
HAL Id: hal-00631666
https://hal.science/hal-00631666

Submitted on 13 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Adaptive Failure Detection for Query/Response
based Wireless Sensor Network

Fatima Zohra Benhamida, Yacine Challal, Mouloud Koudil

To cite this version:
Fatima Zohra Benhamida, Yacine Challal, Mouloud Koudil. Efficient Adaptive Failure Detection for
Query/Response based Wireless Sensor Network. IFIP WD 2011, Oct 2011, Canada. pp.1569483193.
�hal-00631666�

https://hal.science/hal-00631666
https://hal.archives-ouvertes.fr

Efficient Adaptive Failure Detection for Query/Response based Wireless Sensor

Networks

Fatima Zohra Benhamida

Laboratoire de Méthode de

Conception de Systèmes

Ecole Nationale Supérieure en

Informatique

Algiers, Algeria

f_benhamida@esi.dz

Yacine Challal

Laboratoire Heudiasyc, UMR

CNRS 6599

Université de Technologie de

Compiègne

Compiègne, France

ychallal@hds.utc.fr

Mouloud Koudil

Laboratoire de Méthode de

Conception de Systèmes

Ecole Nationale Supérieure en

Informatique

Algiers, Algeria

m_koudil@esi.dz

Abstract—we consider the problem of failure management in

wireless sensor networks (WSN). In such networks, nodes can

be subject to frequent failures due to energy depletion and the

hostile deployment environment. Our work focuses on local

crash process detection in WSN considering intermittent

failures due to lossy radio links. As a part of this problem, we

introduce a new type of Adaptive Neighborhood Failure

Detection mechanism (ANFD) that relies on adaptive timers.

Then we analyze properties of the introduced failure detection

algorithm and determine how and when timers’ update is

necessary. We carried out intensive simulations using TinyOS-

2 and evaluated the performance of our solution. Simulation

results show that our solution improves failure detection rate

and delay, and reduces fault positive detections and packet loss

ratio. Moreover, we analyzed energy consumption using

PowerTossimZ and results demonstrate that our solution does

not induce extra energy consumption compared to other

solutions in the literature.

Keywords- failure management, wireless sensor networks,

lossy links, process crash.

I. INTRODUCTION

Wireless sensor networks (WSN) are prone to a variety
of failures due to energy limitations, radio transmissions and
close coupling with environment where network components
may be not physically protected. Therefore, fault
management is one of the critical issues in WSN. It requires
new communication protocol considering the ability to cope
with node failures. However, the design of these new
approaches must respond to the following WSN constraints
and properties: (1) a node does not necessarily know all the
nodes of the network due to storage capacity limitations (2)
the network is not fully connected because of radio range
limitation, which means that a message sent by a node might
be routed through a set of intermediate nodes until reaching
the destination; (3) communication is data-centric: in most
WSN applications, data is requested by a collector by
sending a query based on certain attributes. Then, source
nodes respond with packets containing required information.
This Query/Response mechanism (denoted here by Q/R) is
periodically invoked during the lifespan of the network; (4)
links are prone to failures and may momentarily drop
messages during transmission; (5) nodes are equipped with
limited energy batteries: communication protocols have to

consider this limitation to maintain the network alive as long
as possible.

Failure detection has been deeply investigated in the
literature of distributed systems [5]. However, the proposed
failure detectors do not meet WSN constraints and
requirements and rely on assumptions hardly verified in
WSN. Indeed, most of proposed failure detection classes are
based on an all-to-all communication approach where each
process periodically sends a heartbeat message to all
processes [6][11][13]. As they usually consider a fully
connected set of known nodes, these implementations are not
adequate for dynamic and partially connected environments,
such as WSN. Furthermore, failure detectors are usually
based on packet acknowledgment [7] where the receiver
sends back an acknowledgment to the source after every
packet reception. Otherwise, the sender suspects the receiver
of having crashed. Both heartbeat and acknowledgment
mechanisms are not suitable for WSN where processes are
limited in energy and communication bandwidth. In [14], a
timer-free asynchronous failure detector has been proposed.
It is based on an exchange of messages and assumes the
knowledge of two values: f (the maximum number of
processes that can crash) and n (the number of nodes in the
system). Moreover, the computation model consists of a set
of initially fully connected known nodes. Yet, this timer-free
approach is not applicable to a partially-connected network
such as WSN. Some works have been proposed which deal
with the scalable nature of dynamic systems. Nonetheless,
few of them tolerate links failures [1][10]. In most of works,
they only considered systems where process crashes are
permanent and links are reliable (i.e., they do not lose
messages). This may increase the risk of mistakes, when the
failure detector suspects a process of having crashed while
the packets were lost because of intermittent transmission
failure due to unreliable links.

