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REGULARITY OF THE ENTROPY FOR RANDOM WALKS ON
HYPERBOLIC GROUPS

FRANCOIS LEDRAPPIER

ABSTRACT. We consider non-degenerate, finitely supported random walks on a finitely
generated Gromov hyperbolic group. We show that the entropy and the escape rate are
Lipschitz functions of the probability if the support remains constant.

1. INTRODUCTION

This paper is an extension of [L2] to finitely generated Gromov hyperbolic groups (see
[GH] and section 2 below for the definition of hyperbolic groups). Let p be a finitely
supported probability measure on an infinite group G and define inductively, with p©
being the Dirac measure at the identity e,

p™M (@) = PV xpl@) = > p" Y (@y py).

yeG

Define the entropy h, and the escape rate €5 by

1 n
hy —hm——Zp(” ) Inp™ (2), 65 = hglEZ]a:\p( ) (

zeG zeG

where |.| is the word metric defined by some symmetric generating set S. The entropy
hy, was introduced by Avez ([Av]) and is related to bounded solutions of the equation
on G f(z) = > cq flzy)p(y) (see e.g. [KV]). Erschler and Kaimanovich have shown
that, on Gromov hyperbolic groups, the entropy and the escape rate depend continuously
on the probability p with finite first moment ([EK]). Here we are looking for a stronger
regularity on a more restricted family of probability measures. We fix a finite set F C G
such that U,F"™ = G and we consider probability measures in P(F'), where P(F') is the
set of probability measures p such that p(x) > 0 if, and only if, z € F. The set P(F) is
naturally identified with an open subset of the probabilities on F, which is a contractible
open polygonal bounded convex domain in R¥1=1. We show:

Theorem 1.1. Assume G is a Gromov hyperbolic group and F is a finite subset of G such
that U, F™ = G. Then, with the above notation, the functions p — h, and p — Eg are
Lipschitz continuous on P(F).
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2 FRANCOIS LEDRAPPIER

If the infinite hyperbolic group G is amenable, G is virtually cyclic and the entropy
is vanishing on P(F'). Moreover, it follows from the formula in [KL] that the escape
rate is Lipschitz continuous in on P(F) (see the remark after Formula (4) below). If G
is a non-abelian free group, and F' a general finite generating set, then p — h, is real
analytic ([L2], Theorem 1.1) and p Ef; as well ([Gil]). This holds more generally for
free products (see [Gil] and [Gi2] for the precise conditions). A general non-amenable
hyperbolic group has many common geometric features with non-abelian free groups and
our proof follows the scheme of [L2]. For Gromov hyperbolic groups, Ancona ([An)])
proved that the Martin boundary of the random walk directed by the probability p is the
Gromov geometric boundary. Let K¢(x) be the Martin kernel associated to a point £ of
the geometric boundary. Our main technical result, Proposition 4.1, uses the description
of the Martin kernel by Ancona (see also [W], [INO]) to prove that In K¢(x) is a Lipschitz
continuous function of p as a Hélder continuous function on the geometric boundary. Then,
like in [L2], we can express h, in terms of the exit measure p> of the random walk on
the geometric boundary dG and the Martin kernel. Unfortunately, it is not clear in that
generality that the measure p™, seen as a linear functional on Hélder continuous functions
on the geometric boundary, depends smoothly on the probability in M(F). We use a
symbolic representation of G (see [CP]) to express p> as an combination of a finite
number of symbolic measures. Each of these symbolic measures depends Lipschitz of p and
the entropy hy, is the maximum of a finite family of Lipschitz functions. The escape rate
is expressed by an analogous formula: it is the maximum of the integrals of the Busemann
kernel with respect of the stationary measures on the Busemann boundary. It turns out
that the Busemann boundary can be described in terms of the same symbolic representation
and the Lipschitz regularity of the escape rate follows. It is likely that both entropy and
rate of escape are more regular than what is obtained here, but this is what we can prove
for the moment. Observe that for G = Z, S = {£1} and F a finite generating subset, the
function p +— E;? = | > pipi| is Lipschitz continuous on P(F), but not C'. For another
example in the same spirit, we recall that Mairesse and Matheus ([MM]) have shown that
for the braid group B3 = (a, blaba = bab) and F = {a,a=1,b,b7 1}, p 65 is Lipschitz, but
not C! on P(F). The entropy is constant 0 in the case of Z, the regularity of the entropy
for the braid group is unknown.

In this note, the letter C' stands for a real number independent of the other variables,
but which may vary from line to line. The lower case ¢y, c; will be constants which might
depend only on p € P(F). In the same way, the letter O, stands for a neighborhood of p
in P(F') which may vary from line to line.

2. PRELIMINARIES

2.1. Hyperbolic groups. We first recall basic facts about hyperbolic groups ([GH]).
Let G be a finitely generated group with a symmetric finite set of generators S. Let
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d(x,y) = |z~ 1y| be the word metric on G associated to S. For a subset F' C G, we denote:
N(F,R) := {z€G:d(z,F) <R} and OF = {xe€G:d(z,F)=1}.

For z,y,z € G, the Gromov product (x|y). is defined by the formula:

(aly)e = 5 (A, ) + dly,2) — d(zy)

We write (z|y) for (z|y)e, where e is the unit element. Let § > 0. The group G is said to
be §-hyperbolic if, for all z,y,z,w € G,

(1) (@|y)w > min{(z]2)w, (y]z)w} — 6.
If G is §-hyperbolic, then every geodesic triangle A = {«, 3,7} in G is 4d-slim, i.e.:
aC N(BU~v,40), B C N(yUa,49), ~C N(aUp,49).

A sequence {zp}n>1 is said to converge to infinity if limy, y—oo(@p|Tm) = 00. Two se-

quences {xy, }n>1 and {y, }n>1 converging to infinity are said to be equivalent if lim,, o0 (1 |yn) =

oo. The geometric boundary JG is defined as the set of equivalence classes of sequences
converging to infinity. The Gromov product extends to G U G by setting

(&ln) = sup }LII,SE})E(:”"’?JW%

where the sup runs over all sequences {zy}n>1 converging to & and {y,, }m>1 converging
to n. Recall that G U JG is compact equipped with the base {N({z},r)} U{V,. (&)}, where

Vi(€) :={ne GUIG: (n§) > r}.
One can introduce a metric p on dG such that, for some a > 1 and C > 0,
a”EM=C < pen) < aCMFTC,

Another boundary is the Busemann boundary 0gG. Define, for x € G the function
U,(z) on G by:

S,(2) = d(x,z) —d(x,e).

