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Abstract—we consider the problem of failure management in 

wireless sensor networks (WSN). In such networks, nodes can 

be subject to frequent failures due to energy depletion and the 

hostile deployment environment. Our work focuses on local 

crash process detection in WSN considering intermittent 

failures due to lossy radio links. As a part of this problem, we 

introduce a new type of Adaptive Neighborhood Failure 

Detection mechanism (ANFD) that relies on adaptive timers. 

Then we analyze properties of the introduced failure detection 

algorithm and determine how and when timers’ update is 

necessary. We carried out intensive simulations using TinyOS-

2 and evaluated the performance of our solution. Simulation 

results show that our solution improves failure detection rate 

and delay, and reduces fault positive detections and packet loss 

ratio. Moreover, we analyzed energy consumption using 

PowerTossimZ and results demonstrate that our solution does 

not induce extra energy consumption compared to other 

solutions in the literature. 

Keywords- failure management, wireless sensor networks, 

lossy links, process crash. 

I.  INTRODUCTION 

Wireless sensor networks (WSN) are prone to a variety 
of failures due to energy limitations, radio transmissions and 
close coupling with environment where network components 
may be not physically protected. Therefore, fault 
management is one of the critical issues in WSN. It requires 
new communication protocol considering the ability to cope 
with node failures. However, the design of these new 
approaches must respond to the following WSN constraints 
and properties: (1) a node does not necessarily know all the 
nodes of the network due to storage capacity limitations (2) 
the network is not fully connected because of radio range 
limitation, which means that a message sent by a node might 
be routed through a set of intermediate nodes until reaching 
the destination; (3) communication is data-centric: in most 
WSN applications, data is requested by a collector by 
sending a query based on certain attributes. Then, source 
nodes respond with packets containing required information. 
This Query/Response mechanism (denoted here by Q/R) is 
periodically invoked during the lifespan of the network; (4) 
links are prone to failures and may momentarily drop 
messages during transmission; (5) nodes are equipped with 
limited energy batteries: communication protocols have to 

consider this limitation to maintain the network alive as long 
as possible. 

Failure detection has been deeply investigated in the 
literature of distributed systems [5]. However, the proposed 
failure detectors do not meet WSN constraints and 
requirements and rely on assumptions hardly verified in 
WSN. Indeed, most of proposed failure detection classes are 
based on an all-to-all communication approach where each 
process periodically sends a heartbeat message to all 
processes [6][11][13]. As they usually consider a fully 
connected set of known nodes, these implementations are not 
adequate for dynamic and partially connected environments, 
such as WSN. Furthermore, failure detectors are usually 
based on packet acknowledgment [7] where the receiver 
sends back an acknowledgment to the source after every 
packet reception. Otherwise, the sender suspects the receiver 
of having crashed. Both heartbeat and acknowledgment 
mechanisms are not suitable for WSN where processes are 
limited in energy and communication bandwidth. In [14], a 
timer-free asynchronous failure detector has been proposed. 
It is based on an exchange of messages and assumes the 
knowledge of two values: f (the maximum number of 
processes that can crash) and n (the number of nodes in the 
system). Moreover, the computation model consists of a set 
of initially fully connected known nodes. Yet, this timer-free 
approach is not applicable to a partially-connected network 
such as WSN. Some works have been proposed which deal 
with the scalable nature of dynamic systems. Nonetheless, 
few of them tolerate links failures [1][10]. In most of works, 
they only considered systems where process crashes are 
permanent and links are reliable (i.e., they do not lose 
messages). This may increase the risk of mistakes, when the 
failure detector suspects a process of having crashed while 
the packets were lost because of intermittent transmission 
failure due to unreliable links. 

In this paper, we define a new failure detection class 
tailored to the constraints and requirements of WSN, called 
ANFD (Adaptive Neighborhood Failure Detection). Indeed, 
our solution relies on adaptive timers to detect nodes crash 
while considering intermittent failures of radio links. The 
detection of process failures is based only on a local 
perception that the node has on the network and not on 
global exchanged information. The exchanged lists of failure 
suspicions and mistakes are piggybacked into 
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Query/Response messages of the WSN application. Then we 
analyze the properties of the defined class in terms of 
completeness and accuracy of failure detection in typical 
WSN. Furthermore, we carry out simulations using TinyOS2 
to evaluate the performance of the proposed solution. We 
particularly evaluate the induced energy consumption 
overhead using PowerTOSSIM-Z and demonstrate that in 
addition to the benefits of the proposed solution in terms of 
failure detection and recovery, and reducing packet loss ratio 
and fault positive detections, it does not introduce extra 
energy overhead compared to other solutions. 

