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The coherence properties of a three-level Λ-system influenced by a Markovian environment are
analyzed. A coherence vector formalism is used and a vector form of the Lindblad equation is
derived. Together with decay channels from the upper state, open system channels acting on the
subspace of the two lower states are investigated, i.e., depolarization, dephasing, and amplitude
damping channels. We derive an analytic expression for the coherence vector and the concomitant
optical susceptibility, and analyze how the different channels influence the optical response. This
response depends non-trivially on the type of open system interaction present, and even gain can be
obtained. We also present a geometrical visualization of the coherence vector as an aid to understand
the system response.

PACS numbers: 03.65.Yz, 42.50.Gy, 42.65.An

I. INTRODUCTION

A medium that is opaque to radiation on one of the transitions of a Λ-system can be made transparent by addressing
a laser field on the second transition, a phenomenon known as electromagnetically induced transparency (EIT) [1, 2].
Associated with this transparency is an extremely small and dynamically controllable group velocity [3]. The pulse
can be brought to a complete stop and stored as an atomic coherence. Most impressive with respect to storage
time, is perhaps the storage of a light pulse in a solid for a period greater than one second [4]. The process can be
reversed, and the light pulse released with the original pulse information intact [5], making the EIT mechanism a
strong candidate to build a quantum memory [6]. Beside applications in quantum information processing, the narrow
spectral feature of EIT is an important tool in spectroscopy [7], high precision magnetic sensors [8], and atomic clocks
[9, 10]. Furthermore, the slow light phenomena can be used for optical delay lines and light storage, but there is a
trade-off between the delay of a pulse and the bandwidth [11]. In order to increase the bandwidth, spatially dispersed
light beams in non-isotropic media can be used [12].

The above effects depend crucially on the coherence properties of the Λ-system [13]. The dark state superposition,
central to the EIT mechanism, is fragile to external influences. This motivates to study open system effects in the
dynamics of this system. Open system effects suppress the dark state of the system and thus set the ultimate limit
on the storage time of light, the absorption, and the spectral resolution of the transparency. There are tricks that one
can play in order to increase the efficiency of this coherence effect. In, for example, Ref. [4] the effective decoherence
rate was decreased by a method called quantum bang-bang dynamic control, inspired by refocusing techniques in
nuclear magnetic resonance [14].

In this paper, we investigate various types of interactions between the Λ-system and a Markovian environment
modeled by the Lindblad-Kossakowski equation [15, 16]. Using the coherence vector formalism [17, 18] we find the
asymptotic states (t→∞) for the Λ-system and derive an analytical expression for the corresponding optical response,
i.e., the susceptibility of the medium, due to the dephasing, depolarization, and three different amplitude damping
channels acting on the two lower states. Effects due to open system interactions are relevant in many experimental
instances and depends on the detailed structure of the system, the environment, and the interaction; for possible
configurations see, e.g., [19, 20]. The approach used here for treating open system effects is general and provides an
option for visualization of the system response.

The outline of the paper is as follows. Section II contains a general theory for a Markovian dynamics in a three-
level system using coherence vector formalism. In Section III, we apply this framework to a Λ-system undergoing
open system dynamics corresponding to dephasing, depolarization, and amplitude damping channels. The results
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are presented in Section IV. We give a geometrical visualization of different projections of the steady state solution
to the coherence vector when different open systems effects are applied. We derive an analytical expression for the
susceptibility in the presence of the open system effects. The paper ends with the conclusions.

II. OPEN THREE-LEVEL SYSTEM

Let us begin by studying a general three-level quantum system and the effects due to the interaction with a
Markovian environment. In this case, the density operator ρ̂ satisfies the master equation

∂tρ̂ =
1
i~

[Ĥ, ρ̂] + L̂(ρ̂), (1)

where Ĥ is the Hamiltonian operator. The Liouville superoperator L̂ is linear, describes the coupling with the
environment, and can be written on Lindblad form [15]

L̂(ρ̂) =
∑

k

(γ̂kρ̂γ̂†k −
1
2 γ̂†kγ̂kρ̂− 1

2 ρ̂γ̂†kγ̂k), (2)

where γ̂k are Lindblad operators, and the subscript k denotes the open system channels.
For a two-level system it is customary to use a coherence vector representation, called a Bloch-vector representation.

