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ABSTRACT

Within condition based maintenance (CBM), the whole as-

pect of prognostics is composed of various tasks from multi-

dimensional data to remaining useful life (RUL) of the equip-

ment. Apart from data acquisition phase, data-driven prog-

nostics is achieved in three main steps: features extraction

and selection, features prediction, and health-state classifica-

tion. The main aim of this paper is to propose a way of im-

proving existing data-driven procedure by assessing the pre-

dictability of features when selecting them. The underlying

idea is that prognostics should take into account the ability

of a practitioner (or its models) to perform long term predic-

tions. A predictability measure is thereby defined and applied

to temporal predictions during the learning phase, in order to

reduce the set of selected features. The proposed methodol-

ogy is tested on a real data set of bearings to analyze the effec-

tiveness of the scheme. For illustration purpose, an adaptive

neuro-fuzzy inference system is used as a prediction model,

and classification aspect is met by the well known Fuzzy C-

means algorithm. Both enable to perform RUL estimation

and results appear to be improved by applying the proposed

strategy.

1. INTRODUCTION

Due to rapid growth in industrial standards, effective mainte-

nance support systems are main area of focus nowadays. Dif-

ferent strategies have been adapted to assess machinery condi-

tion in real time and to avoid costly maintenance procedures.

In this context, Condition Based Maintenance (CBM) strat-

egy facilitates the competitive needs of industry by preventing

costly maintenance activities, and thus, improving availabil-

ity, reliability and security of machinery (Tobon-Mejia et al.,

Javed et al. This is an open-access article distributed under the terms of

the Creative Commons Attribution 3.0 United States License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

2011). In CBM, researchers show keen interest in less de-

veloped phase of prognostics that determines or predicts the

remaining useful life (RUL) of a system (machinery) under

certain operational conditions (Jardine et al., 2006). However,

accurate prognostic systems are still scarce in the industry and

need for an improvement is inevitable.

Prognostics can be categorized mainly into three approaches:

experience based, model based and data driven methods

(Heng & Zhang, 2009; Lebold & Thurston, 2001b; Ramasso

& Gouriveau, 2010). Among these approaches data driven

methods are considered to be a trade-off between experience

based and model based approaches. They are increasingly

applied to machine prognostics due to their effectiveness and

ability to overcome limitations of latter categories (El-Koujok

et al., 2008).

Mainly, the degradation process of a system (component) is

reflected by features that are extracted from a sensor signal.

These features are main source of information for prognos-

tics model to estimate RUL. So, most importantly, in exist-

ing data-driven procedure of prognostics, critical phase of

prediction should be met in appropriate manner for further

classification and RUL estimation. However, from afore said

procedure two issues can be pointed out. Firstly, there is

no unique way to select most relevant features that are pre-

dictable and contribute for better RUL estimation. Secondly,

the predictability should be assessed according to prediction

model as well as horizon of prediction. This paper contributes

to extend the existing approach by proposing a slight modifi-

cation of features selection phase on the basis of predictabil-

ity.

This paper is organized as follows. Section 2. discusses data-

driven prognostics approach and points out the importance of

the prediction accuracy. Following that, section 3. presents an

improved framework for feature selection, based on the pre-

dictability assessment of features. Section 4. aims at defining

the whole prognostics model that is employed in this paper.

Both aspects of multi-steps ahead prediction and of health
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state classification are considered. Section 5. deals with sim-

ulation and results discussion. Finally, section 6. concludes

this research work.

2. DATA-DRIVEN PROGNOSTICS

2.1 Prognostics process flow

In maintenance field, prognostics considered as a key task

within CBM that predicts RUL of machinery under certain

operational modes and facilitates decision making. Thereby,

the main objective of prognostics is to estimate RUL of sys-

tem (component) before occurrence of failure state. There-

fore, within CBM concept, the whole aspect prediction and

failure can be viewed as set of certain activities that must be

performed in order to accomplish predictive maintenance pro-

cedures (Lebold & Thurston, 2001a).

Mainly, data-driven methods alter raw (unprocessed) data into

useful information and forecast global performance of the

system. In order to deduce RUL, prognostic task is applied

by performing forecasts in time and further analyzing them by

classification module to approximate most probable states of

the system (Fig. 1 and 2). More precisely, in a first stage, data

acquisition from sensor sources is performed, and further pre-

processed before feeding prediction model. The second stage

of data-preprocessing is composed of two distinct phases i.e.,

feature extraction module, that is accomplished by signal pro-

cessing techniques and feature selection module that depends

on data mining approaches. Finally, in third stage of prognos-

tics, prediction module forecasts observations in time, that are

further analyzed by the classifier module to determine most

probable states of the system. Lastly, RUL is derived by he

estimated time to attain the failure state.

