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ABSTRACT
We present theoretical thermally averaged rate constants for vibrational and rotational
(de-)excitation of the H+

3 ion by electron impact. The constants are calculated using the
multichannel quantum-defect approach. The calculation includes processes that involve a
change |�J | ≤ 2 in the rotational angular momentum J of H+

3 . The rate constants are cal-
culated for states with J ≤ 5 for rotational transitions of the H+

3 ground vibrational level.
The thermal rates for transitions among the lowest eight vibrational levels are also presented,
averaged over the rotational structure of the vibrational levels. The conditions for producing
non-thermal rotational and vibrational distributions of H+

3 in astrophysical environments are
discussed.

Key words: molecular data – molecular processes – plasmas – ISM: molecules.

1 IN T RO D U C T I O N

Rotational and vibrational excitation of small polyatomic ions by
electron impact is one of the important processes occurring in a neu-
tral molecular plasma. In particular, the probability of rovibrational
(de-)excitation in electron–ion collisions can be relatively high.
The high probabilities and correspondingly high rate constants are
driven by the non-Born–Oppenheimer coupling between electronic
and rovibrational motions of the ion–electron system. In certain
small polyatomic molecules, the coupling is particularly strong, as
is the case for the H+

3 ion.
Owing to its importance in interstellar space (Oka 2006), plan-

etary ionospheres (Miller et al. 2000) and laboratory experiments
(Larsson 2000; Plasil et al. 2002; Johnsen 2005), the H+

3 ion has
been studied for many years. In particular, processes involving elec-
tron scattering from the ion have been recently studied experimen-
tally and theoretically. Such processes include electron-impact rovi-
brational excitation (Faure & Tennyson 2002; Faure et al. 2006a,
2009), dissociative recombination (Larsson 2000; Kokoouline,
Greene & Esry 2001; Johnsen 2005; Fonseca dos Santos,
Kokoouline & Greene 2007), electronic excitation and ionization
(Gorfinkiel & Tennyson 2004), and photoionization (Bordas &
Helm 1991; Stephens & Greene 1994, 1995; Mistrı́k et al. 2000;
Kokoouline & Greene 2004a) of the metastable neutral H3 molecule.
Astrophysically, electron-impact excitation of molecular ions has

�E-mail: slavako@mail.ucf.edu

been observed to be the dominant collisional excitation process in
some environments (e.g. Jimenez-Serra et al. 2006).

Previously, cross-sections and rate constants for a few rotational
transitions in H+

3 have been calculated (Faure & Tennyson 2002,
2003; Kokoouline & Greene 2003b; Faure et al. 2006a,b). Vibra-
tional rate constants have apparently not been studied extensively
for this fundamental ion. Here, we present thermal rate constants
for transitions between different rotational states of the ground vi-
brational level of H+

3 with low angular momentum, J ≤ 5. We also
present thermal rate constants for rotationally averaged transitions
between different vibrational levels.

The next section of the article briefly discusses the theoretical
approach used in the present calculation. A detailed description of
the approach is lengthy and has already been published elsewhere
(Kokoouline & Greene 2003b; Fonseca dos Santos et al. 2007).
Therefore, we only sketch here the main ideas of the approach. In
Section 3, we present the rates for vibrational (de-)excitation of H+

3 .
Section 4 is devoted to the calculation of rotational rate constants
for transitions within rotational manifold of the ground vibrational
level. Astrophysical implications are discussed in Section 5. Finally,
Section 6 presents our conclusions.

2 THEORETI CAL APPROACH

The theoretical model employed in the present study is based on
quantum-defect theory. It is discussed in detail by Kokoouline &
Greene (2003a), Kokoouline & Greene (2003b), Faure et al. (2006a)
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1196 V. Kokoouline et al.

and Fonseca dos Santos et al. (2007). Here, we only mention the
main ideas used in the model.

The energy-dependent theoretical rate constant αi′←i(E) for a
transition from the initial rovibrational level i to a final one i ′ is
obtained from the corresponding matrix element S

phys
i′i (E) of the

energy-dependent scattering operator, Ŝphys(E). The main difficulty
in the theoretical approach is the construction of the scattering ma-
trix S

phys
i′i (E), (the indices i and i ′ refer to specific rovibrational

states of the H+
3 ion; the electron angular momentum and its cou-

pling with the ion to form a total angular momentum eigenstate are
implied as well, but these will be suppressed in our notation since
they are diagonal quantum numbers in the present approximation).
For our discussion, it is convenient to represent the index i as rv,
where r = (JK) specifies the rotational quantum numbers, i.e.,
ionic angular momentum J and its projection K on the molecular
axis and v = {v1, v

l2
2 } specifies the vibrational quantum numbers

in a normal-mode classification. We note that our model neglects
the explicit coupling between rotational and vibrational angular
momenta which occur for excited vibrational states with l2 > 0
and which leads to a more complicated set of quantum numbers
(Lindsay & McCall 2001).

