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In this paper we investigate multifractal decompositions based on values of Birkhoff averages of functions from a class of symbolically continuous functions. This will be done for an expanding interval map with infinitely many branches and is a generalisation of previous work for expanding maps with finitely many branches. We show that there are substantial differences between this case and the setting where the expanding map has only finitely many branches.

Setting

Let (X, d) be a metric space and T : X → X be a piecewise continuous transformation. Let φ : X → R be a real-valued function (called a potential). The Birkhoff average of φ is defined by

A n φ(x) := 1 n n-1 j=0 φ(T j x).
With respect to an ergodic measure, for a measurable potential φ, the Birkhoff averages A n φ(x) almost surely converge to the integral of φ. However, since for an expanding map there is a large family of ergodic measures, the Birkhoff averages can take a wide variety of values. From the point of view of multifractal analysis, one considers the size (Hausdorff dimension) of the level sets of the limit of the Birkhoff averages. That is, for a given level α ∈ R, the Hausdorff dimension of the set x ∈ X : lim n→∞ A n φ(x) = α .

There has been a substantial amount of works on this multifractal analysis, especially for expanding interval maps with finitely many branches. The first example we know where a problem of this type was studied is the work of Besicovitch in [START_REF] Besicovitch | On the sum of digits of real numbers represented in the dyadic system[END_REF] on the Hausdorff dimension of sets determined by the frequency of the digits in dyadic expansions. This can be viewed as a multifractal analysis of the Birkhoff averages of the indicator functions for the doubling map. This work was subsequently extended by Eggleston [START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF] and many others [BS00, Caj81, Dur97, Oli98, Oli00, Ols02, Ols03b, OW03, PS07, Vol58]. For a continuous potential, the case of mixing subshift of finite type is studied in several papers including [BS01, BSS02b, BSS02a, FF00, FFW01, FLW02, Ols03a, Oli99, OW07, PW01, Tem01]. In [START_REF] Feng | Ergodic limits on the conformal repellers[END_REF] Feng, Lau and Wu proved a conditional variational principle for continuous potentials in the setting of general conformal expanding maps and in [START_REF] Barreira | Variational principles and mixed multifractal spectra[END_REF] Barreira and Saussol showed that this conditional variational principle varies analytically for Hölder potentials. In [START_REF] Takens | On the variational principle for the topological entropy of certain non-compact sets[END_REF] Takens and Verbitzkiy considered systems with specification property and calculated the topological entropy of the level sets. In [START_REF] Hofbauer | Multifractal spectra of Birkhoff averages for a piecewise monotone interval map[END_REF], Hofbauer studied the entropy of the level set of Birkhoff averages for piecewise monotone interval maps. It is also possible to study a countable family of piecewise continuous potentials. This case was investigated by Olsen [START_REF]Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages[END_REF], Olsen and Winter [START_REF]Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II. Non-linearity, divergence points and Banach space valued spectra[END_REF] for subshifts of finite type and conformal iterated function systems and by Fan, Liao and Peyrière [START_REF] Fan | Generic points in systems of specification and Banach valued Birkhoff ergodic average[END_REF], in terms of topological entropy, for systems satisfying the specification property.

In particular in [START_REF]Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages[END_REF], the following situation is considered. Let T : [0, 1] → [0, 1] be a C 1 expanding map and for i ∈ N let φ i : [0, 1] → R be continuous functions. For a vector α ∈ R N let

X α :=    x ∈ [0, 1] : lim n→∞ 1 n n-1 j=0 φ i (T j x) = α i for all i ∈ N    .
It is shown that if X α = ∅ there exists a T -invariant measure µ such that φ i dµ = α i for all i ∈ N and dim X α = sup h(µ) λ(µ) : φ i dµ = α i for all i ∈ N .

Here dim stands for the Hausdorff dimension, h(µ) denotes the measure theoretic entropy of µ and λ(µ) = log(|T ′ (x)|)dµ is the Lyapunov exponent of µ. The aim of this paper is to look at expanding maps T on a non-compact space where T has a countable number of inverse branches. While much of the same theory still holds there are also substantial differences.

In the setting of expanding maps with a countable number of branches, there have been several papers looking at multifractal analysis. Most of these papers concentrate on the local dimension of Gibbs' measures or specific examples of continuous potentials, for example log |T ′ | concerning the Lyapunov exponent. Of particular relevance to our work are the papers [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF] and [START_REF] Fan | Dimension of Besicovitch-Eggleston sets in countable symbolic space[END_REF] which consider the frequency of digits for certain maps with a countable number of branches. This can be viewed as an example of multifractal analysis for Birkhoff averages of a specific family of potentials. A notable feature of these papers is that frequencies of digits which sum to less than 1 still yield positive dimension. However such sets cannot be related to an invariant measure. There is also a preprint [START_REF] Iommi | Multifractal analysis of birkhoff averages for countable markov maps[END_REF], which considers the case of one piecewise continuous potential with certain properties. Our main aim is to generalize these results to more general families of potentials and more general countable expanding maps with a countable number of branches. Related questions are also studied in certain non-conformal settings [START_REF] Reeve | Infinite non-conformal iterated function systems[END_REF][START_REF] Käenmäki | Multifractal analysis of birkhoff averages for typical infinitely generated self-affine sets[END_REF].

Let {I i } ∞ i=1 be a countable collection of disjoint subintervals of [0, 1]. Let T i :

I i → [0, 1] be a bijective C 1 map such that |T ′ i (x)| ≥ ξ > 1.
By this we will mean that T i can be extended to a C 1 diffeomorphism from an open neighbourhood of I i to an open neighbourhood of [0, 1] which maps I i to [0, 1]. We define the map T : ∪I i → [0, 1] as follows. If x is not a common end point of two intervals, define

T (x) = T i (x) if x ∈ I i .
Otherwise we simply set T (x) = T l (x) where l = min{j : x ∈ I j }.

Consider the full shift (Σ, σ) with Σ = N N and the natural projection Π : Σ → [0, 1] defined by

Π(i) = lim n→∞ T -1 i1 • • • • • T -1 in ([0, 1]). Let Λ = Π(Σ).
Then (Λ, T ) defines a dynamical system. We remark that the space Λ is not necessarily compact and it could also be a Cantor type set. We will denote

E := {x ∈ Λ : #Π -1 (x) ≥ 2}
and note that this set is at most countable and so for any set Ω ⊂ Λ we have that dim Ω = dim Ω\E. To avoid confusion with the notion of the derivative of T we will adopt the convention that for x ∈ Λ T ′ (x) = T ′ l (x) where l = min{j : x ∈ I j }. We will also assume that the variations of log |T ′ | converge uniformly to 0 (defined precisely in Section 2, see Definition 2.1).

Let M(T ) be the set of T -invariant probability measures on Λ and note that they must assign 0 measure to E. Thus Π gives a bijection between the set of shift invariant probability measures and T -invariant probability measures. To avoid complications when we refer to weak* limits of a sequence of measures we will always mean weak* limits of the measures in the symbolic space.