The paper is organized as follows: after the introduction 
and state of the art presented in this section, we present an 
overview and motivation of the proposed solution in section 
II. In section III, we present the different models assumed for 
the operation of the proposed solution. Then we present a 
detailed description of the solution and its properties in 
section IV. We present simulation results using TinyOS-2 
and PowerTOSSIM-Z and performance evaluation analysis 
and comparison in section V. We end up this paper with 
conclusions in section VI. 

 

II. OVERVIEW 

Let us consider the following simple configuration to 
illustrate the main issues and motivation behind our 
proposal. Consider a system of two processes (i.e. a network 
of two sensor nodes): a data collector Pi and a data source Pj. 
Process Pi wants to inquire regularly some information from 
the network; it sends periodically a query to process Pj. Pj 
responds with a data packet containing required sensed data. 
This is known as a Q/R mechanism. Let us assume first that 
links are reliable which means that messages sent from 
correct processes are successfully transmitted to their 
destination. For process crash detection, we use a Failure 
Detection Timeout (FDTij): if FDTij runs out before receiving 
the expected response, Pi suspects that Pj has crashed. Each 
FDTij value is initiated according to application parameters; 
such as Q/R round trip delay, 1-hop transmission latency, 
etc.  

However, the situation changes if, in addition to process 
crash, link failures may also occur. In fact, with the above 
FDT, Pi may make some mistakes, when the process is still 
correctly working but some messages are lost because of 
lossy links (intermittent failures). For this reason, we need to 
update FDTij value following the lossy pattern of radio links. 

In this paper, we explore the use of adaptive FDT to 
circumvent this obstacle: we use a stochastic approach to 
determine FDT taking into consideration loss ratio, links 
state, transmission delay, etc. It is important to notice that 
FDT is defined between two consecutive neighbor sensors 
instead of any couple of nodes. This allows more accurate 
calculation of FDT that relies then on local predictable 
transmission delay without requiring knowledge about the 
entire system composition and network topology. 
Nevertheless, local suspicions and mistakes will propagate 
throughout the network and hence taken into consideration in 
route maintenance by the overall nodes of the WSN. We 
present thereby, a new failure management class for WSN, 

where each process can query a failure detection module that 
provides information about which process of its neighbors 
has crashed. This information is typically given in a form of 
a list of suspects (Suspectedi, is the list of process Pi 
containing its suspected neighbors). However, mistakes can 
be made: a process may be suspected though it has not 
crashed. Hence, in addition to the Suspectedi list, each 
module has a list of Mistakei where it notifies previous 
mistaken suspicions and retrieves correct processes from 
Suspectedi list. All these notifications are piggybacked on 
Q/R messages using neighborhood interaction to avoid extra 
overhead that would have been induced if dedicated 
signaling packets were used. 

In Erreur ! Source du renvoi introuvable.we illustrate 
the interactions between the different modules with our 
failure detection module: ANFD uses the characteristics of 
the data gathering protocol (e.g. round delay) and the pattern 
of packet losses to determine a timer FDT for each neighbor. 
The neighboring list is given by the network module. 
Furthermore, the data gathering protocol sends (resp. 
receives) Q/R messages to (resp. from) ANFD module in 
order to update (resp. deliver) the lists of suspicions and 
mistakes. Thus, every Q/R message piggybacks information 
about nodes‟ crashes and mistaken suspicions. Moreover, 
both lists updates will lead to a new FDT refresh in order to 
give more accurate notifications in next rounds. 

 

Figure 1.  Different modules interaction. 