The construction of the scattering matrix S
phys
i′i (E) begins from the

ab initio potential surfaces of the ground electronic state of the ion
and several excited states of the neutral H3 molecule (Mistrı́k et al.
2000), [U+(Q) for the ion and Un(Q) for the neutral molecule]. We
will use the symbol Q to specify collectively the three internuclear
distances. For a given geometry Q, the electronic wavefunction of
the outer electron of the H3 excited states resembles the electronic
wavefunction of the hydrogen atom. However, due to the fact that
at short distances from the ionic core, the electron–ion interaction
is different from that in the hydrogen atom; the electron binding
energy U+(Q) −Un(Q) is generally different from the correspond-
ing binding energy 1/(2n2) in the hydrogen atom (n is the principal
quantum number). The departure of the U+(Q) −Un(Q) difference
from 1/(2n2) is written as 1/(2(n − μ)2), where the quantum de-
fect μ is only weakly dependent on the principal quantum number
n. When the energy E of the electron+ion system approaches the
ionization limit (n → ∞) and becomes larger, the principal quan-
tum number n loses its physical meaning, but the quantum defect
μ does not: it gives the collisional phase shift δ(E) = πμ in terms
of the scattering phase in electron–ion collisions at energies above
the ionization limit (Seaton 1966). The phase shift also depends
weakly on the energy E and it determines the scattering matrix
S(E) = exp (2iδ). This is the reason why the energies of excited
electronic states in the neutral molecule can be used to obtain the
quantum defect and to describe collisions between the ion and the
electron.

The preceding discussion assumes that the electron scatters from
(or is bound to) the molecular ion, which stays at a given geometry,
i.e., the nuclei remain fixed throughout. This approximation is only
reliable on a time-scale much shorter than the period of ionic vi-
brational motion. In this limit, the quantum defects are functions of
geometry Q, μ(Q). Generally speaking, the dependence of μ(Q) is
much smoother than the dependence of U+(Q) and U (Q). Although
the quantum defect depends only weakly on the principal quantum
number n, it usually depends strongly on the angular momentum
l and on its projection � on the molecular axis of the ionic core.
For a non-linear triatomic ion such as H+

3 , the body-frame quan-
tization axis is chosen as the normal to the plane containing the
nuclei. At large l ≥ 2, the quantum defects become small, because
the electronic wavefunction of high l approaches the unperturbed
wavefunction in the hydrogen atom.

Therefore, for the description of an electron–ion scattering pro-
cess involving low values of l, one must obtain the quantum-defect
functions μl�(Q) for various l and � and the corresponding scat-
tering matrices S(Q) = exp (2iδl�). The calculated potential en-
ergy surfaces are obtained in the Born–Oppenheimer approximation
(Mistrı́k et al. 2000), i.e., in which the coupling between electronic
and nuclear motion is neglected. The quantum defects and the scat-
tering matrices obtained from the potential surfaces as described
above, therefore, fail to account for the coupling. However, in the
H+

3 + e− case, a strong non-adiabatic Jahn–Teller interaction must
be accounted for in order to appropriately describe the scattering
process. It mixes the two π electronic states of the same orbital angu-
lar momentum l of the incoming electron and can be included in the
scattering matrix built from quantum defects using the formalism
suggested in Staib & Domcke (1990). The resulting scattering ma-
trix is now not diagonal over the � quantum numbers. The strongest
coupling is between the pπ electronic states. In our treatment, we
include only p states (π and σ ). This implies that this body-frame
(BF) scattering matrix SBF

�′,�(Q) is a 3 × 3 matrix (Kokoouline &
Greene 2003b).

