
HAL Id: hal-00632488
https://hal.science/hal-00632488

Submitted on 14 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and Fair Scheduling of rtPS traffic in IEEE
802.16 Point-to-multipoint Networks

Zeeshan Ahmed, Salima Hamma

To cite this version:
Zeeshan Ahmed, Salima Hamma. Efficient and Fair Scheduling of rtPS traffic in IEEE 802.16 Point-to-
multipoint Networks. The 4th Joint IFIP Wireless Mobile Networking conference, Oct 2011, Toulouse,
France. pp. 1-7, �10.1109/WMNC.2011.6097257�. �hal-00632488�

https://hal.science/hal-00632488
https://hal.archives-ouvertes.fr


Efficient and Fair Scheduling of rtPS traffic in IEEE
802.16 Point-to-multipoint Networks

Zeeshan Ahmed
LUNAM Université, IRCCyN,

CNRS UMR 6597, Polytech′ Nantes,
rue Christian Pauc - BP 50609 -
44306 Nantes Cedex 3 FRANCE

zeeshan.ahmed@univ-nantes.fr

Salima Hamma
LUNAM Université, IRCCyN,

CNRS UMR 6597, Polytech′ Nantes,
rue Christian Pauc - BP 50609 -
44306 Nantes Cedex 3 FRANCE

salima.hamma@univ-nantes.fr

Abstract—IEEE 802.16 standard provides a revolutionary air
interface that enables very high data rates over large distances.
It incorporates a Quality of Service (QoS) framework to ensure
satisfactory transmission of different classes of traffic. However,
the actual implementation of QoS mechanisms is not defined
in the standard and left out for service providers. One of the
five different classes of services supported by the standard is
real-time polling service (rtPS). Scheduling rtPS traffic is the
most challenging because of its bursty nature and tight delay
constraints. In this paper, we provide a new algorithm for
fair scheduling of rtPS traffic in uplink direction. Besides the
constraint of deadline which characterizes this type of traffic,
we also assure fairness by using service ratios for each service
flow. Performance analysis of the proposed algorithm proves
that the algorithm is able to fairly allocate maximum possible
bandwidth among all admitted rtPS connections. Furthermore,
it shows improvement of various QoS parameters compare to
Earliest Deadline First algorithm, particularly for high speed
data networks.

I. INTRODUCTION

Advancements in the Internet and mobile communication
has resulted in a tremendous growth in their user base . There
is also a continuous trend of increased usage of multimedia
services, such as IPTv, video conferencing, VoIP etc. These
services require huge resources and put enormous burden on
network infrastructure. In fact, current cellular networks would
not be able to cope up with the increasing demand within next
few years [1]. Therefore, there is a need of faster and more
reliable networks to support these services. Furthermore, to
maintain an acceptable level of service, a network must also
be able treat applications according to their priorities. In this
regard IEEE 802.16 [2] (WiMAX) is an ideal choice. It is
one of the leading candidates to become the official standard
of next generation of cellular networks. It offers very high
data rates over large distances. Moreover, it incorporates a
well-defined QoS framework. The details of WiMAX QoS
architecture are provided in section II. In a WiMAX point-to-
multipoint topology, a base station (BS) controls and provides
connectivity to multiple subscriber stations (SS).

Scheduling is an essential element of any QoS architecture
that has to support real-time services with variable needs. The
complex task of scheduling is performed by three schedulers in

WiMAX i.e. BS downlink scheduler, BS uplink scheduler and
SS scheduler. The functions of these schedulers are defined,
however the details are not defined in the standard and left out
for service providers [3].

The most complex scheduling is performed by BS uplink
scheduler as it does not have complete view of service flows’
queues that are maintained at SSs. Furthermore, scheduling
rtPS traffic is the most challenging because of its bursty nature
and tight delay constraints. In this article we propose an
algorithm for BS uplink scheduler to provide fair and efficient
allocation of resources to the set of active rtPS connections.
The simulation results show that the proposed algorithm is
efficient, fair, and practical.