Given a sequence of functions φ i : Λ → R (i ∈ N), which satisfy that the variations tend uniformly to 0 (again see Definition 2.1), we will denote the Birkhoff averages

A n φ i (x) = 1 n n-1 j=0 φ i (T j x).
We wish to study the possible limit points in R N of the Birkhoff average sequences {A n φ i (x)} n∈N by investigating the sets of the form

Λ γ = {x ∈ Λ : lim n→∞ A n φ i (x) = γ i for all i ∈ N}, γ ∈ R N .
The following sets will describe the possible limits of the Birkhoff averages. Let

Z 0 = γ ∈ R N : ∃µ ∈ M(T ), ∀i ∈ N, φ i dµ = γ i .
We will denote by Z the closure of Z 0 in the pointwise limit topology. That is to say, γ ∈ Z means that for any ε > 0 and any k ∈ N there exists a T -invariant probability measure µ such that

∀1 ≤ i ≤ k, φ i dµ -γ i ≤ ε.
For a T -invariant probability measure µ let h(µ) and λ(µ) denote the measure theoretic entropy and the Lyapunov exponent of µ respectively. See Section 2 for formal definitions.

Our aim is to find the Hausdorff dimension of Λ γ and consider how the dimension varies with γ. The known results for dynamical systems of finite branches suggest three natural candidates in the infinite case. Given γ ∈ Z, let

α 1 (γ) = lim ε→0 lim k→∞ sup µ∈M(T ) h(µ) λ(µ) : φ i dµ -γ i < ε ∀i ≤ k, h(µ) < ∞ .
Let α 2 be a similar function, the difference being that the supremum is taken over ergodic measures (M E (T )):

α 2 (γ) = lim ε→0 lim k→∞ sup µ∈ME (T ) h(µ) λ(µ) : φ i dµ -γ i < ε ∀i ≤ k, h(µ) < ∞ .
Finally, for γ ∈ Z 0 we will define

α 3 (γ) = sup µ∈M(T ) h(µ) λ(µ) : φ i dµ = γ i ∀i ∈ N, h(µ) < ∞ .
We can now state our main theorems.

Theorem 1.1. For γ / ∈ Z, we have Λ γ = ∅. For all γ ∈ Z, we have

dim Λ γ = α 1 (γ) = α 2 (γ).
We would like to state the spectrum using the function α 3 , too (hence, without the awkward limits in k and ε). However, as shown in [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF] and [START_REF] Fan | Dimension of Besicovitch-Eggleston sets in countable symbolic space[END_REF], the spectrum is not necessarily equal to α 3 (γ). One particular problem is that there might be points in Z \ Z 0 that are limits of the Birkhoff averages of φ i for some x ∈ Λ (while, not belonging to Z 0 , they are not averages of potentials φ i for any invariant measure). Another problem is that even for points in Z 0 the spectrum needs not to be the supremum of h/λ over invariant measures with given averages of φ i .

We are only able to present the "exact" type statement for bounded potentials, and the proof involves more steps than for the "approximate" type statements of Theorem 1.1. We also need to introduce the quantity,

s ∞ = inf s ≥ 0 : i∈N diam(I i ) s < ∞ .
Observe that 0 ≤ s ∞ ≤ 1. The exponent s ∞ will play an important role.

Theorem 1.2. If the potentials φ i are all bounded then for all γ ∈ Z 0 we have

dim Λ γ = max s ∞ , α 3 (γ) , while for all γ ∈ Z \ Z 0 we have dim Λ γ = s ∞ .
The rest of the paper is structured in the following way. In Section 2 we give some results based on the distortion of the functions and the topological pressure. Next we use Section 3 to introduce the main tools we will use to prove Theorems 1.1 and 1.2. Section 4 gives the proof of Theorem 1.1 and the proof of Theorem 1.2 is given in Sections 5 and 6. Finally in Section 7 we give some examples of our results, including frequency of digits, harmonic averages for continued fractions and multifractal spectra with flat regions.

At the end of this section, we would like to give a list of the notation which will be used in this paper.

• Σ = N N : the full shift with the shift transformation σ.

• Σ q = {1, . . . , q} N : the symbolic space of q symbols.

• [ω 1 , • • • , ω n ] : nth level cylinder set in Σ. • C n (ω) = C n (x) = C n (ω 1 • • • ω n ) with x = Πω, ω ∈ [ω 1 , • • • , ω n ] : nth level basic interval in Λ. • φ, φ i : functions on Λ; f = φ • Π, f i = φ i • Π : the corresponding functions on Σ. • A n φ i (x) = 1 n n-1 j=0 φ i (T j x) : Birkhoff averages of φ i .
• µ, µ j : measures on Λ; ν, ν j , η, η j : measures on Σ.

• λ i : the maximal contraction ratio of map T i .

• ψ k (x) = 1 k sup y∈C k (x) log |(T k ) ′ (y)|. • ξ k (µ) = ψ k dµ. • dim A : Hausdorff dimension of a set A. • h(µ) : entropy of µ. • λ(µ) : Lyapunov exponent of µ. • For (ω 1 , . . . , ω n ) ∈ N n , (ω 1 , . . . , ω n ) denotes the periodic point τ ∈ Σ such
that for any a ∈ N and 1 ≤ b ≤ n τ an+b = ω b .

Topological pressure and Distortion

We first introduce several useful quantities (including entropy, Lyapunov exponent, pressure) and a variational condition on potentials which ensures a distortion result.

We start by defining cylinders and basic intervals in our setting. Let ω ∈ Σ. Denote by [ω 1 , • • • , ω n ] the nth level cylinder. The nth level basic interval determined by ω is

C n (ω) = C n (ω 1 , . . . , ω n ) = T -1 ω1 • • • • • T -1
ωn ([0, 1])\E. Sometimes, we also write this basic interval by C n (x) with x = Πω.

Two key concepts for this paper will be the measure theoretic entropy and the Lyapunov exponent of an invariant measure. For a T -invariant probability measure µ we define its entropy ([MU03], pages 292-293) by

h(µ) = lim n→∞ 1 n (ω1...,ωn)∈N n µ(C n (ω 1 , . . . , ω n )) • log µ(C n (ω 1 , . . . , ω n ))
and its Lyapunov exponent by

λ(µ) = log |T ′ (x)|dµ(x).
It is well known that h(µ) ≤ λ(µ). However it is possible that they could both be infinite.

We now consider the regularity conditions we will need our potential functions φ i to satisfy. For φ : Λ → R define its nth variation by

var n (φ) = sup{|φ(x) -φ(y)| : x, y ∈ C n (ω), ω = (ω 1 , . . . , ω n ) ∈ N n }.
It is clear that var n (φ) decreases as n tends to ∞ and that lim n var n (φ) = 0 means f := φ • Π is uniformly continuous on Σ when Σ is equipped with the usual metric.

Definition 2.1. Let φ : Λ → R. We say that φ has variations uniformly converging to 0 if var 1 (φ) < ∞ and lim n→∞ var n (φ) = 0.

Given a basic interval C n (ω 1 , . . . , ω n ) we define

M * φ(ω 1 , . . . , ω n ) = sup x∈Cn(ω1,...,ωn) A n φ(x) M * φ(ω 1 , . . . , ω n ) = inf
x∈Cn(ω1,...,ωn)

A n φ(x).