In this paper, we define a new failure detection class
tailored to the constraints and requirements of WSN, called
ANFD (Adaptive Neighborhood Failure Detection). Indeed,
our solution relies on adaptive timers to detect nodes crash
while considering intermittent failures of radio links. The
detection of process failures is based only on a local
perception that the node has on the network and not on
global exchanged information. The exchanged lists of failure
suspicions and mistakes are piggybacked into

mailto:f_benhamida@esi.dz
mailto:ychallal@hds.utc.fr
mailto:m_koudil@esi.dz

Query/Response messages of the WSN application. Then we
analyze the properties of the defined class in terms of
completeness and accuracy of failure detection in typical
WSN. Furthermore, we carry out simulations using TinyOS2
to evaluate the performance of the proposed solution. We
particularly evaluate the induced energy consumption
overhead using PowerTOSSIM-Z and demonstrate that in
addition to the benefits of the proposed solution in terms of
failure detection and recovery, and reducing packet loss ratio
and fault positive detections, it does not introduce extra
energy overhead compared to other solutions.

The paper is organized as follows: after the introduction
and state of the art presented in this section, we present an
overview and motivation of the proposed solution in section
II. In section III, we present the different models assumed for
the operation of the proposed solution. Then we present a
detailed description of the solution and its properties in
section IV. We present simulation results using TinyOS-2
and PowerTOSSIM-Z and performance evaluation analysis
and comparison in section V. We end up this paper with
conclusions in section VI.

II. OVERVIEW

Let us consider the following simple configuration to
illustrate the main issues and motivation behind our
proposal. Consider a system of two processes (i.e. a network
of two sensor nodes): a data collector Pi and a data source Pj.
Process Pi wants to inquire regularly some information from
the network; it sends periodically a query to process Pj. Pj
responds with a data packet containing required sensed data.
This is known as a Q/R mechanism. Let us assume first that
links are reliable which means that messages sent from
correct processes are successfully transmitted to their
destination. For process crash detection, we use a Failure
Detection Timeout (FDTij): if FDTij runs out before receiving
the expected response, Pi suspects that Pj has crashed. Each
FDTij value is initiated according to application parameters;
such as Q/R round trip delay, 1-hop transmission latency,
etc.

However, the situation changes if, in addition to process
crash, link failures may also occur. In fact, with the above
FDT, Pi may make some mistakes, when the process is still
correctly working but some messages are lost because of
lossy links (intermittent failures). For this reason, we need to
update FDTij value following the lossy pattern of radio links.

In this paper, we explore the use of adaptive FDT to
circumvent this obstacle: we use a stochastic approach to
determine FDT taking into consideration loss ratio, links
state, transmission delay, etc. It is important to notice that
FDT is defined between two consecutive neighbor sensors
instead of any couple of nodes. This allows more accurate
calculation of FDT that relies then on local predictable
transmission delay without requiring knowledge about the
entire system composition and network topology.
Nevertheless, local suspicions and mistakes will propagate
throughout the network and hence taken into consideration in
route maintenance by the overall nodes of the WSN. We
present thereby, a new failure management class for WSN,

where each process can query a failure detection module that
provides information about which process of its neighbors
has crashed. This information is typically given in a form of
a list of suspects (Suspectedi, is the list of process Pi
containing its suspected neighbors). However, mistakes can
be made: a process may be suspected though it has not
crashed. Hence, in addition to the Suspectedi list, each
module has a list of Mistakei where it notifies previous
mistaken suspicions and retrieves correct processes from
Suspectedi list. All these notifications are piggybacked on
Q/R messages using neighborhood interaction to avoid extra
overhead that would have been induced if dedicated
signaling packets were used.

