a good choice of parameterfor GapE-V is always close t@ and4 (see also Appendix A for
additional experiments), while GapE neegdt® be tuned more carefully, particularly in Problem 2
where the large values agftry to compensate the fact that does not successfully capture the real
complexity of the problem. This further strengthens thaitidn that/ 7 ? is a more accurate measure
of the complexity for the multi-bandit pure exploration ptem.

While Problems 1 and 2 are relatively simple, we report tisalts of the more complicated Prob-
lem 3 in Fig. 3. The experiment is designed so that the conitglex.t. the variance of each bandit
and within each bandit is strongly heterogeneous. In thiegment, we also introduce UCBE-V
that extends UCB-E by taking into account the empiricalarace similarly to GapE-V. The re-

sults confirm the previous findings and show the improvemehiezed by introducing empirical

estimates of the variance and allocating non-uniformlyrdandits. Additional experiments are
reported in Appendix A.

5 Conclusion

In this paper, we studied the problem of best arm identifaceith a multi-bandit multi-armed setting.
We introduced a gap-based exploration algorithm, callegE3and proved an upper-bound for its
probability of error. We extended the basic algorithm taatensider the variance of the arms



and proved an upper-bound for its probability of error. Wasoahtroduced adaptive versions of
these algorithms that estimate the complexity of the probdmline. The numerical simulations
confirmed the theoretical findings that GapE and GapE-V afdpa other allocation strategies,
and moreover, their adaptive counterparts are able to atgithe complexity without worsening the
global performance.

Although GapE does not know the gaps, the experimentaltseeported in Appendix A indicate
that it might outperform a static allocation strategy, whkoows the gaps in advance. This evidence
suggests that an adaptive strategy could perform bettaralstatic one, however, this observation
asks for further investigation. Moreover, we plan to aply algorithms introduced in this paper
to the problem of rollout allocation for classification-bdgolicy iteration in reinforcement learn-
ing [7, 6], where the goal is to identify the greedy actiannf) in each of the statebéandif) in a
training set.
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A Additional Simulations

A.1 Twin Bandits

e Problem 4:n = 3000, M = 4, K = 4. The4 bandits are identical. The arms have Bernoulli
distributions with the following meang0.5,0.45, 0.4, 0.3).

In this problem the bandits are identical. Therefore it se@muitive to allocate the same budget
to all the bandits. So we would expect GapE and Unif+UCB-Eaeehthe same performance. In
Figure A.1, we report their performance and notice that GppEorms significantly better than

Unif+UCB-E.

Maximum probability of error
0.30 0.35 040 045 0.50
[
I

2 4 8 16 2 4 8 16
Parameter n

Figure 4: Problem 4: The benefit of adaptive allocation olwerttandits in the twin bandits problem.

This suggests that dynamic allocation strategies (Gapghtoutperform static allocation strategies
(Unif+UCB-E). A possible explanation for this result is th@apE is able to adapt to trectual
observations. For example, in one bandit, it can happerthiatbservations from best arm lead to
an empirical mean which is bigger than its true mean, whiestiboptimal arms have an empirical
average lower than their true mean. For this specific ra@izathe complexity of the task is much
smaller than expected. The opposite can happen in the o#melitb thus making it harder than
expected. In this case, more pulls should be allocated teetbend bandit because its complexity in
this particular realization of the problem is bigger thae time of the first bandit. As GapE adapts
to the complexity of each realization of the problem, it segmsuccessfully adapt to the specific
“empirical” complexity of the bandits and to obtain a befterformance w.r.t. an allocation which
statically chooses the number of pulls on the basis of the.gap

This result shows a potential advantage of dynamic stresegir.t. static strategies and it asks for a
more thorough investigation.

A.2 Comparing all the algorithms

In the three following problems, we randomly generated drameters andb of the Rademacher
distributions. In order to test the robustness of the atjors we design problems where the number
of arms goes from to 40.

The results mostly confirm the experiments reported in thie paper. In fact, in all this problems
all the gap-based algorithms outperform the Unif+UCB-Bathms. Furthermore, it can be noticed
that taking into account the variance leads to an extra irgment of the performance.

Both in those experiments and those from the main paper, tigertbat GapE-V has its best perfor-
mance when the exploration paramefés in the interval2 — 4]. This strengthens the claim that the
complexity H? is a good measure of the complexity for any given problem. édwer this makes
the algorithms easy to use as it gives a strong a priori on bdwrte the exploration parametgr

11
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Figure 5: Performances of all the algorithms in Problem 5.
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Figure 6: Performances of all the algorithms in Problem 6.

e Problem 5:n = 400, M = 4, K = 4. The arms have R4d, b) distributions with the following
couples of parameters:

Bandit1: {(0.15,0.55), (0.25,0.5), (0.15,0.2), (0.75,0.8) }
Bandit2: {(0.25,0.45), (0.45,0.85), (0.2,0.8), (0.2,0.8) }
Bandit3: {(0.5,1.0), (0.6,0.75), (0.5,0.6), (0.2,0.4) }
Bandit4: {(0,0.9), (0,0.5), (0.5,0.5), (0.3,0.85) }

In Figure 5, we report the performance of all the algorithmBiioblemb.

e Problem 6:n = 700, M = 3, K = 3. The arms have R&d, b) distributions with the following
couples of parameters:

Bandit1: {(0.65,1.0), (0.35,0.95), (0.15,0.6) }
Bandit2: {(0.3,0.5), (0.5, 0.6), (0.3,0.6) }
Bandit3: {(0.0,0.45), (0.3,0.9), (0.55,0.6) }

