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A subcritical transition to turbulence in magnetized Keplerian shear flows is investigated by using a

statistical approach. Three-dimensional numerical simulations of the shearing box equations with zero net

magnetic flux are employed to determine the transition from decaying to sustained turbulence as a

function of the magnetic Reynolds number Rm. The results reveal no clear transition to sustained

turbulence as the average lifetime of the transients grows as an exponential function of Rm, in accordance

with a type-II supertransient law.
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There has been much progress in recent years on the
understanding of the nature of subcritical transitions to
turbulence in hydrodynamic flows, wherein the laminar
state is linearly stable for all Reynolds numbers and finite
amplitude perturbations are necessary to drive the system
towards a turbulent state. Numerical and experimental
works indicate that turbulence in systems like plane-
Couette and pipe flows is a transient phenomenon [1,2],
although this is still a disputed topic [3,4]. Although much
has been accomplished for hydrodynamic turbulence in
this area, the same cannot be said about magnetohydrody-
namic (MHD) turbulence in systems with subcriticality, for
which statistical studies are scarce.

A classical problem of subcritical transition to turbu-
lence is provided by accretion disks, where, in the absence
of magnetic fields and when shear is the only stratification,
Keplerian flows are linearly stable [5]. The rate of mass
accretion in the disk depends on the outward transport of
angular momentum, and one would think that turbulence is
the natural candidate for transport. However, both numeri-
cal [6–8] and laboratory [9] experiments have revealed
that, if a subcritical hydrodynamic transition to turbulence
were to exist in Keplerian flows, then the associated turbu-
lent transport of angular momentum is very weak and
unable to match observational constraints.

When a mean vertical field is applied, the magnetorota-
tional instability [10] provides a linear instability that may
result in a strong MHD turbulence capable of generating
adequate rates of angular momentum transport [11,12]. If
there is no imposed background magnetic field, the original
(seed) field can decay with time due to finite resistivity. In
that case, some type of nonlinear dynamo process is nec-
essary to amplify and sustain the seed field, and, conse-
quently, the instability in zero net flux simulations is
nonlinear [13]. Rincon, Ogilvie, and Proctor [14] identified
a self-sustaining dynamo solution in a magnetized rotating
plane-Couette flow in the Keplerian regime, but the steady

solutions were found only in a narrow range of low values
of the Reynolds number. Other works have reported the
existence of nonlinear dynamos in turbulent MHD regimes
[13], yet little is known about how turbulence evolves as a
function of the magnetic Prandtl number Pm (the ratio of
viscosity to resistivity) and whether it can be sustained for
long runs or not. Recently, Fromang et al. [15] studied the
onset of turbulence in accretion disks by using an unstra-
tified shearing box with zero net magnetic flux and found
that turbulence disappears when the magnetic Prandtl num-
ber falls below a critical value that seems to be a decreasing
function of the kinetic Reynolds number. Note, however,
that vertical stratification might change this picture [16].
The present Letter explores the onset of turbulence in

three-dimensional, zero net flux, MHD simulations of
Keplerian shear flows as a function of the magnetic
Reynolds number Rm. We focus on the statistical aspects
of the subcritical transition, which is an approach that has
been unexplored in MHD simulations, despite its popular-
ity in the hydrodynamics community. From our results,
there seems to be no clear transition to sustained turbu-
lence. Instead, the average lifetime of the turbulence �
grows as an exponential function of Rm, following a
type-II supertransient law [17].
We solve the shearing box equations [18], which repre-

sent the dynamics in a box moving with the disk’s angular
velocity�ðr0Þ, where r0 is a fiducial radius that determines
the location of the center of the box. In Cartesian coordi-
nates, with � ! y and r ! r0 þ x, the shearing box equa-
tions read as

@tvþ v � rv ¼ � 1

�
rPþ 1

�0�
ðr � BÞ �B� 2�

� vþ 2�Sxx̂þ �r2v; (1)