In Erreur ! Source du renvoi introuvable.we illustrate
the interactions between the different modules with our
failure detection module: ANFD uses the characteristics of
the data gathering protocol (e.g. round delay) and the pattern
of packet losses to determine a timer FDT for each neighbor.
The neighboring list is given by the network module.
Furthermore, the data gathering protocol sends (resp.
receives) Q/R messages to (resp. from) ANFD module in
order to update (resp. deliver) the lists of suspicions and
mistakes. Thus, every Q/R message piggybacks information
about nodes‟ crashes and mistaken suspicions. Moreover,
both lists updates will lead to a new FDT refresh in order to
give more accurate notifications in next rounds.

Figure 1. Different modules interaction.

III. SYSTEM MODEL

A. Network model

We consider a sensor network consisting of a finite set V
of n>1 processes, namely, V= {P1,…,Pn}. There is one
process per node and they communicate by sending and
receiving messages via a wireless network. Processes have
no knowledge about V or n; but, they know a subset of V,
composed of nodes with whom they previously
communicated. The system can be represented by a
communication graph G(V,E) in which V represents the set

of nodes and E represents the set of radio links. If (Pi,Pj)E
then Pi and Pj are considered neighbors. Moreover, we
suppose that the network is f-covering; i.e. the graph G(V,E)
is (f+1) connected. This property ensures that there is always
a route between any two nodes of the network in spite of f
faults.

B. Failure model

We assume that sensor nodes of the WSN may crash, as
it is commonly assumed in the literature [?, ?, …]. Moreover,
links between two sensor neighbors are considered lossy:
they may drop messages during transmission. This is
commonly due to transmission link failure; which is
intermittent by nature. Subsequently, if a process crashes, it
will never belong to the network anymore; and has to be
notified to all its neighbors. However, if it fails to send some
packets, this loss should be considered as intermittent failure.
Hence, even if ANFD may suspect a process of having
crashed while actually the link is down it will be able to
detect mistaken suspicions once the link is set back.

C. Data gathering model

We consider data-centric Q/R based routing protocols. In
this kind of data gathering models a collector node (also
known as a sink) periodically broadcasts a data Query to all
nodes using a multi-hop routing scheme. Each intermediate
node receives the query from an upstream neighbor, and then
diffuses it to all its neighboring nodes. When a source
observes a matching event, it sends back a Response to nodes
which it should reply to. In the same way, intermediate nodes
forward the Response until it reaches the sink. Without loss
of generality, Directed Diffusion [12] is a scheme that
matches this data gathering model, and we will show further
how ANFD can improve DD to cope with failures and route
recovery.

IV. ADAPTIVE NEIGHBORHOOD FAILURE DETECTION

We present hereafter ANFD algorithm for process Pi. We
suggest including ANFD as a module between the layer that
manages the Q/R messages and the beneath layer. ANFD can
interact with both layers using four main primitives, and a set
of variables and procedures introduced in TABLE I.

TABLE I. NOTATIONS AND TERMINOLOGY FOR ANFD.

Variable/

Procedure

Presentation

Neighborsi List of Pi„s 1-hop neighbors updated outside our

algorithm1.

Counteri Round counter at node Pi. Counteri
j is the round counter

attributed to node Pj at node Pi. The round counter is

used as a stamp for generated information.

Suspectedi Set of processes suspected by Pi of having crashed. Each
element consists of a tuple <Px,counteri

x>; Px is the

suspected process at time counteri
x.

Mistakei Set of nodes which were previously suspected of having
crashed but such suspicions are currently considered to

be false. Each element consists of a tuple <Px,counteri
x>;

where Px is a previously suspected process.

QRLayer.Receive
(msg)

Delivers messages to the layer managing Q/R messages

DLayer.Send

(msg)

sends messages to downward layer to be transmitted to

its destination

Piggyback(msg,

suspected,

mistake, Pi)

adds to msg, both of suspected and mistake set, and the

source Pi

1 We suppose that external module updates Neighborsi list each

time Pi receives a new message from unknown node Pj.