The assignment = — W, is continuous, injective and takes values in a relatively compact
set of functions for the topology of uniform convergence on compact subsets of G. The
Busemann compactification G of G is the closure of G for that topology. The Busemann
compactification G is a compact G-space. The Busemann boundary 0pG := G \ G is made
of Lipschitz continuous functions h on G such that h(e) = 0 and such that the Lipschitz
constant is at most 1. Moreover, they are horofunctions in the sense of [CP]: they have
the property that for all A < h(z), the distance of a point z to the set h=1(\) is given by
h(z) — A (see subsection 5.1 for more about horofunctions).
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2.2. Random walks. Let = be a compact space. = is called a G-space if the group G acts
by continuous transformations on =Z. This action extends naturally to probability measures
on Z. We say that the measure v on Z is stationary if > _.(z.v)p(x) = v. The entropy
of a stationary measure v is defined by:

@) h(E0) = =3 ( fm d‘””;j”(s)du(s)) pla).

zeG =

The entropy h, and the escape rate ¢, are given by variational formulas over stationary
measures (see [KV], Section 3, for the entropy, [KL], Theorem 18, for the escape rate):

(3) hy, = max{hy(Z,v);E G-space and v stationary on Z}
(4) Kf; = max { Z </_ h(g;_l)dy(h)> p(x); v stationary on G}.
zelG G

Moreover, the stationary measures in (4) are supported by dpG. In particular, in the case
when G is virtually cyclic, 3G is finite not reduced to a point' and E;? is given by the
maximum of a finite number of linear functions of p.

Let © = GN be the space of sequences of elements of G, M the product probability p".
The random walk is described by the probability P on the space of paths €2, the image of
M by the mapping:

(wn)nez — (Xn)n>0, where Xg = e and X,, = X,,_jw, for n > 0.
In particular, the distribution of X, is the convolution p{™. We have:

Theorem 2.1 ([An], Corollaire 6.3, [K], Theorem 7.5). There is a mapping Xo : Q@ — 0G
such that for M-a.e. w,

lim X, (w) = Xoo(w).
The action of G over itself by left multiplications extends to G and makes 0G a G-

space. The image measure p™ := (X, )M is the only stationary probability measure on
JG and (0G, v) achieves the maximum in (3) ([K], Theorem 7.6):

x—l 00
(5) hy = hy(@G.p®) = ~ 3 ( / Glnd*—p(@czw%) p(a).

o0
zeF dp

The Green function G(z) associated to (G, p) is defined by

Go) = 3 p™ ()
n=0

IThe restriction of each limit function to a 7Z coset is of the form 4z -+ a, where a can take a finite
number of values and there is at least one Z coset where both signs appear.
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(see for example Proposition 2.2 for the convergence of the series). For y € G, the Martin
kernel K, is defined by
G(z"'y)

G(y)
Ancona ([An], Théoréme 6.2) showed that y, — & € 0G if, and only if, the Martin kernels
K,, converge towards a function K¢ called the Martin kernel at {. We have

(6) (&) = Ke(z).

Ky(x) =

dx p™
dp®

2.3. Differentiability. We are going to use formula (3) and first show that the mapping
p — —In K¢(x) is Lipschitz continuous from a neighbourhood O, of p in P(F') into a space
of Holder continuous functions on dG. The following properties are obtained exactly in
the same way as in [L2].

For z,y € G, let u(x,y) be the probability of eventually reaching y when starting from
x. By left invariance, u(z,y) = u(e,x~'y). Moreover, by the strong Markov property,
G(z) = u(e,z)G(e) so that we have:

u(z,y)
(7) Ky(x) u(e, y) .
By definition, we have 0 < u(x,y) < 1. The number u(z,y) is given by the sum of the
probabilities of the paths going from x to y which do not visit y before arriving at y. The
next two results are classical:

Proposition 2.2. Let p € P(F). There are numbers C and (,0 < ( < 1 and a neighbor-
hood O, of p in P(F) such that for all g € Op, all x € G and all n > 0,

¢ (@) < O¢.
Proof. Let ¢ € P(F'). Consider the convolution operator P, in ¢5(G,R) defined by:
Pyf(z) =Y flay Haly).
yeF

Derriennic and Guivarc’h ([DG]) showed that for p € P(F), P, has spectral radius smaller
than one. In particular, there exists ng such that the operator norm of P in 05(G) is
smaller than one. Since F' and F™ are finite, there is a neighborhood O, of p in P(F)
such that for all ¢ € Oy, ||P°|l2 < A for some A < 1 and HP(;“HQ < Cfor1<k<ngp It
follows that for all ¢ € O,, all n > 0,

1Bl < oA/,
In particular, for all z € G, ¢ (z) = [Py'de](w) < |PJdela < CA/mal|5 |, < CAlP/ml O

Corollary 2.3. [DG]] Let p € P(F). There are numbers C and § > 0 such that for all
g€ 0y, dllz,ycq,
G(z,y) < Ce eyl
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Proof. We have ¢™ (z71y) = 0 for n < 1jz71y[; take 6 = L In O

i

Fix p € P(F) and let A be a subset of G. We can define Ga(x,y), ua (x,y) by considering
only the paths of the random walk which remain inside A. Clearly, GAo < G,ua < u. For
r € G,V asubset of G and v € V, let o (v) be the probability that the first visit in

V of the random walk starting from x occurs at v (a (v) = ug\yug}(,v)). We have
0< > vy (v) <1and

Proposition 2.4. Fiz x and V. For all s > 1, the mapping p — o (v) is a C™ function

from P(F) into ¢5(V). Moreover, H%Og

Proof. By Proposition 2.2, there is a neighbourhood O, of p in P(F) and numbers C,
¢,0 < ¢ <1, such that for ¢ € O, and for all y € G,

"M (y) < o¢n.

The number oY (v) can be written as the sum of the probabilities ag’v(v) of entering V' at
v in exactly n steps. We have:

ag’v(v) < q(")(:n_lv) < c¢".

Moreover, the function p — ag’v(v) is a homogeneous polynomial of degree n on P(F):
= ZQilqu c iy,

where £ is the set of paths {z, xiq, zijis, -+ ,xi1is - - i, = v} of length n made of steps in
F which start from x and enter V in v. It follows that for all a = {ny,nz,--- ,np,ni €
NuU{0}}, allv eV,

etV )] <

where |a] = Zz‘e 7 i Therefore,

Z ’ s < Cns\a| (s—1)n Z a < CTLS|O“ C(s—l)n'

= (infcr po) o1 = (infiep p;)sle

(e} (07
nlod . Cnlel

P reE—— 04 = T .+ Nl
(infiep p;)lol —* (infiep pi)lel

n

Thus, ¢ — %a}c/ (v) is given locally by a uniformly converging series in £*(V') of derivatives.

It follows that ¢ + Y (v) is a C* function from P(F) into ¢*(V). From the above
Cnslel s—1)n
\G\C

computation, it follows that HWQ W)ls <>, Gfior o)
S 7

, independently of z, V.

