
HAL Id: hal-00632066
https://hal.science/hal-00632066v1

Submitted on 13 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Resurfacing Decisions for Road Maintenance :
A POMDP Perspective

Mariem Zouch, Thomas G. Yeung, Bruno Castanier

To cite this version:
Mariem Zouch, Thomas G. Yeung, Bruno Castanier. Optimal Resurfacing Decisions for Road Main-
tenance : A POMDP Perspective. the Annual Reliability and Maintainability Symposium, Jan 2011,
United States. pp.978-1-4244-8855-1. �hal-00632066�

https://hal.science/hal-00632066v1
https://hal.archives-ouvertes.fr


Optimal Resurfacing Decisions for Road Maintenance: A
POMDP Perspective

Mariem Zouch, Thomas Yeung and Bruno Castanier
Department of Automatic control & Industrial Engineering

Ecole des Mines de Nantes / IRCCyN, F-44307 NANTES Cedex, France

Keywords: Road deterioration, maintenance optimization, Partially Observed Markov De-
cision process, grid-based approximation

Notations

a maintenance action iθ discrete value of θ
Ah set of actions for a section thickness h iρ discrete value of ρ
b belief state m last maintenance type

b
k belief state immediately after action

ak

N number of states

b
′ updated belief state after observation Nh number of available actions

b
θ belief state on θ No number of possible observations

B set of state beliefs Nρ number of possible values of ρ
c0 inspection cost Nθ number of possible values of θ
cf total fixed cost o observation

cn fixed cost of milling O set of observations

cp fixed cost of resurfacing ra DGR reduction factor

cv total variable cost s section state

cun unit cost of milling sa section state after action a
cup unit cost of resurfacing S set of states

Cq(·) quality cost V Total expected discounted cost-to-go

h section thickness Ω(o|b) probability of o at the decision epoch

end when b at its beginning

ha section thickness after action a ρ longitudinal cracking percentage

hmax maximum road thickness θ deterioration growth rate

hn milling thickness θ̃ average deterioration speed

hp resurfacing thickness τ inter-inspection period

Hn set of possible milling thicknesses φ(·) maintenance effect function on θ
Hp set of possible resurfacing thicknesses
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1 Summary & Conclusions

We develop an optimal maintenance policy for a road section to minimize the total mainte-
nance cost over the infinite horizon when some deterioration and decision parameters are not
observable. Both perfect and imperfect maintenance actions are possible through the appli-
cation of various thicknesses of resurfacing layers. We use a two-phase deterioration process
based on two parameters: the longitudinal cracking percentage and the deterioration growth
rate. Our deterioration model is a state-based model based on the state-dependent Gamma
process for the longitudinal cracking percentage and the Bilateral Gamma process for the
deterioration growth rate. Moreover the maintenance decision is constrained by a maximum
road thickness that makes the maintenance decisions more complex as it becomes how much
surface layer to add as well as to remove. Because only one of the two deterioration parame-
ters is observable, we formulate the problem as a partially observed Markov decision process
and solve it using a grid-based value iteration algorithm.

Numerical examples have shown that our model provides a preventive maintenance policy
that slows down the initiation as well as the propagation of longitudinal cracks and that may
ameliorate the road state to a better than as-good-as-new one by altering its composition
through additive resurfacing layers.

2 Introduction & Literature review

During the last decades, the interest in maintenance optimization has increased considerably
and several approaches have been developed for different fields of applications. For a survey
of maintenance optimization models and application, refer to [4, 20]. Civil and transportation
infrastructure networks is one of the fields where maintenance optimization is very important
due to the importance to these networks to social and economical development of societies
and to the large expenditure and construction time needed to construct new facilities [2].

Maintenance optimization approaches aim to determine optimal strategies, i.e. what main-
tenance action to perform and when in order to minimize variable costs as well as to ensure
the proper functioning of infrastructure.

From the literature, different approaches have been developed and applied to many na-
tional networks such as in Netherlands [9, 19] and in the USA [6, 18]. Many approaches have
been formulated as Markov decision processes (MDPs). This approach has the advantage to
be dynamic and easy to solve. Nevertheless, MDPs assume that the deterioration parame-
ters can be perfectly observed and measured. This assumption may not be realistic in some
cases: even if advanced inspection technologies minimize measure errors, some deterioration
parameters, such as the instantaneous speed of deterioration cannot be observed, but just
estimated using available information on the system state. In order to take into account the
non-observability of decision parameters, MDPs have been extended to partially observed
Markov decision processes (POMDPs) [14, 8]. Instead of observed states, POMDPs work
with belief states that are represented by probability distributions over all the states.

