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Open Gromov-Witten invariants in dimension four

Jean-Yves Welschinger

November 4, 2014

Abstract:

Given a closed orientable Lagrangian surface L in a closed symplectic four-manifold
(X,ω) together with a relative homology class d ∈ H2(X,L;Z) with vanishing boundary
in H1(L;Z), we prove that the algebraic number of J-holomorphic discs with boundary on
L, homologous to d and passing through the adequate number of points neither depends
on the choice of the points nor on the generic choice of the almost-complex structure
J . We furthermore get analogous open Gromov-Witten invariants by counting, for every
non-negative integer k, unions of k discs instead of single discs.

Introduction

Let (X,ω) be a closed connected symplectic four-manifold. Let L ⊂ X be a closed La-
grangian surface which we mainly assume to be orientable. We denote by µL ∈ H2(X,L;Z)
its Maslov class, that is the obstruction to extend TL as a Lagrangian subbundle of TX .
We denote by Jω the space of almost-complex structures of class C l tamed by ω, where
l ≫ 1 is a fixed integer. Let d ∈ H2(X,L;Z) be such that µL(d) > 0 and r, s ∈ N such
that r + 2s = µL(d) − 1. Let x ⊂ Lr (resp. y ⊂ (X \ L)s) be a collection of r (resp. s)
distinct points. Then, for every generic choice of J ∈ Jω, X contains only finitely many
J-holomorphic discs with boundary on L, homologous to d and which pass through x ∪ y.
These discs are all immersed and we denote by Md(x, y, J) their finite set. For every

D ∈ Md(x, y; J), we denote by m(D) = [
◦

D] ◦ [L] ∈ Z/2Z the intersection index between
the interior of D and the surface L. We then set

GW r
d (X,L; x, y, J) =

∑

D∈Md(x,y;J)

(−1)m(D) ∈ Z.

Our main result is the following (see Theorem 2.1).
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Theorem 0.1 Assume that L is orientable and that ∂d = 0 ∈ H1(L;Z). Then, the
integer GW r

d (X,L; x, y, J) neither depends on the choice of x, y nor on the generic choice
of J . �

This result thus provides an integer valued invariant which we can denote without ambigu-
ity by GW r

d (X,L), providing a relative analog to the genus zero Gromov-Witten invariants
in dimension four. Note that some open Gromov-Witten invariants have already been de-
fined by C.C. Liu and M. Katz in the presence of an action of the circle, see [13], [19], and
by myself when L is fixed by an antisymplectic involution, see [26], [28], [32] or also [5],
[24]. When X is six-dimensional, some open Gromov-Witten invariants have been defined
by K. Fukaya [8] and V. Iacovino [15] in the case of Calabi-Yau six-manifolds and by myself
[33] in the absence of Maslov zero discs.

When L is a Lagrangian sphere fixed by such an antisymplectic involution, the invariant
χd
r introduced in [30], [28] is computed in terms of GW r

d (X,L), see Lemma 2.4. We deduce
as a consequence that 2s−1 divides χd

r , improving a congruence already obtained in [31]
using symplectic field theory. When the genus of L is greater than one, the invariant
GW r

d (X,L) vanishes, see Proposition 2.3, since one can find a generic almost complex
structure J for which the set Md(x, y; J) is empty. I could not get any result when L is
not orientable, except a result modulo two when L is homeomorphic to a real projective
plane, see Theorem 2.6.

We also obtain an analog of Theorem 0.1 by counting unions of k discs, k > 0, instead
of single discs. More precisely, let k > 0 be such that µL(d) ≥ k and assume now that
r + 2s = µL(d) − k. For every generic choice of J ∈ Jω, X only contains finitely many
unions of k J-holomorphic discs with boundary on L, total homology class d and which pass
through x∪y. These discs are all immersed and we denote by Md,k(x, y, J) their finite set.

For every D = D1 ∪ · · · ∪Dk ∈ Md,k(x, y; J), we denote by m(D) =
∑k

i=1m(Di) ∈ Z/2Z
and set

GW r
d,k(X,L; x, y, J) =

∑

D∈Md,k(x,y;J)

(−1)m(D) ∈ Z.

We then get (see Theorem 2.16).