 

III. SYSTEM MODEL 

A. Network model 

We consider a sensor network consisting of a finite set V 
of n>1 processes, namely, V= {P1,…,Pn}. There is one 
process per node and they communicate by sending and 
receiving messages via a wireless network. Processes have 
no knowledge about V or n; but, they know a subset of V, 
composed of nodes with whom they previously 
communicated. The system can be represented by a 
communication graph G(V,E) in which V represents the set 

of nodes and E represents the set of radio links. If (Pi,Pj)E 
then Pi and Pj are considered neighbors. Moreover, we 
suppose that the network is f-covering; i.e. the graph G(V,E) 
is (f+1) connected. This property ensures that there is always 
a route between any two nodes of the network in spite of f 
faults. 



B. Failure model 

We assume that sensor nodes of the WSN may crash, as 
it is commonly assumed in the literature [?, ?, …]. Moreover, 
links between two sensor neighbors are considered lossy: 
they may drop messages during transmission. This is 
commonly due to transmission link failure; which is 
intermittent by nature. Subsequently, if a process crashes, it 
will never belong to the network anymore; and has to be 
notified to all its neighbors. However, if it fails to send some 
packets, this loss should be considered as intermittent failure. 
Hence, even if ANFD may suspect a process of having 
crashed while actually the link is down it will be able to 
detect mistaken suspicions once the link is set back.  

C. Data gathering model 

We consider data-centric Q/R based routing protocols. In 
this kind of data gathering models a collector node (also 
known as a sink) periodically broadcasts a data Query to all 
nodes using a multi-hop routing scheme. Each intermediate 
node receives the query from an upstream neighbor, and then 
diffuses it to all its neighboring nodes. When a source 
observes a matching event, it sends back a Response to nodes 
which it should reply to. In the same way, intermediate nodes 
forward the Response until it reaches the sink. Without loss 
of generality, Directed Diffusion [12] is a scheme that 
matches this data gathering model, and we will show further 
how ANFD can improve DD to cope with failures and route 
recovery. 

IV. ADAPTIVE NEIGHBORHOOD FAILURE DETECTION 

We present hereafter ANFD algorithm for process Pi. We 
suggest including ANFD as a module between the layer that 
manages the Q/R messages and the beneath layer. ANFD can 
interact with both layers using four main primitives, and a set 
of variables and procedures introduced in TABLE I.  

TABLE I.  NOTATIONS AND TERMINOLOGY FOR ANFD. 

Variable/ 

Procedure 

Presentation 

Neighborsi List of Pi„s 1-hop neighbors updated outside our 

algorithm1. 

Counteri Round counter at node Pi. Counteri
j is the round counter 

attributed to node Pj at node Pi. The round counter is 

used as a stamp for generated information. 

Suspectedi Set of processes suspected by Pi of having crashed. Each 
element consists of a tuple <Px,counteri

x>; Px is the 

suspected process at time counteri
x. 

Mistakei Set of nodes which were previously suspected of having 
crashed but such suspicions are currently considered to 

be false. Each element consists of a tuple <Px,counteri
x>; 

where Px is a previously suspected process. 

QRLayer.Receive 
(msg) 

Delivers messages to the layer managing Q/R messages 

DLayer.Send 

(msg) 

sends messages to downward layer to be transmitted to 

its destination 

Piggyback(msg, 

suspected, 

mistake, Pi) 

adds to msg, both of suspected and mistake set, and the 

source Pi 

                                                           
1 We suppose that external module updates Neighborsi list each 

time Pi receives a new message from unknown node Pj. 

Retrieve(msg, 

suspected, 
mistake, source) 

reads and returns both suspected and mistake sets from 

msg and their source 

Add(set, <id, 

ctr>) 

Inserts the new process id in the list set or updates the 

attributed ctr if it already exists with a smaller counter. 

SetFDT(Pj)  evaluates and sets or updates the failure detection 
timeout for process Pj. 

Timer.schedule 

(Pj, FDTij) 

triggers a timer FDTij for process Pj. 

Timer.stop(Pj) stops timer FDTij for process Pj. 

Actual 
(<Pl, counterj

l>) 
Statement that returns true if: Pl does not exist in the 
caller‟s (Pi) suspect and mistake lists, or Pl exists in Pi‟s 

lists but with smaller counter. 