In Figure 6, we report the performance of all the algorithm$roblem6. In this problem, we
notice that Unif+UCB-E performs worse than Uniform. In barg] the gap between arm and
arm 3 is very small & 0.025). Therefore the complexity H of this bandit is higHz ~ 3000.
However the variance of arfhin bandit3 is really small, thus making/ not representative of the
true hardness to solve this bandit. The budgét this experiment is set t600 and, as a result,
the budget allocated to the bangiin Unif+UCBE is 233. This budget is small with respect to the
complexityH, therefore the exploration term of UCB-E will be small anchast no exploration will
be done in this bandit. This leads Unif+UCB-E to performawoese than Unif. Notice that when

12
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Figure 7: Performances of all the algorithms in Problem 7.

the exploration paramet@rtends to infinity, UCB-E becomes equivalent to the Uniforgoaithm.
Therefore one can still recover the performance of the Wmifalgorithm by setting) > 1.

e Problem 7:n = 1500, M = 10, K = 4. The arms have R&d, b) distributions with the following
couples of parameters:

Bandit1: {(0.9,0.9),(0.5,0.7), (0,0.55), (0.15,0.25) }

Bandit2: {(0.15,0.60), (0.35,0.75), (0.4, 0.85), (0.15, 0.65) }
Bandit3: {(0.4,0.55), (0.05,0.85), (0, 0.45), (0.2,0.25) }
Bandit4: {(0.85,1.0), (0.15,0.35), (0.2,0.4), (0.15,0.9) }
Bandit5: {(0.25,0.75), (0.15,0.75), (0.9,0.95), (0.4,0.95) }
Bandit6: {(0.45,0.65), (0.85,1.0), (0.4,0.8), (0.2,0.9)}
Bandit7: {(0,0.85),(0.3,0.5), (0.4,1.0), (0.35,0.4) }
Bandits: {(0.55,0.85), (0.35,0.75), (0.35,0.5), (0.25,1.0) }

Bandit9: {(0.4,0.6), (0.55,0.95), (0.15,0.6), (0.1,0.8) }
Bandit10: {(0.05,0.3), (0.8,0.85), (0.2,0.75), (0.2,0.75) }.

In Figure 7, we report the performance of all the algorithrinblem?.
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B Proof of Theorem 1

Part 1. Upper Bound

Here we prove tha%ﬁpi(t— 1) < —=Api+72% 2be - /W where arm of banditp is the arm pulled
attimet. This meansthdf,,;(t—1) = T, (¢ ) 1. We consider the following four cases for this proof.

Casel.i= @;(t —1) andi=k;

The pulled arm is both the best arm and the best empirical arm at timibanditp. Here we may
write

“Rpi(t = 1) = Py o1yt = 1) = i (8 = 1) < pr (,yy — Hpi + be T D /Tmt_1

()

<p — ppi + 2bc

pic\; (t—1) t _ 1

S upk+ Mpi + 2bc

pz
= —Api o+ 2bey [ < —Api 5 2be T
_ Tpi(t) — 1

(a) Since arm of banditp is pulled at timet, from (4) we have

a ~ a

N " > _A -~ — e ——
St =Dy oy 2 TS e T D T
We also know by definition thatﬁpi(t -1 = Eng(tfl)(t — 1), which gives us
Tpi(t—1) Z Tpg;(tfl)(tfl).

Case2.i=kyj(t—1) and i # k,

The pulled arm is the best empirical arm at timebut not the best arm, of bandit Here we may
write

~Rpilt = 1) = Ayt oy (= 1) = it — 1) < iz H)<t—1>—ﬁpk*

< iy = iy + bey | 7= 4 be, [ —r—

= Hpt upkp +oe p'L t—l pk}* t—l

(b) 1+c
S"”Z'_"”‘“I*JJFI’C\/ t—1 T t—l

2bc

t—l

(b) Since armi of banditp is pulled at timet, from (4) we have

«(t—1 b
t—1 Ao )+ \/ pk*t—l
/J‘pk+(t 1) \/ t—l _,“pk* -1)+b / pk* t—l
by s 2 Ry (t b |— &
t—l i (t = 1) + pk*t—l
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a a
Mpi“‘(l*"db“mzﬂpk;-F(l—C)b /m.
We also know that by definition,- > p,;, which gives u%‘ /ﬁ > /%.
P c i Pk}

Case3.i # @;(t —1) and i = kj

The pulled arm is the best arm, but not the best empirical arm at thad banditp. Here we may
write

—Api(t = 1) =Tpi(t — 1) — 25 (t— 1)(t -1 < B (t— 1)( 1) — :“pk* (t—=1)

< e .+ b / e ]—%
Frples (t—1) — Mok £ 0C pk*(t NC Tpi( t—l

(©)
< et be | —— A pe | ——
Mpw Hpks, + C\/Tpi(t—l) + c\/Tw_

2bc a
= —A,; + 2b i _—
it e Ty S At T oD

(c) Since armi of banditp is pulled at timet, from (4) we have

~ a ~ a
—Apit—1)+ by /s > —A -, t—1)+b | ———
pil ) Tpi(t—1) — pkp(til)( )t Tpi*(tfl)(t_l)

P

We also know that by definition-A - )(t -1 > —ﬁpi(t — 1), which gives us

k*tl

a > a
Tpi(tfl) — ijc\z(tfl)(tfl).