Theorem 0.2 Assume that L is orientable and that ∂d = 0 ∈ H1(L;Z). Then, the
integer GW r

d,k(X,L; x, y, J) neither depends on the choice of x, y nor on the generic choice
of J . �

Note that the individual discs involved in the definition of this k-discs open Gromov-Witten
invariant GW r

d,k(X,L) ∈ Z are no more subject to have trivial boundary in homology.
The first part of this paper is devoted to notations and generalities on moduli spaces

of pseudo-holomorphic discs in any dimensions. We introduce the numbers GW r
d (X,L),

GW r
d,k(X,L) and prove their invariance in the second paragraph.
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for the many fruitful discussions we had. The research leading to these results has received
funding from the European Community’s Seventh Framework Progamme ([FP7/2007-2013]
[FP7/2007-2011]) under grant agreement no [258204], as well as from the French Agence
nationale de la recherche, ANR-08-BLAN-0291-02. Finally, I am grateful to Erwan Brugallé
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1 Pseudo-holomorphic discs with boundary on a La-

grangian submanifold

1.1 Moduli spaces of simple discs

Let ∆ = {z ∈ C | |z| ≤ 1} be the closed complex unit disc. We denote by P(X,L) =
{(u, J) ∈ C1(∆, X) × Jω | u(∂∆) ⊂ L and du + J |u ◦ du ◦ jst = 0} the space of pseudo-
holomorphic maps from ∆ to the pair (X,L), where jst denotes the standard complex
structure of ∆. Note that J being of class C l, the regularity of such pseudo-holomorphic
maps u is actually more than C l, see [20]. More generally, for every r, s ∈ N, we denote by

Pr,s(X,L) = {((u, J), z, ζ) ∈ P(X,L)× ((∂∆)r \diag∂∆)× ((
◦

∆)s \diag∆)}, where diag∂∆ =
{(z1, . . . , zr) ∈ (∂∆)r | ∃i 6= j, zi = zj} and diag∆ = {(ζ1, . . . , ζs) ∈ ∆s | ∃i 6= j, ζi = ζj}.

Following [17], [14], [3], we define

Definition 1.1 A pseudo-holomorphic map u is said to be simple iff there is a dense
open subset ∆inj ⊂ ∆ such that ∀z ∈ ∆inj, u

−1(u(z)) = {z} and du|z 6= 0.

Recall for instance that the map z ∈ C 7→ z3 ∈ C restricted to the upper half plane
H ⊂ C induces, after composition by a biholomorphism ∆ → H ⊂ CP 1, a holomorphic
map u : ∆ → (CP 1,RP 1) which is not simple in the sense of Definition 1.1, though it is
somewhere injective, compare [20].

We denote by P∗
r,s(X,L) the subset of simple elements of Pr,s(X,L). It is a separable

Banach manifold which is naturally embedded as a submanifold of class C l−k of the space
W k,p(∆, X)× Jω for every 1 ≪ k ≪ l and p > 2, see Proposition 3.2 of [20].

For every d ∈ H2(X,L;Z), we denote by Pd
r,s(X,L) = {(u, J) ∈ P∗

r,s(X,L) | u∗[∆] = d}
and by Md

r,s(X,L) = Pd
r,s(X,L)/Aut(∆), where Aut(∆) is the group of biholomorphisms

of ∆ which acts by composition on the right. The latter is equipped with a projection π :
[u, J, z, ζ] ∈ Md

r,s(X,L) 7→ J ∈ Jω and an evaluation map eval : [u, J, z, ζ] ∈ Md
r,s(X,L) 7→

(u(z), u(ζ)) ∈ Lr ×Xs.
We recall the following classical result due to Gromov (see [10], [20], [9]).

Theorem 1.2 For every closed Lagrangian submanifold L of a 2n-dimensional closed
symplectic manifold (X,ω) and for every d ∈ H2(X,L;Z), r, s ∈ N, the space Md

r,s(X,L)
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is a separable Banach manifold and the projection π : Md
r,s(X,L) → Jω is Fredholm of

index µL(d) + n− 3 + r + 2s. �

Note that from Sard-Smale’s theorem [23], the set of regular values of π is dense of the
second category. As a consequence, for a generic choice of J ∈ Jω, the moduli space
Md

0,0(X,L; J) = π−1(J) is a manifold of dimension µL(d) + n − 3 as soon as it is not
empty. Likewise, if x (resp. y) is a set of r (resp. s) distinct points of L (resp. X \ L),

then Md
r,s(X,L; x, y, J) = (π × eval)−1(J, x, y) is a manifold of dimension µL(d) + n− 3−

(n− 1)(r+2s). We denote by Md
r,s(X,L; x, y) the preimage eval−1(x, y) and with a slight

abuse by π : [u, J, z, ζ] ∈ Md
r,s(X,L; x, y) 7→ J ∈ Jω the Fredholm projection of index

µL(d) + n− 3− (n− 1)(r + 2s).
Recall also that the tangent bundle to the space P∗

r,s(X,L) writes, for every (u, J) ∈
P∗

r,s(X,L),

T(u,J)P
∗
r,s(X,L) = {(v,

.