O
Proposition 2.5. There exists T large enough that for t > T, for any y and V, the
mapping p — a;{)y}( ) is a C™ function from P(F) into £*(V). Moreover, v %pi(y) is
bounded in *(V') independently of y and V.
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Proof. Tt suffices to show that there is T such that the function v — oV (y) € £ (V) and
to apply the same arguments as in the proof of Proposition 2.4. Consider the probability
p with support ! defined by p(x) = p(z~!) and define all quantities (p)™, G(z), u(z,y).
Observe that, since it is the sum of the same probabilities over the same set of paths,

G(v,y) = G(y,v). Therefore, we have, using Corollary 2.3 for the p random walk,

i y) < Gl,y) = Gly,v) < W

The group G has exponential growth: there is a v such that there are less than Ce’lt
elements of G at distance less than R from y. It follows that for 7' > v/J, the function

v ol (y) € £T(V).

11)‘

0

2.4. Projective contractions on cones. In this subsection, we recall Birkhoff Theorem
about linear maps preserving convex cones. Let C be a convex cone in a Banach space and
define on C the projective distance between half lines as

I(f,9) == W[r(f,9)7(g, )],

where 7(f,g) := inf{s,s > 0,sf — g € C}. Let D be the space of directions in C. Then,
defines a distance on D. Let A be an operator from C into C and let T : D — D be the
projective action of A. Then, by [Bi]:

(8) V(T f,Tg) < pY(f,g), where § = tanh <i Diam T(D)) .

In some cases, ¥-diameters are easy to estimate: for example, in Ct = {f € ¢ f > 0},
the set U(g,c) == {f : ¢ 'g < f < cg}, where g € C and ¢ > 1, has ¥-diameter 4Inc.
Moreover, the following observation is useful:

Lemma 2.6. [[Li], Lemma 1.3] Let f,g € C',||fll: = |lgll¢- Then,
17 = glle < ("9 — 1)1 e

3. OBSTACLES

In this section, we show that the function ® on 0G defined by ®(&) := —In K¢(z) is
Hélder continuous for any fixed x € G. This is not a new result ([INO]). Nevertheless,
we present the construction and the proof in order to introduce the notation used in the
next section to show that ® is Lipschitz in p as a Holder continuous function on dG. Like
in [INOJ, the proof is based on Ancona’s Harnack inequality at infinity (see [An], [INO]
Proposition 2.1 for the form used here): there exist a number R and a constant ¢ = ¢(p)
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such that if [x, y] is a geodesic segment and z € [z, y], then for any A C G, N([z,y], R) C A,
we have:

(9) ¢ lua(e, 2)ualzy) < uale,y) < cua(z,2)ualzy),
where ua (v, w) is the probability of ever arriving at w starting from v before reaching

G \ A. Moreover, from the proof of (9) in [INO] or [W], it follows that there exists a
neighborhood O of p in P(F) and a constant C' such that ¢(p) < C for p € O.

3.1. Obstacles. Without loss of generality, we may assume that F' contains the set of
generators and ¢ is an integer. Set r = max{|z|;z € F,0}.

Fix M large. In particular, M > R+ 12r, where R is given by (9). For a geodesic v, we
call an obstacle a family U, C Uy C U; C U; of subsets of G such that

Uy = A{zeG:dxy(-2M)) <d(z,v0))},
Uy = {zeG:dx,v(—2M)) <d(z,v(4r))},
Ur = {zeG:dx~(0) <d(z,n(2M))},

Ur = {zeG:d(z,7(0)) <d(xz,v(2M + 4r))}.

The subsets UijE are connected and satisfy U, C Up C U; C U;. More precisely, we have
the two following elementary facts:

Lemma 3.1. Ifz € U; and [x,y(—2M)] is a geodesic segment, then [x,y(—2M)] C Uy .

Proof. Assume not. Then there is a z € [z,y(—2M)] such that d(z,v(—2M)) > d(z,~v(0)).
Adding d(z, z) to both sides of this inequality, we obtain:

d(x,y(=2M)) = d(z, 2) + d(z,7(=2M)) = d(z, z) + d(2,7(0)) = d(z,7(0)),
a contradiction to x € Uy . O
The statements and the proofs are the same for all Ul-i.
Lemma 3.2. If x € U, then B(x,r) C Uy; if x € Uy, then B(x, M —3r) C U; .

Proof. Let x € Uy and 2/ € B(x,r). Writing (1) with 2 = 2/,y = 7(0),z = ~(4r) and
w=~y(—2M), we get:

Since d(z',v(—2M)) — d(2',v(4r)) < d(z,v(—2M)) +r — d(z,v(0)) + 5r < 6r < 2M — 4r,
we get

d(z',y(4r)) > d(z',7(0)) + 4r — 26 > d(z,v(0)) +r > d(z,y(—=2M)) +r > d(z', y(—2M)).

Analogously, if z € Uy and 2’ € B(xz, M — 3r), we get, writing now (1) with z = v(2M):

d(z',y(=2M)) — d(z',~v(0)) + 2M > min{d(z',y(—2M)) — d(z',v(2M)) + 4M,4M } — 2.

Since the RHS is smaller than 4M — 2r, it cannot exceed 4M — 2§, and we get
d(z',7(0)) < d(z’,v(2M)) — 2M + 25 < d(a',v(2M)).
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O

Lemma 3.2 implies that any trajectory of the random walk going from U, to G\ U; has
to cross successively Uy \ Uy ,U; \ Up and Uy \ U; . For Vi, Vs subsets of G, denote A“%

the (infinite) matrix such that the row vectors indexed by v € V; are the a2 (w),w € V5.
In particular, if Va = {y}, set wy, for the (column) vector

W =AY = (@ ()uens = (W0, 9))ver-

Fix t > T. By Propositions 2.4 and 2.5, wy, is a vector in ¢/(V1) and a¥o € ¢5(Vp), with
1/s+ 1/t = 1. With this notation, the strong Markov property yields, if U, C Uy C U; C
Uy is an obstacle and x € Uy, y & Uy:

U(JE,y) = Za}U/O(UO)Ag(l)(U(]le)u(Ulvy) = <a¥07A¥(1)w%//1>7

V0,V1

with the natural summation rules for matrices and for the (¢£%,¢') coupling. All series are
bounded series with nonnegative terms and we set V; = U; \ U; .

Observe that an obstacle is completely determined by the directing geodesic segment
[v(=2M),- - ,v(2M +4r)], so that there is a finite number of possible obstacles and there-
fore a finite number of spaces ¢/(V'), of (infinite) matrices A“%, of vectors wy, and alo if
the distances d(z,vy(2M + 4r 4+ 1)) and d(z,v(—2M)) are bounded.