RUL
Data

acquisition

Data pre-processing

Features
extraction

Features
selection

Prognostic model

Features
prediction

States 
classification

Signal proc.
techniques

Data-mining
techniques

Data-driven
approaches

Figure 1. Prognostics process flow

2.2 Underlying predictability problem

From data-driven approaches, artificial intelligence (AI)

based tools like artificial neural networks and neuro-fuzzy

(NFs) have successfully been employed to perform non-linear

modeling of prognostics (W.Q. Wang et al., 2004; Lebold &

Thurston, 2001a). The standard of AI approaches is divided

into two phases, i.e., learning phase and testing phase. As,

monitored input/output data is the main source of information

for prediction model, therefore, firstly the behavior is learned

by monitored data and secondly, the test phase uses learned

model to predict current and future states of degrading equip-

ment.

Processing
Extract, select, clean

Prediction
From t+1 to t+h

Classification
Probable states

Multidimensional data

Functioning mode at any time t
time

Mode i

Selected Features

Mode k

time

Selected Features

time

Selected Features

time

Raw data

Figure 2. From data to RUL

In classical way prognostics model is learned by set of fea-

tures that are acquired by sensor signal. Thereby, the model

must be retrained upon these features, until significant per-

formance level is achieved. This approach can be time ex-

pensive because some of the features can be very hard to be

predicted. In other words, there is no use in retaining such

features that are not predictable. So, the learning phase of

prognostics modeling should consider the important steps of

“feature selection” and “prediction modeling” in a simultane-

ous manner in order to retain or reject features on the basis

of predictability. Thereby, this implies predictability to be de-

fined (next section).

3. SELECTION OF PREDICTABLE FEATURES

3.1 Accuracy vs predictability

Predictability attributes to the significance in making predic-

tions of future occurrence on the basis of past information. It

is important to understand the prediction quality in a frame-

work that is dependent on the considered time series pre-

dictability. As, predictability in terms of given time series is

not a well defined terminology for real-world processes, few

works focus on the predictability aspect (Kaboudan, 1999;

W. Wang et al., 2008; Diebold & Kilian, 2001). Assuming

that, in order to determine prediction quality, predictably can

be measured on the basis of forecast error based approach.

Various measures have been reported in literature to judge the

quality of prediction or selecting a prediction model (Saxena

et al., 2008, 2009, 2010; Monnet & Berger, 2010). See Eq.

(1) for a set of potential metrics that can be used to assess

predictability:

MSE = 1

N ×
∑N

i=1

(

yi
pred − yi

act

)2

MAPE = 100

N ×
∑N

i=1

∣

∣

∣

(

yi
pred − yi

act

)

/yi
act

∣

∣

∣

RMSE =
√

MSE

CVRMSE = RMSE/µy

MFE = 1

N ×
∑N

i=1

(

yi
pred − yi

act

)

(1)
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From these measures MSE, MAPE and RMSE are most com-

mon accuracy measures for prediction, whereas CVRMSE

and MFE can be employed to model selection. However,

there is no general measure that can be explicitly employed

to predictability factor of prognostics.

Generally, any type of signal will not be predicted with

the same accuracy at different horizons of prediction. So,

assuming that, the critical prediction phase in prognostics

must be met accurately in order to provide efficient infor-

mation. Therefore, predictability in prognostics not only is

closely related to prediction model but also to the horizon

of prediction that is judged as useful. On this basis, a new

measure is proposed in this paper to assess predictability in

prognostics.

3.2 Defining the predictability concept

Assessing the prognostics model requires the user to be able

to define a suitable limit to prediction for the desired perfor-

mance. According to author’s knowledge, the predictability

concept is not well described. So, it can be defined as:

“The ability of a given time series TS to be predicted with an

appropriate modeling tool M , that facilitates future outcomes

over a specific horizon H , and with desired performance limit

L”. Formally we propose it as:

Pred (TS/M, H, L) = exp
−

∣

∣

∣

∣

ln( 1

2 ).
MFET S/M,H

L

∣

∣

∣

∣

(2)

where, Eq. (2) shows the emperical formulation in which

MFETS/M,H represents the mean forecast error Eq. (1), that

measures average deviation of predicted values from actuals.

The ideal value for this criteria is 0, if the value of MFE > 0
then prediction model tends to underforecast, else if the value

of MFE < 0 then prediction model tends to overforecast.