Similarly, for a three level system we can write the density matrix ρ and Hamiltonian matrix H in a vector form as
[21]

ρ =
1
3
1 + x · λ,

H = ~ω01 + ~ω · λ. (3)

Here, we have introduced the coherence vector x = xiei (repeated indices summed from now on), the torque vector
ω = ωiei associated with the Hamiltonian and the SU(3) matrix generators λ = λiei. The basis {ei}8i=1 is real
and orthonormal. We have used the standard scalar product ‘ · ’, and 1 is the 3 × 3 identity matrix. We use the
traceless Gell-Mann matrices {λi}8i=1 as defined in Ref. [22]. The length of the coherence vector is 0 ≤ |x|2 ≤ 1/3,
with |x|2 = 1/3 for pure states and |x|2 = 0 for maximally mixed states.

By inserting Eq. (3) into Eq. (1) we obtain

ẋ · λ =
1
i
[ω · λ, x · λ] +

1
3
L(1) + L(x · λ), (4)

i.e., the dynamics reformulated in terms of Gell-Mann matrices. The non-zero form of the Lindblad operators γ̂k is
written as γ̂k

.= g01+ gk · λ, where the symbol ‘ .=’ stands for ‘represented by’. In this paper we will not consider the
contribution from g0 as this term always can be interpreted as an extra contribution to the Hamiltonian [23]. Thus,
we focus on the ‘Lindblad vectors’ gk.

In Appendix A, we obtain a λ-independent form of Eq. (4). As a result we obtain the complete dynamics of the
system, including open system effects, as an inhomogeneous differential equation [24]

ẋ = Mx + b (5)

with the evolution matrix M and vector b explicitly give in Appendix A. For time-independent and invertible M , the
general solution of Eq. (5) takes the form [17, 21]

x = eMtx0 −M−1b, (6)

where x0 = x(0) + M−1b, x(0) being the initial coherence vector.
The evaluation of the exponential of M is non-trivial, since M is not diagonalizable in general. To deal with this

fact one may resort to the Jordan normal form of M , i.e., M = SJS−1, where J has non-zero entries only on the
diagonal and the super-diagonal, and S is an invertible matrix. Expanding the exponent in Eq. (6), we can write the
general solution as

x = SeJtS−1x0 −M−1b. (7)

The real part of the eigenvalues {sj}8j=1, sj ∈ C, of M originates from L̂ and must be zero or negative in order to
preserve non-negativity of the density operator.
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FIG. 1: The Λ-system. The field on the a-b transition is the weak probe field Ωb, and the field on the a-c transition is the
control field Ωc. The upper level is broadened by the finite lifetime 1/γ.

We now look at the eigenvectors of M . Higher-dimensional Jordan Blocks occur provided M has linearly dependent
eigenvectors corresponding to degenerate eigenvalues. However, in all the cases we investigate in this paper we only
identify one-dimensional Jordan blocks.

We now ask what happens for different open system effects corresponding to one-dimensional Jordan blocks. We
focus on the case where we have si∈I = 0, I being an index set, and Re(si/∈I) < 0. In the t → ∞ limit, the matrix
eJt tends to the matrix P ′, which projects onto the subspace corresponding to I . Thus, in this limit, eMt = SeJtS−1

tends to the projector SP ′S−1 and the asymptotic coherence vector x(∞) depends on the initial coherence vector x0

according to

x(∞) = Px0 −M−1b. (8)

For the cases studied in this paper, I is the empty set, i.e., Re(si) < 0 ∀i, we have eMt = SeJtS−1 → 0 when t→∞.
In this case, the asymptotic state is determined by

x(∞) = −M−1b, (9)

thus being independent of x0. Further discussions on the existence and properties of asymptotic states in Markovian
open quantum systems can be found in Refs. [25–27].

