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Abstract

Despite widely used for the solution of one-dimensional subcritical flows governed by 

Saint-Venant's equations, the Preissmann's scheme cannot solve transcritical flows. This 

inability is due only to the solution methods created for non-transcritical flows. 

Transcritical transitions present specific properties which have to be adequately represented 

in the numerical method. A modified version of Preissmann’s method is presented herein 

which changes the formulation only in transcritical zones, while keeping its conservative 

property and shock capturing form otherwise. A solution method is proposed for the 

implicit system, through storing the transcritical positions. This enables to solve the system 

with simple and double sweep methods. The transcritical transition problem is solved 

locally, either by associating the cells involved in a bore and adding an equation to 

characterize the information transferred in the subcritical domain, or by the addition of an 

internal boundary condition to characterize the expansion fan at the critical point. 

RÉSUMÉ 

Bien qu'il soit fréquemment utilisé pour la résolution des écoulements 1D fluviaux régis par 

les équations de Saint-Venant, le schéma de Preissmann ne peut pas traiter les écoulements 

transcritiques. Cette incapacité est uniquement due aux méthodes de résolution 

généralement utilisées, car elles ont été mises au point pour les écoulements non 

transcritiques. Ces transitions présentent des caractéristiques particulières qui doivent être 

correctement gérées par la méthode numérique employée. Une version modifiée du schéma 
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de Preissmann est présentée, adaptant la formulation dans ces zones, tout en gardant par 

ailleurs ses propriétés conservatives et de capture des chocs. Une méthode de résolution est 

proposée pour le système implicite, à travers le stockage des positions transcritiques. Cela 

permet de résoudre le système avec des techniques simples et la méthode du double 

balayage. Le problème de la transition transcritique est résolu localement, soit par 

l'association des cellules impliquées dans un ressaut en y ajoutant une équation pour 

caractériser les informations transmises dans le domaine fluvial, soit par l'ajout d'une 

condition à la limite interne pour caractériser le point critique. 

Keywords: Fluvial hydraulics, hydraulic jump, numerical model, numerical scheme, open 

channel flow, transcritical flow, transient flow

1 Introduction 

An essential practical aim in river hydraulics is to model hydraulic networks, whether for 

irrigation enhancement, flood planning or management of urban-drainage. This implies 

simulations of lengthy events and inclusion of hydraulic structures (Baume et al. 2005). 

Even if the flow is generally subcritical, supercritical regions may appear. The different 

regimes as well as the transitions between these – bores and critical points – must be 

numerically represented. Nonetheless, there is no need for a precise localisation of a sharp 

front. In other words, the expense of sophisticate techniques created for the solution of 

dam-break problems would be neither justified nor appropriate for our above applications. 

For subcritical flows, Preissmann’s scheme (Cunge et al. 1980) is one of the most 

widely used in industrial models. This implicit finite-difference method is unconditionally 

stable and extremely robust. Moreover, each discrete equation implying only two discrete 

spatial positions makes easy the inclusion of hydraulic structures that can be represented 

between two sections, without perturbing the modelling of neighbouring fluid zones. 

Unfortunately, while also well suited for fully supercritical flow, it can be demonstrated 

that in its original usage, the scheme is invalid for transcritical flows, i.e. for flows in which 

the two regimes coexist (Meselhe and Holly 1997). 

A classical procedure allows the treatment of transcritical flows with a numerical 

method created for subcritical flows (Kutija 1994). The solution is to apply the method to a 
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degenerated system of equations, reducing the influence of the convective momentum term 

as the flow becomes supercritical. But this trick does not conserve volumes. 

Noticeably, circumventing Meselhe and Holly’s invalidity conditions, Johnson et al.

(2002) have proposed a method for transcritical flow based on Preissmann’s scheme 

involving the complete Saint-Venant equations. Using the idea of splitting methods (Roe 

1981), Preissmann’s equations from two adjacent cells are combined. The matrix of the 

resulting scheme loses the bi-diagonal structure associated with Preissmann’s scheme. This 

structure is highly desirable as it permits solving algebraically the implicit system. 

This research focuses on the direct adaptation of Preissmann’s scheme for transcritical 

flows. First, the observations of Meselhe and Holly (1997) concerning the invalidity of 

direct use of Preissmann’s method for the solution of transcritical flows using the full Saint-

Venant’s equations are discussed. Then the interesting features proposed by Johnson et al.

(2002) to describe transcritical transitions with a through method (i.e. a method whereby all 

possible wave configurations are handled within one single mathematical formula, without 

the need of specific or ad hoc treatments) compatible with Preissmann’s scheme are 

highlighted. The resulting method uses Preissmann's scheme in non-transcritical domains, 

which are linked by internal boundary conditions characterizing the physics of transcritical 

transitions. Furthermore, an automatic procedure based on discrete Froude numbers is used 

to solve the transcritical implicit system. It corresponds to an adaptation of the simple- and 

double-sweep methods which only require localising the transcritical transitions, thus 

keeping one of the major advantages of Preissmann’s scheme. The method is presented on 

a transient problem involving appearance and disappearance of a supercritical region 

between a critical point and a bore. Finally, conclusions on this research are drawn.