Lemma 2.2. Let φ : Λ → R have variations uniformly tending to 0. Then

lim n→∞ sup (ω1...,ωn)∈N n M * φ(ω 1 , . . . , ω n ) -M * φ(ω 1 , . . . , ω n ) = 0.
Proof. The result immediately follows from the following estimation: for fixed n ∈ N we have

|M * φ(ω 1 , . . . , ω n ) -M * φ(ω 1 , . . . , ω n )| ≤ 1 n n j=1 var j φ = o(1).
Since we are assuming that log |T ′ (x)| has variations uniformly tending to 0, this lemma has an immediate consequence on the size of basic intervals.

Lemma 2.3. For any ω ∈ Σ | log(diam(C n (ω))) -nA n (-log |T ′ • Π(ω)|)| = o(n).
Proof. This can be proved straightforwardly since by the mean value theorem we have log(diam

(C n (ω)) = nA n (-log |T ′ • Π(τ )|)
for some τ ∈ Σ such that (τ 1 , . . . , τ n ) = (ω 1 , . . . , ω n ). We can then apply Lemma 2.2 to φ = log |T ′ | which was assumed to have variations tending uniformly to 0. Now it is time to refer to the notion of pressure of a potential. If φ : Λ → R is a function with variations uniformly tending to 0 then we define its pressure by

P (φ) = sup µ∈M(T ) h(µ) + φdµ : φdµ > -∞ .
This can be alternatively stated as (see [START_REF] Mauldin | Graph directed Markov systems[END_REF], p. 7) (2.1)

P (φ) = lim n→∞ 1 n log |ω|=n e Sn(φ•Π(ω)) .
Notice that it is possible that

P (φ) = ∞.
Finally we prove some important results regarding the relationship between the topological pressure and s ∞ . Observe that t → P (-t log

|T ′ |) is decreasing because log |T ′ (x)| > 0.
Lemma 2.4. We have

s ∞ = inf {t ≥ 0 : P (-t log |T ′ |) < ∞} .
Proof. For convenience we will let

ψ(x) = -log |T ′ l (x)|, G(x) = log diam(I l )
where l = min{j : x ∈ I j }. To complete the proof simply note that if P (tG) < ∞ or P (tψ) < ∞ then by (2.1) we have |P (tG) -P (tψ)| ≤ t var 1 (ψ).

Lemma 2.5. There exists a sequence of T -invariant probability measures {µ n } n∈N such that

lim n→∞ λ(µ n ) = ∞, lim n→∞ h(µ n ) λ(µ n ) = s ∞ .
Proof. We suppose s ∞ > 0 and leave the easy case s ∞ = 0 to readers. We start by fixing ε > 0 and noting that for any T -invariant measure µ such that h(µ) λ(µ) ≥ s ∞ +2ε we have

P (-(s ∞ + ε) log |T ′ |) ≥ h(µ) -(s ∞ + ε)λ(µ) ≥ ελ(µ)
and so λ(µ)

≤ P (-(s∞+ε) log |T ′ |) ε . We now take two sequences {t n } n∈N and {k n } n∈N such that for each n, t n < s ∞ , lim n→∞ t n = s ∞ and lim n→∞ k n = ∞. Since for all n we have that P (-t n log |T ′ |) = ∞, by variational principle, we can find a sequence of T -invariant measures µ n such that h(µ n ) -t n λ(µ n ) ≫ 1,
and hence h(µn) λ(µn) > t n . Furthermore, by the fact that λ(µ) ≥ h(µ), we can have

λ(µ n ) ≥ k n .
However, for any ε > 0, if

k n ≥ P (-(s∞+ε) log |T ′ |) ε then h(µn) λ(µn) ≤ s ∞ + 2ε. So, lim n→∞ h(µ n ) λ(µ n ) = s ∞ .

Tools

It will be useful for us to describe in some details the main tools we are going to use. They are already used in the literature in the finite symbolic case, but in this paper we are working with infinitely many symbols and this introduces some minor changes. We remind the reader that (Σ, σ) is the full shift on one-sided symbolic space over an infinite alphabet.

Bernoulli approximation.

In this section we will present a process of using sets of cylinders to define Bernoulli type ergodic measures. This is a similar idea to the Misurewicz's proof of the variational principle but here we also exploit the structure of the symbolic space. Since we are in a non-compact setting, an added complication is that weak* limits of measures will not always exist.

Let φ : Σ → R have variations uniformly tending to 0. Let f = φ • Π. We prove the following result.

Proposition 3.1. Let ε > 0 and n ∈ N be fixed. Suppose that

var n (A n φ) ≤ ε, var n (A n log |T ′ |) ≤ ε.
For any set J ⊆ N n and any probability vector {p j } j∈J (0 < p j < 1, j∈J p j = 1), we can find an ergodic T -invariant measure µ such that

(1) φdµ ∈ (γ 1 -ε, γ 1 + ε) (2) λ(µ) ∈ (γ 2 -ε, γ 2 + ε). (3) h(µ) = 1/n j∈J p j log p j where γ 1 = 1 n j∈J p j S n f (j), γ 2 = 1 n j∈J p j log diam(Π(j)).
Proof. For convenience define Ψ : Σ → R by

Ψ(ω) = log |(T n ) ′ (Πω)|.
Each j in J defines a cylinder. We start by defining a σ n -invariant Bernoulli measure ν n on Σ by assigning each cylinder j ∈ J the weight p j . This measure will satisfy (1)

1 n S n f dν n ∈ (γ 1 -ε, γ 1 + ε) (2) 1 n S n (log T ′ • Π)dν n ∈ (γ 2 -ε, γ 2 + ε) (3) h(ν n , σ n ) = -j∈J p j log p j . Then define a σ-invariant measure ν = 1 n n-1 l=0 ν n • σ -l .
Since the measure ν n is σ n -ergodic, ν is σ-ergodic. By straightforward calculations and Abramov's formula for entropy (see [START_REF] Przytycki | Conformal fractals: ergodic theory methods[END_REF], Theorem 2.4.6 page 32), the above three formulas can be written for ν as (1)

f dν ∈ (γ 1 -ε, γ 1 + ε), (2) log T ′ • Πdν ∈ (γ 2 -ε, γ 2 + ε), (3) h(ν, σ) = -1
n j∈J p j log p j . To finish the proof we simply let

µ = ν • Π -1 .
We will use this proposition in two ways. One is to construct measures from sets of cylinders where the Birkhoff averages for certain potentials will be the same. The other is to approximate invariant measures with ergodic measures.

Let

k ∈ N. For γ = (γ 1 , . . . , γ k ) ∈ R k , denote by Σ(γ) the following set of cylinders in Σ [ω 1 , . . . , ω n ] : A n φ i (Πω) ∈ (γ i -ε, γ i + ε), ∀ω ∈ [ω 1 , . . . , ω n ], ∀1 ≤ i ≤ k . Corollary 3.2. Fix k ∈ N, γ = (γ 1 , . . . , γ k ) ∈ R k and n ∈ N. If there exists s such that Σ(γ) diam([ω 1 , . . . , ω n ]) s = 1, and K := - Σ(γ) diam([ω 1 , . . . , ω n ]) s log diam([ω 1 , . . . , ω n ]) < ∞.
Then there exists a T -invariant ergodic measure µ such that

φ i dµ ∈ (γ i -ε, γ i + ε), ∀1 ≤ i ≤ k, and h(µ) λ(µ) -s ≤ ε K -ε .
Proof. We simply apply Proposition 3.1 with J = Σ(γ) and with diam([ω 1 , . . . , ω n ]) s as probabilities.