A. ANFD algorithm 

We recall that we consider a Q/R data gathering model. 
The algorithm proceeds by rounds. At each Q/R round, a 
node (generally the collector) launches a query broadcast. 
Each node forwards the received Q/R message to the nodes 
in its range until it possibly crashes. The basic principle of 
our approach is to piggyback failure suspicion on the Q/R 
messages, and dispatch this information hop by hop. In 
addition to application data, we add up to each message two 
sets of nodes: Suspectedi (the set of nodes that are suspected 
of being faulty), and Mistakei (the set of the mistakes; the 
nodes that were previously erroneously suspected of being 
faulty). Each node keeps a counter, which is incremented at 
every round. Any new information that is generated by this 
node about failure suspicions or correction of false 
suspicions (mistakes) within a round is tagged with the 
current value of such a counter. This tag mechanism avoids 
obsolete information to be taken into account by nodes. 

ANFD module for process Pi is described in Figure 2.  It 
is composed of two main primitives and one procedure: The 
primitive ANFD.Send(msg) includes both of Suspectedi and 
Mistakei sets in the message msg originated from the upper 
layer (line 4). After piggybacking the information, Pi sends 
the new message to the downward layer (line 5) in order to 
forward it to the destination node. In addition, if the original 
message is a query, Pi initializes a timer for every correct 
known neighbor; say FDTij for node Pj awaiting for a 
response to its query (lines 6-9). At the end of ANFD.Send, 
counteri is incremented by one. If any FDTij runs out (line 
19), Timer.Fire(Pj) is triggered; that is, Pi suspects Pj of 
being faulty. First, it checks if Mistakei list contains Pj, so it 
is removed from it. The new suspicion information is then 
included in Suspectedi with a tag which is equal to the 
current value of counteri or with a greater tag than the one 
associated with Pf in Mistakei set if it was previously inside 
(lines 20-23). This suspicion will be included in the next Q/R 
message when ANFD.Send is executed again.  

The second primitive ANFD.Receive(msg) aims to update 
suspected and mistake sets according to those piggybacked 
on the received message delivered from the downward layer. 
First, Pi retrieves information, namely, both suspected and 
mistake sets with their source node Pj (line 12), then it stops 
FDTij, since the message was successfully delivered (line 
13). Pi checks then if Pj (the source) was recently suspected 
in order to delete it from Suspectedi set and insert it into 
Mistakei with current counteri (lines 14-16). After that, Pi 
calls the UpdateLists procedure in order to treat the received 



information about suspicions and mistakes in Pj‟s message 
(line 17). Finally, QRLayer.Receive sends the new message 
msg to the upward layer (line 18). The two loops of 
procedure UpdateLists handle information about suspected 
(respectively erroneously suspected) processes. Thus, for 
each node Pl included in Suspectedj (resp. Mistakej) set, Pi 
includes Pl in its Suspectedi (resp. Mistakei) set only if it 
received more recent information about Pl status (faulty or 
mistaken of being faulty). In such a case, Pi removes Pl from 
its lists to insert the given more recent information in the 
corresponding set (lines 25-28& 29-32).  

 
1 Init : 

2   suspectedi ← Ø; mistakei ← Ø; counter
i
 ← 0 

3 ANFD.Send(msg): 

4   Piggyback(msg, suspectedi ,mistakei, Pi) 

5   DLayer.Send(msg) 

6   if type(msg) = QUERY then 

7    for all Pj  neighborsi\suspectedi do 

8        FDTij=setFDT(Pj)  

9       Timer.schedule (Pj,FDTij)  

10   counteri = counteri + 1 

11 ANFD.Receive(msg): 

12  Retrieve(msg, suspectedj, mistakej, Pj)  

13  Timer.stop(Pj) 

14  if <Pj,counter
i
j>suspectedi or 

counter
i
j≤counter

i
 then 

15    Add(mistakei, <Pj,counter
i
>) 

16    suspectedi = suspectedi - <Pj,..> 

17   UpdateLists(Pj, suspectedj, mistakej);  

18   QRLayer.receive(msg) 

19 Timer.Fire(Pj): 

20   if <pj ,counter
i
j>  mistakei then 

21     counter
i
 = max(counter

i
, counter

i
j + 1) 

22      mistakei = mistakei - <Pj ,..> 

23 Add(suspectedi, <Pj, counter
i
>) 

24 UpdateLists(Pj, suspectedj, mistakej) : 

25  for all <Pl,counter
j
l > suspectedj do 

26    if(actual(<Pl,counter
j
l>) then 

27      mistakei = mistakei - <Pl,..> 

28      Add(suspectedi,<Pl,counter
j
l>)   

29   for all <Pl, counter
j
l>  mistakej do 

30    If (actual(<Pl,counter
j
l>) then 

31       suspectedi = suspectedi \ <Pl,..> 

32       Add(mistakei, <Pl, counter
j
l>) 

33 end 

Figure 2.  ANFD algorithm. 