@tB ¼ r� ðv� BÞ þ �r2B; (2)
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r � B ¼ 0; r � v ¼ 0; (3)

where � ¼ r�3=2 for a Keplerian disk, S ¼ �r@r� ¼
ð3=2Þ�, � is the magnetic diffusivity, �0 is the magnetic
permeability, � is the gas density, and P is the pressure.
The fluid velocity can be decomposed as v ¼ v0 þ u,
where the steady state solution is given by the shear flow
v0 ¼ �Sxŷ and u is the perturbation field. The equations
for u are solved with the pseudospectral code described by
Lesur and Longaretti [8,19] by using shearing sheet bound-
ary conditions [11]. The xyz aspect ratio employed is 1�
�� 1. The kinetic and magnetic Reynolds numbers are
defined as Re ¼ Sd2=� and Rm ¼ Sd2=�, respectively,
where d is the shearwise size of the box. Time is measured
in shear time units 1=S.

Transition to turbulence is investigated by fixing Re
while varying Rm. The value of Re is taken from Fig. 11
of Fromang et al. [15], where for Re ¼ 3125 there is a
transition to turbulence somewhere between Rm ¼ 6250
and Rm ¼ 12 500, and, thus, the magnetic Prandtl number
Pm ¼ Rm=Re> 1. Since we are not interested in the kine-
matic dynamo regime, the initial growth of a small seed
magnetic field is not important to our discussions. Our
question is, given a turbulent state, can it be sustained for
all time? If not, how long does it take, on average, to
decay? The turbulent states are obtained from long runs
where the velocity and magnetic fields are initialized with a
large-scale random noise (only the four largest modes are
nonzero at t ¼ 0) with amplitude of the order of 1. After
some time, energy spreads to other modes and the random
fields settle to a turbulent state. Figure 1 illustrates the
typical turbulent patterns found at Re ¼ 3125 and Rm ¼
11 000 for the radial component of the velocity (upper
panel) and magnetic (lower panel) fields at t ¼ 500.
Since Pm > 1 and there is no proper large-scale dynamo,
the characteristic spatial scales in the magnetic fields are
smaller than in the velocity fields. The numerical resolu-
tion employed is 64� 128� 64, which is the same reso-
lution used for this problem in Ref. [15]. The convergence
of the code is checked by comparing the time-averaged
power spectra obtained with this run with a higher-
resolution run (128� 256� 128). The results are shown
in Fig. 2, where the solid black line represents the lower-
resolution kinetic energy spectrum and the solid red line
the lower-resolution magnetic energy spectrum. The
higher-resolution spectra are plotted in dashed lines and
agree quite well with the lower-resolution runs. There is a
disagreement in the small scales in the kinetic spectra, but
this has a low impact on the global behavior. Table I
contains time-averaged values for the kinetic and magnetic
energies, as well as for the Reynolds and Maxwell stresses,
which are defined, respectively, as �Rey ¼ huxuyi and

�Max ¼ �hBxByi. The quantities are computed with both

resolutions for Re ¼ 12 500. In the remainder of this
Letter, we adopt the lower resolution. Note that the lack

of a properly defined inertial range in the power spectra
indicates that the turbulence is not fully developed.
The turbulence shown in Fig. 1 eventually decays toward

the laminar state. The decay time is a function of the initial
perturbation and Rm. Figure 3 shows an example of a time
series of the magnetic (red) and kinetic (black) energies for

FIG. 1 (color online). Volume rendering plots of ux (a) and Bx

(b) for a turbulent state at Re ¼ 3125 and Rm ¼ 11 000.
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FIG. 2 (color online). Time-averaged spectra of kinetic (solid
black line) and magnetic (solid red line) energies for Re ¼ 3125
and Rm ¼ 11 000. The dashed lines represent the spectra com-
puted with doubled resolution. The k�5=3 dotted line is a guide to
the eye.
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Re ¼ 3125 and Rm ¼ 12 500. After more than 6000 time
units, the turbulence suddenly decays and the system con-
verges to the laminar state.