III. OPEN Λ-SYSTEM

An electromagnetic field interacting with matter gives rise to a matter polarization. The linear part of the polar-
ization field P = P (E) can be written in terms of the electrical susceptibility χ = P/(Eε0), with ε0 the electrical
permittivity in free space. The real and imaginary parts of the susceptibility describe the phase velocity of the elec-
trical field and the absorption or gain of the field, respectively. The macroscopic polarization field of an isotropic
medium consisting of N atoms per unit volume is P ≡ 〈P̂〉 = N〈p̂〉 = NTr[ρ̂µ̂], where ρ̂ is the density operator and
µ̂ = e r̂ is the dipole operator with electric charge e and position operator r̂. Therefore, if ρ̂ is known as a function of
the optical field, the optical response is too, as it is given by the coherences of ρ̂. In this section we develop the tools
to compute ρ̂ for an open Λ-system and in the next section we find the resulting optical response χ.

The Λ-system consists of two ground state levels coupled to an excited state via electromagnetic fields, as shown
in Fig. 1. The corresponding Hamiltonian is given by Ĥ(t) = Ĥ0 − µ̂ ·E(t), where Ĥ0 is the Hamiltonian of the bare
atom, µ̂ is the electric dipole operator, and E(t) is an oscillating electric field. Furthermore, let Ei be the energy
eigenvalues of Ĥ0 corresponding to the bare eigenstates |i〉, i = a, b, c. In a frame rotating with the external field, the
Hamiltonian operator reads

Ĥ = ~ δb|b〉〈b|+ ~ δc|c〉〈c| − ~ Ωb|a〉〈b| − ~ Ωc|a〉〈c|+ h.c., (10)

where we have used the rotating wave approximation and we have defined the complex Rabi frequencies in terms of
the electric field E in the rotating frame as Ωi = 〈a|µ̂|i〉 ·E/(2~) and detunings δi = ωi− (Ea−Ei)/~, where ωi are the
frequencies of the field. Note the factor 1/2 in the definition of |Ωi|, introduced for notational convenience. Defining
the Gell-Mann matrices in terms of the basis ordered as {|b〉, |c〉, |a〉}, the parameters of the Hamiltonian matrix in
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Eq. (3) are given by

ω0 =
1
3~

Tr[H ] =
2
3
∆,

ω =
1
2~

Tr[Hλi]ei = δe3 − |Ωb| cosφbe4 − |Ωb| sin φbe5 − |Ωc| cosφce6 − |Ωc| sin φce7 −
1√
3
∆e8, (11)

where Ωi = |Ωi| exp(iφi) and we have defined the two-photon detuning δ = (δb − δc)/2 as well as the mean detuning
∆ = (δb + δc)/2.

We now specify the Lindblad operators that describe the different forms of open system dynamics. Spontaneous
emission corresponding to the amplitude damping of the excited energy state |a〉 to either of the two ground states |b〉
or |c〉 with rates γb and γc is assumed to be always present. The corresponding Lindblad operators and their matrix
representation read

γ̂b =
√

γb|b〉〈a|
.=

1
2
√

γb(λ4 + iλ5),

γ̂c =
√

γc|c〉〈a|
.=

1
2
√

γc(λ6 + iλ7), (12)

and they define the natural line width γ ≡ γb + γc indicated in Fig. 1. The subscripts b and c indicate the final
quantum state of the atom after interaction with the environment through the decay channel. The corresponding
Lindblad vectors are

gb =
1
2
√

γb(e4 + ie5),

gc =
1
2
√

γc(e6 + ie7). (13)

These vectors are complex-valued and therefore C(−) in Eq. (A10) is non-vanishing and, accordingly, the decay channel
contributes to the dynamics, Eq. (5), with a non-zero b.

The dark state of the Λ-system is

|d〉 = 1√
|Ωb|2 + |Ωc|2

(Ω∗c |b〉 − Ω∗b |c〉). (14)

This is an eigenstate of the Hamiltonian, which is unaffected by the decay channels defined by Eq. (12). The
additional open system effects that we are primarily interested in are the ones that act on the two-dimensional
subspace Vbc = {|b〉, |c〉}, since these could potentially destroy the dark state and the associated phenomena. We
consider the limit of a weak probe field and a strong control field, i.e., |Ωb| � |Ωc|, hence the dark state will be close
to |b〉.