B. How to determine FDT (SetFDT function) 

The Failure Detection Timeout (FDT) should be 
dynamically updated while taking into consideration 
transmission failures, communication protocol behavior and 
network dynamics in general. Notice that there is no general 
formula since it depends on the choice of the routing 
protocol and its parameters. We illustrate by an example in 
section V how to set its value for a specific protocol, namely 
Directed Diffusion. In general case, we need to consider the 
following factors: 

 Transmission delay between 1-hop neighbors: to 
estimate the required time for a packet to be 

transmitted from source to destination in a direct link 
(i.e. 1-hop neighbors). 

 Round delay for the Q/R mechanism: ANFD should 
wait at least a round trip of the Q/R messages before 
suspecting any neighbor failure. 

 Tolerated Burst Loss (TBL) in link failure: to 
postpone the suspicion in order to tolerate 
intermittent failures due to packet loss (not process 
crash). Indeed, it has been demonstrated [7][9] that 
losses in wireless networks follow a bursty pattern. 
Therefore, FDT must be at least greater than the 
average value of the TBL. 

 Network activity statistics: network traffic may 
influence the effective delays for packet 
transmission, and packet losses. FDT has to take into 
consideration such actual network traffic and its 
impact on packet transmission delays and losses. 
Knowing that FDT is updated for 1-hop neighbor, it 
is then easy to use such parameter. 
 

In the beginning, since there is no former communication 
to make statistics from, the first FDT value is initially set 
according to hypothetical values of transmission interval and 
latency. After which, FDT is updated using the effective loss 
rate regarding received Q/R messages. Moreover, after each 
mistaken suspicion, FDT must be increased in order to adapt 
the failure detection mechanism to the network activity and 
avoid notifying link failures (i.e. packet loss) as crashes. 

C. Properties of the new failure detection class for WSN 

Any failure detector FD is characterized by two 
properties: completeness and accuracy [5]. Completeness 
requires that FD eventually suspects every process that 
actually crashed, while accuracy limits the mistakes FD can 
make. Since we have considered network and failure models 
tailored to WSN, we define new completeness and accuracy 
properties that better suite our network, failure and data 
gathering models: 

 

Definition 1 (1-hop-Completeness):There is a time after 

which every process Pi that crashes is suspected by all its 

correct neighbors.  
 Pi crashes,  PjNeighborsi, T:  t>, Pi  Suspectedj  

This property satisfies strong completeness limited to 1-hop 

neighborhood. 

 

Definition 2 (1-hop-Accuracy):There is a time after which 

some correct processes are never suspected by any correct 

neighbor.  
 Pi correct,  PjNeighborsi, Pj correct, T:  t>, Pj  Suspectedj  

 

This property defines the eventual weak accuracy limited to 

1-hop  neighbors. 

 

The merit of these new definitions is to provide adequate 

measurement tools of completeness and accuracy of failure 

detection tailored to the limitations and requirements of 



WSN. Indeed, if strong completeness and accuracy are 

mandatory in conventional distributed systems, in WSN 1-

hop-completeness and 1-hop-accuracy are enough for route 

update provided that the network remains connected (f-

covering property). Therefore, due to energy, storage and 

bandwidth limitations, every node monitors only its direct 

neighbors, even though the information (Query resp. 

Response) is initiated by a further node (sink resp. source). 

Later, suspicion notifications sent initially to neighbor nodes 

will reach on-route nodes to the sink and hence update their 

routes consequently. Finally, notice that, using this local 

interaction is energy efficient as will be demonstrated in 

performance evaluation section through simulations using 

TinyOS2 and PowerTOSSIM-Z. 