The scattering matrix constructed in this way represents the
electron–ion scattering only if the ion stays at the same configu-
ration Q during the entire process, which is not a valid description.
The physically meaningful scattering matrix must describe the am-
plitude of scattering from a particular rovibrational state of the ion
to another one, including the possibility of nuclear motion during
the full collision process. We denote this as the space-fixed (SF)
scattering matrix SSF

s′,s , where s and s ′ refer to initial and final states
of the ion. The formalism of the rovibrational frame transformation
(Atabek, Jungen & Dill 1974; Fano 1975; Jungen & Atabek 1977)
allows us to use the matrix SBF(Q) to construct the SSF

s′,s matrix. In
this formalism, the two matrices are considered as two equivalent
forms of the same scattering operator in two different representation
bases. The representation basis of SSF

s′,s = 〈s ′|Ŝ|s〉 is the set of rovi-
brational energy eigenstates |s〉. The basis for the SBF(Q) matrix is
made of tensor products |b〉 = |Q〉|�〉, where |Q〉 represents the
vibrational position eigenstates of the ion, |�〉 is the angular state
vector of the electron in either the pπ or pσ state.

The two representations are connected by the standard basis trans-
formation formula

SSF
s′,s =

∑
b′,b

〈s ′|b′〉〈b′|Ŝ|b〉〈b|s〉 , (1)

where the summation indicates a sum over discrete indices and
an integration over the continuous coordinates Q, and rotational
coordinates (three Euler angles). Because the scattering matrix in
the |b〉 basis is diagonal over |Q〉, it is convenient to write 〈b′|Ŝ|b〉 as
SBF

�′,�(Q)δ(Q − Q′), the notation that has already been used in the
above discussion. The explicit form of the matrix elements 〈s|b〉
for the unitary transformation is given in Kokoouline & Greene
(2004a,b).

The SBF matrix is diagonal with respect to the rotational quantum
numbers Jtot, Ktot and Mtot of the whole molecule and the continu-
ous coordinate Q. Jtot, Ktot and Mtot are the angular momentum of
the neutral molecule and the two projections of the angular momen-
tum on the molecular symmetry axis and on the space-fixed z-axis,
respectively. To completely define the BF basis functions |b〉, in
addition to � and Q, the rotational quantum numbers Jtot, Ktot and
Mtot must also be specified; for brevity they are omitted in the above
equation, although their presence is implied.

To specify the vibrational states in the SF representation, we
will use the normal-mode approximation, i.e., specifying ionic
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vibrational eigenstates by the quantum numbers {v1, v
l2
2 }. The ro-

tational part of the total wavefunction is specified by rotational
quantum numbers Jtot, J , K, M, l and m, where J , K and M are
the angular momentum of the ion and the two projections of the
angular momentum on the molecular symmetry axis and on the
space-fixed z-axis, m is the projection of electronic angular mo-
mentum l on the space-fixed z-axis. In the following, we will not
specify any other conserved quantum numbers that are the same
in both bases, such as the total nuclear spin and the irreducible
representation of the total wavefunction.

The matrix SSF
s′,s obtained by the above procedure does not yet rep-

resent the physical scattering matrix (Aymar, Greene & Luc-Koenig
1996; Seaton 1966). In fact, it represents the actual scattering ma-
trix Sphys(E) only for energies high enough such that all of the
channels |s〉 are open for electron escape, i.e., where the total en-
ergy of the system is higher than the energy of the highest relevant
ionization channel |s〉. When at least one channel is closed, the
physical scattering matrix Sphys(E) is obtained from SSF using the
standard Multi-channel Quantum Defect Theory (MQDT) channel-
elimination formula (see equation 2.50 in Aymar et al. 1996 or
equation 38 in Kokoouline & Greene 2004a).

In terms of the energy-dependent scattering matrix Sphys(E), the
cross-section for rovibrational (de-)excitation of the ion from the
initial state |s〉 is written (in atomic units, a.u.) as

σ RFT
s′←s(Eel) = π

2Eel(2J + 1)

∑
JtotKtot

(2Jtot + 1)|S(Jtot,Ktot)
s′,s |2, (2)

where Eel is the relative kinetic energy of the ion and the electron
before the collision. In the above expression it has been assumed
that the initial |s〉 and final |s ′〉 states are different.

3 R ATE C O N S TA N T S FO R V I B R AT I O NA L
(DE- )EXCITATION

If one is not interested in the rotational structure of initial and final
vibrational states, the final cross-section (or thermal rate constant)
has to be averaged over the initial rotational levels and summed up
over the final rotational levels. This can be done using the full rovi-
brational frame transformation technique described above. How-
ever, the cross-section averaged over initial rotational levels and
summed up over the final rotational levels is very similar to the one
obtained neglecting the rotational structure of the ion. The cross-
section obtained accounting for the rotational structure has more
resonances due to interaction between rotational states, but the av-
eraged value is close to the value obtained without the rotational
structure. The quantity of interest in astrophysical applications is the
thermally averaged rate constant. Because the thermally averaged
rate is not sensitive to the position of individual resonances in the
energy-dependent cross-section, the calculations with and without
the rotational structure give the same result.