Although a continuum set of channels is necessary to fully cover all possible cases [28, 29], it is known [30] that
depolarization, dephasing, and amplitude damping constitute a set of channels that captures essential features of open
system effects for two-level systems. Here, we examine these channels acting on Vbc. Depolarization and dephasing
are particular combinations of the Hermitian Lindblad operators

γ̂x =
√

ηx(|b〉〈c|+ |c〉〈b|) .=
√

ηxλ1,

γ̂y =
√

ηy(−i|b〉〈c|+ i|c〉〈b|) .=
√

ηyλ2,

γ̂z =
√

ηz(|b〉〈b| − |c〉〈c|)
.=
√

ηzλ3, (15)

where the symbols ηk are used to denote rates of the various channels acting on Vbc. The corresponding Lindblad
vectors are real and given by

gx =
√

ηxe1,

gy = √ηye2,

gz =
√

ηze3. (16)

The depolarization channel is isotropic, i.e., corresponds to ηx = ηy = ηz ≡ η/3. The dephasing channel, on the other
hand, is anisotropic and corresponds to ηx = ηy = 0, ηz 6= 0. Neither depolarization nor dephasing contribute to b

since C(−) vanishes.
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As already stated, the dark state is close to |b〉 when the intensity of the probe field is much smaller than the
intensity of the control field. Because of this we expect a non-vanishing amplitude damping b ← c to influence the
Λ-system in a different manner as compared to the channel c ← b. To examine this quantitatively, we study the
following channels

γ̂bc =
√

ηbc|b〉〈c|
.=

1
2
√

ηbc(λ1 + iλ2),

γ̂cb =
√

ηcb|c〉〈b|
.=

1
2
√

ηcb(λ1 − iλ2), (17)

where γ̂bc flips |c〉 to |b〉 at a rate ηcb and vice versa for γ̂cb. The corresponding Lindblad vectors read

gbc = 1
2

√
ηbc(e1 + ie2),

gcb = 1
2

√
ηcb(e1 − ie2), (18)

which are complex-valued and may therefore contribute to b.
The evolution matrix M and the vector b are obtained by summing the contributions from the above described open

system channels. We may write the resulting M in a simple form by applying the following similarity transformation

M = R−1M ′R, (19)

where

R = e1e
T
1 + e2e

T
2 + e3e

T
3 + e5e

T
4 + e6e

T
5 + e7e

T
6 + e8e

T
7 + e4e

T
8 . (20)

The transformed evolution matrix M ′ takes the block structure form

M ′ =
(

A C
−CT B

)
(21)

with the submatrices

A =




−Re(Γ) −Im(Γ) 0 0
Im(Γ) −Re(Γ) 0 0

0 0 −η+

η−−γm√
3

0 0 0 −2γ


 ,

B =



−Re(Γ−) −Im(Γ−) 0 0
Im(Γ−) −Re(Γ−) 0 0

0 0 −Re(Γ+) −Im(Γ+)
0 0 Im(Γ+) −Re(Γ+)


 ,

C =




|Ωc| sin φc −|Ωc| cosφc |Ωb| sin φb −|Ωb| cosφb

|Ωc| cosφc |Ωc| sinφc −|Ωb| cosφb −|Ωb| sin φb

|Ωb| sin φb −|Ωb| cosφb −|Ωc| sinφc |Ωc| cosφc√
3|Ωb| sinφb −

√
3|Ωb| cosφb

√
3|Ωc| sinφc −

√
3|Ωc| cosφc


 . (22)

Here, we have introduced the parameters

γm = γb − γc,

η± = ηbc ± ηcb,

Γ = 2iδ + (η+ + 8η + 4ηz)/2, ,

Γ± = i(δ ∓∆) + γ±,

γ± = γ + (6η + 2ηz + η+ ± η−)/4. (23)

The diagonal elements of M ′ are real and negative, and contain the open system rates. The only off-diagonal
element containing open system effects is (η− −γm)/

√
3 in A. They are non-vanishing if the amplitude damping rates

in Vbc, and also if the decay rate from the exited state to the ground states, are unbalanced. This fact also influences
b, which is explicitly given by

b =
2η− + γm

6
e3 +

γ

2
√

3
e8. (24)

Thus, b is non-vanishing if damping processes are present in the open system dynamics.
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IV. RESULTS

We begin by analyzing the asymptotic state of the quantum system as represented by the coherence vector x(∞).
The use of the asymptotic coherence vector is justified by its relation to measurable quantities. For instance, two
of its components determine the real and imaginary parts of the induced electric polarization according to Pab =
Nµabρ

(∞)
ab = Nµab(x

(∞)
4 + ix

(∞)
5 ), from which the susceptibility of the probe field can be found.