Case4.i # E;;(t —1) and i # k;

The pulled armi is neither the best arm nor the best empirical arm at timebanditp. Here we
may write

—Api(t —1) = fipi(t — 1) —ﬁpk\-;(t—l)(t—l) < ppi — Npk* (t—1) —|—bc”
Supz‘—upk;—kbC,/ t—1 + bc T t—1
(d) 1+c
< lpi — Hpx + b
= Hri “”‘“PJFC\/ t—1 “T—¢ t—l

2bc

t—1

(d) Since armi of banditp is pulled at timet, from (4) we have

~ a ~
—A i(t — — > A, — .
pi(t—1)+b Tp(t—1) = pky (t=1)+ b,/ pk* t—1) (6)

If ky =k,(t—1), we may write (6) as

~ a ~
sz(t—1)+b m /,L (t 1)( 1)+b/ pk*t—l.
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We also know that by definitioﬁp@+(t_l)(t — 1) > ppi(t — 1), which gives us /Tm(‘;_l) >

_a
\/ Tor =1)
Now if &, # k;(t — 1), we may write (6) as
_ > « (T —
it = 1) T t—1 i, (=D 40y ™) T ( t—1
Hpi + (1+¢) Tmt—l Z ppy + (1= )by pk*t—1
We also know that by def|n|t|oppk* > i, Which gives us}ﬂ, /Tm(t 0 >/ T (=1 pk*(t g

Part 2. Lower Bound

Here we prove that—ﬁqj(t -1) > -A

... M)}

and all armsj € {1,... K}, such that the armj of banditq is not the one pulled at time
i.e.,(g,j) # (p,i). This means thafy;(t — 1) = T,;(t). Similar to the proof for the upper-bound
in Part 1, we consider the following four cases here.

Casel.j :Ej;(t— 1) and j = k;

The armj is both the best arm and the best empirical arm at timigbanditq. Here we may write

a

“Agi(t—1) = 1 > = _
qJ( ) i, aky (t— 1)( ) Nq]( ) 1% ak Haqj q](t—l)

Z Hopt — Haj — be, / Y
QJ
©_ 1+ d /— /— 2\/ be
- ‘IJ \/_bc QJ QJ e d TQJ (t) ‘

(e) From the inductive assumption, we have

a a
~Agj + (1+d)b > —A 1—d)b, [——.
wt (1 )\/max(qu(t—1)—1,1)* o T =) Ty (0 =1)

akq
We know that by definition—Aqk; = —Ay;, which gives uslid — (qu(i —
/T Finally, we have
a4 To5(t—1) a a

max (Ty;(t —1) —1,1) ~ ax (To;(t —1) —1,1) Ty (t — 1) = 2qu(t -1)’ ™

which gives us the result.

Case2.j :E;‘(t— 1) and j # kj

The armj is the best empirical arm at timtebut not the best arm, of bandit Here we may write

i (t = 1) = Bggs o1y (t = 1) = Fas (¢ = 1) = Figry (8 = 1) = Figs (t = 1)

a a
> * — i —b [ —— R
= /’quq Haj c qu:; (t _ 1) c qu (t _ 1)
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O /it ‘_2\/_bc
B “ 1_d Tq] Toi( ! —d Tq](t)‘

(f) From the inductive assumption, we have

a a
—Agj + (1 +d)b > —Agpr + (1= d)b, [ ——.
o+ (F )\/maX(qu(t—l)—l,l) =z ~Bag +(1=d) Tyrx (t— 1)

We know that by definition—Ag.. > —Ag;, which gives us”d\/ >

(t—1)—1 1)
/W. The claim follows using Eq. 7.

Case 3.j #Ej;(t— 1) and j = kj

The armj is the best arm, but not the best empirical arm at tipaf banditg. Here we may write

—Agi(t—1) =g (t — 1) — //qu;(tfn(t -1) = Pakg = Pk (t-1) bc (t— 1
o ( qk*(t 1)

) c 1+d
= AqE;(t—U + 1= d(AQJ - Aqk*(t 1)) bc” q](t 1) — V2be—— 1-4 Ty t—1)
c 1—|—d

> A+ (1——)A -, bey | s =

~1-d a + 1—d) akg(t=1) — Tq, b4 qu(t)

Q) a 1+d 2v/2be a
be, | —— — V/2be=—— > Ay — .

- V Ty; (t) 1—dy qu(t) - Y 1-d Ty

(g) From the inductive assumption, we have

a a

—Agi + (1 +d)b >-A-, +1-db | m————,
ai + )\/maX(qu(t—l)—l,l) kg (t=1) ( ) quz(til)(t—l)

or equivalently

a C

1+d
—b > Agi — A, 8
¢ qgé(H)(t—l)—l—d( W = Aign) \/max q]t—l)—ll) ®

T

The claim follows using Eqgs. 8 and 7.

Case 4. j #E;‘(t— 1) and j # kj

The pulled arny is neither the best arm nor the best empirical arm at timebanditq. Here we
may write

—~ a a
R (t—1) = Figi (b= 1) =T rery 1y (E=1) > fraj — oz iy 11 —bey | e b |
v v i =) W TN T =) Y Ty - D)

9)

If k;(t—1)=k;, we may write (9) as
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~ a a
—Agj(t —1) = fig;(t — 1) — [i_z. t—1) > flgj — 1,7 —be, | —be |
QJ( ) y“l]( ) /’quq(t—l)( )7/’1‘(1] uqkq(tfl) c qu(t—l) c Tq/k\z(tfl)(t—l)
a a
> Ay —bey | —r— —be |
o T,i(t —1) Ty ey (t—1)

_ Vapeltd . 2f be ‘
QJ 1- d TQJ d Tq} (t)

(I) From the inductive assumption, we have

o a
—Ag; 1+d)b > A -, 1-db | —m—-.
o +(1+d) \/max (qu (t—1)—1, 1) n akq(t=1) * ) TqE:;(tfl)(t -1

We know that by definition-A 7., ;) = —Agk; > —A,j, and thus,ﬁj\/ - (‘z ) >

T D" The claim follows using Eq. 7.