Figs 1 and 2 compare our calculations with and without rota-
tional structure included, for the probabilities of rovibrational and
vibrational (de-)excitation of the ion. Fig. 1 shows in detail the rovi-
brational transitions from the ground to the first excited vibrational
level {011} with Jtot = 2 in para-H+

3 . In order to compare with the
results in Fig. 2, one would need to take a sum over final quanta and
average over initial J and K , and account for all possible Jtot and
Ktot similar as it is done in equation (2). This would mean that to
achieve a converged result at reasonably high energy (∼2000 cm−1)
calculations would be needed for all Jtot up to 10. This would re-
quire a tremendous numerical effort if the fully quantum approach
was to be applied.
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Figure 1. Probabilities of rovibrational excitation of the H+
3 ion calculated

using the full rovibrational frame transformation. Only transitions from the
ground vibrational level {000} are shown. The {000} → {011} probabilities
oscillate a lot below 3000 cm−1 and become less energy-dependent above.
The oscillations are due to the strong rotational coupling between individual
rotational levels of the initial and final states of the ion. When averaged over
the initial and summed over the final rotational states and averaged over
the appropriate energy distribution, the resulting probabilities are similar
in magnitude to the probabilities shown in Fig. 2. The labels on top of the
figure indicate different rovibrational ionization limits. Note that the zero of
energy in the figure is set to the energy of the forbidden rovibrational level
{000}(00).
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Figure 2. Probabilities of vibrational excitation from the ground vibra-
tional level {000} to several excited vibrational levels calculated using the
vibrational frame transformation only. Energies of vibrational thresholds are
labelled with arrows and the corresponding vibrational quantum numbers.

Neglect of the rotational structure of the initial and final vi-
brational state simplifies considerably the numerical calculation.
The complete rovibrational frame transformation of equation (1) is
reduced to the vibrational frame transformation if the rotation is
neglected, i.e., it is carried out using the following formula

SSF
(v′�′)(v�) = 〈

v′|SBF
�′ ;�(Q)|v〉

, (3)

where the brackets imply an integration over the vibrational coor-
dinates only. Many elements among SSF

(v′�′)(v�) are zero because of
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Figure 3. Thermally averaged rate constants for several (de-)excitation
transitions obtained by direct integration using equation (4) (solid lines)
and the approximate formula of equation (7) (dashed line). The averaged
probabilities for vibrational (de-)excitations are listed in Table 1.

the symmetry of vibrational wave functions and matrix elements
SBF

�′�(Q). The vibrational (de-)excitation v → v′ cross-section
obtained from the scattering matrix of equation (3) should be aver-
aged over � and summed over �′.

The thermally averaged rate constant αth(T ) (in a.u.) is obtained
from the energy-dependent cross-section σ (E) as

αth(T ) = 8π

(2πkT )3/2

∫ ∞

0
σ (Eel)e

− Eel
kT EeldEel , (4)

where T is the temperature. Temperature dependencies αth(T ) for
different rovibrational transitions v → v′ obtained using equation
(4) are shown in Fig. 3 as solid lines.

For further discussion, it is convenient to represent the cross-
section σ (Eel) in the form

σ (Eel) = π

k2
P (Eel) , (5)

where k is the wave vector of the incident electron, P (Eel) is the
probability for vibrational (de-)excitation at collision energy Eel.
Figs 1 and 2 suggest that on average (here we mean a running aver-
age taken over a few intervals between resonances), the probability
behaves approximately as a step function

〈P (Eel)〉 = P0θ (Eel − �v′,v) , (6)

where �v′v = Ev′ − Ev is the threshold energy for rovibrational
excitation (if Ev′ − Ev > 0); �v′v = 0 for (de-)excitation (if Ev′ −
Ev < 0), θ is the Heaviside function, P0 is a constant. The above
approximation for the probability is accurate enough to calculate the
thermally averaged rate constant that is not sensitive to the detailed
resonance structure of the energy-dependent (de-)excitation cross-
section. Using equation (6) the thermally averaged rate constant of
equation (4) becomes

αth(T ) =
√

2π

kT
e− �

v′v
kT P0 . (7)

The above formula with only one parameter P0 provides a very good
approximation for the actual thermally averaged rate constant. It is
demonstrated in Fig. 3 that compares the thermal rate constants for
different (de-)excitation transitions obtained with the direct numeri-
cal integration using equation (4) and with the approximate formula
of equation (7). Therefore, for practical applications, it is convenient
to provide just averaged probabilities P0 and the energies of vibra-
tional thresholds Ev for each pair of vibrational (de-)excitations.
These parameters are listed in Table 1 for all combinations of the
first eight vibrational states of H+

3 . Note that the conversion factor
from a.u. to cm3 s−1 is 6.126 × 10−9.