In Fig. 2, we show the projection of the eight-dimensional coherence vector space onto three-dimensional cuts for
the cases of depolarization and amplitude damping c ← b channels, and compare with the ideal case where decay of
the excited state |a〉 to the two ground states |b〉 and |c〉 are the only open system effects present. The two parameters
spanning the surface are the probe field strength Ωb and the two photon detuning δ; the control field strength Ωc is
held constant.

The components x1, x2, and x3 shown in Fig. 2(d-f), concern the coherence of the asymptotic state in the Vbc

subspace. Components 1 and 2 are the real and imaginary part of the coherence ρbc, i.e., they describe the phase
relation between the |b〉 and |c〉 amplitudes of the asymptotic state. The third component x3 is the corresponding
population balance. Fig. 2(d) shows the ideal case at zero detuning. Here, x1 is negative, x2 is zero, and x3 is close
to 0.5. This is precisely the dark state with a real and negative coherence between the |b〉 and |c〉 amplitudes, and
most of the population in |b〉. For non-zero detuning, we can visualize how the dark state deteriorates, by inspecting
the entire surface. Depolarization is added in Fig. 2(e). In this case, we see how the x3 component radically changes
towards a more balanced population and the magnitudes of the coherences x1 and x2 decrease, as compared to the
ideal case. This can be understood physically as the depolarization channel drives the system towards a balanced
mixture in the Vbc subspace. Similar effects occur for the case of the c← b channel, shown in Fig. 2(f).

The components x3, x4, and x5 shown in Fig. 2(a-c) are directly related to the optical response of the atom to
the probe field. A zero detuned ideal case is characterized by vanishing x4 and x5. This implies that the electric
polarization vanishes, clearly demonstrating the EIT effect. By adding depolarization, the x5 component becomes
positive at zero detuning and therefore absorption is present, as shown in Fig. 2(b). The c ← b amplitude damping
channel, shown in Fig. 2(c), gives rise to a negative x5 component, corresponding to probe field gain.

Let us now examine the susceptibility for a small probe field that interacts with a medium consisting of a collection
of Λ-systems that in turn are affected by the open system channels considered in Sec. III. The susceptibility [31], of
a medium is related to the asymptotic state of the atomic coherence ρ

(∞)
ab = x

(∞)
4 + ix

(∞)
5 , which can be calculated

by Eq. (9) using Eqs. (21) and (24). Explicitly,

χ = lim
Ωb→0

κ
∂

∂Ωb
ρ
(∞)
ab (25)

with κ = N |〈a|µ̂|b〉|2/(2ε0~), and we recall that the Rabi frequency is defined in a non-standard way with an extra
factor of 2 for notational convenience. The expression of the susceptibility in Eq. (25) holds in the limit of a small
probe field. Furthermore, we recall that the real part of the susceptibility is related to the phase evolution of the
optical field, while the imaginary part describes the absorption or gain.

The open system channels defined by the Lindblad vectors in Eqs. (13), (16), and (18), change the properties of
the Λ-system in a nontrivial way. The susceptibility in the general case can be calculated from Eq. (9) and we find

χ = iκ
γ/2

(
η− + η+

)
|Γ+|2Γ∗ +

[ (
γ + γm + 2η−

)
Re(Γ+)Γ∗ + γ(η− − η+)Γ∗+

]
|Ωc|2

(
Γ∗−Γ∗ + |Ωc|2

) [
γη+ |Γ+|2 +

(
γ + γm − η− + 3η+

)
Re(Γ+)|Ωc|2

] , (26)

where the parameters are defined in Eq. (23). It should be noted that this expression contains all information of the
detunings and phases of the optical fields, as well as the effects due to any combination of depolarization, dephasing,
and b ↔ c channels. Hence, the linear susceptibility of the probe field is obtained for any point in parameter space
spanned by all of the above mentioned parameters, assuming only the validity of the Lindblad equation and the
rotating wave approximation.