Moreover, the fixed limit of accuracy is denoted by L (chosen

by the user). The exponential form of predictability can attain

maximum value “1” as MFE is minimizes, and a given TS
is considered predictable, if the coefficient of predictability

ranges between [0.5, 1] (Fig. 3).

-L 0 +L
0

0,5

1

MFE

P
re

d

 

 

Pred(MFE,L)

Figure 3. Illustration of predictability measure

4. PROGNOSTICS MODELING

4.1 Multi-steps ahead prediction

In prognostics, forecasting the global health state of a system

is difficult task to achieve due to inherent uncertainity. How-

ever, from the category of data driven prognostics, AI based

approaches like ANN and NFs can be quiet easily applied to

such complex and non-linear environment.

Such connexionist systems have good capability to learn and

adapt from environment and capture complex relationship

among data. They are increasingly applied to prediction prob-

lems in maintenance field (Yam et al., 2001; Chinnam &

Baruah, 2004; El-Koujok et al., 2011). They appear to be po-

tential tools, in order to predict degrading behavior, and thus

forecast the global state of the system.

Multi-step ahead (MSP) modeling can be achieved different

ways by using connexionist tools. However, in this case, the

most common MSP model can be achieved via iterative ap-

proach. MSPs are obtained using a single connexionist tool

that is tuned for single-step ahead prediction x̂t+1. The pre-

dicted value is further utilized as one of the regressors of pre-

diction model, and this process is followed in an iterative way

until estimation x̂t+H , as shown in Fig. 4. Formally:

x̂t+h =































* if h = 1,
f1

(

xt, . . . , xt+1−p, [θ
1]

)

* elseif h ∈ {2, . . . , p},
f1

(

x̂t+h−1, . . . , x̂t+1, xt, . . . , xt+h−p, [θ
1]

)

* elseif h ∈ {p + 1, . . . ,H},
f1

(

x̂t+h−1, . . . , x̂t+h−p, [θ
1]

)

(3)

where, t denotes temporal index variable, p is for number

of regressors used and H states the horizon of prediction.

Whereas,
{

f1, [θ1]
}

states for single-step ahead prediction

model, with its parameter calculation performed during learn-

ing phase.

In this paper the Adaptive Neuro-Fuzzy Inference System

(ANFIS) is used as a the one step-ahead prediction model. A

detailed description of this tool can not be given in the paper.

One can cite to (Jang, 1993; Li & Cheng, 2007) for theoretical

background.
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Figure 4. Multi-steps ahead predictions with iterative model
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4.2 Classification step

The main aim of the classification phase is to determine most

probable states of the degrading system, and thus provid-

ing a snapshot of time from projected degradations. In this

phase, the temporal predictions made by the prediction mod-

ule are analyzed by classifier module to determine most prob-

able functioning modes of system (component). Most impor-

tantly, reliable and effective classification results better RUL

estimation (Fig. 5). However in this case, due to the absence

of ground-truth information the classification phase is met by

well known Fuzzy C-Means (FCM) approach to illustrate our

concept.

Set of selected
features

Training data Degradation 

Classification 

module

RUL

Prediction  Module

Prognostic Model

Figure 5. Classification Module

FCM is used as an unsupervised clustering approach that as-

signs temporal predictions to different classes based on fuzzy

partitioning. In other words, a data point with a membership

grade between [0, 1], can belong to various groups (Bezdek,

1981). Formally, the FCM clustering is attained by assign-

ing membership to every data point that corresponds to each

cluster center that is based on the measured distance between

a data point and center of the cluster. Mainly, if a data point

is closer to particular cluster center, therefore, a greater mem-

bership value is assigned. Moreover, the summation of mem-

bership grades from all data points correspond to a member-

ship equal to ’1’. Mainly, FCM aims to operate in an iterative

manner to determine cluster centers that reduces following

objective function:

J =

n
∑

i=1

c
∑

j=1

(uij)
m

.‖xi − vj‖ 2
(4)

where, ‖xi − vj‖ 2
represents the euclidean distance between

the ith data point and the jth cluster center, uij describes the

membership of the ith data point to the jth centroid, and m >
1 is a weighting exponent.

5. EXPERIMENTS AND DISCUSSION

5.1 Experimental setup

The proposed methodology for feature selection is illustrated

by real data set of bearings form NASA data Repository. The

data set consisted of multiple time series (variables) from dif-

ferent instances and contaminated with measurement noise

(Fig. 6) i.e., representing history of fault degradation process.

Moreover there is no information about the bearing condition

and manufacturing variations. The simulation process is com-

posed of three stages i.e., data-preprocessing, feature predic-

tion and selection and health state classification to estimate

RUL.