2 Generalities on numerical methods for free surface hydraulics 

2.1 Saint-Venant’s equations 

Governing equations in conservation form 

To model one dimensional (1D) open channel flows (Cunge et al. 1980), the depth-

integrated equations for conservation of mass and momentum can be written for the 

variables wetted cross-sectional area A and discharge Q as 
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where g = gravitational acceleration, So = bottom slope, (gI1) = integral of hydrostatic 

pressure over the cross-section, i.e. I1=A2/(2B) for a rectangular channel of width B, friction 

slope Sf =Q|Q| /De2, where De =KARh
2/3 with K = Strickler coefficient and Rh = hydraulic 

radius. Equation (1) corresponds to the conservative form of the equations that is desirable 

when dealing with transcritical flows. The vector-form for a conserved variable u=(A  Q)T

of flux f with source terms s is 

)()( usufu xt (2)

Jacobean matrix and characteristic form of Saint-Venant’s equations 

Written in conservative form, the system of Saint-Venant's equations is of hyperbolic 

nature. This means that it can be diagonalised. Using the Jacobean matrix of the system 

1
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where a(i) (i=1,2) = Eigenvalues of J, V = matrix of Eigenvectors, v=Q/A = mean flow 

velocity and c = celerity of pressure waves with c2 =g dI1/dA =gA/B. Defining

uVw dd 1 (5)

and s  = V-1s , Eq. (2) has the characteristic form 

s'wDw xt (6)

Each equation of system (6) can be re-written using total derivatives in the (x,t) plane as 
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introducing the so-called characteristic curves along which perturbations propagate. 

The nature of the flow regime is associated with these waves propagating in the domain, 

and similarly with the value of the Froude number F=v/c representing the relative 

importance of inertial and pressure governing forces. In a subcritical flow (F<1), pressure 

forces dominate and the wave velocities (a(1) and a(2)) are of opposite signs, while a 

supercritical flow is velocity driven and waves can only travel in the downstream direction. 

If there is a transcritical transition, the sign of the celerity of the slowest wave changes 

(for a positive discharge). A convergence of the associated characteristic lines would imply 

an over-determination (couples of characteristics issued from different zones giving 

different values at one point). The solution is then divided into two domains separated by a 

discontinuity. The Rankine-Hugoniot shock relations (Godlewski and Ravaiart 1991) 

connect the values on both sides of the discontinuity, defining the shock speed. On the 
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contrary, if shifting from a subcritical to a supercritical flow, the transition is continuous; 

the direction of propagation of the characteristic associated with the critical point changes 

continuously from negative to positive, the fan of characteristics is centred on the critical 

point. There, v=c and the characteristic is steady, namely 

0
d
dalong'

d
d )1(

)1(

t
xs

t
w (8)

and for the critical point 

cQAw 2ddd )1( (9)

2.2 Classical Preissmann's method for Saint-Venant’s equations 

Discrete system for Saint-Venant’s equations 

Consider a temporal evolution between discrete times (tn=ndt) over a spatial domain 

represented by N+1 discrete locations (nodes) x0<x1< …<xN. Preissmann's method applies 

over a cell [xj;xj+1]x[tn;tn+1]. This finite difference scheme can be interpreted as an 

approximation of the integral form of the conservation law (2) over the cell 
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where the spatial and temporal integrals are given by a linear interpolation using the 

vertexes of the spatio-temporal domain, with a weighting coefficient  for values at tn+1 and 

=1/2 for values at xj+1. This relation with the integral form says that the method is 

conservative, which is essential to obtain the correct shock speeds. Rankine-Hugoniot 

relations are obtained as a limit of the integral conservation law. 

The equations given in Eq. (1) discretized with Preissmann's method are formally 

written as 
02/1jR (11)

where R=(RA RQ)T is called “cell residual”. These vector relations correspond to the 

discretized form of the conservation equations for mass (“A”) and momentum (“Q”)
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where u=un+1 un for the scheme at the known time step n, = t/ x, the flux and source 

terms of the momentum equation are f = Q2/A+gI1 and s = gA(So Sf).

Stability and accuracy 

While the scheme is only based on two spatial positions, it is second-order accurate in both 

time and space if  = 1/2, but is then marginally stable. Practically > 1/2 is thus used, 

leading to an accuracy of first order in time and second order in space. A von Neumann 

stability analysis also indicates that the linearized Preissmann’s scheme, for the Saint-

Venant’s equations in the frictionless horizontal bed case, is marginally stable if F = 1 

(Meselhe and Holly 1997). This particular configuration occurs only locally for transcritical 

flows.