Several imperfect information problems have been treated in literature. Madanat et al.
[11] present a dynamic programming method to determine optimal maintenance and inspec-
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tion policy, in the presence of inspection error. In [7], perfect maintenance of an aircraft
engine component subject to cracking is considered. The problem is formulated as a POMDP
model since cracks are partially observable and the maintenance scheduling decision is based
on other collected information. A similar problem is presented in [12] where a POMDP over
the finite horizon is formulated for a maintenance problem using the failure rate to update
the knowledge on the system state. In [13] an optimal stopping problem with partial infor-
mation is formulated for a system with obvious failure and transformed to a problem with
complete information. Ghasemi et al. [5] formulated a POMDP for a system subject to per-
fect condition-based maintenance. Their POMDP formulation is combined to a proportional
hazards model for the system degradation.

Moreover, POMDPs offer an elegant way to take into account the uncertainty about the
system state. However, their most important challenge is solution computation. Exact so-
lutions are almost impossible except for problems of small sizes. In the literature, several
approaches are combined with value iteration or policy iteration [17] algorithms to approxi-
mate POMDPs. Examples of such approaches are grid-based approximations ([10] and [22])
and point-based approximations ([15], [3], [21] and [16]). In this work, we extend the model
presented in [23] by considering a non-observable deterioration growth rate. We present an
optimization framework for a road section maintenance strategy using a POMDP formulation
and show the interest of such formulation.

In a road maintenance context, our model has the advantage to take into account an
underlying deterioration parameter that cannot be observed: the deterioration speed. This
deterioration speed information is a key decision parameter in condition-based maintenance
optimization. Indeed, the knowledge of the deterioration growth rate allows updating the
maintenance decision based on the single deterioration level. Moreover, unlike most of de-
veloped approaches for partially observed problems, our model considers multiple imperfect
maintenance actions comprised of two maintenance components.

The remainder of this paper is structured as follows. The model is formulated in Section
2. In Section 3, we discuss a numerical example. Finally a conclusion is presented in Section
4.

3 Model formulation

3.1 Problem statement

Consider a road section that is continuously and stochastically deteriorating. A road is a
complex system with several deterioration modes. However, we focus in this work on the
longitudinal fatigue cracking process because of its frequency and economical consequences.
This deterioration mode is a two phase process: a non-observable and an observable phase.
The deterioration begins at the bottom of the road layer and propagates until reaching the
surface giving way to longitudinal cracks that propagate on the surface. The current met-
ric available in the French IQRN database [1] to describe the deterioration level of the road
section is the longitudinal cracking percentage (LCP) denoted ρ and represented in Figure 1
where it is given by ρ =

∑

3

i=1
Li/200.



3.1 Problem statement 4

The LCP metric only reflects the observable deterioration level, especially for small val-

Figure 1: Construction of the longitudinal cracking percentage

ues of ρ. This indicator is not sufficient to predict the future behavior of the road cracking
growth. Additional information has to be integrated in order to estimate the underlying dete-
rioration. We introduce the deterioration growth rate (DGR), denoted θ, which is defined as
the expected instantaneous deterioration speed and can be greater than zero when no cracks
are observed, i.e., ρ = 0, to indicate cracking potential.

We consider, as in current practices, a constant maintenance decision interval equal to τ .
At the beginning of each decision epoch, the road section is inspected at a cost c0 and an
observation of ρ is yielded. We assume that this observation is perfect in that the measure
error is equal to zero. Unlike the LCP, θ can neither be observed nor measured. Only an
average value can be estimated using successive observations of ρ. The complete deterioration
is then partially observed.

After inspection, the decision-maker can opt to do nothing (DN) or perform one of several
maintenance actions that have different effects on the road system. A maintenance action
consists in resurfacing the section to conceal cracks. However, the road is constrained by a
maximum thickness hmax. Therefore, the maintenance decision for a road section of thickness
h consists in how much thickness, hn, to remove and how much thickness, hp, to add so that
the thickness constraint is respected. The future behavior of the cracking process is a complex
function of the state of the road before maintenance, the new thickness of the road and the
underlying composition of the road characterized by hn and hp.