Corollary 3.3. If there exists a T -invariant measure µ and a vector

γ ∈ R k (k ∈ N) such that λ(µ) < ∞; ∀1 ≤ i ≤ k, φ i dµ = γ i ,
then there exist strictly increasing sequences of integers {q ℓ }, {n ℓ }, and a sequence of

T n ℓ -invariant Bernoulli measures {µ ℓ } supported on Π(Σ q ℓ ) such that (1) lim n→∞ A n φ i dµ ℓ = γ i for 1 ≤ i ≤ k, (2) lim ℓ→∞ h(µ ℓ , T n ℓ ) = h(µ), (3) lim ℓ→∞ λ(µ ℓ , T n ℓ ) = λ(µ).
Proof. Take such an invariant measure µ. For any ε > 0 we can find N ∈ N and q ∈ N such that for any n ≥ N

(1) var n {A n (log .

T ′ • Π)} ≤ ε, (2) For each 1 ≤ i ≤ k, max i {var n (A n φ i )} ≤ ε, (3) For each 1 ≤ i ≤ k, ω1,...,ωn μ(Π[ω 1 , . . . , ω n ])A n φ i (Π(ω 1 , . . . , ω n )) -γ i ≤ ε, (4) 
We can now apply the first part of the proof of Proposition 3.1 to construct our sequence of measures. We could go on to get a sequence of T -ergodic measures. However, these T n ℓ -ergodic measures µ ℓ will actually be more useful for our purposes.

W-measures.

The main tool to prove the lower bound of our Theorems will be to use the technique of w-measures used in [START_REF] Gelfert | The Lyapunov spectrum of some parabolic systems[END_REF]. This involves using a sequence of ergodic measures to define a new measure which we will use to calculate the lower bound for the dimension.

Theorem 3.4. Let {µ j } ∞ j=1 be a sequence of T -invariant measures of finite entropy such that the following limits exist

γ i = lim j→∞ φ i dµ j , ∀i ∈ N.
Then for γ = (γ i ) i∈N we have

dim Λ γ ≥ lim sup h(µ j ) λ(µ j ) .
Proof. This statement is analogous to the one proven in [GR09, Proposition 9, Theorem 3] in the special case: it was a finite iterated function system, the measures µ j were Gibbs and there was only one potential φ = log |T ′ |. The proof of the general statement is analogous, but there are some changes so we rewrite it.

By choosing a subsequence we can freely assume that h(µ j )/λ(µ j ) have a limit.

To begin, we are not going to use the measures µ j directly. Fix a sequence ε j → 0, by Corollary 3.3, for each j, there exist an integer n j and a Gibbs (even Bernoulli) T nj -invariant measure µ ′ j such that (1)

A n φ i dµ ′ j -γ i < ε j /2 for 1 ≤ i ≤ j, (2) |h(µ ′ j , T nj ) -h(µ j )| < ε j /2, (3) |λ(µ ′ j , T nj ) -λ(µ j )| < ε j /2. Then let (3.1) η j = 1 n j nj -1 l=0 µ ′ j • Π • σ -l .
The family {η j } ∞ j=1 has the following properties: -h(η j ) = 1 nj h(µ ′ j ; σ nj ), -each measure η j is supported on a symbolic space Σ qj with only finitely many symbols, the sequence {q j } is in general unbounded. Note that Σ qj is compact, hence each

f i = φ i • Π is bounded on Σ qj , - h(η j ) λ(η j ) - h(µ j ) λ(µ j ) ≤ ε j , -for all 1 ≤ i ≤ j f i dη j -φ i dµ j ≤ ε j .
Let {m j } be a fast increasing sequence of integers (in the following we will provide further conditions). We will construct a probability measure η supported on Σ by defining it on a family of cylinders, which has a product structure.

First, on all cylinders of level m 1 we define

η([ω 1 , . . . , ω m1 ]) = η 1 ([ω 1 , . . . , ω m1 ]).
Then, in an inductive step, having the measure defined on cylinders of level m j-1 , we subdivide it on their subcylinders of level m j by the following formula:

η([ω 1 , . . . , ω mj ]) = η([ω 1 , . . . , ω mj-1 ]) • η j ([ω mj-1+1 , . . . , ω mj ]).
We assume that m 1 ≫ n 1 , (m jm j-1 ) ≫ n j .

Note that at each step of construction the measure is defined on a symbolic space with finitely many symbols. Denote

L n (ω) = 1 n log |(T n ) ′ (Πω)| and M n (ω) = - 1 n log η([ω 1 , . . . , ω n ]).
We claim the following: we can choose {m j } such that

(3.2) -log λ qj+1 < ε j+1 m j
where λ j is the maximal contraction ratio of map T j and that the following properties are satisfied for any j and for all points ω in a positive η-measure set A ⊂ Σ: for all 1 ≤ i ≤ j and m j ≤ n < m j+1 we have

(3.3) M * f i (ω 1 , . . . , ω n ) -M * f i (ω 1 , . . . , ω n ) ≤ ε j , (3.4) A n f i (ω) - m j n f i dη j - n -m j n f i dη j+1 ≤ ε j , (3.5) L n (ω) - m j n λ(η j ) - n -m j n λ(η j+1 ) ≤ ε j , (3.6) M n (ω) - m j n h(η j ) - n -m j n h(η j+1 ) ≤ ε j .
Let us prove the last four expressions. The formula (3.3) follows from Lemma 2.2 provided all m j are big enough. The other three expressions are the main part. Note that (3.5) and (3.6) are actually special cases of (3.4). L n (ω) is (by bounded distortion) approximately a partial Cesaro average of the function log |T ′ |. Similarly, while η j is not a Gibbs measure, µ ′ j is (for T nj ). Hence, 1 n (nM n (ω)m j M mj (ω)) is (by Gibbs property) approximately a partial Cesaro average of the potential of the Gibbs measure µ ′ j+1 (average under iterations of T nj+1 ). For this reason, we will provide a detailed proof of the formula (3.4) only and the formulas (3.5) and (3.6) can be proved analogously.

Applying the Birkhoff Ergodic Theorem to the measure η 1 and the function f 1 , we get that (3.7)

A m1 f 1 (ω) -f 1 dη 1 ≤ ε 1 2
on a set of η 1 -measure 1δ 1 , where δ 1 can be chosen arbitrarily small if m 1 is sufficiently big. The next statement we will need is that

(3.8) n A n f 1 (σ m1 (ω)) -f 1 dη 2 ≤ m 1 ε 1 2 + nε 2
for all n ≥ 1 for a set of ω of η 2 -measure 1 -δ1 (more precisely, we will only need this statement for 1 ≤ n ≤ m 2m 1 , but it is important that we can choose arbitrarily big m 2 and the statement will still be true). It follows from the Central Limit Theorem (see [PU10, Thm 5.7.1]) for the measure η 2 that for any continuous f and for big n

A n f (ω) -f dη 2 < ε
for all ω except a subset of measure approximately exp(-cnε 2 ). Hence, δ1 can be chosen arbitrarily small, provided m 1 ε 1 is big enough (how big is big enough will depend on ε 2 ).