Boundary conditions 

The set of cell residual’s equations (Rj+1/2 = 0, j=0,…, N 1 ) has to be completed with 

exactly two Boundary Conditions (BC) to close the system. If the flow is supercritical both 

are imposed upstream, whereas for subcritical flow one is imposed upstream and one 

downstream. This corresponds to giving exactly the BC physically required, namely one at 

each end where a characteristic line is entering the domain. Other choices for the location 

of the given BC would not respect the physics of the travelling waves and then the 

numerical method would not be stable (MacDonald 1996). 

Note that the scheme uses an indiscriminate space-difference approximation in 

subcritical and supercritical flow regions, so nothing changes in the scheme whether 

information is coming from upstream or downstream. But each unknown is implied in two 

systems of equations i.e. in two boxes. Hence it is appropriate both for fully subcritical and 

fully supercritical flows. Giving the adapted BCs corresponds to forcing the directions of 

propagation of the information in the numerical model. 

Solution algorithm 

Owing to the two-spatial-point formulation of Preissmann’s discretisation, the matrix of the 

implicit system for Saint-Venant’s equations has a double-bidiagonal structure allowing for 

a simple solution algorithmic procedure, depending on the imposed boundary conditions. 

Figure 1 shows a schematic representation, from where it can be seen that each node, for 

the new time step, needs two equations or two “arrows” to be solved. 
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In the supercritical case, a simple sweep is sufficient. The two boundary conditions give 

the solution at the upstream boundary. One discrete position after the other, Preissmann’s 

scheme gives the solution down to the downstream boundary node. 

In the subcritical case, a double-sweep is necessary. The upstream boundary condition 

permits simplifying Preissmann’s scheme for the first cell. One equation is still linking the 

two nodes (three discrete values) and the other giving a relation for the values of the second 

node. This last step is used as the subcritical upstream boundary condition for the second 

cell. An upper-diagonal matrix is obtained at the end of this first sweep. The downstream 

boundary condition then allows obtaining the solution of the complete system at the last 

downstream cell. A second sweep calculates all other discrete unknown values, one after 

the other, from downstream to upstream using, for each cell, the equation linking the nodes. 

Each method reflects the properties of the corresponding flows: either only upstream 

information is responsible for the evolution, or both upstream and downstream information 

have an effect. 

The in-cell arrows represent the direction of propagation of information associated with 

the characteristics as well as the two-cell residual’s equations for the Saint-Venant system 

and the “way of using them” once boundary conditions are given down- and/or upstream.
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Figure 1 Schematic representation of simple- and double-sweep solution, propagation of 

information in (a) supercritical state, (b) subcritical state, (c) on how necessary information 

is given by equations 

2.3 Classical methods for transcritical flows 

Even if many methods and algorithms are available for computing numerical solutions of 

the shallow water equations, including transcritical flows, few have been applied to real life 

problems (Alcrudo 2002). No exhaustive list of all the numerical methods solving 

transcritical flows is presented below, yet the terms of references are described, namely 

ability to include hydraulic structures, to model networks, to use relatively large time steps, 

conservativity and robustness. 

A practical method to allow for the modelling of transcritical flows uses a model built 

for subcritical flows but to work with an approximate system for the physical equations 

(Kutija 1994). The standard (implicit) method is used but gradually reducing the inertia 

term in the momentum equation as F  1. Then, the characteristic lines of the associated 

reduced system keep opposite directions. This allows keeping the algorithmic structure of 

the initial model, imposing boundary conditions inherent to subcritical flow. This 

advantageous method is used in several commercial packages combined, for example, with 

Preissmann’s or Abbott-Ionescu’s scheme. Unfortunately, while maintaining robust 

solution procedures, these approximations may imply accuracy problems and numerical 

oscillations. A detailed study of these drawbacks in conjunction with the application to 

hydraulic networks was conducted by Djordjevic et al. (2004). 

To solve the complete hyperbolic system for discontinuous solutions, the first idea was 

to use shock fitting methods, which explicitly calculates the evolution of each discontinuity 

following its position. This is known to be a difficult problem if real cases are considered 

(Liu et al. 2004). Shock capturing methods have then been advanced. They treat each flux 
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as if it was associated with a discontinuity. Either this involves an (approximate) solution of 

a Riemann problem as in Godunov-type methods (Guinot 2003, van Leer 1994, León et al. 

2009), or this calculus is avoided by taking advantage of the finite domain of influence of 

the discontinuity as in centred methods (Jiang and Tadmor 1998, Toro and Billett 2000). 

These are appropriate for the precise computation of extreme flows in dam break problems 

(Paquier 1996, Zoppou and Roberts 2003, Burguete and Garcia-Navarro 2004). One of 

their drawbacks is that they require small time steps and are highly time-consuming. Toro 

and Garcia-Navarro (2007) reviewed Godunov-type methods for free-surface flows that are 

now routinely used by the engineering community to compute dam break problems. 