 
Proposition: ANFD guarantees the following properties: 
- 1-hop-completeness 
- 1-hop-accuracy 
 
Proof:  
 
 
 

V. PERFORMANCE EVALUATION 

In this section, we present simulation results with respect 
to the adaptive FDT used in the new proposal ANFD. We 
will focus mainly on the outcome of using adaptive failure 
detection timer that allows, as we will see, to enhance failure 
detection with the presence of intermittent failures due to 
packet losses. We carried out the simulations using TinyOS2 
[?] augmented with PowerTOSSIM-Z [?] for energy 
consumption profiling. 

A. Simulation model 

We will consider Directed Diffusion (DD); a Q/R based 
data gathering protocol, as a basis for our study. DD does not 
use any failure management mechanism; it relies instead on 
periodic diffusion of exploratory data to circumvent eventual 
faulty nodes. We have implemented DD in TOSSIM/TinyOS 
[14] environment. We consider a network composed of 50 to 
100 nodes randomly deployed. We modeled packet loss 
using a two-state Markov chain [7][9]. We simulate node 
crashes by running a python script that selects a subset of 
nodes to turn off (node i crashes at time t) following an 
exponential law. In order to illustrate the outcome of using 
adaptive failure detection, we considered several simulation 
scenarios using original DD without failure detection, Fat2D 
[?] (DD with constant FDT) and the proposed solution: DD 
augmented with ANFD (DD equipped with adaptive FDT). 
We were interested in four main metrics: 

 the failure detection time which is the required 
period between failure occurrence and its detection.  

 The packet loss rate, defined by the proportion of 
lost data due to route breakdown after some node 
crashes. The performance of ANFD is greater when 
it can decrease the amount of lost data. 

 The mistaken suspicions rate or false positive rate 
defined by the proportion of falsely suspected nodes 
due to intermittent failures. This allows evaluating 
the accuracy property. 

 Energy consumption which provides hint on the 
network lifespan and the overhead induced by 
introducing ANFD.  

B. Simulated protocols parameters 

In this section we present the considered configuration of 

the three simulated protocols using TinyOS2 that we 

analyze and compare at the end of this section. 

1) Directed Diffusion (DD) [?]  

Recall that in DD a source sensor sends sensed data each Ir 

(reinforcement interval) time units to the upward node 

toward the sink. Besides, each Ie (exploratory interval) time 

units, the source sensor broadcats data in order to discover 

eventual new routes and hence circumvent failed ones. 

2) Fat2D [?] 

in this protocol, DD is augmented with a static failure 

detection timeout (FDT) calculated as follows: 

       

                               
                               
                                            

    ……1 

Where Ir, Ie are reinforcement (resp. exploratory) intervals, 
and TBL (Tolerated Burst Loss) is the average length of the 
burst loss due to intermittent radio transmission failure,  

Formula (1) means that FDT equals to the average length of 

a burst loss with lower and upper limits: the lower limit is 

the exploratory interval where DD naturally discovers new 

routes and circumvent failed ones, and the upper limit is two 

times the reinforcement interval beneath which we cannot 

suspect a loss since the source is not supposed has sent a 

new message. 

3) ANFD  

For ANFD, the initial FDT0 is defined by formula (1). Then, 

for FDT update, we check the mistaken suspicions rate 2 

after each round (cf. algorithm in fig. ?, line 3). If it exceeds 

a fixed threshold , we increase the TBL to tolerate more 

burst loss. For this reason, we increase the percentage of 

accepted burst loss (say by 10%), and then update TBL by 

using the cumulative distribution function (cf. algorithm in 

figure ?, lines 4&5). Once TBL is updated, we use formula 

(1) to get the new FDT.3 

1 FDT←FDT0; threshold←; Ie; Ir; TBL; TBL_rate; 
2 For each round: 

3  if mistake_rate >  then 

4      TBL_rate← TBL_rate+10% 

5     TBL= -1/*log(1- TBL_rate) 
6     if TBL< 2*Ir then 

7   FDT = 2*Ir 

8     else if TBL< Ie then 

                                                           
2 Mistaken suspicions rate is the amount of suspicions regarding 

total packets loss number. 
3 Notice the choice of threshold and increasing percentage can be fixed 

according to protocol and application parameters. 



9   FDT = TBL 

10    else  FDT = Ie 

Figure 3.  FDT update function for Directed Diffusion. 