Retrieve(msg,

suspected,
mistake, source)

reads and returns both suspected and mistake sets from

msg and their source

Add(set, <id,

ctr>)

Inserts the new process id in the list set or updates the

attributed ctr if it already exists with a smaller counter.

SetFDT(Pj) evaluates and sets or updates the failure detection
timeout for process Pj.

Timer.schedule

(Pj, FDTij)

triggers a timer FDTij for process Pj.

Timer.stop(Pj) stops timer FDTij for process Pj.

Actual
(<Pl, counterj

l>)
Statement that returns true if: Pl does not exist in the
caller‟s (Pi) suspect and mistake lists, or Pl exists in Pi‟s

lists but with smaller counter.

A. ANFD algorithm

We recall that we consider a Q/R data gathering model.
The algorithm proceeds by rounds. At each Q/R round, a
node (generally the collector) launches a query broadcast.
Each node forwards the received Q/R message to the nodes
in its range until it possibly crashes. The basic principle of
our approach is to piggyback failure suspicion on the Q/R
messages, and dispatch this information hop by hop. In
addition to application data, we add up to each message two
sets of nodes: Suspectedi (the set of nodes that are suspected
of being faulty), and Mistakei (the set of the mistakes; the
nodes that were previously erroneously suspected of being
faulty). Each node keeps a counter, which is incremented at
every round. Any new information that is generated by this
node about failure suspicions or correction of false
suspicions (mistakes) within a round is tagged with the
current value of such a counter. This tag mechanism avoids
obsolete information to be taken into account by nodes.

ANFD module for process Pi is described in Figure 2. It
is composed of two main primitives and one procedure: The
primitive ANFD.Send(msg) includes both of Suspectedi and
Mistakei sets in the message msg originated from the upper
layer (line 4). After piggybacking the information, Pi sends
the new message to the downward layer (line 5) in order to
forward it to the destination node. In addition, if the original
message is a query, Pi initializes a timer for every correct
known neighbor; say FDTij for node Pj awaiting for a
response to its query (lines 6-9). At the end of ANFD.Send,
counteri is incremented by one. If any FDTij runs out (line
19), Timer.Fire(Pj) is triggered; that is, Pi suspects Pj of
being faulty. First, it checks if Mistakei list contains Pj, so it
is removed from it. The new suspicion information is then
included in Suspectedi with a tag which is equal to the
current value of counteri or with a greater tag than the one
associated with Pf in Mistakei set if it was previously inside
(lines 20-23). This suspicion will be included in the next Q/R
message when ANFD.Send is executed again.

The second primitive ANFD.Receive(msg) aims to update
suspected and mistake sets according to those piggybacked
on the received message delivered from the downward layer.
First, Pi retrieves information, namely, both suspected and
mistake sets with their source node Pj (line 12), then it stops
FDTij, since the message was successfully delivered (line
13). Pi checks then if Pj (the source) was recently suspected
in order to delete it from Suspectedi set and insert it into
Mistakei with current counteri (lines 14-16). After that, Pi
calls the UpdateLists procedure in order to treat the received

information about suspicions and mistakes in Pj‟s message
(line 17). Finally, QRLayer.Receive sends the new message
msg to the upward layer (line 18). The two loops of
procedure UpdateLists handle information about suspected
(respectively erroneously suspected) processes. Thus, for
each node Pl included in Suspectedj (resp. Mistakej) set, Pi
includes Pl in its Suspectedi (resp. Mistakei) set only if it
received more recent information about Pl status (faulty or
mistaken of being faulty). In such a case, Pi removes Pl from
its lists to insert the given more recent information in the
corresponding set (lines 25-28& 29-32).