The rest of the paper is organized as follows. Section II
introduces the QoS architecture provided by the standard.
Section III gives a brief overview of the related work. In
section IV we present the details of our proposed algorithm.
Section V provides simulation results and some comparisons
with the related work and section VI concludes the paper.

II. QOS ARCHITECTURE OF IEEE 802.16 NETWORKS

QoS refers to mechanisms that allow network managers to
control the mix of bandwidth, delay, latency, and packet loss
in a network in order to deliver an acceptable level of user
experience. QoS support is a fundamental design requirement
in WiMAX and it is considerably more difficult due to variable
and unpredictable nature of wireless links. To support QoS
differentiation, the standard provides five classes of services:
(i) Unsolicited Grant Service (UGS): specifically designed
for constant bit rate services, such as T1/E1 emulation and
VoIP without silence suppression (ii) Extended Real-Time
Polling Service (ertPS): built on the efficiency of both UGS
and rtPS. Suitable for applications such as VoIP with silence
suppression (iii) Real-Time Polling Service (rtPS): designed
for real-time services that generate variable size data packets
on periodic basis, such as MPEG video (iv) Non-Real-Time
Polling Service (nrtPS): designed for delay tolerant services
that generate variable size data packets on a regular basis (v)
Best Effort (BE) Service: designed for applications without
any QoS requirements such as HTTP service.



As discussed in section I, there are three schedulers spec-
ified in the standard: BS uplink scheduler, BS downlink
scheduler, and SS scheduler. While the WiMAX framework
provides the details of types of service flows and schedulers
that should be supported, but it does not explicitly define
the actual packet mechanisms at the schedulers. Therefore
service providers are free to choose the scheduling algorithms
according to their needs. The WiMAX QoS architecture is
shown in figure 1.

The WiMAX MAC is connection oriented and therefore
signaling messages need to be exchanged between BS and
SS to establish a service flow, which is a MAC transport
service that provides unidirectional transport of packets in
either direction. All service flows are identified by a 32-
bit service flow ID (SFID). Once a flow is admitted and
activated, it is also assigned a 16-bit connection identifier
(CID). A service flow is characterized by QoS parameters,
which include details of how the SS requests uplink bandwidth
allocations and how the BS uplink scheduler is expected to
work.

Fig. 1. WiMAX QoS Architecture [4]

The standard uses Time division multiplexing (TDM), in
which the MAC frame is divided into an uplink subframe and
a downlink subframe. The subframes are further divided into
time slots. The BS controls the number of time slots assigned
to a SS. The slots assigned to a SS in the uplink subframe
allows the SS to transmit data in the uplink direction. The
information about allotment of slots to SS in uplink subframe
is communicated by the BS through UL-MAP at the start of
each frame. The UL-MAP is a MAC management message
that defines the uplink access for all SSs for entire uplink
subframe.

For SS-initiated flow, a SS first requests a connection.
The connection admission control (CAC) located in the BS
determines whether the demanded QoS requirements may be
fulfilled or not. An SFID is assigned to a flow only if sufficient
resources are available to provide the required QoS. In a BS-

initiated flow, in addition to above processes, the BS waits for
the response from SS indicating whether it can support the
requested communication. The classification of frames into SS
transmission queues is done according to CIDs. The scheduler
of a SS traverses the queues to select the most suitable packets
for transmission, which are then transmitted in the time slots
allotted to them by the BS uplink scheduler. The BS scheduler
only grants bandwidth to SSs and not to individual CIDs. A
SSs itself makes the scheduling decision regarding the service
flows associated with it. This simplifies the overall scheme
and increases effectiveness, as SSs have more updated views
of their queues than the delayed estimates available at the BS.