4 R ATE C O N S TA N T S FO R ROTAT I O NA L
(DE- )EXCI TATI ON

If the temperature T of the H+
3 + e− plasma is not very high, such

that only the ground vibrational level {000} of H+
3 is significantly

populated, knowledge of rate constants for transitions r → r ′ be-
tween individual rotational levels r and r ′ of {000} may be important
for the analysis of experimental or astronomical spectra. For this
purpose, we have made a detailed analysis of transitions between
individual rotational states of the ground vibrational level. The cal-
culation of rotational (de-)excitation rate constants was carried out
using the cross-section of equation (2) and numerical integration of
equation (4). Examples of the thermally averaged rate constants for
the rotational (de-)excitation are shown in Fig. 4.

As is evident from the figure, the rotational rate constants be-
have approximately according to equation (7), where �v′v should
be replaced with the rotational threshold energy, �r ′r = (Er ′ −
Er )θ (Er ′ − Er ). However, there is a weak departure from the de-
pendence of equation (7). It is clearer in Fig. 5, where we plotted
an ‘effective’ value Peff = αr ′←r (T )

√
T exp( �r′r

T
) of the parame-

ter P0 as a function of ln(T ). Notice that on average, the quanti-
ties Peff [(J ′K ′) ← (JK)] and Peff [(JK) ← (J ′K ′)] for the two

Table 1. Parameters P0 for several vibrational transitions that can be used in the approximate formula, equation (7), for thermally
averaged rate constants. Initial states v are given in the upper row, final states v′ – in the left column. The upper row specifies also
the energies Ev (in cm−1) of vibrational levels. The probabilities P0 are obtained by fitting numerical dependencies obtained by a
direct integration of equation (4). That is why P0(v′ → v) is not exactly equal to P0(v → v′). Note that multiplicity factors of doubly
degenerate vibrational states E are taken into account in the probabilities. For example, P0(v → v′) ≈ 2P0(v′ → v), if the vibrational
states v and v′ are the states of the A1 and E irreducible representations correspondingly.

{000}0 {011}2521 {100}3178 {020}4778 {022}4998 {111}5554 {200}6262 {031}7006

{000} 3.7×10−2 8.5×10−4 1.5×10−3 1.1×10−3 2.0×10−4 2.3×10−5 2.1×10−5

{011} 6.9×10−2 1.2×10−2 6.0×10−2 6.4×10−2 3.3×10−3 2.2×10−4 3.6×10−3

{100} 8.0×10−4 5.7×10−3 2.0×10−3 5.9×10−4 3.5×10−2 1.4×10−3 2.4×10−4

{020} 1.7×10−3 2.9×10−2 1.9×10−3 1.2×10−2 3.5×10−3 8.8×10−5 4.3×10−2

{022} 1.9×10−3 6.3×10−2 1.4×10−3 3.0×10−2 1.4×10−2 1.7×10−4 2.6×10−2

{111} 3.9×10−4 2.8×10−3 7.1×10−2 6.3×10−3 1.3×10−2 1.8×10−2 2.3×10−3

{200} 2.0×10−5 1.0×10−4 1.3×10−3 6.7×10−5 1.0×10−4 1.1×10−2 1.2×10−5

{031} 4.3×10−5 4.1×10−3 6.3×10−4 1.0×10−1 2.8×10−2 2.2×10−3 2.8×10−5
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Figure 4. Thermally averaged rate constants for several rotational (de-
)excitation transitions (JK) → (J ′K ′) of the H+

3 ion (solid lines). The
vibrational level, {000}, is the same in the initial and final state of the
ion. The dotted lines show a few examples of the numerical fit using
equation (9).
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Figure 5. Peff = √
T exp

(
�r ′,r /T

)
α

[
J ′K ′ ← JK

]
. Note that Peff is

only weakly dependent on temperature. It is used to obtain a cubic polyno-
mial fit Pm[ln(T )] in equation (9) for each transition (JK) → (J ′K ′) with
four parameters that are listed in Tables 2, 3, 4 and 5.