Most classical shock capturing methods are explicit. Some implicit methods have also 

been proposed. But, according to the Total Variation Diminishing (TVD) criterion (Harten 

1983) to avoid numerical oscillations, even if they are implicit, they are constrained by a 

limited time step (except, formally, for a fully implicit method). Furthermore, the implicit 

systems need to be linearized eventually leading to accuracy problems if large time steps 

are used (Burguete and Garcia-Navarro 2004). To our knowledge, these methods have not 

yet been used in practice. 

The attractive features of these methods are mostly related to the ability to minimise 

diffusion in presence of strong gradients. Amongst shortcomings are the computation 

burden and the difficulty to model inline structures and complex looped network (Mignot et

al. 2008). None of these methods is really adapted to our requirements.  

For an irrigation canal, the simulation can typically last from one week to several 

months. The main objective is not to model accurately sharp bores, but rather to model 

correctly the low and medium frequencies dynamics, and the water distribution along the 

canals using the lowest computational cost. The scheme must also preserve water 

conservation. The Preissmann scheme meets the present requirements in non-transcritical 

cases, leading to an adaptation for all flow conditions. 

2.4 Meselhe and Holly’s restrictions on Preissmann’s scheme

Meselhe and Holly (1997) have demonstrated that Preissmann’s method cannot be used 

directly to solve the complete Saint-Venant’s equations for transcritical flows. The three 

main points of their instability arguments are discussed hereafter. 

Problems related to usage for transcritical flows
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The first problem if applying Preissmann's scheme for transcritical flow directly comes 

from its formulation that imposes exactly two BC for the system. If the flow presents one 

transition from super- to subcritical (shock/bore) the physics requires two BC upstream and 

one BC downstream, which numerically leads to one excess equation. If the transition is 

from subcritical to supercritical (critical point) only one upstream BC is required, which 

leads to one missing equation. Thus, if one transcritical transition does exist, then imposing 

exactly the external physical BCs results in an ill-posed numerical system. 

Another problem is related to the fact that Preissmann's scheme applied to Saint-

Venant's equations is marginally stable if F = 1. Hence, this method cannot solve the case 

of an even number of transcritical transitions. Even for an apparently well-posed discrete 

system, the method is likely to diverge. 

Flexibility according to boundary conditions 

Saying that Preissmann’s scheme is not sufficiently flexible to admit any kind of BC, 

Meselhe and Holly (1997) compared it with Euler’s implicit scheme. They argued that the 

discrete system is closed for the interior nodes and is flexible according to BC as it will 

accept imposing any number from one to four BC. But this supposes that ‘the remaining 

four unknowns at the boundary nodes can be evaluated by either imposition or 

extrapolation of BC’. Thus the advantage of flexibility is converted into the problem of 

defining these extrapolations. 

The treatment of boundary conditions is a key point in the design of numerical methods 

– either external BC or internal BC around hydraulic structures. For a conservative scheme, 

agreement with physics depends on what enters and leaves the domain, depending on the 

BCs. Moreover, the error growth factor in the domain also depends on the way BCs are 

treated. The best ones to be imposed do correspond to the physical conditions. 

Marginal stability 

Concerning the problem of marginal stability, it must be noted that almost all schemes 

dealing with transcritical flow add an amount of diffusion in transcritical zones (adding an 

explicit diffusion term or through limitations of the variations). This necessity can be linked 

to the invalidity of the initial Saint-Venant approximation in these domains, as they are 

deduced under the assumptions of hydrostatic pressure and uniform distribution of the 

velocity along the vertical axis. Accounting for turbulence or non-hydrostatic pressure 

distribution in models is computationally expensive. Adding numerical diffusion permits to 
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damp the infinite gradients that appear within the classical hypothesis framework. Neither 

procedure is exact for real cases or susceptible to correct numerical treatment. 

3 Johnson’s adaptation of Preissmann’s scheme 

3.1 Bases of Johnson’s scheme 

Johnson et al. (2002) proposed a method based on Preissmann’s scheme, adapted to the 

treatment of transcritical flows and using physical boundary conditions. It combines, for 

each section, the two formulations obtained with Preissmann's scheme for the right and left 

neighbouring cells. The combination is obtained through a local decomposition (residual 

distribution concept) along the wave propagation directions (splitting with characteristic 

decomposition), in the idea of “flux vector splitting” methods (Roe 1981). 

3.2 Residual distribution concept

The method of residual distribution was proposed by Morton et al. (1994) to introduce 

some up-winding using cell-vertex methods. The problem is approached considering the 

lack of agreement between the number of discrete unknowns and equations. The idea is to 

combine, for each section, the cell residuals of the right and left neighbouring cells (Fig. 