III. RELATED WORK

The scheduling algorithms proposed for WiMAX can be
classified into two main categories: well-known algorithms
and algorithms especially designed for WiMAX. These al-
gorithms aim to optimize different performance parameters,
such as: total maximum data rate, fairness, and latency. In [5],
the authors apply following algorithms on rtPS traffic and
present the results: round robin (RR), weighted round robin
(WRR), maximum Signal-to-Interference ratio (mSIR), and
temporary removal scheduler (TRS). The simulation results
show that RR and WRR become inefficient in medium and
high load conditions and transmit the minimum number of
packets. TRS+mSIR and mSIR deliver the maximum number
of packets. However they require a large average delay, which
make them unsuitable for real-time applications such as VoIP
and IPTv. The authors then present a modified version of
mSIR, called mmSIR. But still the required average delay is
greater than that of RR and WRR.

Some authors ([6], [7], [8]) suggest the use of Earliest
Deadline First (EDF) for rtPS traffic. In [8], the use of EDF
for rtPS is proposed in both uplink and downlink direction.
Downlink rtPS traffic is given priority over uplink rtPS traffic.
In [7], it is proposed to use the concept of arrival-service
curve provided in [9] to predict the arrival time of incoming
rtPS packets. We provide some comments on the use of
arrival-service curve in section IV. In this scheme, If enough
bandwidth is not available then the bandwidth is distributed
among all rtPS connections according to their average data
rates. However, this distribution can actually result in some
unused portions of bandwidth as shown by simulations in
section V.

In [10], the authors propose to use a single scheduler for
all classes of services. They argue that scheduling disciplines
like Fair Queuing (FQ) and EDF complicates scheduling and
therefore they are not suitable for high speed networks. They
further argue that the difficulty of accurately determining
the deadlines of individual packets stored in SS buffers and
potentially unfair behavior of EDF makes it unsuitable for
WiMAX networks. However, their scheme is less efficient than
EDF for rtPS flows.



IV. PROPOSED ALGORITHM

A. Terminology
Firstly, we present the important terminology to understand

the rest of the article.
1) rmin

i : minimum reserved traffic rate (MRTR) for con-
nection i

2) rmax
i : maximum sustained traffic rate (MSTR) for

connection i
3) di : delay limit for connection i (number of uplink

frames)
4) brk

i : bandwidth requested by connection i in frame k
5) bak

i : bandwidth allocated for connection i in frame k
6) n : number of rtPS connections admitted
7) dmax : max(di), where i = 1, 2, ...n
8) bTbl : an n× dmax table to store bandwidth allocations
9) rk : unused bandwidth in frame k

10) f : current uplink frame
11) SRi : service ratio for connection i
12) SR : total service ratio
13) ra : current value of available uplink bandwidth

B. Call Admission Control
A new rtPS connection i is admitted by the BS if and only

if enough bandwidth is available to guarantee MRTR for the
connection, mathematically, rmin

i ≤ ra. After admitting i the
value of ra is updated, ra ← (ra − rmin

i ). To ensure that
connection i never surpass its contract, it is assumed that a
traffic limiting module is present at the SS that always keeps
the bandwidth demands of i below rmax

i . Thus the traffic
generated by connection i always remain between rmin

i and
rmax
i .

C. Fairness Parameters
For each uplink frame the BS allocates bandwidth to

connections in increasing order of di, i.e. priority is given
to the connections with tighter delay constraints. In order to
guarantee fairness among rtPS flows we introduce a parameter,
called Service Ratio, which is calculated for each flow as
shown in Eq. 1. Another parameter, called Total Service Ratio,
is also calculated as shown in Eq. 2. SR is simply the ratio
of total service provided to total service requested by all
connections. A connection i is only allowed to transmit data
if SRi ≤ SR. If SRi > SR, this implies that there are
some connections for which the Service Ratio is less than SR
and therefore they should be given priority over connection i.
The idea is to guarantee MRTR for each session, while fairly
distributing the available bandwidth among active rtPS flows.
It should be noted that in the ideal scenario all connections
would have equal value of Service Ratio. Mathematically,
SRi = SRj , where i, j = 1, 2, 3, ..., n