opposite processes are related by the principle of detailed balance

(2J + 1)Peff [(J
′K ′) ← (JK)] ≈ (2J ′ + 1)Peff [(JK) ← (J ′K ′)],

(8)

because Peff (x) represents the thermally averaged probability of
the rotational transition per one electron–ion collision (see also
equation 2). In order to simplify eventual applications of the cal-
culated numerical constants αr ′,r (T ), we fitted the numerical rate
constants representing the ‘effective’ value of P0 in equation (7)
to a cubic polynomial of ln(T ). For this, we used the following
analytical interpolation formula for αr ′,r (T )

αr ′←r (T ) = 1√
T

exp

(
−�r ′r

T

)
Pm(x), (9)

where Pm(x) = a0 + a1x + a2x
2 + a3x

3 and x = ln(T ). The
constants ai (i = 0, 1, 2, 3) are obtained for each individual
transition r → r ′ from a numerical fit. The quantity Pm(x) in

the above equation has a meaning of (de-)excitation probabil-
ity that varies weakly with energy. We used the subscript m

to distinguish it from Peff and to stress that Pm(x) is given by
a model polynomial. The constants obtained, ai , are listed in
Tables 2, 3, 4 and 5 for several combinations of initial r = (J , K)
and final r ′ = (J ′K ′) rotational states of H+

3 . The numerical values
of ai listed in the table are such that, when plugged into equa-
tion (9), they give rate constants in units of cm3 s−1. Tempera-
tures in the calculation of x = ln(T ) should be in K. Notice that
(2J1 + 1)a0[1 → 2] ≈ (2J2 + 1)a0[1 ← 2] due to the principle of
detailed balance.

5 A STRO PHYSI CAL I MPLI CATI ONS

The vibrational and rotational distribution of H+
3 ions in interstellar

space, planetary ionospheres and in laboratory is determined by the
competition between radiative and collisional processes. While the
ionization level is generally low in astrophysical plasmas, electrons
can still play a role in the molecular excitation because electron-
impact rates exceed those for excitation by neutrals (H, He, H2) by
several orders of magnitude. Detailed excitation models, including
collisional data for all relevant colliders, are therefore required to
derive reliable column densities from astronomical observations.

An important concept in this context is the so-called critical den-
sity, ncr, which is defined as the density at which the collisional
rate is equal to the spontaneous radiative rate. The usual definition
refers to a specific transition in a two-level approach. For a multi-
level system, neglecting opacity effects, a practical definition is to
refer to a specific level s:

ncr(s, T ) =
∑

s′ A(s → s ′)∑
s′ α(s → s ′, T )

, (10)

where A(s → s ′) are the Einstein coefficients for spontaneous
emission, α(s → s ′, T ) are the collisional rates and the sums run
over all possible transitions s → s ′. Considering electron collisions
only, these latter will maintain the level s in local thermodynamic
equilibrium (LTE) for electron densities ne � ncr(s, T ), while de-
viations from LTE including population inversions are expected for
densities ne � ncr(s, T ). For ne � ncr(s, T ), electron collisions
will be negligible. Non-LTE effects caused by H2 collisions have
been investigated both in interstellar clouds (Oka & Epp 2004; Oka
et al. 2005) and in the Jovian atmosphere (Melin et al. 2005). We
note in this context that microcanonical statistical calculations have
been performed recently to estimate thermal state-to-state rate co-
efficients for the H+

3 +H2 reaction and its deuterated variants (Park
& Light 2007; Hugo, Asvany & Schlemmer 2009). Electron-impact
rotational excitation has been considered by Faure et al. (2006b) but,
to the best of our knowledge, electron-impact vibrational excitation
has been so far ignored in non-LTE modelling.

Equation (10) was computed with the vibrational and rotational
rates presented in the previous sections. Einstein A coefficients were
taken from Dinelli, Miller & Tennyson (1992a,b) for vibrational
transitions and from Pan & Oka (1986) for rotational transitions.
Results are presented in Tables 6 and 7. It can be noted that criti-
cal densities for vibrational and rotational levels differ by typically
six orders of magnitude: they range between 107 and 1010 cm−3

for the former and between 10−1 and 104 cm−3 for the latter. In
the diffuse interstellar medium, the electron density is ∼0.1 cm−3

(Black & van Dishoeck 1991) while it can reach about 106 cm−3

in planetary atmospheres (see, e.g., Lystrup et al. 2008). As a re-
sult, non-LTE rotational populations are expected in interstellar
clouds, whereas rotational levels should be at or close to LTE in
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Table 2. Parameters a0, a1, a2 and a3 of the fit polynomial Pm(x) of equation (9) for several transitions between
rotational states of the E′′ irreducible representation of the coordinate part of the ion–electron system. The vibrational
level of the ion is the same in the initial and final states. The upper line specifies the pairs (J1K1)–(J2K2) of rotational
states for which the parameters are fitted. For convenience, we also specify (second line of the table) the threshold energy
�r ′r for each transition. All but the first rows in the table have two numbers: the upper number in each cell corresponds
to the transition (J1K1) → (J2K2), the lower number corresponds to the reverse transition (J1K1) ← (J2K2).