3.2. Properties of the matrix A“%.

Recall that the general entry of the matrix A = A“% is A(vp,v1), the probability that
starting from vy € Vp, the first visit in V; occurs at v;. In particular, assume A(vg,v1) = 0.
Then, all paths from vy to v; with steps in F' have to enter V; elsewhere before reaching
v1. Since the support F' of p contains the generators of the group, A(v,v;) = 0 for all v’s
in the connected component of vy in U; . By Lemma 3.1, all paths from ~(0) to v; with
steps in F' have to enter Vj before reaching v;. Therefore this property depends neither on
vo ¢ Uy nor on p € P(F'). We say that vy is active if A(vg,v1) # 0. In the sequel we will
call Vi the set of active elements of U; \ U; . We have:

Proposition 3.3. Let v be a geodesic, Uy C Uy C U; C Uy an obstacle, Vo = Uy \ Uy,
Vi the active part of Uy \ Uy . There exists a neighborhood O, of p in P(F') and a constant
c1 such that, for all p € O,, all vo € Vp,v1 € Vi:

(10) e tug - (vo, 7(0)ally) (v1) < A(vo, v1) < erug - (vo, 7(0)al ) (v1)-

Proof. Introduce the set U; —, Uy~ = {z € G : d(z,7(0)) < d(z,v(2M — 4r))}. By a
variant of Lemma 3.2, we may write, for vg € Vp, vy € Vi:

A(vg,v1) = Z Ua\u;s (vo, w)aq‘i/;l (v1)-
wel; \Uy ™
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Using that O‘L/%o) (1) = EweU;\U(* Ue\u- (7(0), w)alr (vy), we see that it suffices to prove
that, for all p € O,, all v € Vp,w € Uy ~ \ Uy :

Cl_luG\U; (o, ’Y(O))UG\U; (7(0),w) < Ye\uy (vo, w) < Alc\u; (vo, ’Y(O))ug\U; (7(0), w).
This will follow from a variant of (9) once we will have located the point v(0) with respect

to the geodesic [vg, w].
Observe that if vy € Up, then d(vg,v(0)) > M — 3r. Indeed, writing that

(Y(=2M),y(4r))uy = min{(y(=2M),y(=M + 27))uq, (Y(47), 7 (=M + 2r))v, } — 6
= (V(=2M), 7 (=M +2r))u, = 6,

we get that d(vg,y(4r)) > M +2r—3§ > M —3r and the claim follows. Since, by Lemma 3.1,
the whole geodesic [vg, y(—M +2r)] lies in Uy, we have d(y(0), [v, y(—M +2r)]) > M —3r.
But we know that v(0) € N([vo,y(M)] U [vy,y(—=M + 2r)],40). It follows that there is
a point z; € [vg,y(M)] with d(v(0),21) < 46. In the same way, since w € G\ U; ~,
d(v(0), [w,y(M — 2r)]) > M — 3r and therefore d(z1, [w,y(M —2r)]) > M — 3r —44. It
follows that there is a point z € [vg, w] such that d(z,~v(0)) < d(z, z1) + d(z1,7(0)) < 8.

Let yo be the point in [vg, w] at distance R from w. Then G\ U; contains N (v, yol, R)
and the point z belongs to [vg, yo]%. So we may apply (9) to the points vg, 2,9 and the
domain A = G'\ Uy to obtain, for all p € Oy, all vy € Vp,v1 € Vi:

—1
) uG\U; (U(]v z)uG\Uf (Z, yO) < uG\U; (U(]v yO) < CO“G\U; (U(]v z)uG\Uf (Z7 yO)

By changing the constant, we can replace yo by w (since d(w,yg) = R) and z by v(0) (since
d(z,7(0)) < 8J). We obtain the desired inequality. O

For V a subset of G, t > 0, denote C%, the convex cone of nonnegative sequences in £¢(V')
and define on Cl, the projective distance between half lines as

I(f,g) = W[r(f,9)7(g, )],

where 7(f,g) := inf{s,s > 0,sf — g € Cl,}. Represent the space of directions as the sector
of the unit sphere D!, = Cl, N Si,; then, ¥ defines a distance on D!, for which D}, is a

complete space (Lemma 2.6). We fix t > T such that the sequences al¥ (y) € ¢4(V) and

we consider the matrix A“% as an operator from £¢(V}) into the space of sequences indexed
on Vi. We have:

Proposition 3.4. Choose t > T and s such that 1/s + 1/t = 1. For any obstacle U; C
Uy c U CUy,allp € O,, the operator A“% sends C%,l mto C@O, the adjoint operator (A“f(l))*
sends Cy, into Cy, and

Di(lmc‘t/o (A“;(l) (Cf,)) < 4lney, Diame;, ((A“%)*(C‘S/O)) < 4lne,
where ¢ and O are the ones in (10).

2Since w ¢ Uy ~, we have d(w, z) > d(w,v(0)) =8 > M —3r —85 > M — 11r > R.
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Proof. By definition, » v, ozly/%o)(vl) < 1 so that O‘EY/ZO) (v1) € £6(V1). By (10), for any
vo € Vo, any f € (1(Vy),

AR f(v0) < erug, (vo,7(0)) o) (01) s]1£ -
By the same argument as in the proof of Proposition 2.5, we see that vy — Ue\u- (v0,7(0)) €

08 (Vo). Tt follows that for any f € ¢/(V}), A%f belongs to £(Vp).
By (10), we know that for any f € C€/1’

B AT} £ (o)
11 crlu vg,7(0)) < Vo
(11) 1 ue\u, (v0,7(0)) > a}yfzo)(')’f(') 2

It follows that Diam cvtA% (C%,l) < 4Inc¢;. The same argument works for the adjoint
0

< CluG\U1 (U07 ,Y(O))

operator (A%)*, since we know that vy — uc\p, (v0,7(0)) € £4(Vo) and vy +— O‘}y/%o) (v1) €
FA). 0

Proposition 3.5. Choose t > T +1,s such that 1/s+1/t = 1. The mapping p — A“% (re-
spectively p — (A“%)*) is C* from P(F) into L(L'(V1),L4(Vy)) (respectively L(£5(Vy), £5(V1))).