2 a), thus obtaining one “nodal residual” associated with each section 

jjj/j-jj BR RR 2/12/1212/1 (13)

where ±
. = transfer matrices and the vector B accounts for external and internal boundary 

conditions. For +
-1/2=0 and 

-
N+1/2=0, the complete system is given by 

NjR j ...0:0 (14)

To preserve the conservative property, transfer matrices must satisfy 

2121 /j/j (15)

where  identity matrix. 

3.3 Splitting with characteristic decomposition 

To obtain the distribution according to wave propagating in each cell, a local Jacobian 

matrix Jj+1/2 is used as 

0
2

0
2

0
0 ~2~~

10
vvcJ (16)

where the particular mean-values v~  and c~  are given by Roe's (1981) approximation 
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This choice ensures that bores propagate with the correct velocity. Hence, the transfer 

matrices used by Johnson to define the nodal residuals (13) correspond to the application of 

up-winding on the characteristic variables defined in the Eigenspace of the system of Eqs. 

(3) to (5) as 
1

2/12/12/12/1 jjjj VV (18)

where Vj+1/2 = matrix of Eigenvectors for Jj+1/2 and the matrices ±
2/1j determine the 

up-winding according to the sign of the Eigenvalues 

)cv(
)c-v(

00

00
0 ~~10

0~~1
2
1

sign
sign (19)

Notably, for a fully supercritical flow (positive speed) 

000 and (20)

Hence, if cells do not have the same regime (Fig. 2 b), the nodal residual is

j subcritical, j+1 supercritical:    jj/j-jj BR RR 2/1212/1 0

j supercritical, j+1 subcritical:    jjj/j-j BR RR 2/12/1211
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Figure 2 Nodal residual of (a) general from, Johnson's nodal residual for (b1) supercritical-

subcritical transition, (b2) subcritical-supercritical transition

3.4 Resulting scheme 

The use of nodal residuals solves the over-determination at shocks. Nonetheless, this does 

not ensure that the new problem is well-posed since the equations still have to be 

independent. In particular, if cell j 1/2 is subcritical and j+1/2 supercritical, the transfer 

matrices defining Rj satisfy 

2)(rank 2/12/1 jj (21)

which means that the resulting system is ill-posed. To provide an extra linearly independent 

equation, Johnson then adds an internal boundary condition 

jjjj uB )( 2/12/1 (22)

characterizing a critical point located exactly at xj.

The non-linear implicit system is solved by an iterative method. The approximate 

Jacobian matrix must be given at the new time step, which means calculating it at each 

iteration. This is necessary to allow the critical interface to cross more than one 

computational cell within one time step. 

3.5 Limitation

The general drawback of Johnson’s method is that it requires, for each cell, calculating 

mean-value propagation velocities using Eq. (17) and testing the dimension of transfer 

matrices as given in Eq. (21). This is necessary to obtain an automatic procedure, adapted 

to any regime. But then, the method leading to Eq. (13) uses three points, even in the 

subcritical regions where the initial Preissmann’s scheme would be appropriate. The 

following focuses the necessity of this three points approach. 
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4 Preissmann’s scheme with internal boundary conditions 

4.1 Direction of solution and internal boundary conditions 

To achieve stability, a solution along directions of propagation must be respected. With 

Preissmann’s scheme, this means that the direction of solution has to change if the regime 

changes. Hence an equivalent/internal boundary condition has to be prescribed at 

transcritical transitions to permit a change in the solution direction. These relations should 

describe the particular physical properties associated with transcritical transitions. 

Actually, the ill-posedness of the classical implementation of Preissmann’s method for 

both possible transitions can be related to the physical properties of the transitions. In both 

cases the problem is completely similar to solving the Saint-Venant system with the method 

of characteristics: 

- For a bore, while convergence of characteristics leads to an over-determination; 

Rankine-Hugoniot jump conditions prove that influences from each side must be taken 

into account to determine the flow evolution (to obtain right and left states and shock 

speed). The “over-determination” obtained with Preissmann’s classical system 

corresponds to this fact saying this complete piece of information actually does have to 

be used to describe the flow at this point. 

- At a critical point, the steady characteristic has a proper definition. The “missing 

equation” observed with Preissmann’s classical system corresponds to this fact asking 

for supplementary information in the description of this specific point. 

The idea is thus to translate the physical properties of transcritical transitions to link the 

different regime sub-domains, within which Preissmann’s scheme is adapted. Johnson’s 

method shows that it is possible to treat the transcritical transitions with a through method. 

The mathematical description of Johnson’s combination shows the two systems are exactly 

equivalent for entirely subcritical or supercritical domains. 