1 Init :

2 suspectedi ← Ø; mistakei ← Ø; counter
i
 ← 0

3 ANFD.Send(msg):

4 Piggyback(msg, suspectedi ,mistakei, Pi)

5 DLayer.Send(msg)

6 if type(msg) = QUERY then

7 for all Pj  neighborsi\suspectedi do

8 FDTij=setFDT(Pj)

9 Timer.schedule (Pj,FDTij)

10 counteri = counteri + 1

11 ANFD.Receive(msg):

12 Retrieve(msg, suspectedj, mistakej, Pj)

13 Timer.stop(Pj)

14 if <Pj,counter
i
j>suspectedi or

counter
i
j≤counter

i
 then

15 Add(mistakei, <Pj,counter
i
>)

16 suspectedi = suspectedi - <Pj,..>

17 UpdateLists(Pj, suspectedj, mistakej);

18 QRLayer.receive(msg)

19 Timer.Fire(Pj):

20 if <pj ,counter
i
j>  mistakei then

21 counter
i
 = max(counter

i
, counter

i
j + 1)

22 mistakei = mistakei - <Pj ,..>

23 Add(suspectedi, <Pj, counter
i
>)

24 UpdateLists(Pj, suspectedj, mistakej) :

25 for all <Pl,counter
j
l > suspectedj do

26 if(actual(<Pl,counter
j
l>) then

27 mistakei = mistakei - <Pl,..>

28 Add(suspectedi,<Pl,counter
j
l>)

29 for all <Pl, counter
j
l>  mistakej do

30 If (actual(<Pl,counter
j
l>) then

31 suspectedi = suspectedi \ <Pl,..>

32 Add(mistakei, <Pl, counter
j
l>)

33 end

Figure 2. ANFD algorithm.

B. How to determine FDT (SetFDT function)

The Failure Detection Timeout (FDT) should be
dynamically updated while taking into consideration
transmission failures, communication protocol behavior and
network dynamics in general. Notice that there is no general
formula since it depends on the choice of the routing
protocol and its parameters. We illustrate by an example in
section V how to set its value for a specific protocol, namely
Directed Diffusion. In general case, we need to consider the
following factors:

 Transmission delay between 1-hop neighbors: to
estimate the required time for a packet to be

transmitted from source to destination in a direct link
(i.e. 1-hop neighbors).

 Round delay for the Q/R mechanism: ANFD should
wait at least a round trip of the Q/R messages before
suspecting any neighbor failure.

 Tolerated Burst Loss (TBL) in link failure: to
postpone the suspicion in order to tolerate
intermittent failures due to packet loss (not process
crash). Indeed, it has been demonstrated [7][9] that
losses in wireless networks follow a bursty pattern.
Therefore, FDT must be at least greater than the
average value of the TBL.

 Network activity statistics: network traffic may
influence the effective delays for packet
transmission, and packet losses. FDT has to take into
consideration such actual network traffic and its
impact on packet transmission delays and losses.
Knowing that FDT is updated for 1-hop neighbor, it
is then easy to use such parameter.

In the beginning, since there is no former communication
to make statistics from, the first FDT value is initially set
according to hypothetical values of transmission interval and
latency. After which, FDT is updated using the effective loss
rate regarding received Q/R messages. Moreover, after each
mistaken suspicion, FDT must be increased in order to adapt
the failure detection mechanism to the network activity and
avoid notifying link failures (i.e. packet loss) as crashes.

C. Properties of the new failure detection class for WSN

Any failure detector FD is characterized by two
properties: completeness and accuracy [5]. Completeness
requires that FD eventually suspects every process that
actually crashed, while accuracy limits the mistakes FD can
make. Since we have considered network and failure models
tailored to WSN, we define new completeness and accuracy
properties that better suite our network, failure and data
gathering models:

Definition 1 (1-hop-Completeness):There is a time after

which every process Pi that crashes is suspected by all its

correct neighbors.
 Pi crashes,  PjNeighborsi, T:  t>, Pi  Suspectedj

This property satisfies strong completeness limited to 1-hop

neighborhood.

Definition 2 (1-hop-Accuracy):There is a time after which

some correct processes are never suspected by any correct

neighbor.
 Pi correct,  PjNeighborsi, Pj correct, T:  t>, Pj  Suspectedj

This property defines the eventual weak accuracy limited to

1-hop neighbors.