Proof. We follow the scheme of the proofs of Propositions 2.4 and 2.5. By Proposition 2.2,
there is a neighbourhood O, of p in P(F) and numbers C, (,0 < ¢ < 1, such that for
g€ O, and for all y € G,

() < o
We write o}l (v1) as the sum of the probabilities alV1 (1) of entering Vi at vy in exactly
n steps. We have, for all vy € Vj,v1 € Vi:

alVi(vy) < ¢™(vglv) < CC

As before, the function p — al:'"(v1) is a homogeneous polynomial of degree n on P(F)

and for all @ = {ny,n2, -+ ,np,n; € NU{0}}, all vg € Vo, v1 € V1,

804 n,Vi Cn'a‘ n,Vi Cn'a‘ n
’@avo (Ul)’ = (infieri)W (e85 (Ul) < (infieri)‘od C .
Let f € ¢/(V1). Then,

_aa =1 \%
Z |apaaﬁ(;V1 (U1)||f(’U1)| < Hma% 1(U1)||stHt
U1
s—1

= (e (00, 7(0))) | £l

To obtain the last inequality, we use that [y (v1)]|s < C(¢~D" " am¥t (vl))l/s, (10)
and ), O‘}y/%o) (v1) < 1. Therefore,

< Cnlol¢

o~ s—1 ty 1
HZ|70¢"’V1(Ul)||f(vl)|||et(vo) < CnllE (Y (o, (v0,7(0)) ) P I1£ [l

V1 V0
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t
s

Since t > T'+ 1, t/s > T, the series ), (ug\v, (v0,7(0)))* converges and the operator

fe> WAL (v1) f(v1)

has norm smaller than Cnl®/¢ min L(05(V1),£4(Vp)). The series of operators which defines

(e}

WA“% is converging.
P
The proof is the same for the adjoint operator. We estimate, for g € ¢°(Vp),

0 v la| 1%
Zla—paaﬁg Hwllg(vo)l < gt mrads (o) lellglls
v

infier pi

ol ¢ (o) =
< CnlCE (o g (0n) 7 gl

As before, we find that the operator

8&
91 D s ()g()

V0

has norm smaller than
t—1

CnlolgE 3™ (Vi (o))" T < Ol
vl

(67

in £(£5(Vp), (V1)) (recall that s™=1 = 1). The series of operators which defines %(A“%)*

is converging as well. O

3.3. Holder regularity of the Martin kernel.

Fix € G and a geodesic v with v(0) = e. Consider the family U, C Uy C --- C U, C
U, such that forall j =1,---n—1, Uj_ cU; C Uj_Jrl C Uj41 is an obstacle for yogMAE,
The integer K is chosen so that z,e € Uy, e.g. K = 4M + |z|. With that choice, y(n) & Uy,
as soon as n > K + 2kM + 4r. Tterating the strong Markov property, we get, for z & Uy:

V; Vi
u(w,z) (a}c/O’Av(l) Ay W)
u(e,2) (P A A W)
wy,
Choose t > T'+ 1 and s such that 1/s+ 1/t = 1. Set fi(z) := H Zk” ya=al B:=all,

For all 2 &€ Uy, fu(z) € D@k and o, € Cy, — {0}. By Proposition 2.4, if z,2" ¢ Uy,
ﬂct(A“;i 1fk(z)’A¥]Z Ji(@)) < 4lner. Set T = Ez% By repeated application of (8), we
— — cy

have, as soon as z, 2 & Uy,
(12)
Do (A} - A fr(2), AV - AVF ful(2) < 7F M0 (AVE fel2), AYE fr(2) < dlneyrhl
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We are interested in the function @ : 0G — R,

B(E) = —In Ko(€) = —In Tim %0

zn—€ ule, Ty)

If we choose the reference geodesic v converging towards &, then setting ®,(£) = ZE“Z::((Z)))),

we have lim,, ®,(§) = ®(£). More precisely, as soon as n,m > K + 2kM + 4r, we may
write:

<a7 Tjo C T]kqfk(’y(n)» <57 Tjo t Tjkfl fk(’y(m)»
(8, Tjo -+ Tjy_, fr:(y(n))) (e, Ty - - - Ty, fr(v(m)))’

where T}, is the projective action of A“;z“. By (12) and Lemma 2.6, we have, as soon as

n,m > K+ 2kM + 4r, |®,,(€) — ®,,(¢€)| < C*. For the same reason, for any fixed family
of f € Df/k, the sequence T}, ---Tj, , fi converge in Df/o towards some f,, independent
of the choice of fi and a priori depending on the geodesic v converging towards £. In any
case, we have:

P (8) — Pm(§) =In

(o, foo)
<041, foo> ‘

Consider now two points £, 7 € OG such that p(¢,7) < a~™~C. Then there is a geodesic
v converging to ¢ and a sequence {yy}s>1 going to n such that for ¢,m large enough,
(v(m),ye) > n. For fixed x and K = 4M + |z|, consider the same family Uy C Uy C --- C
U, C'Uk such that for all j = 1,---k — 1, U cUj CcUjy CUjpris an obstacle for
v o oPM+KE We have

Lemma 3.6. Assume 2kM < n — K —4r — 226 and ¢ large enough. Then, y; & Uy.

(13) ITjo - Tj_y Jre = foolle < OTF and @(€) = In

Proof. Choose ¢ large enough that lim,,—,~(v(m),y¢) > n and we choose a geodesic [yy, &]
such that (yg, &) > n. By definition of U;, we have to show that d(ye, v(2(j —1)M + K)) >
d(ye,v(2jM + K +4r)) for 2j M + K 4+ r+ 22§ < n. By continuity, there is a point so where
the function s — d(ys,y(s)) attains its minimum. We are going to show that sg > n —124.
By 8§ convexity of s — d(ye,v(s))([GH], Proposition 25, page 45), this prove the claim?.

By continuity, there is a point s; such that d(v(s1),[v(0),y¢]) = d(v(s1), [ye,&]) < 46.
On the one hand,

s1 > d(7(0), [y, &]) —46 > n —40

(recall that (£,y,) > n). On the other hand, we know that
d(ye, 7(s1)) < (7(0),€)y, + 80 < d(ye,7(50)) + 85
(see the proof of Lemma 22.4 in [W]). It follows that sg > s; — 85 > n — 124. O
3Indeed, since 2jM + K + 7 + 226 < n, y(2jM + K + 4r + 106) lies between v(2(j — 1)M + K) and so
and thus, by 80 convexity of the distance, d(ye, v(2jM + K + 4r 4+ 106)) < d(ye,7(2(j — )M + K)) + 85

(recall that s achieves the minimum of d(ye,y(s))). The inequality follows by writing the J-hyperbolicity
relation (1) with z = ye,y = y(2jM + K +4r),z = v(2jM + K + 4r + 105) and w = v(2(j — 1)M + K).
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We have that ®(§) — ®(n) = limg,, ¢,y,—n1n (%%) With the above notation,
assume that k is such that 2kM < n — K — 4r — 225. If ¢ and m are large enough,

ye,v(m) ¢ Uy and

- (8. Ty~ Ty, Fi(y(m))) (@ Tho -~ Ty, fuwe))
) ) = T T FeCrm)) (B Ty~ Ty s Fiw0)

Since as above, we have 9(Tj, -+ Tj, _, fr(v(m)), Tjs - - Tj_, fr(ye)) < C7F, and a, B take
a finite number of values, we have:

(&) — ®(n)| < Cr* < Cpp

for a new constant C' and py = 7/2M. This shows that for all z € G, the function
&~ —InK,(§) is Holder continuous on 9G. Moreover, the Holder exponent |In py|/Ina
and the Holder constant C' are uniform on a neighbourhood of p in P(F).