4.2 Treatment of transcritical flows 

Preissmann’s scheme is used in each fully subcritical or fully supercritical domain. This 

means determining the regime at each point (what is generally implicitly done in classical 

methods for transcritical flows). The flow regime is tested via the local Froude number F = 

|v|/c at each point. The characterisation of “fully” subcritical or supercritical means, for the 

solution at n+1 in cell {j,j+1}, that values at both points j and j+1 must have the same 
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regime, at time steps n+1 (with Newton solution, the last approximation is used, hence for 

the first solution, the regime at time step n is used). 

Formally, the system of Preissmann’s equations over a non-transcritical sub-domain can 

be reduced to a set of equations at the boundaries (in the idea of simple- and double-sweep 

methods). The attention is thus restricted to cells where the regime changes. The numerical 

problem is approached as reduced to giving boundary conditions for each subcritical or 

supercritical region, consistent with Preissmann’s scheme (Fig. 3). 

Figure 3 Reduction of solution to neighbour of transcritical transitions for (a) supercritical-

subcritical transition, (b) subcritical-supercritical transition 

Critical point 

The rarefaction fan issued from the critical point shows that, from this point, information is 

transferred right and left. Hence, the equation defining the critical point is able to furnish 

the internal boundary condition giving, at the same time, the BC “closing” the upstream 

subcritical flow and the second BC necessary to define the evolution of the supercritical 

flow downstream. 
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Figure 4 Critical point in transcritical cell

The existence of the critical point does not compromise the conservation property over 

the cell. Preissmann’s system is then retained, but the equation defining the critical point 

(8) is added to characterize the particular evolution due to the critical point. 

If Fj < 1 Fj+1 a critical point exists in this cell, at point xc=xj + dx (0< 1 to be 

defined), such that vc=cc. The system can be simply written then 

0
021

 = B
 = R

AQ

/j (23)

where BAQ = 0 is the discrete equation for the steady characteristic written in terms of the 

conserved variables A and Q, that must be defined at point xc.

As the solution is continuous across the critical point, the position can be interpolated 

linearly between the two neighbouring mesh points. This is consistent with Preissmann’s 

discretisation over the cell (with the space weighting =1/2). The point is characterised by 

a(1)=0, resulting in 

)1()1(
1

)1(

jj

j

aa
a

(24)

Using Eq. (9) gives 

jjjjjjAQ cQAcQAB 212 111 (25)

where the values characterising the wave are given at the approximate new state. 

If this modification is considered in splitting methods, the supplementary equation 

corresponds to the correction required as the simple Roe-type splitting is applied. This does 

not always satisfy the entropy condition without introducing appropriate modifications. 

This is generally achieved either by using another approximate solver (Delis 2003, Ying 

and Wang 2008) or by adding artificial viscosity (Burguete and Garcia-Navarro 2004). 

As compared to classical corrections including Johnson’s method, where a 

supplementary term is added to an equation of the initial system, the above formulation 

expresses the “physical need” for diffusion terms in classical schemes based on Saint-
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Venant’s equations. It is similar to the supplementary “compatibility condition” proposed 

by Djordjevic et al. (2004). 

Shock

If a supercritical-subcritical transition is encountered, the direction of shock propagation 

must be tested to define which sections are influenced by the shock. Roe’s definition is 

appropriate there, since the Eigenvalue of his approximate Jacobian is the shock speed if 

the values on both sides are linked by a jump. 

If Fj  1 > Fj+1, determine )1(
2/1

~
ja

- if 0~ )1(
2/1ja , the shock is travelling downstream (Fig. 5a), the solution at point j can 

be given by Preissmann’s scheme in cell j 1/2, while the solution at point j+1

accounts for influences from both upstream and downstream, 

- if 0~ )1(
2/1ja , the shock is travelling upstream (Fig. 5b), the solution at point j must 

account for influences from both upstream and downstream.

Figure 5 Methods for shock travelling (a) downstream, (b) upstream. The sign of Roe’s first 
Eigenvalue gives direction of shock propagation 

To account for upstream and downstream influences at point k (=j, or j+1) if the solution 

at point k 1 is known, the solution there must remain indeterminate as long as the 

subcritical region is not solved. At the same time, information must be transmitted 

downstream to the subcritical region. It is also essential that conservation be respected. To 
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combine these requirements, and following the idea of Johnson’s method, Preissmann’s 

solutions for the two cells k 1/2 and k+1/2 are added and the equation for the downstream 

travelling characteristic issued from cell k+1/2 gives an additional equation in the same 

unknowns (linked through the definition of dw(2)) as 

0

0

2/1
)2()2()2()2(

2/121

kxt

k/k

swaw

RR
(26)

The conservation property inherent to Preissmann’s method is globally preserved and not 

compromised by the addition of the second equation giving additional information to be 

transmitted to the subcritical domain. Furthermore, this summation cancels the flux at the 

intermediary boundary, which is that of the near-critical node, potentially responsible for 

instability. 