SRi =

f−1∑
t=1

bat
i

f−1∑
t=1

brt
i

(1)

where, i = 1, 2, ..., n

SR =

f−1∑
t=1

n∑
i=1

bat
i

f−1∑
t=1

n∑
i=1

brt
i

(2)

D. Scheduling

In each round bandwidth is allocated to a connection i only
if SRi ≤ SR. When a new bandwidth request brf

i arrives,
the BS allocates maximum possible bandwidth to brf

i in f .
However if enough space is not available in f then it allocates
the remaining bandwidth in frame f + di. The bandwidth
allocations are done by using an n× dmax table, called bTbl.
Each entry bTbl[i][j] in bTbl is an ordered pair (c, u), where
c is the bandwidth that is allocated for connection i in frame
j, while u is the bandwidth allocation to i which could be
scheduled between frames f and f + j. However, there is no
guarantee that the algorithm will actually schedule u. We call
c as confirm allocation, while u as unconfirm allocation.
The table is used by the scheduler to generate UL-MAP.
At the end of each round of scheduling the first column
of bTbl is translated into UL-MAP. The generation of UL-
MAP is illustrated at the end of this section. The step by
step explanation of the proposed algorithm is presented in
subsequent paragraphs.

The procedure schedule, lines 1-13, is invoked at the start of
each frame to schedule rtPS traffic. The for loop, lines 2-11,
runs the scheduling algorithm for each connection’s bandwidth
request. Thus, lines 3-10 are executed for each bandwidth
request.

Line 4 tries to allocate the maximum possible bandwidth
to brf

i in the current frame. The function allocateBw returns
the amount of bandwidth successfully allocated in the current
frame. So, this value is subtracted from the original requested
bandwidth to obtain the amount of bandwidth still to be
allocated. This bandwidth can be scheduled between f + 1
and f + di. Instead of finding the exact column in bTbl to
allocate this bandwidth, the algorithm tries to do the maximum
possible allocation in frame f + di (line 5). In fact, if some
space would become available before f + di, this request
could be scheduled earlier. If there is still some unallocated
bandwidth, the algorithm assigns it as unconfirm allocation
at bTbl[i][f +di]. This step is actually done at line 8. If some
space becomes available between frames f and f +di, this en-
try could be converted to confirm allocation. The condition
at line 7 can be true either because SRi > SR and therefore
no bandwidth allocation can be done for connection i or there
is some bandwidth which cannot be allocated in statements 4
and 5. Regardless of the case, an unconfirm allocation is
performed in line 8. Then, the algorithm updates SRi and SR
according to equations 1 and 2.

The function allocateBw is invoked when the procedure
schedule wants to allocate some bandwidth for a connection.
The definition of allocateBW , lines 19-31, is self-explanatory



Algorithm 1 The proposed algorithm
1: procedure schedule()
2: for i = 1 to n do
3: if SRi ≤ SR then
4: set brf

i -= allocateBw(brf
i , i, f)

5: set brf
i -= allocateBw(brf

i , i, f + di)
6: end if
7: if brf

i > 0 then
8: set bTbl[i][f + di].u += brf

i

9: end if
10: update SRi

11: end for
12: update SR
13: generate UL-MAP
14: end procedure
15:
16:
17: {Function allocateBw attempts to reserve an amount bw

of bandwidth for the connection conn in frame frame. It
returns the amount of bandwidth successfully allocated}

18:
19: function allocateBw(bw, conn, frame)
20: if bw ≤ 0 or rframe ≤ 0 then
21: return 0
22: end if
23: if rframe ≥ bw then
24: set allocate = bw
25: else
26: set allocate = rframe

27: end if
28: set rframe -= allocate
29: set bTbl[conn][frame].c += allocate
30: return allocate
31: end function

and it is provided for the sake of completeness. The function
returns the amount of bandwidth it is able to allocate for the
connection in the specified frame.