1
Let us choose k < 1,k < _;i

that there is a constant C,, with ‘?hceb property that |¢(&) —o(n)| < Cr(d(&,n))" . For ¢ € Ty,
denote ||¢||,. the best constant C}; in this definition. The space Ty, is a Banach space for the
norm ||¢|| := ||¢||x + maxsg |¢|. In this subsection, we showed that for p € P(F), x € G,
there exist x > 0 and a neighborhood O, of p in P(F) such that for p’ € O, the function
P, (§) = —In K¢(x) belongs to I', and that the mapping p’ — @,/ is bounded from O, into
I.

, and consider the space 'y of functions ¢ on 0G such

4. THE MARTIN KERNEL DEPENDS REGULARLY ON p

Proposition 4.1. Fiz x € G. For all p € P(F), there exist k > 0 and a neighborhood O,
of p in P(F') such that the mapping p — P(§) = —In K¢(x) is Lipschitz continuous from
O, into T',..

Proof. Let p € P(F) and choose £ = k(p) given by Section 3.3. We have to find a
neighborhood O of p in P(F) and a constant C such that, for p’ € O,

1Py — @l = max |@p() — p (§)] + 1@ — D[l < CO(p, 1),

where, for convenience, we use on P(F) the already defined projective distance on R¥. We
treat the two terms separately.

Claim 1: maxg |Pp(&) — @ ()| < CY(p, D).
Choose the geodesic 7 converging to £. Applying Section 3.3 and (13), there are vectors
foo(p); foo(p') € £(V0) such that

B, (€) — By (€)] = | 1n SLP) S (D)) (B, Joo (')

(a(p'), foo(P)) (B(P), foo(P))
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By Proposition 2.4, we make an error of order CY(p,p’) when replacing 5(p’) by B(p) and
a(p’) by a(p). The remaining term is

(a, Ty, - ]k L fr) (8,T; jo ]k 1fk>
Oé,Tj/O ]k 1fk> <57 Jo * ]k 1fk>

where Tj, is the projective action of AVZ‘“( ), T}, the projective action of A 5“( ') and

(14) h}fn ‘ In

we have chosen once for all f;, € ¢¢(V},), independent of pe O.

We have:
79(,1}'0' Jk 1fk’ ]k 1fk)
k—1
S Zﬁ(TjO Ty IT ]k 1f’f’ Jo ThTJ,H' ]k 1f’f)
i=1
k—1 '
< ZTZ_lﬁ(TJ{i ’ ]k 1fk’TJzTJ/z+1 ’ ]k 1f’f)
i=1
where we used (12) to write the last line. If the neighborhood O is relatively compact in
P(F), all points T]’ e Ty{k,lfk are in a common bounded subset of D%,jﬂ . By Proposition

3.5, there is a constant C' and a neighborhood O such that for p’ € O, i=1,--- ,k—1,
19(T]/zTJ,z+1 ]k 1fk’ Ji ]z+1 ' ]k 1fk) é Cﬁ(p,p/).

C
Finally, we get that for all k, 79(Tjo- T}, 1fk, ]k 1fk) < —ﬁ(p,p'). Reporting
T
in (14) proves Claim 1.

Claim 2: ||®p — @y || < CY(p,p').
Let £,17 € OG be such that p(€,1) < a™™¢. We want to show that there is a constant
C and a neighbourhood O, independent on n such that, for p’ € O:

[©(€) = @y (€) — Pp(n) + Py (n)] < Ca™™I(p,p").
Choose as before a geodesic vy converging to  and a sequence {y;}¢>1 going to 1 such that
for £,m large enough, (y(m),ys) > n. For fixed x and K = 4M + |z|, consider the same
family Uy Cc Ug C --- C U, C Ugsuchthat forall j =1,---k—1, U cU;cU;, CUjn
is an obstacle for v o 0%M+K By Lemma 3.6, for ¢ large enough ye & U and we may

write ®,(&) — @ (&) — Pp(n) + P (n) as
(15)

lim In (8, Tj, -- ]k L 9k) <04,T]/0 TJ/k 1g//f> (a, Ty, -- ]k 1 ><ﬁ/’ jo Tj/k 1h/>
Tm—E&,Ye—n (a Tjo ' ]k 1gk> <5,7 jo Jk 19 ><B7 Jo " ]k 1h >< ,’TJ/O. TJ/k 1h/>7
where a = a(p), o/ = a(p'),8 = B(p), 8’ = BK'), T}, is the projective action of Avs“(p),

T;, the projective action of A 5“( ') and g, g, are fi(y(m)) calculated with p and p’
respectlvely, hi, by, are fr(ye) calculated with p and p'.
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Recall that g, = fx(7(m)) is the direction of w, (™) iy 04 (V}). Tt can obtained by a series
of obstacles along v between Uy and v(m). Let us show that we can choose m large enough
(depending on p’) such that we have ¥(gx, g.) < CY(p,p’). Indeed,

9(gr k) = (fr(y(m), fr(v(m)) = (L, - Ty fons Ty - TG, )

Jm—1

We have O(fpm, f,) < C and for m large enough,

O(T), T s T Th fr) < 777FC < 0(p, 7).

Jm—1

By the same computation as in Claim 1, we then have
19(T.7k e ij,lfm, T],k e zq"]{mflfm) S Cﬁ(p7p,)

Since 9(gx, g;,) < CY(p,p’), using the contraction of the T}, we can replace g; by gi in (15)
with an error less than CTF9(p,p') < Cpgd(p,p'). In the same way, following obstacles
along the geodesic between y(n) and y,, we have, for £ large enough, 9(hy, b)) < 9(p,p’)
and we can replace hj by hy in (15) with an error less than Cp{d(p,p’).

Observe also that all terms & = o/||als, 3 = B/]|8]|s belong to Df/jo. We may write,
considering for instance (¢/, T} ---T! g):

"o Jk—1
(T - T gp) (o, A% - ]k 9%)
(o TG - T, 9%) (e, A’ A 192>
*x /!
(4, 1) - 1)

"o (4]
/]| (T} i )7 (TG g)
llerlls (75, _,)* “(Tjo “, )

o) @
(A5, ) - (A% ) @, g
)

where (7})* denotes the projective action of (A’)* on Dy, Observe that if we replace o

by «, 8’ by 8 in (15) and use the above equation and its analogs, the ratios ||||(Z:||I|:, ||||%l||||:
cancel one another and using the contraction of the (T]’)*, we make an other error of size

at most Cpgd(p,p’).