According to the definition of dw(2), the supplementary equation can be written with the 

physical increments dA and dQ. Using the matrix of Eigenvectors, a combination of the 

equations of conservation of mass and momentum is found as 

02/1
)1(

k
QA RRa (27)

which gives the third equation for the two cells implicated in the shock. 

4.3 Resulting scheme 

Preissmann’s scheme is directly used in each fully subcritical or fully supercritical domain 

and specific equations are added at transcritical transitions. The external boundary 

conditions are then physical. 

The procedure begins with computing the Froude number for each node. The system of 

equations is then developed by determining the equations one cell after the other, according 

to the regimes of the nodes, tested at n+1 as: 

1) Impose the boundary conditions corresponding to the inflow regime. 

2) For j = 0…N 1

- If (Fj 1)(Fj+1 1)>0, use Preissmann scheme for cell j+1/2

- If Fj 1 > Fj+1, compute )1(
2/1

~
ja

if 0~ )1(
2/1ja , then use Eq. (28) with k=j+1

- verify Fj+2 < 1, otherwise add Eq. (29) for l=j+1 (in cell j+3/2) 

- j:=j+1

if 0~ )1(
2/1ja , previous cell (j 1/2) is not solved with Preissmann’s scheme 
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- use Eq. (28) with k=j 
02/12/1 kk RR

02/1
)1(

k
QA RRa

(28)

- If Fj < 1 Fj+1

compute  from Eq. (24), add Eq. (29) for l=j

llllllAQ cQAcQAB 212 111 (29)

use Preissmann system for cell j+1/2 

3) Impose the boundary conditions corresponding to the outflow regime. 

Test on external boundary conditions 

In the described procedure, it is supposed that the numerical regime corresponds to the one 

imposed by the user-prescribed boundary conditions. Tests must be added at the boundaries 

to verify this consistency. The user has to specify if the proposed boundary conditions are 

to prevail or not. 

4.4 Solution of the system 

This non-linear system is solved by Newton's iterative method; transcritical positions and 

their characteristics are computed for each iteration. The solution of the linearized system, 

for (half-) implicit schemes, requires inverting a matrix. One of the advantages of 

Preissmann's scheme is that simple algorithmic solutions can be used. Using the present 

transcritical system, these methods can be adopted by just localising the transcritical 

transitions.

Bore: Combination of sections j 1, j, j+1

The sweep in the supercritical regime gives the solution from the inflow to cell j 1.

The system (28) can then be simplified giving the equivalent of an inflow BC at j and a 

system of two equations for the cell j+1/2. The subcritical region is then classically solved 

with a double sweep method. 

Critical point: Addition of one equation for sections j, j+1

The first sweep in the subcritical domain, from the inflow boundary condition to cell j 1/2,

leads to one equation in (Qj , Aj). This statement simplifies the equations of cell j+1/2, 

giving three equations with three unknowns. It correspond to obtaining the solution at j+1, 

being able to perform the second subcritical sweep, and giving the required upstream 
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boundary conditions for the supercritical zone which can be solved by a classical simple 

sweep-method. 

5 Numerical results 

The method is applied on a transient problem involving appearance and disappearance of a 

supercritical region between a critical point and a bore. Starting from a steady subcritical 

state, in a canal of mild slope (0.01%) followed by a steeper (1%) slope, the outflow 

boundary condition is varied as dh/dt=5 mm/s. First, the depth is reduced toward a steady 

transcritical state, and then raised back to the original depth. The inflow discharge is 

constant at 50 m3/s. The channel is rectangular of width 5 m and has a Strickler roughness 

coefficient of K=50 m1/3/s. The solution involves space and time steps of dt=10 s and 

dx=10 m, and Preissmann scheme is used with =0.55.

For this problem, along with a classical implementation using Preissmann’s scheme, 

divergence appears as soon as the transcritical zone appears (Djordjevic et al. 2004). The 

result of the proposed method is generally the same as with Johnson’s method, except for 

the upstream moving bore, where a divergence can appear with Johnson’s method. 

Results are presented for different specific states of the solution. The transcritical zone 

appears at t=480 s in Fig. 6a. The entire subcritical domain is then separated at the location 

of the change of bed slope by a critical point immediately followed by a shock. As the 

downstream water level is continuously reduced, a shock moves downstream (Fig. 6b). 

Then, the boundary conditions are kept constant and a steady transcritical state is 

established (Fig. 6c). As the downstream flow depth is raised back to its initial value, the 

shock moves upstream. Figure 6d shows the stronger variation appearing at the shock 

location. As the shock attains the critical point, the supercritical zone disappears and the 

initial state is found back. 

Some details are given in Fig. 7 to show both transcritical transitions at the intermediate 

steady state and the evolution of the solution when the transcritical domain appears and 

disappears.

At the intermediate steady state the flow characteristics may be described with an inflow 

velocity v=2.5 ms-1, c 6.26 ms-1; in the steep slope region, the normal depth is h 1.90 m, 

corresponding to v 5.25 ms-1, c 4.32 ms-1. The Courant number is thus around 9. 