We continue in an inductive way. By the Birkhoff Ergodic Theorem we have (3.9)

A mj f i (ω) -f i dη j ≤ ε j 2
for all 1 ≤ i ≤ j on a set of η-measure 1δ j , where δ j can be chosen arbitrarily small provided m j is sufficiently big and sufficiently big in comparison with m j-1 . By the Central Limit Theorem

(3.10) n A n f i (σ mj (ω)) -f i dη j+1 ≤ m j ε j 2 + nε j+1
for all 1 ≤ i ≤ j and n ≥ 1 for a set of ω of η j+1 -measure 1 -δj , where δj can be chosen arbitrarily small, provided m j ε j is big enough. Combining (3.7), (3.8), (3.9) and (3.10) we get (3.4) true on a set A of η-measure at least 1δ j -δj , which can be chosen arbitrarily close to 1. Let A be the restriction of η to A. By (3.3) and (3.4), we have

A ⊂ Λ γ .
On the other hand, for all m j < n ≤ m j+1 , A is contained in a union of nth level cylinders, each of size at least

r n := exp (-m j λ(η j ) -(n -m j )λ(η j+1 ) -nε j )
(by (3.5)) and of µ-measure at most

c n := exp (-m j h(η j ) -(n -m j )h(η j+1 ) + nε j )
(by (3.6)). According to (3.2), we have

| log r n+1 -log r n | ≤ ε j | log r n |/n.
For any ω ∈ A, the ball B rn (ω) intersects A at most two nth level cylinders. Hence

η A (B rn (ω)) ≤ 2c n By Frostman's Lemma, dim Π(A) ≥ lim inf h(η j ) λ(η j ) = lim inf h(µ j ) λ(µ j ) .
Recall that at the beginning, we assume that h(µ j )/λ(µ j ) have a limit. The proof is then completed.

Proof of Theorem 1.1

The proof is divided into the following three propositions. Recall that

Λ γ = {x ∈ Λ : lim n→∞ A n φ i (x) = γ i for all i ∈ N}. Proposition 4.1. If γ / ∈ Z then Λ γ = ∅.
Proof. Given γ, assume that there exists x ∈ Λ such that for all i ∈ N lim n→∞ A n φ i (x) = γ i . Let ω ∈ Σ satisfy Πω = x. If we fix ε > 0 and k ∈ N then we can find N such that for all n ≥ N we have

sup 1≤i≤k |A n φ i (x) -γ i | ≤ ε/2, sup 1≤i≤k sup x,y∈Π([ω1,...,ωn]) |A n φ i (x) -A n φ i (y)| ≤ ε/2.
We then let ν be the shift invariant measure on Σ defined on the periodic orbit (ω 1 , . . . , ω n ). If we let µ = ν • Π then we have that µ is T -invariant and that φ i dµγ i ≤ ε for each 1 ≤ i ≤ k. This completes the proof.

In what follows, we will restrict ourself to the case γ ∈ Z.

Proposition 4.2. If γ ∈ Z then dim Λ γ ≥ α 1 (γ).
Proof. It follows immediately from Theorem 3.4.

Proposition 4.3. If γ ∈ Z then dim Λ γ ≤ α 2 (γ).
Proof. Let s = dim Λ γ = dim(Λ γ \E). Given ε > 0, for any covering of Λ γ \E with intervals E j of lengths |E j | < δ we will have

|E j | s-ε > N (δ)
with N (δ) → ∞ as δ → 0. In particular, if we choose a covering of Λ γ with nth level basic intervals, the corresponding sum |Π[ω 1 , . . . , ω n ]| s-ε will be greater than 1 provided n being big enough. If this summand is infinite, we can choose a finite subfamily of nth level basic intervals intersecting Λ γ such that sum of their diameters in power sε is still greater than 1. We can then choose a different exponent s > sε for which this sum is equal to 1.

By Lemma 2.2, for any k for sufficiently big n if an nth level cylinder intersects Λ γ then

|A n φ i (ω) -γ i | < ε
for all i ≤ k and for all ω in this cylinder.

We can now apply Proposition 3.1 and Corollary 3.2 to construct an ergodic measure ν with respect to the shift acting on finitely many symbols (hence, of finite entropy), and then a T -invariant ergodic measure µ satisfying

φ i dµ -γ i < 2ε, h(µ) λ(µ) -s ≤ 2ε K -2ε
for all 1 ≤ i ≤ k. By the formula dim µ = h(µ)/λ(µ) the proof of the upper bound in Theorem 1.1 is completed.

Proof of Theorem 1.2

From now on we will assume that each function φ i is bounded above and below. Recall that

α 1 (γ) = lim ε→0 lim k→∞ sup µ∈M(T ) h(µ) λ(µ) : φ i dµ -γ i < ε ∀i ≤ k, h(µ) < ∞ . α 3 (γ) = sup µ∈M(T ) h(µ) λ(µ) : φ i dµ = γ i ∀i ∈ N, h(µ) < ∞ .
We will first show that for all γ ∈ Z we have (see Lemma 5.1)

α 1 (γ) ≥ s ∞ .
As Theorem 1.1 is already proven, we then have dim Λ γ = max s ∞ , α 1 (γ) .

Then we will show that (see Proposition 5.2)

α 1 (γ) > s ∞ ⇒ α 1 (γ) = α 3 (γ) It will follow that dim Λ γ = max s ∞ , α 3 (γ) .
Let us first prove the following Lemma.

Lemma 5.1.

Let γ ∈ Z, k ∈ N, ε > 0 and µ ∈ M(T ) such that λ(µ) < ∞, sup 1≤i≤k φ i dµ -γ i ≤ ε.
There then exists a measure ν ∈ M(T ) such that

h(ν) λ(ν) ≥ s ∞ -ε, sup 1≤i≤k φ i dµ -γ i ≤ 2ε.
Proof. Let A = sup 1≤i≤k sup x∈Λ |φ i (x)|. By Lemma 2.5 we can find a sequence of T -invariant measures µ n such that lim n→∞ λ(µ n ) = ∞ and h(µn) λ(µn) ≥ s ∞ -ε 2 for each n. Consider the measure

ν n = (1 - ε A )µ + ε A µ n .
Then we have that for each 1

≤ i ≤ k φ i dν n -γ i ≤ φ i dµ -γ i + φ i dµ -φ i dν n ≤ 2ε. Furthermore lim inf n→∞ h(ν n ) λ(ν n ) = lim inf n→∞ (1 -ε/A)h(µ) + ε/Ah(µ n ) (1 -ε/A)λ(µ) + ε/Aλ(µ n ) = lim inf n→∞ h(µ n ) λ(µ n ) ≥ s ∞ - ε 2 .
This completes the proof.

Thus we can conclude that for all γ ∈ Z, we have

α 1 (γ) ≥ s ∞ . Proposition 5.2. Let γ ∈ Z. If α 1 (γ) > s ∞ , we have α 1 (γ) = α 3 (γ).
The proof of the proposition is lengthy and it is presented in the next section.