The merit of these new definitions is to provide adequate

measurement tools of completeness and accuracy of failure

detection tailored to the limitations and requirements of

WSN. Indeed, if strong completeness and accuracy are

mandatory in conventional distributed systems, in WSN 1-

hop-completeness and 1-hop-accuracy are enough for route

update provided that the network remains connected (f-

covering property). Therefore, due to energy, storage and

bandwidth limitations, every node monitors only its direct

neighbors, even though the information (Query resp.

Response) is initiated by a further node (sink resp. source).

Later, suspicion notifications sent initially to neighbor nodes

will reach on-route nodes to the sink and hence update their

routes consequently. Finally, notice that, using this local

interaction is energy efficient as will be demonstrated in

performance evaluation section through simulations using

TinyOS2 and PowerTOSSIM-Z.

Proposition: ANFD guarantees the following properties:
- 1-hop-completeness
- 1-hop-accuracy

Proof:

V. PERFORMANCE EVALUATION

In this section, we present simulation results with respect
to the adaptive FDT used in the new proposal ANFD. We
will focus mainly on the outcome of using adaptive failure
detection timer that allows, as we will see, to enhance failure
detection with the presence of intermittent failures due to
packet losses. We carried out the simulations using TinyOS2
[?] augmented with PowerTOSSIM-Z [?] for energy
consumption profiling.

A. Simulation model

We will consider Directed Diffusion (DD); a Q/R based
data gathering protocol, as a basis for our study. DD does not
use any failure management mechanism; it relies instead on
periodic diffusion of exploratory data to circumvent eventual
faulty nodes. We have implemented DD in TOSSIM/TinyOS
[14] environment. We consider a network composed of 50 to
100 nodes randomly deployed. We modeled packet loss
using a two-state Markov chain [7][9]. We simulate node
crashes by running a python script that selects a subset of
nodes to turn off (node i crashes at time t) following an
exponential law. In order to illustrate the outcome of using
adaptive failure detection, we considered several simulation
scenarios using original DD without failure detection, Fat2D
[?] (DD with constant FDT) and the proposed solution: DD
augmented with ANFD (DD equipped with adaptive FDT).
We were interested in four main metrics:

 the failure detection time which is the required
period between failure occurrence and its detection.

 The packet loss rate, defined by the proportion of
lost data due to route breakdown after some node
crashes. The performance of ANFD is greater when
it can decrease the amount of lost data.

 The mistaken suspicions rate or false positive rate
defined by the proportion of falsely suspected nodes
due to intermittent failures. This allows evaluating
the accuracy property.

 Energy consumption which provides hint on the
network lifespan and the overhead induced by
introducing ANFD.

B. Simulated protocols parameters

In this section we present the considered configuration of

the three simulated protocols using TinyOS2 that we

analyze and compare at the end of this section.

1) Directed Diffusion (DD) [?]

Recall that in DD a source sensor sends sensed data each Ir

(reinforcement interval) time units to the upward node

toward the sink. Besides, each Ie (exploratory interval) time

units, the source sensor broadcats data in order to discover

eventual new routes and hence circumvent failed ones.

2) Fat2D [?]

in this protocol, DD is augmented with a static failure

detection timeout (FDT) calculated as follows:

 ……1

Where Ir, Ie are reinforcement (resp. exploratory) intervals,
and TBL (Tolerated Burst Loss) is the average length of the
burst loss due to intermittent radio transmission failure,

Formula (1) means that FDT equals to the average length of

a burst loss with lower and upper limits: the lower limit is

the exploratory interval where DD naturally discovers new

routes and circumvent failed ones, and the upper limit is two

times the reinforcement interval beneath which we cannot

suspect a loss since the source is not supposed has sent a

new message.

3) ANFD

For ANFD, the initial FDT0 is defined by formula (1). Then,

for FDT update, we check the mistaken suspicions rate 2

after each round (cf. algorithm in fig. ?, line 3). If it exceeds

a fixed threshold , we increase the TBL to tolerate more

burst loss. For this reason, we increase the percentage of

accepted burst loss (say by 10%), and then update TBL by

using the cumulative distribution function (cf. algorithm in

figure ?, lines 4&5). Once TBL is updated, we use formula

(1) to get the new FDT.3

1 FDT←FDT0; threshold←; Ie; Ir; TBL; TBL_rate;
2 For each round:

3 if mistake_rate >  then

4 TBL_rate← TBL_rate+10%

5 TBL= -1/*log(1- TBL_rate)
6 if TBL< 2*Ir then

7 FDT = 2*Ir

8 else if TBL< Ie then

2 Mistaken suspicions rate is the amount of suspicions regarding

total packets loss number.
3 Notice the choice of threshold and increasing percentage can be fixed

according to protocol and application parameters.