The solution is also shown for a high Courant number in Fig. 6c. The same problem is 

treated but taking dt=5dx=50.
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Figure 6 Solution evolution with (a) Appearance of the transcritical zone, (b) Downstream moving shock, (c) 

Intermediate steady state with dt=dx and dt=5dx, (d) Upstream moving shock 
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Figure 7 Details of solution (a) around critical point, (b) around stationary shock, (c) evolution of appearance of 
transcritical zone (solution shown for each two time steps), (d) evolution of disappearance of transcritical zone 
(solution shown for each two time steps) 

A small local disturbance in discharge is observed at the location of the steady bore 

(Fig. 8). This remains a problem essentially in the steady case. In the transient case, the 

disturbance is embedded in the strong modifications of the flow around this point. 
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Figure 8 Profile of Q(x) at intermediate steady state

6 Conclusions 

Using Preissmann’s scheme, the inherent directional property of signal propagation of 

Saint-Venant’s equations can automatically be reproduced once the appropriate boundary 

conditions are given. To treat transcritical flows, it is physically meaningful to introduce 

formulations to capture the flow behaviour at transcritical transitions, while it corresponds 

to a numerical necessity. 
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The method obtained for the solution of transcritical flows directly uses Preissmann's 

scheme. The classical use of this two-point scheme is preserved in the major flow part. 

Even though there is an explicit determination of the cells experiencing the transcritical 

changes, it is a shock capturing method. It can be directly related to the three-point method 

of Johnson whose formulation is more systematic. The regime test is not explicitly done in 

the definition of the algorithm but implicitly calculated in the scheme. Johnson’s method is 

elegant but finally requires more calculation. 

The problem of transcritical transitions is solved locally, either by associating the cells 

involved in a bore and adding an equation to characterize the information transferred in the 

subcritical domain, or by the addition of an internal boundary condition to characterize the 

expansion fan at the critical point. 

The internal boundary condition is on the one hand an alternative to the introduction of 

entropy corrections to solve the classical problem of rarefaction-shocks linked to the use of 

so-called Roe-type splitting. On the other hand, the solution of shocks is primarily based on 

Preissmann’s scheme written for non-transcritical sections, and considering the solution in 

this domain, the supplementary discretisation of the characteristic equation adds some 

diffusion to the Preissmann’s system. 

The required test on the discrete Froude number is not expensive as compared to other 

particular treatments that can be proposed for transcritical flows. This is a simple way to 

conserve the two-point discretisation with its robustness and adapted form for the inclusion 

of hydraulic structures. Besides, the double-sweep algorithm can be used. Moreover, this 

"regime-detector" is also a useful tool to organize external boundary conditions. It is 

intended to make the scheme able to support any flow evolution or any change imposed by 

hydraulic structures. 
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Notations

a(i) = Eigenvalues of Jacobian matrix (i = 1 or 2)

A = Wetted cross-sectional area
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B = Channel width

Bj = Boundary condition at node j

BAQ = Scalar internal boundary condition

c = (gA/B)1/2  = Celerity of infinitesimal wave

c~ = Roe’s approximation for infinitesimal wave celerity 

dw = V-1 du = variation of Eigenvariable

D = diag{a(1);a(2)} = Diagonal matrix formed with Eigenvalues a(1) and a(2)

f = Flux of momentum equation

f = General vector flux function

F = Froude number

g = Gravitational acceleration

I1 = Hydrostatic-pressure term

J = Jacobian matrix of Saint-Venant system

K = Strickler coefficient

Q = Discharge

Rj+1/2 = (RA
j+1/2 RQ

j+1/2)T = Preissmann’s cell residual

Rj = Nodal residual

s = Source term of momentum equation

s = General vector source term

s = V-1 s = Vector source term in Eigen-system

So = Bottom slope

Sf = Friction slope

t = Time

u = (A  Q)T = General vector conserved variable 

v = Q/A = Mean celerity of flow

v~ = Roe’s approximation for mean celerity of flow

V = Matrix of eigenvectors of J

w = Vector-conserved variables in Eigensystem

x = Space coordinate
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pX = Any variable X taken at position p , either node j or cell j+1/2

t = Time step 

x = Space step 

y = yn+1 – yn for known time step n (for any variable y)

2/1j = Matrices defining up-winding according to Eigenvalue sign

Greek Symbols
= Relative location of critical point in a cell

= Spatial weighting in cell (=1/2 for Preissmann’s scheme)

= t/ x
±

j+1/2 = Transfer matrices

= Temporal weighting in semi-implicit discretisation

Superscripts
(i) = Sign of ith scalar value of a vector (i = 1 or 2)

T = Sign of vector transposition

Subscripts
c = critical point

j = Mesh point location

j+1/2 = Cell location

n = Time step number
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