We find that, up to an error of size at most Cpgd(p,p’), the difference ®,(§) — @, (&) —
Q,(n) + Pp(n )1sg1venby

lim In <5’ o Aj 19k>< A A;k 1g"f> <d’Aj0" Jr—1 ></8’ A;kf hi)
Ty —E,Ye—n (B,A’ A;k lgk> <d=AJo Ajy 1 9k) (c’y,A’ A;k N ></87 jO.”Ajk—lhk>

where we reordered the denominators to get a sum of four terms of the form

<04,Aj0 ) Ajk 1g>
(a, Al - AL g)’

Jk—1

+In
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with o € D‘s/} ,g € D%,j . We can arrange each such term and write:
0 k

<a7Aj0" Ajk 19>
(a, AL - AL g)

Jk—1
_ kl:[l <a’Aj0' A AJZA; i+1 A;k 19>
i=0 <a’Aj0' A 1A;zA;1+1 A;k 19>
= [ﬁ] <(A;i71)* o (Az'o)*a’ A;igi> X Iﬁ ((4;,)"ai, A;HI T A;k71g>
g (A5 )7 (A ) as Ajgi) i=[k/2]+1 ((A5) e, AT - AL g)
I R CTRRNT I § QR COR)
o (A ) o, gi) k241 (i, AL gi)

where o; = (Tji—l)*"'(no)*a7 gi = T; T g. Set B; = ( Ji— ) (T’jo)*ﬁy h; =

<5@7 jlgi> (aivA;'igi> ( i, > <5ZyA, i
i=[k/2]+1 (5@7 Ajigi> (aiv Ajigi> (aMA]ih > <5Zy i
Since, g;, h; remain in a bounded part of the Dy+ and oy, 5; in a bounded part of the Dy,
using Propositions 2.4 and 2.5, one gets a constant C such that ¥(A4;, i, A;Z_gi), V(Aj,hi, A;Z_ h;),
I((Aj,)*ai, (A%,)*w) and 9((Ay,)*Bi, (A})*B;) are all smaller than C¥(p, p'). Furthermore,
using the contraction of 7 and (Tj)* (Proposition 3.4) we see that:
79(052'752') S CTi7 19(927 hl) S CTk_i'

Moreover, all products in the formula are approximations of («, f) and thus are uniformly
bounded away from 0. It follows that for i < k/2,

((A3.)*Bi, 9:)((A},)* B, hi) N (AL )% iy i) ((Aj,) i, i)
((A5,)*Bi 9i) ((Aj,)* Biy ha) VL ((Agy)* i, 9i) ((A5))* i, ha)
and for i > k/2:

.71+1 Jk—1
T]’ -T! h. We are reduced to estimate:
+1 Jk—1
[k
ﬁ] (A ) B gs) (AL Y i, 02) (A ) s, h) (A5 ) B, )
o (AL Bis gi) ((Aj)* o, gi) ((AG)* o, hi) ((Aj,)*Bs, ha)
k-1 )
hi)

‘ln

"9(p,p)

Iz i 042714 i Oéi,A‘ihZ‘ iyAlﬂhi ;
1 G oo Ay | o A A
(ﬁlvA gl><a27‘4jigl> (alijlh2><ﬁ27Ajlh2>
so that finally the main term of (15) is estimated by:
[k/2] k—1 '
Z T+ Y Crip,p) < OTM(p,p) < Cpy*i(p, ).

i=[k/2]+1
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Claim 2 is proven (recall that k£ < —i22% o that p'/2 < a™"). O

2Ina

5. MARKOV CODING AND REGULARITY OF p*°

In this section, we discuss the regularity of the mapping p — p> from P(F) into the
space I'; of continuous linear forms on I',,. By Theorem 2.1, p™ is the only p-stationary
measure for the action of 0G, and thus depends continuously on p. In the case of the free
group, p>° appears as the eigenform for an isolated maximal eigenvalue of an operator on
I, (see [L1], Chapter 4c) and therefore depends real analytically on p. This argument
does not seem to work in all the generality of a hyperbolic group and we are going to use
the Markov representation of the boundary which was described by M. Coornaert and A.
Papadopoulos in [CP].

5.1. Markov coding. Following [CP]|, we call horofunctions any integer valued function
on G such that, for all A < h(z), the distance of a point x to the set h=1()) is given by
h(z) — A. Two horofunctions are said to be equivalent if they differ by a constant. Let ®
be the set of classes of horofunctions. Equipped with the topology of uniform convergence
on finite subsets of GG, the space ®q is a compact metric space. GG acts naturally on ®y. The
Busemann boundary dpG is a G-invariant subset of ®q. For each horofunction h, sequences
{xn}n>1 such that
d(@n, Tny1) = h(zn) = M(zng) = 1

converge to a common point in G, the point at infinity of h. Two equivalent horofunctions
have the same point at infinity. The mapping 7 : &9 — JG which associates to a class of
horofunctions its point at infinity is continuous, surjective, G-equivariant and uniformly
finite-to-one. Fix an arbitrary total order relation on the set of generators S. Define a
map a : &g — P by setting, for a class ¢ = [h] € ®¢, a(p) = a~Lp, where a = a(yp) is the
smallest element in S satisfying h(e) — h(a) = 1. In [CP] is proven:

Theorem 5.1 ([CP]). The dynamical system (g, ) is topologically conjugate to a subshift
of finite type.

We assume, as we may, that the number Ry used in the construction of [CP] satisfies
Ry > r. In order to fix notation, let (X,0) be the subshift of finite type of Theorem 5.1.
That is, there is a finite alphabet Z and a Z x Z matrix A with entries 0 or 1 such that X
is the set of sequences z = {z,}n>0 such that for all n, A, . ., =1 and o is the left shift
on Y. We can decompose ¥ into transitive components. Namely, there is a partition of the
alphabet Z into the disjoint union of Z;,j = 0,--- , K in such a way that for j =1,--- | K,
Y = {z,20 € Z;} is a o-invariant transitive subshift of finite type and ulezj is the w-
limit set of ¥. By construction, G-invariant closed subsets of ¥ are unions of ¥; for some
je{l,---,K}. We denote such G-invariant subsets by ¥ ;, where J is the corresponding
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subset of {1,---, K}. In particular, the supports of stationary measures on G are subsets
of 0gG which are identified with such X ;.

For x > 0 consider the space I'y of functions ¢ on ¥ such that there is a constant
C\ with the property that, if the points z and z’ have the same first n coordinates, then
|p(z) — ¢(2')] < Cyx™. For ¢ € I'y, denote ||¢[|, the best constant C) in this definition.
The space I'y is a Banach space for the norm ||¢|| := ||¢||, + maxy, |¢|. Identifying ¥ with
dq, we still write 7 : ¥ — OG the mapping which associates to z € ¥ the point at infinity
of the class of horofunctions represented by z.

Proposition 5.2. The mapping 7 : X — 0G is Hélder continuous.