In the following we use Eq. (26) to study the susceptibility due to the different open system effects. The analytical
expressions below are retrieved from Eq. (26) as special cases by setting all channel rates except one to zero. We
assume the non-zero channel rate ηk to be much smaller than the decay rate, i.e., ηk � γ, and a Rabi frequency
strong enough to establish EIT, i.e., ηkγ � |Ωc|2. Furthermore, we assume zero mean detuning ∆ = 0, a balanced
decay γm = 0, and that the two-photon detuning is not much larger than |Ωc|.

In Figs. 3(a) and 3(b) we show the susceptibility for different open system channels, using the same rate for all open
system channels. Since the susceptibility is a complex function, the real and imaginary parts are plotted separately.
Note that in the figures we use the exact expression in Eq. (26).
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FIG. 2: Plots of the asymptotic state for two different cuts through the eight dimensional coherence vector space is shown: x4,
x5, x3 coordinates of the asymptotic state in (a-c) and x1, x2, x3 coordinates of the asymptotic state in (d-f). Different open
system channels are shown: ideal case in (a,d), depolarization η = 0.2 in (b,e), and amplitude damping c← b channel ηcb = 0.2
in (c,f). Radial mesh corresponds to changing Ωb from 0 to 0.1 in steps of 0.02, tangential mesh corresponds to the two-photon
detuning −5 to 5 in steps of 0.5; the exception is (a) where the interval is given between −5 to 0. Other parameter values are
Ωc = 1, γ = 1 and ∆ = 0.

If we put all channel rates to zero except ηz we obtain the susceptibility

χdephase = κ
2δ + 2iηz

|Ωc|2 − δ(2δ + iγ)
. (27)

This expression for the susceptibility is frequently encountered in the literature, see, e.g., Ref. [32].
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If we put η− = η+ = ηbc 6= 0 we find the susceptibility of a medium that effectively takes population from |c〉 to |b〉.
We have,

χb←c = κ
2δ + iηbc/2

|Ωc|2 − δ(2δ + iγ)
. (28)

This expression for the susceptibility is also frequently encountered in the literature, see, e.g., Ref. [33]. It is
interesting to note the similarity of this expression with Eq. (27), although the open system channels are quite
different. Nevertheless, in Figs. 3(a) and 3(b) it can be seen that the phase response of χb←c is larger than for
χdephase. This means that a medium affected by pure dephasing cannot slow down light as efficiently as compared to
a medium affected by the b← c channel, assuming that the channel rates are equal.

We now consider the amplitude damping channel in the c ← b direction. The expression of the susceptibility in
this case reads

χc←b = κ
2δ − iηcb/2

|Ωc|2 − δ(2δ + iγ)
. (29)

This channel shows a different behavior compared to all other considered channels, it shows gain where the other
channels show absorption. That is, a slowly propagating light pulse will be amplified due to the interaction with the
environment described by the c← b channel.

Let us now consider amplitude damping channels with equal rates in both directions in the subspace Vbc, corre-
sponding to the non-zero parameters ηbc = ηcb ≡ ηpe. This open system channel may be important in experimental
situations where, e.g., atoms collide and the populations of the states undergo sudden incoherent exchange. We denote
this as the population exchange channel ‘popex’. We obtain,

χpopex = κ
2δ + iγη2

pe/(8|Ωc|2)
|Ωc|2 − δ(2δ + iγ)

. (30)

As expected, the absorption profile is located in between the profiles of χb←c and χc←b, as can be seen in Fig. 3(b).
To first order, the absorption profiles of the different amplitude damping channels is shifted by the parameter η− .
However, the phase response, i.e., Re (χb←c) is not affected by this shift, and it is approximately the same for all
considered amplitude damping channels.

The susceptibility associated with the isotropic depolarization channel (η 6= 0) is given by

χdepol = κ
2δ + 2iη/3

|Ωc|2 − δ(2δ + iγ)
. (31)

In experiments, e.g., where one uses laser beams and hot atomic gases, this open system interaction is relevant as
it corresponds to coherently prepared atoms leaving the laser beam, replaced with atoms in a completely mixed
quantum state. The susceptibility is plotted in Fig. (3) and it can be seen that the phase response Re (χdepol) is
located between the corresponding curves for the dephasing and the amplitude damping channels. Furthermore, the
absorption curve Im (χdepol) is close to the absorption profile of the depolarization channel, but significantly smaller
than the corresponding curves for the dephasing and b← c channels. With respect to absorption and phase response,
the depolarization channel is therefore not as harmful as the dephasing channel.