(11)–(21) (11)–(31) (21)–(31) (21)–(41) (31)–(41) (31)–(51) (41)–(51)

�r ′r (K) 249 619 370 858 488 1087 600

a0 1.51e−5 2.29e−6 9.47e−6 1.01e−5 3.17e−6 7.04e−6 3.24e−6
8.81e−6 9.74e−7 6.33e−6 5.18e−6 2.20e−6 4.24e−6 2.41e−6

a1 4.6e−7 6.13e−7 −3.76e−7 −2.64e−6 −3.43e−7 7.62e−8 −4.56e−7
4.08e−7 2.72e−7 −2.44e−8 −1.21e−6 −1.17e−7 1.87e−7 −2.31e−7

a2 −3.96e−7 7.16e−8 −1.14e−7 5.77e−7 1.10e−7 −1.82e−8 4.54e−8
−2.62e−7 2.83e−8 −1.25e−7 2.74e−7 5.81e−8 −3.69e−8 1.1e−8

a3 3.00e−8 −1.07e−8 8.57e−9 3.78e−8 −1.09e−8 7.6e−10 −1.94e−9
1.94e−8 −4.42e−9 8.73e−9 −1.83e−8 6.85e−9 1.99e−9 −2.3e−11

Table 3. Parameters ai for several transitions between rotational states of the E′ irreducible represen-
tation of the ionic wavefunction. See Table 2 for details.

(22)–(32) (22)–(42) (32)–(42) (32)–(52) (42)–(52) (44)–(54)

�r ′r (K) 372 862 490 1092 602 614

a0 1.39e−5 3.69e−6 8.36e−6 5.94e−6 9.79e−6 1.07e−5
9.38e−6 1.87e−6 5.99e−6 3.48e−6 7.42e−6 8.01e−6

a1 −2.73e−6 5.97e−8 −1.34e−6 −5.51e−7 −2.51e−6 −7.78e−8
−1.66e−6 1.37e−7 −7.52e−7 −1.85e−7 −1.73e−6 3.53e−7

a2 5.98e−7 −2.38e−8 4.05e−7 8.42e−8 4.69e−7 −1.77e−7
3.73e−7 −3.22e−8 2.63e−7 2.32e−8 3.25e−7 −2.22e−7

a3 −4.35e−8 1.53e−9 −3.55e−8 −4.e−9 −3.06e−8 1.6e−8
−2.79e−8 1.98e−9 −2.46e−8 −7.4e−10 −2.16e−8 1.77e−8

Table 4. The table gives parameters ai for
several transitions between rotational states of
the A′

2 irreducible representation of the ionic
wavefunction. See Table 2 for details.

(10)–(30) (30)–(50)

�r ′r (K) 619 1085

a0 9.54e−6 6.01e−6
3.85e−6 3.58e−6

a1 −3.87e−7 4.14e−8
−3.32e−8 1.64e−7

a2 1.43e−7 1.04e−7
3.71e−8 4.12e−8

a3 −1.155e−8 −1.06e−8
−3.50e−9 −5.23e−9

the Jovian atmosphere. A non-thermal rotational distribution of H+
3

was actually observed towards Galactic Centre clouds, where the
metastable (3, 3) level has a population comparable to that in (1, 1)
despite being 361.5 K higher (Oka et al. 2005). On the other hand,
electrons are expected to be negligible in vibrationally exciting
H+

3 in the interstellar medium but they could establish a non-LTE
vibrational population of H+

3 in planetary environments, as observed
in the Jovian thermosphere (Kim, Fox & Porter 1992).

Table 5. The table gives parameters ai for several tran-
sitions between rotational states of the A′′

2 irreducible
representation of the ionic wavefunction. See Table 2 for
details.

(33)–(43) (33)–(53) (43)–(53)

�r ′r (K) 494 1101 607

a0 1.39e−5 2.16e−6 1.26e−5
9.92e−6 1.31e−6 9.84e−6

a1 −1.34e−6 7.37e−8 −2.07e−6
−5.56e−7 8.18e−8 −1.41e−6

a2 4.56e−8 −1.81e−8 3.86e−7
−5.41e−8 −1.79e−8 2.65e−7

a3 3.38e−9 1.09e−9 −2.75e−8
7.95e−9 1.07e−9 −1.95e−8

Table 6 shows that the two levels {100} and {200} have critical
densities significantly lower than the other levels. This directly
reflects the lower Einstein A coefficients of ∼1 s−1 (Dinelli et al.
1992a). We note that the values are however not low enough to
ensure LTE vibrational population in planetary atmospheres where
ne < 107 cm−3.