The generation of UL-MAP is straightforward. At the end
of procedure schedule, the first column of bTbl corresponds
to the UL-MAP to be generated for the current frame. If
there is unused bandwidth then confirm allocations with the
earliest deadline from subsequent frames are scheduled in the
current frame. If no more confirm allocations are available
in subsequent frames and there is still some unused bandwidth
then unconfirm allocations can be scheduled in order of
their deadlines. If there are some packets that cross their
deadlines, it is proposed that these packets should be dropped
by SS schedulers. The proposed algorithm is illustrated with
the help of an example given at the end of this section.

The run-time complexity of the proposed algorithm is easy
to calculate. Lines 3 to 10 are executed for each bandwidth
request. Lines 4 and 5 call the function allocateBw. It is
obvious that all steps in the function are done in constant

time. Therefore, the complexity of allocateBw is O(1).
Similarly, statements 7 to 10 are executed in constant time.
Hence, for each bandwidth request, the run-time complexity
of the proposed algorithm is O(1).

brf
k = backlog(f) + service(f − 1)− backlog(f − 1) (3)

brf
k = backlog(f) + service(f − 1, f)

− backlog(f − 1) + drop(f − 1, f) (4)

It should be observed that as a bandwidth
request is received, the algorithm decides how much
confirm allocation for this request could be done.
Therefore there is no need for SS to send the backlog amount
as a bandwidth request, but it can actually send the amount
of traffic generated between f − 1 and f . This have two
distinct advantages: firstly less bandwidth is required to
make requests, and secondly the BS need not to determine
the deadline of individual packets through some complex
procedure. However, even if the SS send the backlog as
bandwidth request, we can use arrival-service curve [9]
used by [7] to determine the actual new bandwidth demand
generated during f − 1 and f . Mathematically, it can be
represented by equation 3, where backlog(f) is the current
bandwidth request, backlog(f − 1) is the previous bandwidth
request, and service(f − 1) is the bandwidth allocated to
the connection in the previous frame. However in the case,
expired packets are dropped by SS, we must add the packets
dropped during period [f − 1, f ] to equation 3. The corrected
version is given in equation 4.

Illustrating Example
We explain the working of the algorithm with the help of

the example shown in figure 2. In this example, there are
three connections to schedule: A,B,C with delay limits of
30ms, 40ms, and 60ms respectively. We assume total uplink
bandwidth per frame to be 10 units and a frame duration of
20ms. This implies that a packet generated by A,B, and C
between f −1 and f must be scheduled within next 1,2 and 3
frames respectively. The bandwidth requests generated by the
three connections are shown in column 2. For example, the
first entry in the first row of column 2, is the amount of traffic
that arrived in the input queue of connection A for uplink
transmission between frame 0 and frame 1. The bandwidth
request for this traffic will be treated at the start of frame 1 by
the BS. The third column shows the values of SR and SRi at
the start of scheduling frame f . An entry in the fourth column
is the bTbl that is obtained at the end of scheduling for frame
f . The shaded entries in bTbl are unconfirm allocations,
while other are confirm allocations. The underline entries in
a bTbl are the allocations done during current frame. The UL-
MAP corresponding to frame f is shown in the fifth column.

The scheduling in the example is done as follows. The
algorithm is able to schedule the requested bandwidths in [0,1].



Fig. 2. An example for illustrating the proposed scheduling algorithm. The shaded entries in a Bandwidth Allocation Table are unconfirm allocations

Note specially the allocations done for connections B and C.
Since only 10 units can be allocated to a frame, therefore
we cannot do confirm allocation of more than 10 units for
a frame. For scheduling the requests in [1,2], SRA ≤ SR
but there is no bandwidth in current frame. Furthermore, due
to delay limits this request cannot be fulfilled in subsequent
frames. Therefore, it is entered as an unconfirm allocation
in the current frame. As there is no provision in the current
frame, therefore this request is not scheduled in the UL-
MAP of frame 2. In the duration [2,3], B requests 12 units
of bandwidth. Since SRB > SR, therefore the algorithm
allocates it as an unconfirm allocation in the frame f +dB

i.e. in frame 4. The unused 5 units of bandwidth in frame
3 are used to schedule 5 units from the next frame. For
[3,4], there is no bandwidth request. There are 5 units of
confirm allocation and 17 units of unconfirm allocation
for frame 4. Therefore, 5 units can be allocated to first
unconfirm allocation for B. The remaining entries cannot
be scheduled. The final values of SRi and SR are shown in
the last row.