C. Simulation  results 

In this section we analyze the impact of implementing 
ANFD mechanism on DD, with respect to the following 
scenarios, and compare it to DD and Fat2D: 

1) Impact of failure detection timer on detection period: 

we compare DD, Fat2D (equipped with a static failure 

detection timer) and ANFD that uses adaptive FDT. We vary 

the number of crashes randomly inserted during the 

experiment. Results in Erreur ! Source du renvoi 

introuvable.show that implementing a failure detection 

timer in DD has considerably decreased the required period 

for failure detection. Moreover, we clearly notice that using 

the new approach ANFD with adaptive timer results in a 

faster detection mean time. 

 
Figure 4.  Impact of failure detection timers on detection time. 

 

2) Impact of adaptive FDT on packet loss rate: the 

second measurement was performed to evaluate the impact 

of failure detection on data loss. Since adaptive FDT allows 

a prompt detection and then a fast recovery, the new 

approach obviously decreases data loss. This is shown by the 

graph on Erreur ! Source du renvoi introuvable.where the 

packet loss rate in DD increases proportionally to the number 

of crashes. Notice that ANFD has considerably decreased 

this rate. Moreover, it gives the best results comparing to 

static FDT approach implemented in Fat2D. 

 

Figure 5.  Impact of failure detection timers on packet loss rate. 

 

3) Impact of failure detection timers on false positive 

suspicions: this measurement was performed on Fat2D vs. 

ANFD in order to evaluate the accuracy property. In this 

scenario there is no process crash (only intermittent failures 

are injected using a burst loss model based on a two state 

Markov chain). We vary simulation time in order to allow 

more intermittent failures for longer periods. For each 

experiment, the rate of false suspicions was measured. We 

notice in Erreur ! Source du renvoi introuvable.that the 

rate of mistaken suspicions is slightly greater in the case of 

constant timer (Fat2D), compared to the case of adaptive 

timer (ANFD). Actually, SetFDT function makes FDT 

updates after each round in order to tolerate more 

intermittent failures and prevent mistaken suspicions. This 

dynamic increasing offers better accuracy comparing to 

constant timer. 

 
Figure 6.  Impact of failure detection timers on accuracy property. 

4) Impact of failure detection on energy consumption: 

the final measurement was performed for the battery use. As 

energy consumption is a critical constraint for WSN, it‟s 

important to evaluate the impact of implementing a failure 

detection mechanism on the amount of battery usage. We 

carried out the measurements using PowerTOSSIM-Z [?]. 

Results in Erreur ! Source du renvoi introuvable.show 



that, even though ANFD (or even Fat2D) implements an 

additional mechanism for failure detection, they actually 

consume energy less than DD. Indeed, while DD wastes a 

great amount of energy to send lost data on faulty routes 

(after nodes‟ crashes), ANFD detects failures sooner and 

hence saves energy consumption by prompt path recovery. 

Yet, even if the difference of battery use is small, this result 

is promising since the overhead due to implementing an 

additional technique for failure detection compensate the 

overhead that would have been induced because of useless 

transmissions after node failures. However, our adaptive 

failure detection technique has the merit to save sensed data 

through fast route recovery.  Without failure detection 

mechanisms, DD either looses data which decreases the 

quality of decision making at the application level or relies 

on higher transport protocol for eventual retransmission 

which would induce great overheads (energy, bandwidth, 

storage, computation, etc.). 

 

Figure 7.  Impact of failure detection on energy consumption. 

 

VI. CONCLUSION 

In this paper, we have presented a new failure detection 
solution for WSN (ANFD); where processes interact only 
with their 1-hop neighbors using a Q/R scheme. The 
algorithm of ANFD is based on adaptive failure detection 
timer for crash suspicion. The proposed technique insures 1-
hop completeness and 1-hop accuracy, two properties that 
we have introduced in this paper to take into consideration 
requirements and constraints of WSN. We carried out 
simulations using TinyOS2, and energy profiling using 
PowerTOSSIM-Z. The simulation results show that our 
solution decreases the failure detection time, packet loss ratio 
and suspicion fault positives. Moreover, we demonstrated 
that augmenting directed diffusion with our adaptive failure 
detection scheme allows not only to save valuable sensed 
data through fast route recovery, but also does not induce 
extra energy consumption overhead.  
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