When there is no open system interaction on Vbc we retrieve the ideal susceptibility,

χideal = κ
2δ

|Ωc|2 − δ(2δ + iγ)
, (32)

included in Fig. (3) as a reference.
Often one is interested in achieving the slowest possible group velocity in a medium consisting of Λ-systems.

The slow-down factor, or group index, is proportional to the derivative of the real part of the susceptibility ng ≡
ω∂δRe (χ) /2 at angular frequency ω. To compare the absorption for a given slow-down factor at δ = ∆ = 0 we
normalize the channel rates to give the same slow-down factor. Approximating ∂δχ for small channel rates in Vbc

gives

∂δRe (χ)
∣∣
δ=∆=0

≈ κ
2|Ωc|2 − γ

(
8η
3 + ηbc + ηcb + 2ηpe + 4ηz

)

|Ωc|4
(33)

thus, the normalized rates are ηz = ηbc/4 = ηcb/4 = ηpe/2 = 2η/3. Using these normalized rates, we plot the slow-
down factor as a function of the control field in Fig. 3(c) to verify that they are equal. The absorption coefficient is
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FIG. 3: (Color online) In (a) and (b) we show the real and imaginary part of the susceptibility. In (c) and (d) the slow-down
factor (group index) ng and absorption α at two-photon resonance, are shown as a function of the control field |Ωc|. The thin
black line shows the case of no open system interaction on Vbc. The thick gray line shows the dephasing channel and the thick
black line shows the depolarization channel. The remaining lines describe three versions of the amplitude damping channel:
the wide-dashed (blue) line shows the b← c damping channel, the dashed (red) line shows the c← b damping channel, and the
dash-dotted (green) line shows the population exchange channel (popex), i.e., the incoherent sum of the two damping channels
with equal rate. In all plots the proportionality factor κ defined below Eq. (25) is scaled to 1. In (a) and (b) the parameter
values are |Ωc| = 0.16, γ = 1, ∆ = 0, and all non-zero channel rates are set equal to 0.1. In (c) and (d) the channel rates are
normalized so that the slow-down factors are matched.

defined as α = (2π/λ)Im (χ). In Fig. 3(d) we show the absorption on two-photon resonance as a function of the control
field. We see that the different open system channels give different absorption profiles, even though the slow-down
factors are equal in this regime. Furthermore, it is interesting to note that the dephasing and the b ← c amplitude
damping channels, with normalized channel rates, have identical absorption characteristics. We see that the isotropic
depolarization and population exchange channels are quite similar in Fig. 3(d), but more essentially, they have a lower
absorption than the dephasing and the b← c amplitude damping channels. As already mentioned, the c← b damping
is special in that it yields a gain where the other channels yield absorption of the probe field.

V. CONCLUSIONS

We analyze a three-level Λ-system interacting with a Markovian environment. The Lindblad master equation is
reformulated using the Gell-Mann matrices as a basis. We rewrite this in a convenient vector formalism that is
independent of the specific matrix representation of the SU(3) generators. An evolution matrix corresponding to
this vector form is worked out in detail and the dynamics is written as an affine-linear matrix differential equation.
The general solution of this equation can be given in terms of the Jordan normal form. The Jordan blocks of the
evolution matrix are generically one-dimensional and the real part of the spectrum is negative. From this follows that
the asymptotic solution in all cases we are interested in are independent of the initial states and given by the inverse
of the evolution matrix multiplied by a vector that is given by the open system interaction.

The linear optical response of a quantum system is given by the asymptotic steady state solution of the evolution
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equation. We find an explicit and closed analytical form of the susceptibility for general open system dynamics,
including pure dephasing, depolarization, and three different forms of amplitude damping channels.