Now if &7 (¢t — 1) # k;, we may write (9) as

Aq](t_l) Jigs(t — 1) — ﬁ T (t— 1)( 1) = pgj — p Farze—1) — \/ t—l 1/
Tai( qk*(t 1)

> Aq]+Aqk*(t 1) 1/ q] k*(t 1)
\l q

) c 1+d
> -
>(1 1—d)( A]—G-Aqk*(t 1) VTCU _1 —V2be 1—d\/Tq] t—1
(K)
S bc/ a _\/5 1+d __2\/_bc ‘

Toj (t) 1- d Tq] —d Toj (t)

(J) From the inductive assumption, we have

a a
A 1+d)b > A -, 1-d)b | ——F,
o +(1+d) \/max (qu (t—1)—1, 1) - akq(t=1) * ) TqE(’;(tfl)(t -1

or equivalently

a —C

1 +d
—b > A A 10
‘ Tq@;(tfl)(t -1 ~1- d( @i F Bk - 1) \/max Ty (t — 1) -1,1)° (10)

The claim follows using Eqgs. 10 and 7.
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C The GapE-V Algorithm and Analysis

C.1 The GapE-V algorithm

Fig. 8 contains the pseudo-code of the GapE-V algorithm.

Parameters: number of rounds:, exploration parameter
Initialize: T,x(0) = 0, Ak (0) = 0 for any bandit-arm pair

fort=1,2,...,ndo

R 2a 52, (t—1) 7ab
ComputeB,,i(t) = —Apk(t — 1) + 4/ Ty + T -01)

Draw I (t) € arg max,,kx Bk (t)
Observeka(ka(t — 1) + 1) ~ Umk
Update A, (t) and Tpi(t) = Tor(t — 1) + 1
end for
ReturnJi, (n) € arg max 4

K} Hmk(n), Ym € {1... M}

-----

Figure 8: The pseudo-code of the GapE-V algorithm.

C.2 Theorem

We first define the complexity of the GapE-V algorithm as

Theorem 3. If GapE-V is run with parametey < a < $2=2MK then it satisfies

((n) =P(Im : Jp(n) # k) < 6nMK exp ( - 649;64)

in particular fora = 8 2=2MK 'we have/(n) < 6nMK exp ( — o5 T2AE).

Proof. Step 1.Let us consider the following events:

2ac 02, abe }
b

&= {Vm € {1, M}, Yk € {1,... K}, [fim (T (t)) = pmi| < Tor(t) | 3Toe(D)

2ac
I s _ _
& —{Vme{l,...M}, Vk e{l,...K}, [Omk — omr(s)| < b ka(t)—l}’

2ac 52, (t) Tabe
5”={Vme L...M}, Ve e{l,... K}, |lmk(s) — k| < X }
{ } { b (imi(5) = proni Tk () 3(Tpi(t) — 1)

From Bennett inequality, Theorem 10 in [8], and a union bound haveP((¢ N ¢') > 1 —
6N K exp(—ac). Moreover, we know thaf N ¢’ = ¢”. Now we would like to prove that on
the event”, we find the best arm for all the bandits, i.&.,(n) = k,, Ym € {1,..., M}. Since
Jm(n) is the empirical best arm of bandit, we should prove that

ﬁmk (ka (TL)) S ﬁmkjn (kajn (n))7 Vk S {17 LRI K} (11)
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On the event, by upper-bounding the LHS and lower-bounding the RHS oflHgwe obtain

abc < 2ac Ugnk;*n abc
< Hmkx, — -
Hmkin =\ Togs (n) ~ 3Tonps. (n)

2
2ac oy,

ka (n) 3ka (n)

and thus, it would be enough for us to prove that on the egent

2ac o2, abc Ak

<
ka (n) 3ka (n) B 2 ’

vYme{l,...,M}, Vke{l,...,K},

or equivalently,

2
2QC<0'mk +4/02, + I’AT’“")
ka(n) >

> A2 , vme{l,...,M}, Vke{l,...,K}. 13)
mk

Step 2.In this step, we prove the following inequality that showspehdence between the number
of pulls of the arms in the GapE-V algorithm:

V(m,q) € {1,...,M}2, V(k,j)e{l,...,K}?, and Vt>2MK

2
At (14 d)( 2a 02, 8ab )

Tk (t) — 1 T e (Tomr(t) — 2,1)

2a 03, 6ab
Z 8 - d)<\/ Tor(t)  3(Tny () 1))’ ()

whered € [0, 1]. We prove this inequality by induction.

Base stepWe know that after the fir&\ K rounds of the GapE-V algorithm, all the arms have been
pulled twice, i.e. T (t) = 2, Vm € {1,...,M}, Vk € {1,..., K}, thusifa > max(gh, o),
the inequality (2) holds fot = 2M K.

Inductive step. Let us assume that (14) holds at time- 1 and we pull armi of banditp at
timet, i.e.,I(t) = (p,i). So at timet, the inequality (14) trivially holds for every choice of,
q, k, andj, exceptwherim, k) = (p, ). As aresult, in the inductive step, we only need to prove that

Vge{l,...,M}, Vje{l,..., K}

2a 02, 8ab
AV 1+d Pt >
ot Tpi<t>—1+3max(Tpi(t>—271))

2a o, 6ab
~ha (1 ‘”( T () T 3(Ty(6) = 1))‘ (13)

Since armi of banditp has been pulled at time we have

N 2a 52,(t — 1) Tab
—Api(t—1)+ P + >
= Tpi(t=1)  3(Tpi(t—1)—1) ~
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2a 55;(t—1) N Tab
Ttu( ) 3(qu(t - 1) - 1) .