For experimental purpose, in the first stage only 8 variables

(features F1-F8) are utilized from bearing data set, and fil-

tered for noise removal.
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Figure 6. Filtered feature from bearing data set

The second phase corresponds to proposed feature selection

methodology based on predictability. So, for illustration pur-

pose ANFIS is used as potential connexionist tools to per-

form MSP. Each prediction model is tuned according to set-

tings shown in Table 1. The training and testing data sets were

composed of 40 bearings data each. However, to achieve MSP

over different horizons, model training is met by a data set of

40 bearings, whereas, 5 test cases are employed for analysis

purpose. All the predictions are analyzed by potential mea-

sures of accuracy (Eq. 1). In order to perform feature selec-

tion, proposed predictability measure is employed to validate

our concept (Eq. 2).

ANFIS-Parameters Settings

Input / Output layer neurons 3 / 1

Number of input membership functions 3

Type of input membership functions Pi-shaped

Number of rules 27

Fuzzy Inference System First order Sugeno

Defuzzification method Weighted Average

Output Membership function Linear

Learning Algorithm Hybrid Method

Number of epochs 100

Training performance MSE

Table 1. ANFIS model settings

Finally, classification phase partitions the temporal predic-

tions into four modes of degradation, i.e., each mode repre-
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sents fault progression toward end of life.

To show the concept of predictability for better classifica-

tion and RUL estimation, simulations are performed on all

features (F1-F8) and also with selected features that are pre-

dictable (excluding F2 and F3). Therefore, the obtained re-

sults from both cases give better perception of estimated RUL.

5.2 Prediction results

In the test phase, predictions are performed over different

horizons (Fig 7). The horizon length for short term, mid-term

and long term based on 35/80/140 steps ahead. The obtained

outputs form each prediction tool are analyzed in a compre-

hensive manner using different performance metrics. To ex-

emplify this scenario, a test case of bearing is presented in

Table 2.
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Figure 7. Example of predicted feature

In the selection phase, the outputs from selected models are

assessed by MFE criteria and also with the proposed measure

of predictability.

Among all features the MFE values for features F2 and F3

were not within bounds of desired performance criteria. Sim-

ilar findings were achieved with the proposed measure of pre-

dictability Eq. (2). The validity of proposed measure can be

clearly demonstrated by results from bearing test 1, as shown

in Fig. 8. By these results it is well understood that F2 and F3

are not predictable according to defined predictability crite-

ria. Therefore, better predictable features are F1, F4, F5, F6,

F7 and F8, which can be selected for further classification to

determine probable functioning modes of degrading asset.

5.3 Classification results

For illustration the temporal predictions from bearing test 1

are used for classification and RUL estimation. Therefore, the

results are organized in two different cases for in an explicit

manner for better perception and understanding (Fig. 9 and

10). In the first case classification is achieved with all features

(F1- F8), whereas in the second case the classification is per-

formed on predictable features only i.e.,excluding F2 and F3.
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Figure 8. Predictable and not predictable feature set

It can be clearly judged from the results below that the first

case shows inferior classification as compared to the classifi-

cation performed by features that are selected on the basis of

predictability. Moreover, the RUL deduced from second case

of classifications is closer to the actual RUL, thus, validating

better prognostics accuracy and improvements achived from

proposed methodology.
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Figure 9. Classification with all features
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F1 F2 F3 F4 F5 F6 F7 F8

RMSE 0,111 2,3911 4,431681 0,0742 0,0495 0,0382 0,0334 0,507

MAPE 0,015 0,1166 0,219175 0,0024 0,0829 0,001 0,2909 0,103

CVRMSE 0,017 0,1503 0,314495 0,0031 0,1041 0,0016 0,3959 0,129

MFE -0,083 1,5625 3,041406 0,0576 -0,008 0,0192 0,0237 0,013

Pred 0,682 0,0007 7,88E-07 0,7662 0,9648 0,9149 0,8961 0,944

Table 2. Predictability of bearing test(1) over long-term horizon

6. CONCLUSION

In this paper an improvement to existing data-driven prognos-

tics approach has been presented. The proposition is based on

the assessment of the predictability of features that impacts

the accuracy of prognostics. The proposed methodology was

met in three phases: 1) learning the prognostics model, 2)

assessing temporal predictions on the basis of predictability,

and 3) selecting those features that are better to be predictable.

Mainly, multi-step ahead predictions were performed by AN-

FIS predictor. Lastly, set of predictable features were clas-

sified to determine possible fault modes, thanks to Fuzzy

C-means clustering approach. The comparative analysis of

classifications of test cases, show the efficiency of proposed

methodology of “predictability based feature selection”.
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