We assume that only R thicknesses to add are available. Let Hp = {hp1
, · · · , hpR

} be
the set of available thicknesses to add. Therefore, given a current thickness h and a se-
lected thickness to add hp, the possible thicknesses to remove are given by Hn(h, hp) =
[min(0, hp + h − hmax), h]. We denote a maintenance action by a = (hp, hn). Note that the
DN action corresponds to (hp = 0, hn = 0).

Each maintenance action incurs a fixed cost cf = cn I{hn>0} + cp I{hp>0} as well as a
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variable cost cv(hn, hp) = cun hn + cup hp where IX is the binary indicator function (= 1 if
X and = 0 otherwise), cn and cp are the fixed cost of removing and adding asphalt layers,
respectively, cun and cup are the unit costs of removing and adding, respectively. Moreover,
a quality cost, denoted Cq(·) is incurred in order to prevent the decision maker from always
select the DN action and to penalize reaching high deterioration levels.

We define the state of the road section by s = (ρ, θ, h, m), where ρ and θ are the current
LCP and the DGR, respectively, h is the current section thickness and m is the last mainte-
nance type performed on the section (m is equivalent to the thickness of the last added layer).

Let Ah be the set of the feasible actions when the current section thickness is h and let
Nh denote its cardinality.

Ah = {a = (hp, hn) ; hp ∈ Hp, hn = hn(hp) ∈ Hn(h, hp)}.

We assume that an action a is instantaneously selected and performed. Moreover, if the
DN-action is selected, the system state just after decision remains in s. Otherwise, according
to the maintenance assumptions, the LCP is reset to zero and the new value of the DGR is re-
duced to a function of both its state before maintenance and the type of the last maintenance,
φ(s, a), and the new characteristic of the road defined by ha = h−hn +hp. hp determines the
future deterioration behavior. Finally, the new state of the road is sa = (0, φ(s, a), ha, hp).

In [23], the perfect information problem is formulated as an MDP where the instantaneous
DGR is approximated by the average using two successive observations of ρ. The model is
solved for the optimal policy that minimizes the discounted cost-to-go over the infinite horizon
subject to the maximum thickness constraint. However, numerical examples showed that our
policy is very sensitive to the DGR θ. In addition, we introduced the DGR as a deterioration
parameter to complete the information that the LCP gives about the deterioration level of
the section. This approximation limits the significance of θ. These are the main motivations
to consider a partially observed problem in this work.

3.2 Decision process formulation

The state transitions during next decision epoch are given by the deterioration model defined
by Zouch et al. [24]. This model is a two-phase deterioration model based on a Poisson pro-
cess modeling the first crack arrival and a gamma process for the deterioration growth rate in
the initiation phase. In the propagation phase, ρ is modeled a state-dependent gamma (SDG)
process, i.e; the increments of the process depend on both the current ρ and θ, whereas the
GDR is modeled as a bilateral gamma (BG) process. For details of the deterioration model
refer to [24].

For numerical convenience, a state space discretization is considered. Denote S = s1, · · · , sN

the state set where N = |S| and s = (ρi, θj , h,m) where i = {1, · · · , Nρ} and j = {1, · · · , Nθ}.
In practice, we can aggregate the possible levels of instantaneous speed of deterioration into
qualitative states, e.g. very slow, slow, fast, very fast.

When the last performed maintenance is of type m, the transition probability from state
s = (ρ, θ, h, m) at the beginning of the decision epoch t to s′ = (ρ′, θ′, h,m) at its end t + τ
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is given by

pm
ss′ = Pr{st+τ = s′|st = s}

= Pr{ρt+τ = ρ′|ρt, θt, h,m} Pr{θt+τ = θ′|ρ′t, ρt, h,m}

= Pr{ρ′|ρ, θ, h, m} Pr{θ′|ρ′, ρ, h, m},

where Pr{ρ′|ρ, θ, h, m} is given by the density of the SDG process and Pr{θ′|ρ′, ρ, h, m} by
the density of the BG process [24].