The open system effects introduce a non-trivial behavior of the linear optical response of the Λ-system. For
example, we show that the isotropic depolarization channel is less detrimental to the induced transparency and the
corresponding slow-down effect, than is pure dephasing. Furthermore, an amplitude damping channel can lead to
reduced absorption and even gain for the probe field.
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APPENDIX A

In this Appendix, we provide a detailed derivation of the evolution matrix M and the vector b for Lindblad-type
master equations of a three-level system. Define the vector products

α ∧ β = frsterαsβt,

α ? β = drsterαsβt, (A1)

where α = αqeq and β = βqeq are arbitrary complex-valued vectors, {ei}8i=1 is a real orthonormal basis of R8,
frst and drst are the antisymmetric and symmetric structure constants of the SU(3) algebra [22], and we have used
Einstein’s summation convention (repeated indices are summed). The wedge product ‘∧’ is a higher-dimensional
vector product analog to the cross-product in three-dimensional space. The star product ‘? ’ is a vector product that
has no counterpart in three dimensions.

Equipped with these tools we may now rewrite each term in the right-hand side of Eq. (4). First, the Hamiltonian
contribution reads

1
i
[ω · λ, x · λ] = 2 (ω ∧ x) · λ. (A2)

Secondly, the middle term of Eq. (4) is readily evaluated as

L(1) =
∑

k

2i (gk ∧ g∗k) · λ, (A3)

where each term gk ∧ g∗k is purely imaginary, and hence L(1) is real as required. Note that, for Hermitian γ̂k the
corresponding vector gk is real and thus gk ∧ g∗k = 0. By using the symmetries of the structure constants the last
term of Eq. (4) takes the form

L(x · λ) =
∑

k

{[
g∗k ∧ (gk ∧ x) + gk ∧ (g∗k ∧ x)

]

+
i

4

[
(gk ∧ x) ? g∗k + gk ? (x ∧ g∗k)− 2(g∗k ∧ gk) ? x + 3(gk ? x) ∧ g∗k + 3gk ∧ (x ? g∗k)

]}
· λ. (A4)

By identifying terms, we arrive at the full Lindblad master equation in coherence vector form

ẋ = 2ω ∧ x +
∑

k

{2i

3
gk ∧ g∗k +

[
g∗k ∧ (gk ∧ x) + gk ∧ (g∗k ∧ x)

]

+
i

4

[
(gk ∧ x) ? g∗k + gk ? (x ∧ g∗k)− 2(g∗k ∧ gk) ? x + 3(gk ? x) ∧ g∗k + 3gk ∧ (x ? g∗k)

]}
. (A5)

It should be emphasized that this expression is valid for any N -dimensional quantum system provided the SU(N)
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structure constants are being used in the definition of the vector products ∧ and ?. Next, define

M (0)x ≡ 2ω ∧ x,

G
(+)
k x ≡ g∗k ∧ (gk ∧ x) + gk ∧ (g∗k ∧ x),

G
(−)
k x ≡ i

4

[
(gk ∧ x) ? g∗k + gk ? (x ∧ g∗k)− 2(g∗k ∧ gk) ? x +

+3(gk ? x) ∧ g∗k + 3gk ∧ (x ? g∗k)
]
,

bk ≡
2i

3
gk ∧ g∗k. (A6)

We can put the equations of motion on the affine-linear matrix differential equation form in Eq. (5) by combining
Eqs. (A1) and (A6). This yields

M = M (0) +
∑

k

Mk = M (0) +
∑

k

(
G

(+)
k + G

(−)
k

)
(A7)

and vector

b =
∑

k

bk, (A8)

where k represents different open system channels. Here,

M
(0)
rt = 2frstωs,

G
(+)
k,rt = frsmfmvtC

(+)
k,sv ,

G
(−)
k,rt =

i

4
(drmsfmvt − drmtfmsv + 3frmsdmvt)C

(−)
k,sv ,

bk,r = frvsC
(−)
k,sv (A9)

with

C
(±)
k,sv = (g∗k,sgk,v ± gk,sg

∗
k,v), (A10)

being symmetric (+) and antisymmetric (−) in the indices s and v. Furthermore, while C
(+)
k,sv is real-valued, C

(−)
k,sv is

purely imaginary and thus vanishes for real-valued gk. The antisymmetric matrix M (0) corresponds to the Hamiltonian
of the system. The matrix G

(+)
k is real-valued and symmetric. The matrix G

(−)
k and the vector bk vanish for real-

valued gk, as they both are proportional to C
(−)
k . G

(−)
k,rt is real-valued but has no obvious symmetry in the indices r

and t.
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