Proof of Proposition 5.2

The assertion of Proposition 5.2 will follow immediately from the following statement. Proposition 6.1. Given γ ∈ Z and a sequence of invariant measures µ j such that -h(µ j )/λ(µ j ) > s ∞ + δ for some δ > 0, -φ i dµ j → γ i for all i ∈ N, there exists an invariant measure µ satisfying h(µ) λ(µ) = lim sup h(µ j ) λ(µ j ) and φ i dµ = γ i ∀i ∈ N.

To prove the statement we will consider the locally constant potentials ψ k defined by

ψ k (x) = 1 k sup y∈C k (x) log |(T k ) ′ (y)|.
We then have the following straightforward lemma.

Lemma 6.2. For any µ ∈ M(T ) such that λ(µ) < ∞ we have

λ(µ) -ψ k dµ = o(1).
Proof. This follows simply because the variations of log |T ′ (x)| tend uniformly to 0.

We will first prove an analogous statement to Proposition 6.1 for ψ k (x) and then use Lemma 6.2 to deduce Proposition 6.1. For convenience for µ ∈ M(T ) we will let ξ k (µ) = ψ k dµ. Lemma 6.3. Fix any k ∈ N. Given γ ∈ Z and a sequence of invariant measures µ j such that -h(µ j )/ξ k (µ j ) > s ∞ + δ for some δ > 0, -φ i dµ j → γ i for all i ∈ N, there exists an invariant measure µ satisfying

h(µ) ξ k (µ) = lim sup j h(µ j ) ξ k (µ j )
; and

φ i dµ = γ i ∀i ∈ N.
Note that to prove Lemma 6.3 it suffices to prove the statement for k = 1 since the statement for general k can then be deduced by considering the map T k . The proof of Lemma 6.3 will now follow by a series of technical lemmas. Lemma 6.4. For any δ > 0 there is K(δ) > 0 such that if µ is a T -invariant measure and h(µ) ξ1(µ) > s ∞ + δ then h(µ) ≤ ξ 1 (µ) ≤ K(δ). Proof. We fix t ∈ R such that s ∞ < t < s ∞ +δ. By the methods from Lemma 2.4 we get P (-tψ 1 ) < ∞. So by the variational principle we get h(µ)tξ 1 (µ) ≤ P (-tψ 1 ). Since h(µ) ξ1(µ) > s ∞ + δ, we have

P (-tψ 1 ) ≥ (s ∞ + δ -t)ξ 1 (µ).
So,

ξ 1 (µ) ≤ P (-t log T ′ ) s ∞ + δ -t .
Therefore if the hypothesis of Lemma 6.3 holds then we can deduce that the sequence of measures {µ j } is tight and so will have at least one limit point µ which will be a T -invariant probability measure. Moreover by the lower-semi continuity of ξ 1 (µ j ) (see Lemma 1 in [START_REF] Jenkinson | Zero temperature limits of Gibbsequilibrium states for countable alphabet subshifts of finite type[END_REF]), by the simple fact that h(µ) ≤ λ(µ) and the fact that λ(µ) ≤ ξ 1 (µ) we know that h(µ) ≤ ξ 1 (µ) ≤ K. To finish the proof of Proposition 6.1 we would only need entropy to be upper semi-continuous.

Unfortunately, the entropy is not upper semicontinuous on M(T ). We have, however, a limited form of semicontinuity when we consider entropy divided by Lyapunov exponent, and this will be enough: Lemma 6.5. Let {µ j } j∈N be a sequence of measures converging weakly to µ and satisfying that h(µ j )/ξ 1 (µ j ) > s ∞ + δ for some δ > 0 and all j ∈ N. We have

h(µ) ξ 1 (µ) ≥ lim sup h(µ j ) ξ 1 (µ j ) .
Proof. Denote by η j the measure on Σ such that µ j = η j •Π -1 . We start by choosing a subsequence of η j such that h(η j )/ξ 1 (η j ) converges to the maximal possible limit. Given q, consider the projection π q Σ → Σ q obtained by replacing in a sequence ω 1 , ω 2 , . . . all symbols q + 1, q + 2, . . . by symbol q. The projection of a measure ν under π q will be denoted by ν| q .

Let us denote

c j,q = k>q η j ([k]) λq := | log inf x∈∪ ∞ l=q I l {|T ′ (x)|}|.
Note that c j,q is uniformly (in j) converging to 0 as q increases. Consider the two partitions:

A = [1], [2], . . . , [q -1], ∞ k=q [k] , B = q k=1 [k], [q + 1], [q + 2], . . . . We have h(η j ) = h(η j |A ∨ B) ≤ h(η j |A) + h(η j |B).
The former summand is h(η j | q ). The latter can be bounded from above by the entropy of the corresponding Bernoulli measure. It has one atom with measure 1c j,q and the other atoms are cylinders [k] (k > q). Hence, h(η j |B) ≤ (1c j,q )| log(1c j,q )| + c j,q | log c j,q | + c j,q h(ν j,q ) ≤ c j,q h(ν j,q ) + ε 0 (q), (6.1) where ν j,q is the Bernoulli measure obtained by assigning on each symbol k > q probability η j ([k])/c j,q , and ε 0 (q) converges to 0 as q → ∞. We know that

ξ 1 (ν j,q ) ≥ log inf x∈∪ ∞ l=q I l {|T ′ (x)|} = λq
which must tend to ∞ as q goes to ∞. Thus by Lemma 6.4

(6.2) h(ν j,q ) ξ 1 (ν j,q ) ≤ s ∞ + ε 1 (q)
for some ε 1 (q) converging to 0 as q → ∞. At the same time,

(6.3) λ(η j ) ≥ k η j ([k])ψ 1 (Π(k)) = λ(η j | q ) + c j,q (λ(ν j,q ) -ψ 1 (Π(q))).
As ξ 1 (η j ) < ∞, c j,q ψ 1 (Π(q)) must converge to 0, but this convergence is not uniform. Still, from the sequence {η j } we can choose a subsequence η j k , a sequence q l and a sequence ε 2 (q l ) → 0 such that for each q l we have lim sup

j k c j k ,q l ψ 1 (Π(q l )) < ε 2 (q l ).
Indeed, otherwise we would be able to choose a sequence η j k such that for some c > 0 and for any sufficiently big q we would have lim inf

j k c j k ,q ψ 1 (Π(q)) > c
and that would imply that ξ 1 (η j ) = ∞.

So, finally we get by (6.1), (6.2) and (6.3) and Lemma 6.2 that given l, for all k big enough we have

(6.4) h(η j k ) -h(η j k | q l ) < s ∞ • K(j k , q l ) + ε 3 (q l , δ) and (6.5) ξ 1 (η j k ) -ξ 1 (η j k | q l ) > K(j k , q l ) -ε 3 (q l , δ),
where K(j, q) = c j,q ξ 1 (ν j,q ) > 0.

Consider now the following diagram:

η j k η ? 6 η j k | q l η| q l
By (6.4) and (6.5), given l, for k big enough

h(η j k | q l ) ξ 1 (η j k | q l ) ≥ h(η j k ) ξ 1 (η j k ) -ε(q l , δ).
The convergence of η j k | q l to η| q l takes place in space of invariant measures of (Σ q l , σ), where entropy (and hence h/ξ 1 ) is upper semicontinuous. Finally, h(η) = lim h(η| q l ). Taking µ = η • Π -1 , we have

h(µ) ξ 1 (µ) > lim h(η j k ) ξ 1 (η j k ) -ε(q l ).
As we can choose arbitrarily big q l , ε(q l ) is arbitrarily small. We are done.