—Ng(t—1)+ (16)

In order to prove (16), we first prove an upper-bound #&Epi(t — 1) and a lower-bound for
—A,;(t — 1) as follows:

- 2./c 2a 02, 8ab
—Api(t—1) < —Ay; - 7
pi(t—1) < ”+1—\/E< Tpi(t—1)+3(TPi(t_1)_1)>
17
R 16 \/E 2@0’2'. 6ab
“Agi(t—1)> Ay — — - .
ai( ) > w3 1—d< Tyt —1) +3(qu(t—1)—1))

The inequality (15), and as a result, the inductive step @veul by replacing—ﬁpz(t - 1) and
—A,;(t — 1) in (16) from (17) and under the conditions tha 2% andd > 2 f andec < o=
These two conditions are satisfied tbe= 1/2 ande = (3/64)2.

Step 3. In order to prove (13), we need to find a lower-bound on the remdf pulls of
the arms at timg = n. Let us assume that ar of banditm has been pulled less than

(1 — d)2a T VTt WA | \hich indicates that Ay, + (1 — d) (/2 %mk 1 _6ab_) >

AT, o (m) ()
a o2,
From this result and (14), we haveA, + (1 + d)(\/T2 (nffl + artm=s) 2 0,
16 2
or equivalently 7,;(n) < (1 + d)?a (U‘“J”';‘Zj 3 0%ai) Vg € {1,...,M}
andVj < {1,...,K}. We also know thatz qu( n) = n. From these, we de-
G’ A/ O 2 .
duce thatn — 2MK < 3 (1 + d)’a wl 2"5_‘ 2u). S0 if we selecta such
(0qi+ 02.+Ebquﬂ)2 . .
that n — 2MK > 3 (1 + d)’a 2 ;”M £ —=~, we contradict the first assump-

tion that Tj,x(n) < (1 — d)?a (U’”’“J”QZ;HMM) , Which means thatT,,.(n) >

1 - d)%a “’"““*VQgg*‘*bAW , Vm € {1,...M}, k € {1,...K}, which concludes the
proof.

Here we report the proof of the inequalities (17).

Part 1. Upper Bound

2a o2

Here we prove tha%ﬁpi(t —-1) < =Ap + 2y/e ( P - 8‘“’ )> where armi of

1—y/c Tpi(t)— (
banditp is the arm pulled at timeé. This means thal,; (¢ — 1) = Ty ( ) — 1. We consider the
following four cases for this proof.

Casel.i= @;(t —1) and i = kj

The pulled arm is both the best arm and the best empirical arm at timibanditp. Here we may
write

~Bilt = 1) = g oy (= 1)~ Fipa(t — 1)

2ac o O' - (t —-1) Tabe

R _ - 2(16 O' (t — 1) n Tabe n I
phy (t—1) — Hpi sz(t —1) 3(Tpi(t —1) — 1) Tyt (t -1)

P

s p 3T (- 1)~ 1)

21



@) 2a 62,(t—1) Tab
< g — Hpi + 2 'r +
S Hpkt -1y ~ Pe \/E< Tt — 1) 3Tl — 1) = 1)>

2a 62,(t—1) Tab
< — fpi + 2 L
S Hprf — Hpi + ‘/E< Tpi(t —1) +3(Tpi(t—1)—1)>
2a 52,(t —1) 7ab
SNy I ER )
g T (t) -1 3(Tpi (t) - 2)

Replacing the empirical standard deviation with the true amde < % we obtain the upper-bound

~ 2a 07, ab(7 + 6,/c) 2\/¢ 2a o2, 8ab
—Api(t —1) < —Ay; © < —Ay = .
Apilt =1) < =4y +2‘/E< Tpi(t)—1+3(Tpi(t)—2)) S heit 1—x/5< : 5T >

(a) Since arm of banditp is pulled at timet, from (4) we have

N 20 52,(t — 1) Tab
—Api(t—1) + & +
P ( ) Tpi(t — 1) 3(Tpi(t — 1) — 1)
2a 52 (t—1)
~ B (t—1) 7ab
> A (= )y [ + :
php (1=1) TpE;(t—l)(t -1 S(Tpk\';(tfl)(t -H-1
We also know by definition thafeﬁpi(t -1)= _EpEJr(t 1)(t — 1), which gives us
P
~ A2 -
2a52,(t — 1) N 7ab - 205 syt 1) N 7ab
Tpi(t —1) 3(Tpi(t -1) - 1) B Tpic\;r(tfl)(t -1 3(TpE:{(t71)(t -1)- 1).