Table 7 shows that at 10 K, the levels (22) and (44) have much
higher critical densities than the other levels. This actually reflects
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Table 6. Critical electron density, ncr in cm−3, at 10, 100 and 1000 K, for vibrational
levels of H+

3 . Powers of 10 are given in parentheses.

T {011} {100} {020} {022} {111} {200} {031}

10 1.3(9) 2.4(7) 3.1(9) 2.6(9) 9.5(8) 4.8(7) 1.3(9)
100 4.0(9) 7.7(7) 9.7(9) 8.1(9) 3.0(9) 1.5(8) 4.2(9)
1000 1.1(10) 2.0(8) 2.3(10) 2.1(10) 8.9(9) 4.8(8) 1.3(10)

Table 7. Critical electron density, ncr in cm−3, at 10, 100 and 1000 K, for several rotational levels of H+
3 (the levels are grouped according to the corresponding

irreducible representations). Powers of 10 are given in parentheses.

T (21) (31) (41) (51) (30) (50) (43) (53) (22) (32) (42) (52) (44) (54)

10 2.5(−1) 2.7(1) 4.6(2) 2.4(3) 3.6(1) 2.2(3) 3.6(1) 2.2(3) 3.9(15) 1.3(1) 1.2(2) 1.1(3) 6.4(23) 1.3(1)
100 9.6(−1) 9.4(1) 1.2(3) 7.9(3) 1.1(2) 6.0(3) 6.7(1) 2.0(1) 3.6(1) 4.3(1) 3.8(2) 3.8(3) 2.3(0) 4.8(1)
1000 1.9(0) 1.5(2) 2.5(3) 2.7(4) 2.1(2) 1.8(4) 1.4(2) 7.0(1) 3.5(0) 7.7(1) 9.4(2) 1.3(4) 3.5(-2) 1.8(2)

the fact that these two levels can depopulate collisionally through
excitation only since rates for rotational transitions with �K �= 0
are null within our treatment. These rates, as those with |�J | > 2,
were actually estimated by Faure & Tennyson (2003) and Faure
et al. (2006a), and were found to be three to four orders of magni-
tude smaller than those with �J = ±1, ±2 and �K = 0. The (44)
level is particularly interesting because an astrophysical maser is
predicted in the (44)→(31) transition of H+

3 (Black 2000). It should
be noted that the selection rules for the (forbidden) rotational radia-
tive transitions are �J = 0, ±1 and �K = ±3 (Pan & Oka 1986;
Miller & Tennyson 1988). Critical densities suggest that electrons
might contribute, in some environments, to create and maintain the
necessary population inversion. Note that in Table 7, the (33) level
is not listed since it is metastable. In this case, the concept of critical
density is meaningless. Finally, we emphasize that critical densities
provide guidance at the order of magnitude level and that a detailed
non-LTE modelling, including all relevant colliders, is necessary to
properly quantify deviations from LTE.

6 C O N C L U S I O N

In this study, we have performed calculations of thermally averaged
rate constants for rotational and vibrational transitions in H+

3 ion
caused by an electron impact. The calculations were made from the
first principles using the quantum-defect approach. The rotational
rate constants are calculated for the ground vibrational level of the
ion in the initial and final states. The rate constants for transitions
between different vibrational levels are calculated neglecting the
rotational substructure of each vibrational level, which corresponds
to averaging over initial rotational states and summing over the final
rotational states. The obtained thermally averaged rate constants are
well described by the analytical formula of equation (7) with the
parameter P0, that can be considered as temperature independent
for vibrational transitions, and weakly dependent on temperature
for the rotational transitions. For the rotational transitions, we have
made a numerical fit of the parameter by a cubic polynomial. The
numerical values of the fitting procedure are provided in Tables 1–5.
The presented thermally averaged rate constants can be useful in in-
terpretation of hydrogen-dominated plasma experiments as well as
for modelling interstellar clouds and planetary atmospheres, where
the H+

3 ion is present. The computation of critical densities suggests,
in particular, that electrons could establish non-LTE rotational pop-

ulations of H+
3 in diffuse interstellar clouds and non-LTE vibrational

populations in planetary atmospheres.
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