The statement of Lemma 6.3 now follows.

To complete the proof of Proposition 6.1 choose a sequence of T -invariant measures µ j such that -h(µ j )/λ(µ j ) > s ∞ + δ for some δ > 0, -φ i dµ j → γ i for all i ∈ N. We choose ε > 0 sufficiently small such that h(µ j )/(λ(µ j ) + ε) > s ∞ + δ/2. We then choose k sufficiently large such that var k (log |T ′ (x)|) < ε and so in particular ξ k (µ j )λ(µ j ) < ε. Thus h(µ j )/ξ k (µ j ) > s ∞ + δ/2 and we may apply Lemma 6.3 to show that there exists a T -invariant measure µ such that h(µ)/ξ k (µ) = lim sup j→∞ h(µ j )/ξ k (µ j ) and φ i dµ = γ i for all i ∈ N. Moreover

lim sup j→∞ h(µ j ) λ(µ j ) ≥ lim sup j→∞ h(µ j ) ξ k (µ j ) = h(µ)/ξ k (µ) ≥ h(µ) λ(µ) + ε ≥ h(µ) λ(µ) + εh(µ) λ(µ) 2 + ελ(µ)
and Proposition 6.1 now easily follows.

This completes the proof of Theorem 1.2.

Examples

We now look at some examples where our results can be applied. We will consider an application to frequency of digits which applies the fact that our level sets are defined using countably many functions. We then consider two cases which look at possible behaviour when the level set is just determined by one bounded function.

Frequency of digits.

There have been many papers on the Hausdorff dimension of sets determined by the frequency of digits for various types of expansion, see for example [START_REF] Besicovitch | On the sum of digits of real numbers represented in the dyadic system[END_REF], [START_REF] Barreira | Distribution of frequencies of digits via multifractal analysis[END_REF], [START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF], [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF], [START_REF] Fan | Dimension of Besicovitch-Eggleston sets in countable symbolic space[END_REF], [START_REF]Applications of multifractal divergence points to sets of numbers defined by their N -adic expansion[END_REF]. Here we show how our results can be applied to give results in this direction in the setting of expanding maps with countably many branches. We take a partition {I i } i∈N and a map T as in the first section. We define φ i to be the characteristic function for the interval I i , that is

φ i (x) = χ Ii (x) := 1 if x ∈ I i 0 if x / ∈ I i
For an infinite vector p = (p 1 , p 2 , . . .) where

∞ i=1 p i ≤ 1 let Λ p = {x ∈ Λ : lim n→∞ A n φ i (x) = p i for all i ∈ N}.
The assumptions of Theorem 1.2 are all satisfied and it is easy to see that all such p belong to Z. Therefore dim Λ p = max s ∞ , α 3 (p) where

α 3 (p) = sup µ∈M(T ) h(µ) λ(µ) : µ(I i ) = p i ∀i ∈ N, h(µ) < ∞ .
We refer to these sets Λ p as "sets of digit frequency". This is because in the case where T is the Gauss map, T (x) = 1/x mod 1, A n φ i (x) gives the frequency of i in the first n terms of the continued fraction expansion of x. In particular our work shows that the dimension of such a set is always bounded below by s ∞ even if the frequencies sum to less than 1. Note that s ∞ = 1/2 when T is the Gauss map. This problem has already been studied in the setting of continued fractions ([FLM10]), and in the countable state symbolic space ([FLMW10]). Our work shows that this phenomenon extends to more general countable branch expanding maps. We should also point out that there was a step missing from the proof in [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF] where the argument of how to go from the statement of Theorem 1.1 to Theorem 1.2 was not given. The section on the proof of Theorem 1.2 shows how this can be done.

7.2. Harmonic averages for continued fractions. For another example we again let T be the Gauss map. If we just take one potential φ : [0, 1]\Q → R defined by φ(x) = 1 a1(x) where a 1 (x) is the first digit in the continued expansion of x then Theorem 1.2 is still applicable. In particular if for α ∈ [0, 1], let

Λ α = x ∈ [0, 1]\Q : lim n→∞ 1 a1(x) + 1 a2(x) + • • • + 1 an(x) n = α then we have dim Λ α = max 1 2 , sup µ∈M(T ) h(µ) λ(µ) : φdµ = α, h(µ) < ∞ .
From this we can deduce that dim Λ 0 = Λ 1 = 1 2 .

For Λ 1 , note that the Dirac measure on the point

√ 5-1 2
is the only T -invariant measure ν with φdν = 1. However, despite the fact that this measure clearly has dimension 0, the set Λ 1 still has dimension 1 2 . Furthermore, in this case we can show that the only points where the dimension achieves the lower bound 1 2 are the endpoints of the spectrum.

Proposition 7.1. For all α ∈ (0, 1) dim Λ α > 1 2 . Proof. Fix α ∈ (0, 1). Consider the set of irrationals x for which the continued fraction expansion a 1 (x), a 2 (x), . . . satisfies that for some N ∈ N a i (x) > N for all i ∈ N. We will denote this set E N and note that if we consider the restriction of the Gauss map T to the union of the intervals I j (j ≥ N ), then E N is its attractor and the corresponding value of s ∞ is still 1 2 . In [START_REF] Jaerisch | The arithmetic-geometric scaling spectrum for continued fractions[END_REF] it is shown that

dim E N ∼ 1 2 + log log N 2 log N .
Since 1 2 < dim E N , we can deduce that E N admits an ergodic measure of maximal dimension µ N with h(µ N ) < ∞. Note that for N sufficiently large we have that λ(µ N ) ≥ log N .

Take δ 1 to be the Dirac measure at √ 5-1 2 . Then δ 1 is ergodic and φdδ 1 = 1. Now consider measures of the form

ν p = pµ N + (1 -p)δ 1 .
If we choose p > λ(δ1)4 log N log log N λ(µN ) then we have

h(ν p ) = ph(µ N ) ≥ p 1 2 + log log N 4 log N λ(µ N ) = p 2 λ(µ N ) + p log log N 4 log N λ(µ N ) > 1 2 (pλ(µ N ) + (1 -p)λ(δ 1 )) = 1 2 λ(ν p ). Thus h(νp) λ(νp) > 1 2 . Furthermore since lim N →∞ λ(δ(1))4 log N
log log N λ(µN ) = 0 and lim N →∞ φdµ N = 0, we can choose q such that h(νp) λ(νp) > 1 2 for all p > q and α = φdν p for some p > q.

It is straightforward to adapt this argument to the case where T is the Gauss map and where φ is a bounded function with variations uniformly tending to 0. This will show that the interior of the spectrum is strictly greater than 1 2 . However this is not always the case for alternative choices of T . A simple counter-example is when P (-s ∞ log |T ′ |) ≤ 0 and φ is any bounded potential. In this case dim Λ α = s ∞ for all α ∈ inf µ∈M(T ) φdµ , sup µ∈M(T ) φdµ .