Case 2.i = E;;(t —1) and i # k;

The pulled arm is the best empirical arm at timebut not the best arm, of bandit Here we may
write

—~

—Api(t—1) = ﬁpig;(t—l)(t = 1) —fpi(t—1) < ﬁpig;(t—l)(t -1) - ﬁpk;

<y p— 2ac 312)2. (t—1) Tabe 2ac aik; (t-1) n Tabe
~ i k*
P PRy, Tpi(t — 1) 3(Tm(t — 1) — 1) Tpk; (t — 1) 3(Tpk; (t — 1) — 1)
(<b)u~—uk*+ 2(1(;63;2.(@—1)+ Tab\/c +1+\/E\/E< 2aa,2;z~(1t—1)+ Tab
= Hpi = Hpky Tpi(t—1) 3(Tpi(t—1)—1)  1—y/e Tpi(t=1)  3(Tpi(t —1) = 1)
2/C 20 52,(t — 1) Tab )
< —Ay; 2
- pi Tt 1—\/E< Tpi(t)—l +3(Tpi(t)—2)

Replacing the empirical standard deviation with the true amde < % we obtain the upper-bound

R 2/ 2a agi 8ab
—Api(t—1) < =Api + = \/E< Tpi(t) — 1 * 3(Tpi(t) — 2))

(b) Since armi of banditp is pulled at timet, from (16) we have
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2a52,(t — 1) 7ab . 2057, (t—1) Tab

“A(t—1 pi + > —Apps(t—1) + +
pil ) Tpi(t —1) 3(Tpi(t —1)—1) — ok ( ) Tprx (t — 1) 3(Tpus(t —1) = 1)
20 62,(t — 1) 7ab 2057, (t—1) 7ab
oo -1 pi > Tprs (8 — 1 L
P (-1 )+ Tpi(t — 1) + 3(Tpi(t —1) —1) — i (= 1)+ Tpr (t — 1) - 3(Tps(t—1) = 1)
2%, 32~(t— 1) 7ab 2a ng* (t— 1) Tab
fipi(t — 1) + = + > fprx (t = 1) + > +
fpi(t—1) Tpi(t — 1) 3(Tpi(t —1) —1) ~ Aoy (= 1) Ty (t = 1) 3(Tpkx (t — 1) — 1)

2062, (t—1) Tab 2a Ezk; (t—1) 7ab
Mm‘+(1+\/5)< (=1 +3(Tpi(t_1)_1)>Zupk;+(1_\/5)< Tyrs (£ — 1) +3(Tpk;(t—1)—1)>'

We also know that by definitioppkz > [ipi, Which gives us

1+\/E< 2a3gi(t—1)+ 7ab )> 2a3§k;(t—1)+ 7ab
1—+/c Tpi(t — 1) 3(Tpi(t—1)—1) ) — Tprs (t — 1) 3(Tprs(t—1) = 1)

Case 3.7 # E;(t —1) andi =k,

The pulled arm is the best arm, but not the best empirical arm at tipad banditp. Here we may
write

—Api(t = 1) = ipi(t — 1) — ﬁpzz(pl)(t -1 < ﬁpz (tfl)(t -1)- ﬁpk; (t—1)

*
P

=2
2aco2,(t—1) Tabe 2ac T ke (t—1) (t-1) Tabc

S MPE* (t—1) - ,ulpk:; + P + L +

b Tpi(t — 1) 3(Tpi(t —1) — 1) Tpgz(til)(t -1) 3(szz(t71)(t -1)-1)
© 2ac o2, (t —1) Taby/c 2a 02,(t —1) 7ab
< — ppks + - + = +
= Py — Hoks Tpi(t—1) 3(Tpi(t—1)—1)) \/E< Tpi(t = 1) 3(Tpi(t_1)_1)>

2a 52,(t—1) Tab

=—Api+2 - +

P ‘/E< Tpi(t) — 1 3(Tpi(t) — 2))

Replacing the empirical standard deviation with the true @amdc < 3—16 we obtain the upper-bound

~ 2a 0y, (7 + 6+/c)ab 2,/c
Bt 1) < =+ 25(y gt + SO ) < -

(c) Since armi of banditp is pulled at timef, from (16) we have

~ 2a52,(t—1) Tab
—Api(t—1 £
it —1)+ Tpi(t — 1) * 3(Tpi(t—1) — 1)
2a 02 (t—1)
~ k5 (t—1) Tab
>-A - (t—1)+ P + .
ey J Tge =0 3T (=1 = 1)
We also know by definition thatﬁp@*(t_l)(t -1 > —ﬁpi(t — 1), which gives us
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2a Egi(t —1) N 7ab < 2a Giig(t—l)(t -1 n Tab
Tpi(t - 1) 3(Tpl(t - 1) - 1) B Tp%;(t—l)(t - 1) 3(TpE;(t71)(t - 1) - 1) .
Cased.i # @;(t —1) and i # ky,

The pulled armi is neither the best arm nor the best empirical arm at timgebanditp. Here we
may write

N 2ac 52, (t—1) Tabe
—Api(t—1) =[pi(t — 1) — i 7. t—1) < ppi — Oprx (t—1 s
pilt =) = Bps(E = 1) = Py ey (0= 1) S ppe = iy (0= D)y | == sy o)
- N 2ac 312)2. (t—1) Tabe 2ac aik; (t—1) n Tabe
= Hpi = Hokg Tpi(t—1) 3(Tpi(t—1)—1) Tory(t=1)  3(Torg (t—1) — 1)
) 2ac 52,(t — 1) Taby/c 14 /e 2a57,(t—1) 7ab
< i — . pi p?
S Hpi = Pk Ti(t—1) +3(Tpi(t—1)—1) * 1—\5\/E< Tpi(t —1) +3(sz‘(t—1)_1)>

—ve\\ T -1 3T - 2)

Replacing the empirical standard deviation with the true @amdc < 3—16 we obtain the upper-bound

) 2./ 2 ggi 8ab
—Api(t —1) < —Api + 1— \/E< Tpi(t) — 1 " 3(Tpi(t) — 2))

(d) Since armi of banditp is pulled at timet, from (16) we have

N 2a 52,(t — 1) Tab ~ 2a G55, (t—1) Tab
“Ai(t—1)+ pi + > —Apes (E—1)+ 7 + :
pit=1) Tpi(t—1)  3(Tpi(t—1)—1) ~ iy (0=1) Tory (t = 1) 3(Tpws(t —1) — 1)
(18)
If kr =k (t — 1), we may write (18) as
20 52,(t — 1) Tab _ 2055, (t—1) Tab