The high variability of the turbulence decay times as a
function of the initial condition for a given Rm suggests the
presence of a chaotic saddle in the phase space [2,20]. The
role of chaotic saddles in generating chaotic transients in
dynamical systems is well known, and, as mentioned in
previous studies on spatiotemporal systems [21], the aver-
age lifetime of the chaotic transients grows as a function of
the fractal dimension of the stable manifold of the chaotic
saddle. In order to obtain the average lifetime �ðRmÞ of the
turbulent transients, we compute PðtÞ, the probability of
finding a turbulent state at time t. For each value of Rm,
PðtÞ is obtained from a set of more than 50 and up to 90
different simulations. Each simulation has a turbulent state
as the initial condition, and the simulation stops when
either t ¼ 1000 or the laminar state is reached, generating
a data set of relaminarization times. The turbulent initial
conditions are taken from a long run at Rm ¼ 13 000. To
ensure that the initial conditions represent uncorrelated
states, they were selected from the referred long turbulent
run with 500 shear-time units apart from each other.
Figure 4 shows the logarithm of PðtÞ as a function of t
for Re ¼ 3125 and a range of different values of Rm. The
straight lines are least square fits that represent the relation
Pðt; RmÞ ¼ exp½�t=�ðRmÞ�, which is expected for tran-
sients due to chaotic saddles [2,22]. The values of 1=�

are readily obtained from the slopes of the fitted lines. As
Rm increases, the slopes decrease, reflecting longer decay
times. The convergence is not very good for the lowest
values of Rm, probably due to a lower fractal dimension of
the stable manifold of the chaotic saddle, which implies
that a much higher number of initial conditions would be
necessary to obtain better statistics.
A graph of � versus Rm is plotted in Fig. 5. The top panel

shows the data in linear scales and reveals that the inverse
lifetime can be well fitted with an exponential law as a
function of Rm. The dashed curve is given by 1=� ¼
exp½5:3� ð1:18� 10�3ÞRm�. The lower panel shows the
same data in log-linear scales. These results indicate that
the turbulence lifetime follows a type-II supertransient law
[17] as a function of Rm. In this case, there is no apparent
transition to sustained turbulence, and the laminar state is
the global attractor. If there were a critical Rm for transition
to sustained turbulence via a crisis mechanism, a linear
decay of 1=� with Rm would have been expected [3]. The
results for a linear fit using only the last four values of Rm

are given by the dotted blue line in Fig. 5(a), which
represents 1=� ¼ 0:0144� 1:273� 10�6Rm. This fit pro-
vides a critical point Rmc

� 11 312, which is clearly in-

correct, since Fig. 3 shows that even at Rm ¼ 12 500 the
turbulence is still decaying.
Note that the high values of Re and Rm shown in this

Letter are based on the shear rate S. If the Reynolds
numbers are computed based on the root mean square
velocity, one obtains a maximum of Re� 180 and Rm �
650. Thus, it has been shown that, at least for intermediate
Reynolds numbers and magnetic Prandtl numbers greater
than 1, MHD turbulence in the incompressible shearing
box equations with zero net magnetic flux is not self-
sustained. The average decay time � follows a type-II
supertransient law, with an exponential increase of � as a

TABLE I. Time-averaged quantities for Rm ¼ 12 500.

Res. 64� 128� 64 128� 256� 128

hEkinit 2:11� 10�3 2:07� 10�3

hEmagit 8:45� 10�3 8:52� 10�3

h�Reyit 5:22� 10�4 5:24� 10�4

h�Maxit 3:68� 10�3 3:69� 10�3
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FIG. 3 (color online). Time series of the magnetic (red line)
and kinetic (black line) energies showing transient turbulence for
Re ¼ 3125 and Rm ¼ 12 500.
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FIG. 4 (color online). The logarithm of PðtÞ, the probability of
turbulent lifetime � t, as a function of t for Re ¼ 3125 and six
different values of Rm; the straight lines are fitted with
Pðt; RmÞ ¼ exp½�t=�ðRmÞ�, where � is the characteristic turbu-
lence lifetime.
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function of the magnetic Reynolds number. This is in
accordance with results found for subcritical transitions
to turbulence in hydrodynamic flows such as the pipe
flow [2] and plane-Couette flow [1], where turbulence
seems to be always transient. Supposing that our conclu-
sions can be extended to realistic values of the Reynolds
numbers, this suggests that the transient dynamics is much
more relevant to the accretion problem than the final
attractor.
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