9 FDT = TBL

10 else FDT = Ie

Figure 3. FDT update function for Directed Diffusion.

C. Simulation results

In this section we analyze the impact of implementing
ANFD mechanism on DD, with respect to the following
scenarios, and compare it to DD and Fat2D:

1) Impact of failure detection timer on detection period:

we compare DD, Fat2D (equipped with a static failure

detection timer) and ANFD that uses adaptive FDT. We vary

the number of crashes randomly inserted during the

experiment. Results in Erreur ! Source du renvoi

introuvable.show that implementing a failure detection

timer in DD has considerably decreased the required period

for failure detection. Moreover, we clearly notice that using

the new approach ANFD with adaptive timer results in a

faster detection mean time.

Figure 4. Impact of failure detection timers on detection time.

2) Impact of adaptive FDT on packet loss rate: the

second measurement was performed to evaluate the impact

of failure detection on data loss. Since adaptive FDT allows

a prompt detection and then a fast recovery, the new

approach obviously decreases data loss. This is shown by the

graph on Erreur ! Source du renvoi introuvable.where the

packet loss rate in DD increases proportionally to the number

of crashes. Notice that ANFD has considerably decreased

this rate. Moreover, it gives the best results comparing to

static FDT approach implemented in Fat2D.

Figure 5. Impact of failure detection timers on packet loss rate.

3) Impact of failure detection timers on false positive

suspicions: this measurement was performed on Fat2D vs.

ANFD in order to evaluate the accuracy property. In this

scenario there is no process crash (only intermittent failures

are injected using a burst loss model based on a two state

Markov chain). We vary simulation time in order to allow

more intermittent failures for longer periods. For each

experiment, the rate of false suspicions was measured. We

notice in Erreur ! Source du renvoi introuvable.that the

rate of mistaken suspicions is slightly greater in the case of

constant timer (Fat2D), compared to the case of adaptive

timer (ANFD). Actually, SetFDT function makes FDT

updates after each round in order to tolerate more

intermittent failures and prevent mistaken suspicions. This

dynamic increasing offers better accuracy comparing to

constant timer.

Figure 6. Impact of failure detection timers on accuracy property.

4) Impact of failure detection on energy consumption:

the final measurement was performed for the battery use. As

energy consumption is a critical constraint for WSN, it‟s

important to evaluate the impact of implementing a failure

detection mechanism on the amount of battery usage. We

carried out the measurements using PowerTOSSIM-Z [?].

Results in Erreur ! Source du renvoi introuvable.show

that, even though ANFD (or even Fat2D) implements an

additional mechanism for failure detection, they actually

consume energy less than DD. Indeed, while DD wastes a

great amount of energy to send lost data on faulty routes

(after nodes‟ crashes), ANFD detects failures sooner and

hence saves energy consumption by prompt path recovery.

Yet, even if the difference of battery use is small, this result

is promising since the overhead due to implementing an

additional technique for failure detection compensate the

overhead that would have been induced because of useless

transmissions after node failures. However, our adaptive

failure detection technique has the merit to save sensed data

through fast route recovery. Without failure detection

mechanisms, DD either looses data which decreases the

quality of decision making at the application level or relies

on higher transport protocol for eventual retransmission

which would induce great overheads (energy, bandwidth,

storage, computation, etc.).

Figure 7. Impact of failure detection on energy consumption.