Bpi(t—1)+ ) z upE;(tfl)(t—l)_F

Tpi(t — 1) +3(Tm-(t -1 -1 Tpry(t—=1)  3(Tpry(t—1) — 1)

We also know that by definitioﬁpg+(t71)(t — 1) > [y (t — 1), which gives us

2a 8;2)2' (t—1) n Tab - 2a a\ik; t—-1) " Tab
Tpi(t — 1) 3(Tpi(t—1)—1) — T (t — 1) 3(Tprs(t—1) —1)°

Now if &, # @;(t — 1), we may write (18) as

2052 (1 — 1 2062, (t— 1)
pt—1) Tab S B (- 1) 4 Pk N 7ab
Tpi(t—1)  3(Tp(t—1) — 1) P Torg(t—1)  3(Tprs(t —1) — 1)

ﬁpi(t - 1) +
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2062, (t—1) Tab
_|_
Tpi(t — 1) 3(Tpi(t—1) — 1)

2a Egk; (t — 1) Tab )

upi+(1+\@)< T (t— 1) + 3(Tory (t — 1) — 1)

>2Mpk;+(1—\/5)<

We also know that by definitioppkz > pi, Which gives us

1+\ﬁ( 2055t —-1) 7ab )> 2a5§k;(t—1)+ 7ab
1—+/c Tpi(t — 1) 3(Tpi(t—1)—1)) — Tk (t — 1) 3(Tprs(t=1) = 1)

Part 2. Lower Bound

~ av/c 2a 02 (t—1 a .
Here we prove that Ag;(t —1) > —Ay; — 22 lf; ( quq(]t(fl) ) 3(qu(ib1)1)) for all bandits
g € {1,...M}andall armsj € {1,... K}, such that the arnj of banditq is not the one pulled
at timet, i.e., (¢,j) # (p,4). This means thal,;(t — 1) = T,;(¢). Similar to the proof for the
upper-bound in Part 1, we consider the following four case h

Casel.j =E’;(t— 1) and j = k;

The armj is both the best arm and the best empirical arm at timibanditg. Here we may write

2
~ 2ac 04j abe

~Ra (=) = g o (0 D) = Rag (0= 1) 2 oy = s =\ oy ~ 57— 1) < 1)

2ac o

> i 2ac o2; 8abc pki 6abc
>l — e — _ _ —
akg aj Tyi(t—1)  3(Ty(t—1) —1) Tpk; (t—1) 3(Tpk; (t—1)—1)
(© A 2ac a'gj B 8aby/c 14 d\/5< 2a Ugj N Sab >
- 7% Tyi(t—1)  3(Ty(t—1)—1) 1-d Tyt —1)  3(Ty(t—1)—1)

%

3+d | 200} 8ab )
_A P 97
o 1—d*/5< Tyt —1) +3(qu(t—1)—1)

(e) From the inductive assumption, we have

2a 02, Sab
—Agi+(1+d aJ >
ai +(1+ )< qu(t—l)—l+3max(qu(t—1)—2,1))_

2a o
IS 6ab
—A .++(1—d)< Prp + )
akg T (6 =1) " 3(T,,+ (t—1) — 1)

We know that by definitior-A ,+ = —A,;, which gives us

2
14d ( 2a 02, 8ab ) 2004 6ab
AT

+ + :
1—d\\ Ty;(t—1) =1 " 3max (Ty;(t — 1) — 2,1) g (=1 3(T4(t=1) — 1)

Finally, we have

1 | Tyt—1) 1 1 1
\/Tqm—l) = \/qu<t—1> 1 \/qu<t—1> = ﬁ\/mt— D= 2\/qu@_1)
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(19)

1 _ Tyi(t—1)—1 y 1 <> 1
max (Ty;(t — 1) —2,1)  max (Ty;(t —1) —2,1) = Tyt —1) =1 = "Ty(t —1) = 1’

which gives us the result.

Case2.j =E’;(t— 1) and j # k;

The armj is the best empirical arm at timtebut not the best arm, of bandit Here we may write

=Dt = 1) = By ooyt = 1) = Bigj (£ = 1) = Figry (£ — 1) — Figs (¢ — 1)

2 2
2ac Tpi, 6abc 2ac oy 8abc

> « — lhgj — — — _
Z Haky = Haj Ty (£ — 1) 3(Tpk; (t—1)—1) Tt —1)  3(Ty(t—1)—1)

N __21+d\/_< 2a 02 N 8ab )_ 2ac o}, 8aby/c
W14 Tyi(t—1) * 3(Ty;(t—1) — 1) Ty(t—1)  3(Ty(t—1) —1)
34+d 2a o2, 8ab >
> Ay — = :
= % 1—d‘/5< Tyt —1) * 3(Ty(t—1)—1)

(f) From the inductive assumption, we have

2
2a Oqj 8ab ) >

~Aa+ (1 +d)< Tyt —1) —1 T 3 max (Ty;(t—1) —2,1)

2
2a Opks 6ab )

—Aqk; +(1- d)< Tpk; (t—1) + 3(Tpk;(t -1) - 1)

We know that by definition-Ag: > —Ag;, which gives us

14+d ( 2a 07 N 8ab ) 2a 012"“2 T Gab
1-d Toi(t—1) =1 Bmax (Ty(t—1)—2,1) ) = \ Tprs (t = 1) 3(Tpk;(t—1)—1)

The claim follows using Eq. 19.