Proof. Let z and 2’ be two elements of ¥ such that z; = 2z for 1 < ¢ < n. Denote h
and h’ the corresponding horofunctions with h(e) = h'(e) = 0. Let {x,}n>0 be define
inductively such that zog = e and (x,— 1)_1xn is the smallest element ¢ in S such that
h(xn—1) — h(zp—1a) = 1. The sequence {x,},>0 is a geodesic and converges to 7(z). By
[CP], Lemma 6.5, h and h' coincide on N({xo, - ,ZntL1,}, Ro), where Ly and Ry has
been chosen as in [CP], page 439. In particular, if one associates {z/,},>¢ similarly to
h', the sequence {z/, },>0 is a geodesic which converges to m(z’) and we have zj, = z}, for
0 <k <n+ Lg. It follows that for all m,m’ > n + L,

(@, Tr)e = n+ Lo+ (Tm, T )apyp, =7+ Lo 21
Therefore (7(z), 7(2’))e > Uminf,, (2, s )e > n and p(7(z), m(2)) < e” T, O
In the same way we have:

Proposition 5.3. Let x be fized in G with |z| < Ry. Then the mapping z — h,(x) depends

only on the first coordinate in X, where h, is the horofunction representing z in Theorem
5.1.

Proof. As above, if zg = z{ and h,h’ are the corresponding horofunctions with h(e)
h'(e) =0, h and h' coincide on N (e, Ry) D {z}.

o

Let v be a stationary probability measure on ®g. By equivariance of w, the measure m,v
is stationary on 0G and, by Theorem 2.1, we have m,v = p*°. Actually, there is a more
precise result:

Proposition 5.4. Let v be a stationary measure on ®y. Then, for v-a.e. p € ®q, all x,

(16) LV 0) = Kool

Proof. Since the mapping 7 : &9 — IF is G-equivariant and finite-to-one, the measure v

can be written as
[ = [( X G a(9))dp(©),

o ()=
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where a is a nonnegative measurable function on ®( such that Z §a(gp) = 1 for
p>°-a.e. £. Moreover, since G is a Poisson boundary for the random walk ([K], Theorem
7.6), the conditional measures a(y) has to satisfy a(zy) = a(p) p™-a.s.((KV], Theorem
3.2). The formula (16) for the density then follows from formula (6). O

Identifying ® with 3, we see that, for z € 3, 0!z is given by some az, where a is one
of the generators. We can describe the restriction of a stationary measure to ;. More
precisely, we have:

Proposition 5.5. For each j = 1,--- , K, there is a unique probability measure v; such
that any p-stationary measure on ¥ has the restriction to X; proportional to v;. Moreover,
for all p € P(F), there exist x > 0 and a neighborhood O, of p in P(F) such that the
mapping p — v; is Lipschitz continuous from Op to I'} (%;).

Proof. Consider a p-stationary probability measure on 3. that has a nonzero restriction to
¥;. Let vj be this (normalized) restriction. By (16), for all z such that z71%; = %;, we

have dz;;jj (2) = Kr)(x). We shall show that there is a unique probability measure on

dov; . . . .
¥; satisfying Zl L(2) = K(2)(20) and that it depends Lipschitz continuously on p as an
v, =

element of I'} for some suitable y.
We use thermodynamical formalism on the transitive subshift of finite type X;. For
x < 1 and ¢ € I'y with real values, we define the transfer operator L4 on I'y(X;) by

Lop(€) = > e®My(n).

n€o—1¢

Then, L4 is a bounded operator in I'y. Ruelle’s transfer operator theorem (see [Bo],
Theorem 1.7 and [R], Proposition 5.24) applies to L4 and there exists a number P(¢) and
a linear functional Ny on I'y such that the operator £ on (I'y)* satisfies LZNy = eP@) Ny,
The functional N, extends to a probability measure on X; and is the only eigenvector of

;‘) with that property. Moreover, ¢ — Ly is a real analytic map from I'y to the space of
linear operators on I'y ([R], page 91). Consequently, the mapping ¢ — Ny is real analytic
from T'y into the dual space I'; (see e.g. [Co], Corollary 4.6). For p € P(F), define
¢p(z) =In Koz (z0). By Propositions 4.1 and 5.2, we can choose x such that the mapping
p — ¢p is Lipschitz continuous from a neighborhood O, of p in P(F') into the space I'y. It
follows that the mapping p — Ny, is Lipschitz continuous from O, into I'}.

From the relation d;;:j (2) = Kr(z)(20), we know that v; is invariant under L5 . This

shows that v; is the only probability measure satisfying this relation, that P(¢,) = 0 and
that v; extends Ny, . O

Let ¥ ; be a minimal closed G-invariant subset of ¥. We know that X is a finite union
of transitive subshifts of finite type. We have



REGULARITY OF THE ENTROPY FOR RANDOM WALKS ON HYPERBOLIC GROUPS 21

Corollary 5.6. Forp € P(F), there is a unique p-stationary probability measure v;(p) on
Y. 7. There is a x and a neighborhood O of p such that the mapping p — v;(p) is Lipschitz
continuous from O into I'} (7).

Proof. Let vj be a p stationary measure on ;. We know by Proposition 5.5 that the
conditional measures on the transitive subsubshifts are unique and Lipschitz continuous
from O into I'} (). We have to show that the v;(3) are well determined and Lipschitz
continuous in p. Write again equation (16), but now for elements x € G that exchange
the ¥ within 3 ; and write that Y, v;(X;) = 1. We find that the v;(Xj) are given by a
system of linear equations. By Proposition (4.1) and (5.5), we know that the coefficients
of this linear system are Lipschitz continuous on . We know that there is a solution, and
that it is unique, since otherwise there would be a whole line of solutions, in particular one
which would give v;(X;) = 0 for some k and this is impossible. Then the unique solution
is Lipschitz continuous. O

6. PROOF OF THEOREM 1.1

Choose x small enough and O a neighbourhood of p in P(F') such that Proposition
4.1 and Corollary 5.6 apply: the mappings p — In Ky, (x) and p — vy are Lipschitz
continuous from O into respectively I'y(X) and I';(2;). Then, by the definition (2), the
function p — h,(X;,v) is Lipschitz continuous on O. By (3) and (5), the function h,, is
the maximum of a finite number of Lipschitz continuous functions on O; this proves the
entropy part of Theorem 1.1.

For the escape rate part, recall that the Busemann boundary dgG is made of horofunc-
tions so that it can be identified with a G-invariant subset of >. Stationary measures on
OpG are therefore convex combinations of the v, where J' are such that v (9pG) = 1.

Formula (4) yields E;? = max {erF (fEJ/ h(x_l)dyJ/(h)) p(:p)} . By Proposition 5.3, for
a fixed € F the function h(z) is in I'y(3;) for all x. Therefore, Corollary 5.6 implies that
each one of the functions fzj, h(z~Y)dv (h) is Lipschitz continuous on @. This achieves

the proof of Theorem 1.1 because the function p — Eg is also written as the maximum of
a finite number of Lipschitz continuous functions on O.
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