It is important to understand that all unexpired packets
belonging to the same connection are always scheduled in the
order of their deadlines by SS scheduler. The important thing
is the amount of bandwidth allocated to the connection and not
the actual packets against which the allocations are done. This
is due to the fact that SS scheduler transmits packets in FIFO
order. Consider the example given in Fig 3. We assume two
connections A and B, with dA = 2, dB = 2. Note that the BS
grant 5 units to A against demand of 10 units. However, the
SS scheduler schedules the packet at the head of A’s queue.
Note, however, the 5 units were granted against the second
packet in queue and not the packet at the head of the queue.

Fig. 3. FIFO Scheduling at SS

Parameter Value
Frequency bandwidth 20 MHz
Sampling factor 8/7
Cyclic prefix 8
Frame duration 20 ms
Simulation duration 100 s
Packet reception model PHY802.16 reception
Antenna model omnidirectional
Antenna height 1.5 m
Antenna gain 1
Antenna loss 0
Transmit power 20 dBm
Link adaptation Enabled

TABLE I
PARAMETERS OF THE SIMULATION MODEL

V. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated by
simulations in Qualnet 5 [11]. It is assumed that: (1) Packets
arrive at start of a frame. (2) There is only rtPS traffic (3) All
connections are already admitted. (4) Total uplink bandwidth =
10 Mbps (5) Four rtPS connections with parameter as shown in
Table II. These parameters imply a very heavy load on system
as average input traffic is more than twice the total available
bandwidth.



Connection rmin (kbps) rmax (kbps) Max Delay (frames)
A 2500 4000 3
B 2000 9000 4
C 3000 17000 5
D 2500 10000 7
Total 10000 40000

TABLE II
INPUT TRAFFIC PARAMETERS

Figure 4 shows the service ratios for each rtPS connection
as well as total service ratio SR after scheduling by the
proposed algorithm. It is obvious that service ratios of all rtPS
connections tend to SR. Even though the available bandwidth
could only provide minimum guaranteed service to each rtPS,
the proposed algorithm performed very well and dynamically
allocate bandwidth to ensure fairness. In fact, SR is the best
a connection can get and all the connections seem to follow
SR rather well. Hence, it shows that the algorithm is able to
fairly allocate maximum possible bandwidth to each admitted
rtPS connection.

Fig. 4. Service ratio for rtPS connections by applying the proposed algorithm

We also performed simulations for the EDF algorithm
proposed in [7]. Figure 5 shows the service ratios obtained by
scheduling using EDF on the same set of data. There is not
much difference between SR provided by EDF and SR pro-
vided by our proposed algorithm. However, obviously there is
greater difference among the SRi for individual connections.
In this case, EDF allocates the maximum bandwidth to A,
which least bandwidth is allocated to B. This dispersion in
service ratios is due to the fact that EDF tries to minimize the
average delay but does not take fairness into account.

Figure 6 shows the throughput as a function of load. Clearly
both algorithm are able to schedule all traffic until the load
surpasses the available bandwidth of 10 Mbps. After this
point, no matter how much load is applied the algorithms
cannot give more throughput. However, EDF tends to drop
some packet and throughput is slightly less than 10 Mbps.
In case of insufficient bandwidth, EDF distributes bandwidth
among rtPS connections according to their average data rates.
Sometimes, these allocations may result in over allocation to
certain connections and thus some bandwidth remain unused.

Figure 7 depicts average delay packets have to wait in
the input MAC queues as a function of load. Under light
and medium load conditions the packets are scheduled almost

Fig. 5. Service ratio for rtPS connections by applying EDF

Fig. 6. Throughput vs Load

immediately by both algorithms. However, under very heavy
load conditions the packets have to wait four times the
normal average waiting time. Note that expired packets are
automatically dropped by SS. Under all loads, the proposed
algorithm results in slightly lower average delays.