As the section state is partially observed, the knowledge on the section state is represented
by a probability distribution over the real states, referred to as the belief state and denoted
b = (b1, · · · , bN ), where bj , j ∈ {1, · · · , N} is the probability that the real state (deterioration
level) is sj . More specifically, if s = (ρ, θ) and the observed LCP level is different from ρ, then
bj = 0, otherwise bj is the probability that true DGR level is θ given the LCP observation
ρ. In this last case, b is equivalent to the Nθ− vector b

θ, the belief on the DGR θ. Finally,
the belief state verifies bj ≥ 0 for j ∈ {1, · · · , N} and

∑N
j=1

bj = 1. Let B be the set of all
possible beliefs, i.e., the set of probability distributions over the section states.

Based on this knowledge, the decision-maker selects an action a = (hp, hn). As the DN
action does not alter the current state, it will also not alter the belief. Any other action changes
the belief into a new belief b

a given by a deterministic function of the performed action and
the belief just before action. At the end of the decision epoch, given the last maintenance
type m the true state s of the road section evolves to a new state s′ with probability pm

ss′

defined in Equation (1) and the section is inspected to yield an observation of ρ. This LCP
observation is used to estimate an average deterioration speed θ̃ on the last section. Let o be
the state observation (ρ, θ̃). Let O be the set of observation and assume that there is a finite
number No of possible observations of (ρ, θ).

For s ∈ S and o ∈ O, let qso be the probability observing o when the real section state is
s. Let Q = [qso] be the N × No observation matrix.

Given the last maintenance type m, let Ω(o|b) be the probability of observing o at the
end of the current decision epoch when the belief is b at its beginning.

Ω(o|b) =
∑

s∈S

∑

s′∈S

bs pm
ss′ qs′o,

Ω(o|b) is the sum of all possible transitions from s to s′ that may yield the observation o
weighted by the belief distribution. Based on the observation o, the belief state is updated to
b
′ using the Bayes formula,

b
′
s′ =

∑

s∈S bs pm
ss′ qs′o

∑

s∈S

∑

s′∈S bs pm
ss′ qs′o

, ∀s′.

3.3 Cost decision criterion

The objective is to find the optimal policy that minimizes the discounted cost-to-go over the
infinite horizon.

V ∗(b, h,m) = c0 + min
{

DN(b, h,m), MX(b, h,m)
}

(1)
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where

DN(b, h,m) =
∑

o∈O

Ω(o|b)
{

Cq(b,b′) + λV ∗(b′, h,m)
}

(2)

MX(b, h,m) = min
a

{

MXa1
(b, h,m), · · · , MXa2

(b, h,m)
}

(3)

and for k ∈ 1, · · · , Nh and ak = (hp, hn),

MXak
(b, h,m) = cv(hn, hp) + DN(bk, h − hn + hp, k).

where λ is the discount factor and b
k is the belief state just after a maintenance action is

performed at a current belief b.

Equation (2) states that following the DN-action when the current belief is b incurs the
expected quality cost plus the cost-to-go to the updated belief b

′ by the end of the decision
epoch. The action ak in Equation (3) incurs a fixed and a variable maintenance costs plus
the DN-cost of a system with a new belief after maintenance.

4 Solution procedure & Numerical example

4.1 Solution procedure

POMDPs offer the possibility to take into account the non observability of some decision
variables. However, they are very hard to solve and computing the optimal policy is chal-
lenging because of the curse of dimensionality [15]. The main problem with solving exactly
POMDPs is that it is impossible to update all the belief values. Approximating a POMDP
solution consists of applying value updates in only some specific beliefs. Different approaches
to select these specific beliefs to update have been developed such as grid-based approxima-
tion ([10] and [22]) and point-based approximation ([15, 3, 21] and [16]). Once the beliefs are
selected, their value updating routine is standard [15]. In this work, we use the value iteration
algorithm with the regular grid-based approximation proposed by Lovejoy (1991) [10].

4.2 Numerical example

In this section we discuss our model using a numerical example. For the transition proba-
bilities, we consider the same example deterioration model as proposed in [23] and [24]. We
assume that, given the real DGR, the observed one θ̃ is normally distributed with mean equal
to θ and a a given variance σ2.

Pr{θ̃ | θ} = N(θ, σ2).

The maintenance effect function on the DGR θ is given for s = (ρ, θ, h, m) by

φ(s, a) = ra(θ +
ρ

τ
+

1

h
)
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where ra is a reduction factor depending on the performed action. Cost parameters are given
by the following values (in Euros)

cn = 200 ; cp = 600 , cun = 30 ; cup = 70.