7.3. Locally flat spectrum. Here we look at single functions where the multifractal spectrum will have interesting phase transitions. These are examples where the function α → dim Λ α has flat regions but for which the whole spectrum is not flat. Let T be a piecewise linear map defined using a partition (similar maps are studied in [START_REF] Kesseböhmer | Strong renewal theorems and lyapunov spectra for α-farey and α-lüroth systems[END_REF]) as follows. We consider a set of disjoint closed intervals {I i } ∞ i=1 . Denote s ∞ as before and let

K = diam(I 1 ) s∞ and C = ∞ i=2 diam(I i ) s∞ .
We will assume that C < 1, K +C > 1. (These can be easily satisfied. For example, take |I n | ≈ n -2 (log n) -4 .) Define T to be the piecewise linear map which maps each interval I i bijectively to the interval [0, 1]. These conditions will ensure that

dim Λ > s ∞ , P (-s ∞ log |T ′ |) < ∞.
We will take φ = χ I1 , that is the characteristic function for the interval I 1 . We will prove the following result.

Theorem 7.2. There exist 0

< α * < α * < 1 such that dim Λ α = s ∞ for α ∈ [0, α * ] ∪ [α * , 1] and dim Λ α > s ∞ for α ∈ (α * , α * ).
Proof of Theroem 7.2. We will prove Theorem 7.2 by a series of propositions and lemmas. We start with the following general proposition.

Proposition 7.3. Let φ : Λ → R have variations uniformly converging to 0. For any α ∈ R if there exist q, δ such that

P (q(φ -α) -δ log |T ′ |) ≤ 0, then sup µ∈M(T ) h(µ) λ(µ) : φdµ = α and λ(µ) < ∞ ≤ δ.
Proof. Let µ ∈ M(T ) such that φdµ = α and λ(µ) < ∞. By the variational principle, we have h(µ) + (q(φα)δ log |T ′ |)dµ ≤ 0.

So, h(µ)δλ(µ) ≤ 0. Thus h(µ)/λ(µ) ≤ δ which completes the proof. Therefore, for our specific choice of T and φ if we can find q > 0 and α * ∈ (0, 1) such that P (q(φα * )s ∞ log |T ′ |) = 0 then dim Λ α = s ∞ for all α ∈ (α * , 1). Similarly if we can find q < 0 and α * ∈ (0, 1) such that P (q(φ-α * )-s ∞ log |T ′ |) = 0 then dim Λ α = s ∞ for all α ∈ (0, α * ).

We are going to show that we can indeed find such α * , α * . We can calculate P (q(φα)s ∞ log |T ′ |) = log(Ke q + C)αq.

By solving the equation P (q(φα)s ∞ log |T ′ |) = 0, we have α(q) = log(Ke q + C) q , q = 0.

We then have the following lemma.

Lemma 7.4. Such α * , α * do exist.

Proof. The function α(q) has the following properties:

(1). The function α(q) is real analytic on both (-∞, 0) and (0, ∞).

(2). lim q→∞ α(q) = 1 and lim q→-∞ α(q) = 0.

(3). lim q→0+ α(q) = +∞ and lim q→0-α(q) = -∞.

(4). Under our conditions K + C > 1 and C < 1, α(q) < 1 for q < 0 and α(q) > 0 for q > 0 and the equation α(q) = 0 admits only one solution q = q -= log 1 -C K < 0 and the equation α(q) = 1 admits only one solution

q = q + = log C 1 -K > 0.
From the above properties, one can see the minimum and maximum of the following can be obtained:

α * = inf q>0 α(q) = inf q>q+ α(q) and α * = inf q<0 α(q) = inf q<q- α(q).
These are what we want.

Thus we have that for any α ∈ [0, α * ] ∪ [α * , 1] there exists q such that P (q(φα)s ∞ log |T ′ |) ≤ 0 and so by Proposition 7. Let f (t, q) = P (qφt log |T ′ |). Then the dimension of the set Λ α is the first component t(α) of the solution (t(α), q(α)) to the following system (see [START_REF] Fan | On Khintchine exponents and Lyapunov exponents of continued fractions[END_REF]):    f (t, q) = qα, ∂f ∂q (t, q) = α (7.1) whenever such a solution exists. By a simple calculation we have f (t, q) = log(K(t)e q + C(t)).

For a fixed t, let f t (q) = f (t, q). Lemma 7.5. For α ∈ (α * , α * ) we have that P (q(φα)s ∞ log |T ′ |) > 0 for all q and that P (q(φα) -(dim Λ) • log |T ′ |) ≤ 0 for some q ∈ R.

Proof. The function q → f t (q) has the following properties:

(1) For t ∈ (s ∞ , dim Λ), the function f t (q) has two asymptotic lines y = log C(t) for q → -∞ and y = x + log K(t) for q → ∞. In particular note that for any α ∈ (0, 1) there exists q(α, t) such that f ′ t (q(α, t)) = α. (2) α * = inf q>0 f s∞ (q) q < 1 and α * = inf q<0 f s∞ (q) q > 0.

(3) If α ∈ (α * , α * ) then f s∞ (q) = αq has no solution.

By property (3) and property (2) we can thus deduce that for α ∈ (α * , α * ) and for any q ∈ R P (q(φα)s ∞ log |T ′ |) = f s∞ (q)αq > 0, which is the first part of the lemma. By property (1) if we let s = dim Λ then there exists q(α, s) such that f ′ s (q(α, s)) = α. It then follows that there will be an equilibrium state µ q,s such that φdµ q,s = α and f s (q(α, s)) = αqsλ(µ q,s ) + h(µ q,s ) ≤ αq.

Thus the second part of the lemma follows.

Due to the fact that f (t, q) depends analytically on t, q in the region t > s ∞ , q ∈ R, we can now assert that for α ∈ (α * , α * ) there exists t(α) ∈ (s ∞ , dim Λ) which is the first coordinate of the solution (t(α), q(α)) to (7.1) and thus dim Λ α = t(α). This completes the proof of Theorem 7.2.

We can also deduce that if µ SRB is the equilibrium state for the potential -(dim Λ) • log |T ′ | and α = φdµ SRB then the function α → dim Λ α is strictly increasing on (α * , α) and strictly decreasing on (α, α * ) and by the implicit function theorem varies analytically in the region (α * , α * ).

  ω1,...,ωn μ(Π[ω 1 , . . . , ω n ]) log diam([ω 1 , . . . , ω n ])nλ(µ) ≤ nε, (5) ω1,...,ωn μ(Π[ω 1 , . . . , ω n ]) log μ(Π[ω 1 , . . . , ω n ])nh(µ) ≤ nε, where in points (3)-(5) the sums are taken over all words ω 1 . . . ω n ∈ {1, . . . , q} n and μ(Π[ω 1 , . . . , ω n ]) = µ(Π[ω 1 , . . . , ω n ]) ω1,...,ωn µ(Π[ω 1 , . . . , ω n ])

  3 we have dim Λ α = s ∞ , ∀α ∈ [0, α * ] and ∀α ∈ [α * , 1]. Now we need to show ∀α ∈ (α * , α * ), dim H Λ α > s ∞ . For t ∈ [s ∞ , dim Λ], denote K(t) = |I 1 | t , and C(t) = ∞ i=2 |I i | t .
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