Fig. 7. Average Delay vs Load

Figure 8 shows the ratio of loss packets as a function of
load. When the load is under 10 Mbps, both algorithms are
able to schedule almost all the input packets and therefore
the loss packet ratio is almost 0. Any traffic above 10 Mbps
threshold cannot be scheduled and therefore the loss packet
ratio increases sharply after this point. It can be seen that at a
load of 20 Mbps, half of the traffic is dropped and so the loss
packet ratio is around 0.5. It is obvious that the EDF results



in more lost packets as compared to the proposed algorithm.

Fig. 8. Loss Packet Ratio vs Load

VI. CONCLUSION

In this paper, we propose an algorithm for IEEE 802.16
networks that provides fair uplink scheduling of rtPS traffic.
The service ratio (SR) for each rtPS connection as well as
total SR are computed by the proposed algorithm in order
to implement fairness. Simulation results show that the pro-
posed algorithm is able to fairly allocate maximum possible
bandwidth to each admitted rtPS connection. Furthermore,
we did comparative studies with EDF algorithm. The studied
performance indicators are throughput, delay and loss packet
ratio. For each parameter, our algorithm provides better results.
It is also important to note that the run-time complexity is of
the order of O(1). The future work would include other classes
of services (i.e UGS, nrtPS, BE). This will allow our algorithm
to provide differentiated QoS needs for all service classes.

REFERENCES

[1] WiMAX Forum, “Deployment of Mobile WiMAX networks by opera-
tors with existing 2G and 3G networks,” March 2008. [Online]. Avail-
able: http://www.wimaxforum.org/sites/wimaxforum.org/files/document

library/deployment of mobile wimax.pdf
[2] IEEE, “IEEE 802.16-2005, IEEE standard for local and metropolitan

area networks - Part 16: Air interface for fixed and mobile broadband
wireless access systems amendment for physical and medium access
control layers for combined fixed and mobile operation in licensed
bands,” February 2006.

[3] R. A. Talwalkar and M. Ilyas, “Analysis of quality of service (QoS) in
WiMAX networks,” 16th IEEE International Conference, ICON08, pp.
1–8, December 2008.

[4] F. Ohrtman, WiMAX handbook. McGraw-Hill Communications, 2005.
[5] A. Belghith and L. Nuaymi, “Comparison of wimax scheduling algo-

rithms and proposals for the rtps qos class,” Wireless Conference, 2008.
EW 2008. 14th European, pp. 1–6, June 2008.

[6] T. Tsai and C. Wang, “Routing and admission control in IEEE 802.16
distributed mesh networks,” IFIP Internation Conference on Wireless
and Optical Communications Networks, pp. 1–5, 2007.

[7] K. Wongthavarawat and A. Ganz, “Packet scheduling for QoS support in
IEEE 802.16 broadband wireless access systems,” Internation Journal
of Communication Systems, no. 16, pp. 81–96, 2003.

[8] J. Chen, W. Jiao, and Q. Guo, “An integrated QoS control architecture
for IEEE 802.16 broadband wireless access systems,” in IEEE Global
Telecommunication Conference, IEEE Communications Society, Ed.,
2005.

[9] R. Cruz, “A calculus for network delay, part i: Network elements in
isolation,” IEEE Transaction of Information Theory, vol. 37, no. 1, pp.
114–131, 1991.

[10] A. Sayenko, O. Alanen, and T. Hmlinen, “Scheduling solution for the
ieee 802.16 base station,” Computer Networks, vol. 52, no. 1, pp. 96
– 115, 2008, (1) Performance of Wireless Networks; (2) Synergy of
Telecommunication and Broadcasting Networks. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138912860700271X

[11] Qualnet. [Online]. Available: http://www.scalable-
networks.com/products/qualnet/