The quality cost function is given by

Cq(τ ;b) = τ(800 b +
1000

h
)

The discount factor is λ = 0.95. We also consider an action set presented by the following
Table (hp and hn are given in centimeters)

Table 1: Definition of the action set by the associated removed and added layers thicknesses

a 1 2 3 4 5 6 7 8 9 10

hp 0 5 5 5 5 10 10 10 10 15

hn 0 0 2.67 5.33 8 3 4.67 6.33 8 8

Finally, we obtain the policy presented in Figure 2. The optimal policy is given here
for a (6x5) state set and evaluated with the Value Iteration algorithm based on a grid based
approximation with a grid resolution parameter M = 3 . The decision matrix gives the optimal
maintenance action for each observed ρ and each belief on θ when the current thickness of
the road section is h = 8 and the last added layer is hp = 5.

For example (frames in red full lines in Figure 2), for an observed ρ = 0.4 and a belief on
θ, b

θ = (0, 0, 1, 0, 0), the optimal maintenance action is (hp = 10, hn = 8), i.e., it is optimal
to remove all the road and rebuild a thicker one. When b

θ = (0.67, 0, 0.33, 0, 0), the optimal
action is to remove nothing and add a layer of thickness 5.

Note that, due to the deterioration growth rate parameter, the provided policy is a pre-
ventive maintenance policy: even when the road is free of cracks, it is optimal to maintain
it for high values of θ. The GDR is then a risk measure. The presence of action 10 in the
optimal policy ensures that the road will be totally renewed at least once.

The five first rows of the decision matrix corresponds to the perfect information case, i.e,
when θ is observable. Note that considering a probability distribution over θ may make some
savings. For example (frames in green dashed lines in Figure 2), the optimal action when
ρ = 0.2 and θ = 0.6 with probability 1 is action 6. Whereas, for the same level of cracking but
with θ equal to 0.6 with probability 0.67 and equal to 0.4 with probability 0.33, the action 2
is recommended.

This confirms the importance of the growth rate as a deterioration parameter and the
sensitivity of our model to it. From numerical examples, we can notice that obtained policies
present a structural properties with respect to the stochastic ordering of each belief parameter
as well as the belief, i.e., the action type increases as the LCP and the belief on θ increase, as
well as when the belief state increases. Moreover, the structure of optimal policies depends
especially on the maintenance effect function. This function reflects the preference between a
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Figure 2: Optimal policy for a (6x5) problem where hmax = 15, h = 8 and hp = 5.
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newer and a thicker road.
A direct comparison with the current French practices in road maintenance is not pro-

vided here. The current road maintenance strategies are defined in a complex process based
on the evaluation of various scenarios taking into account many external parameters. It may
be noticed that the decision is based, among other things, on the observation of the deterio-
ration level, i.e. ρ. This policy would be equivalent to a policy that only one action would be
identified in each column of the decision matrix. The proposed optimized policy differentiates
maintenance actions according to b

θ highlighting the non-optimality of the current practices.

5 Conclusions

We propose a condition-based maintenance optimization approach for road section to mini-
mize the total maintenance cost over the infinite horizon with perfect and different imperfect
maintenance actions are available. Our approach is based on a two-phase deterioration process
with two deterioration parameters: the longitudinal cracking percentage and the deterioration
growth rate. Our deterioration model has the advantage to be state-dependent. Moreover,
the introduction of the speed of deterioration as a decision parameter allows the model to
take into account the evolution of the underlying deterioration and so to the prediction of the
deterioration evolution to be more precise.

However, the deterioration speed cannot be observable. We model the problem as a
partially observed Markov decision process and solve it using a grid-based value iteration
algorithm. This algorithm is highly time-consuming when the size of the state space is big
because it generates a large belief grid. In our case, the size of the grid is reduced because
only one of two decision parameters is not observable.

In practice, excepted the difficulties to estimate the parameters of the two-phase deteriora-
tion model, our approach can easily be used to provide optimal policies where the maintenance
decision is not based on the pre-definition of deterioration level thresholds, which is not pos-
sible in the initiation phase. We propose optimal preventive policies that allow to maintain
the road when it is free of cracks.
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