VI. CONCLUSION

In this paper, we have presented a new failure detection
solution for WSN (ANFD); where processes interact only
with their 1-hop neighbors using a Q/R scheme. The
algorithm of ANFD is based on adaptive failure detection
timer for crash suspicion. The proposed technique insures 1-
hop completeness and 1-hop accuracy, two properties that
we have introduced in this paper to take into consideration
requirements and constraints of WSN. We carried out
simulations using TinyOS2, and energy profiling using
PowerTOSSIM-Z. The simulation results show that our
solution decreases the failure detection time, packet loss ratio
and suspicion fault positives. Moreover, we demonstrated
that augmenting directed diffusion with our adaptive failure
detection scheme allows not only to save valuable sensed
data through fast route recovery, but also does not induce
extra energy consumption overhead.

REFERENCES

[1] M. K. Aguilera, W. Chen, M. Kawazoe, and A. Wei, S. Toueg.
Heartbeat: A Timeout-Free Failure Detector for Quiescent Reliable
Communication. 1997.

[2] F. Z. Benhamida and Y. Challal: FaT2D: Fault Tolerant Directed
Diffusion. The Fifth International Conference on Availability,
Reliability and Security “ARES 2010–The International
Dependability Conference”. Poland, February 2010.

[3] F. Bonnet and M. Raynal: Looking for the Weakest Failure Detector
for k-Set Agreement in Message-Passing Systems: Is πk the End of
the Road? In Proceedings of the 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems. (SSS '09).
Springer-Verlag, 149-164, France, 2009.

[4] A. Boukerche, R.W.N. Pazzi, and R. B. Araujo. A fast and reliable
protocol for wireless sensor networks in critical conditions
monitoring applications. In Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and
mobile systems (MSWiM '04). ACM, New York, NY, USA, 2004.
157-164.

[5] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 1996.

[6] B. Devianov and S. Toueg. Failure detector service for dependable
computing. In Proc. of the First Int. Conf. on Dependable Systems
and Networks, pages 14–15, juin 2000.

[7] E. O. Elliott. "estimates of error rates for codes on burst-noise
channels". The Bell System Technical Journal, 42:1977–1997, Sept
1963.

[8] C. Fetzer, M. R,aynal and F. Tronel. An Adaptive Failure Detection
Protocol. In Proceedings of the 2001 Pacific Rim international
Symposium on Dependable Computing. Page 146. PRDC. IEEE
Computer Society, Washington, DC. December 17 - 19, 2001.

[9] E. N. Gilbert. "Capacity of a burst-noise channel". The Bell System
Technical Journal, 39:1253–1265, Sept 1960.

[10] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scalable and
efficient distributed failure detectors. In Proc. of the twentieth annual
ACM symposium on Principles of distributed computing, pages 170–
179. ACM Press, 2001.

[11] W.R. Heinzelman, A. Chandrakasan and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks.
In proceedings of 33rd annual Huwaii international Conference. IEEE
Proc. - Maui : Hawaii Int, Janvier 2000. pages. 1–10.

[12] C. Intanagonwiwat, R. Govindan, and D.Estrin. "Directed diffusion: a
scalable and robust communication paradigm for sensor networks". In
ACM Mobicom, pages 56–67. ACM, Aug 2000.

[13] M. Larrea, A. Fernàndez, and S. Arévalo: Optimal implementation of
the weakest failure detector for solving consensus. In Proc. of the
19th Annual ACM Symposium on Principles of Distributed
Computing, pages 334–334, NY, ACM Press, July 16–19 2000.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: “accurate and
scalable simulation of entire tinyos applications”. In Proceedings of
the 1st international conference on Embedded networked sensor
systems, November 05-07. 2003.

[15] A. Mostefaoui, E. Mourgaya, and M. Raynal. Asynchronous
implementation of failure detectors. In Proc. of Int. Conf. on
Dependable Systems and Networks, June 2003.

[16] A.T. Mzrak, Y. Cheng, K. Marzullo and S. Savage. Detecting and
Isolating Malicious Routers. IEEE Transactions on Dependable and
Secure Computing, vol. 3, no. 3, july-september 2006.

[17] P. Sens, L. Arantes, M. Bouillaguet, V. Martin and F. Greve.
Asynchronous Implementation of Failure Detectors with partial
connectivity and unknown participants. Report n°6088.
INRIA.December 2007.