Case 3.j # @;;(t —1) andj=k;
The armj is the best arm, but not the best empirical arm at tihgd banditg. Here we may write
—qu(t —1) =Jig;(t = 1) — ﬁqﬁz(tfm(t -1)

2
2ac Ur?j 8abc 2ac Gpﬁz(tfl) 6abc

> ks = Hgfx(t—1) — - - -
aky ~ Haky(-1) Tyi(t—1)  3(Ty(t—1)—1) Tt —=1)  3(T E;(tfl)(t—l)—l)

P

Q) 2ac o2, 8aby/c Ve

2 A1) — s~ Ay — Az,

= Takg(t-1) qu(t - 1) 3(qu(t - 1) — 1) + 1-— d( I qkq(tfl))
1+d 2a 0} 8ab )

—2——/c +
1—d\/_< Tyt —1)  3(Ty(t—1)—1)
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Q) 3+d 2a o2, 8ab
> Ay — 47 .
- 7% 1—d‘/5< Tyt —1) +3(qu(t—1)—1)

(g) From the inductive assumption, we have

2a 02, 8ab
Ay +(1+d o + ) 2
aj +( )< Tyt —1) =1  3max (Ty(t—1)—2,1)/) ~
2a o2
E*(t—1) 6ab
—A o +(1—d)< P + )7
gks (t-1) Tise =1 3(Tn -1 -1)
or equivalently,
2a
phx(t—1) 8ab )
_ + 2 (20)
< Tpic\;‘)(tfl)(t -1 3(Tp§;(t*1)(t -b- 1)
1 14+d 2a 2. 6ab
1 A o A . _ a7
1—d( aj qkq(tfl)) 1_d< T,;t—1)—1 +3maX(qu(t—1)—271))

The claim follows from Egs. 20 and 19.

(h) This passage is true when< 2% < 1.

Case 4. j ;zé@j;(t— 1) and j # k;

The pulled armyj is neither the best arm nor the best empirical arm at tirmeEbanditq. Here we
may write

—Agj(t—1) =THg;(t—1) — ﬁqﬁz(tfm(t —1) (21)
2
2ac Ugj 8abc 2ac UPE*(tfl) 6abc

> Paj = Bgfr (1) — - - - .
7 qkg (t—1) Toi(t—1)  3(Ty(t—1)—1) TE st —=1) 3(Tp;;(t71)(t—1)—1)

If k;(t—1)=k;, we may write (21) as

—Ag(t = 1) =g (t = 1) — ﬁqﬁz(tfm(t -1)

2

S s — gy~ _ 2ac Ugj _ 8abc _ 2ac Upgz(tfl) B 6abce
SR TN TG T 0-1) \ Tgge (-0 3T - D - 1)
N 2ac agj Sabc 2ac 02, ph (t—1) 6abc
Z T /g5 T - - -

Tyt =1 3(T(t = 1) 1) Toige-n (=1 3(Tgyny(t—1) = 1)
O [ @0y 8aby/c _21+d\/—< 2a 0} N 8ab )
= T2 Tyt —1)  3(Ty(t—1) —1) 1—d Toi(t—=1)  3(Ty(t—1) —1)

3 +d 2a o2, 8ab

> —Ay;
= ‘/E< Tyj t—l 3(qu(t—1)—1)>
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() From the inductive assumption, we have

2a 02, 8ab
A, +(1+4d s + ) 2
ai +( )< Tyi(t—1)—1 " 3max (Ty(t—1) —2,1) ) =
2a o2
kX (t—1) 6ab
A~ +(1—d)( i + )
aky (t—1) TpE;(tfl)(t -1) 3(Tp§;(t71)(t -1)-1)

We know that by definitioprAq@Z(t_l) = —Agkz > —Ag;, and thus

2
2a Upﬁg(tfl) 6ab

+ .
Lot =1 (T oyt = 1) = 1)

1+d< 2a o2 N 8ab S
T—d\ | Ty(t—1) =1 3max (Ty;(t—1)—2,1) ) ~

The claim follows using Eq. 19.

Now if E;‘(t — 1) # Kk, we may write (21) as

—Agi(t = 1) =g (t — 1) — ﬁqﬁz(tfm(t -1)

B 6abc
Myt D 1)

o B 2ac o7, B Sabe
= Hai = Hoksi-1) Ty (t—1) 3(qu t—1)— 1)

2 g + Aoy ~ Tjj;igji) - 3(qu(fa_bc1) —1) 3(Trs e T(btc— -1
20 P8 o)\ T

_ 2%;\5( Tj?tg_gjl) + 3(Tw (tgibl) _ 1))

2 -a,- ?J—rg‘/g< sztg—gjl) + 3(qu(t8ib1) —1) )

(J) From the inductive assumption, we have

2a 02, S8ab
—A,j+(1+d 4 >
a +(1+ )< qu(t—l)—l+3max(qu(t—1)—271))_

2a 02
Ex(t—1) 6ab
A +(1—d)< P + )
ak; (t—1) Torgeny (=1 3(Typs oy (t—1) — 1)

or equivalently

2
2a apE;(t—l) Sab

- n ) >
( Tpﬁz(tfl)(t -1 3(TpE;(t71)(t -1)- 1)

1 14+4d 2a 02, 6ab )
— (Ay — A - - @y .
1—d( ‘“ qkq“*l)) 1—d< Tyi(t—1) =1 3max (Ty;(t—1) —2,1)

(22)
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The claim follows from Egs. 22 and 19.

(K) This passage is true whén< < < 1.

1-d —

29