J) ∈ Γ1(∆, u∗TX)×TJJω | Dv+
.

J ◦du◦jst = 0 and v|∂∆ ⊂ u∗TL},

where D is the Gromov operator defined for every v ∈ Γ1(∆, u∗TX) by the formula Dv =
∇v+J ◦∇v ◦ jst+∇vJ ◦ du ◦ jst ∈ Γ0(D,Λ0,1D⊗u∗TX) for any torsion free connection ∇
on TX . This operator induces an operatorD on the normal sheaf Nu = u∗TX/du(T∆), see
formula 1.5.1 of [12], and we denote byH0

D(∆,Nu) ⊂ Γ1(∆, u∗TX, u∗TL)/du(Γ1(∆, T∆, T∂∆))
the kernel of this operatorD, see [12] or §1.4 of [28]. Likewise, we denote byH0

D(∆,Nu,−z,−ζ)

the kernel of D restricted to elements which vanish at the points z and ζ.

Proposition 1.3 Under the hypothesis of Theorem 1.2, let x (resp. y) be a set of r
(resp. s) distinct points of L (resp. X \ L) and let J be a generic element of Jω. Then,
at every point [u, J, z, ζ] of Md

r,s(X,L; J, x, y) the tangent space T[u,J,z,ζ]M
d
r,s(X,L; J, x, y)

is isomorphic to H0
D(∆,Nu,−z,−ζ). �

This classical result is proved in [20] or [12] for example (compare §1.8 of [28]).
Recall finally that the moduli space Md

r,s(X,L; J, x, y) given by Proposition 1.3 is not

in general compact for two reasons. Firstly, a sequence of elements of Md
r,s(X,L; J, x, y)

may converge to a pseudo-holomorphic disc which is not simple in the sense of Definition
1.1, see §1.2. Secondly, a sequence of elements of Md

r,s(X,L; J, x, y) may converge to a
pseudo-holomorphic curve which no more admits a parameterization by a single disc ∆, in
the same way as a sequence of smooth plane conics may converge to a pair of distinct lines.
However, the latter phenomenon is well understood by the following Gromov compactness’
theorem.

Theorem 1.4 Under the hypothesis of Proposition 1.3, every sequence of elements of
Md

r,s(X,L; J, x, y) has a subsequence which converges in the sense of Gromov to a stable
J-holomorphic disc. �

A proof of Theorem 1.4 as well as the definitions of stable discs and convergence in the
sense of Gromov can be found in [7].
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1.2 Theorem of decomposition into simple discs

We recall in this paragraph the theorem of decomposition into simple discs established by
Kwon-Oh and Lazzarini, see [14], [17], [18].

Theorem 1.5 Let L be a closed Lagrangian submanifold of a 2n-dimensional closed
symplectic manifold (X,ω). Let u : (∆, ∂∆) → (X,L) be a non-constant pseudo-holomorphic
map. Then, there exists a graph G(u) embedded in ∆ such that ∆ \ G(u) has only finitely
many connected components. Moreover, for every connected component D ⊂ ∆ \ G(u),
there exists a surjective map πD : D → ∆, holomorphic on D and continuous on D, as
well as a simple pseudo-holomorphic map uD : ∆ → X such that u|D = uD ◦ πD. The map
πD has a well defined degree mD ∈ N, so that u∗[∆] =

∑

D mD(uD)∗[∆] ∈ H2(X,L;Z), the
sum being taken over all connected components D of ∆ \ G(u). �

The graph G(u) given by Theorem 1.5 is called the frame or non-injectivity graph, see [17],
[18] (or §3.2 of [3]) for its definition.

1.3 Pseudo-holomorphic discs in dimension four

We assume in this paragraph that the ambient closed symplectic manifold (X,ω) is of
dimension four and recall several facts specific to this dimension.

Proposition 1.6 Let L be a closed Lagrangian surface of a closed connected symplectic
four-manifold (X,ω). Let d ∈ H2(X,L;Z) be such that µL(d) > 0 and r, s ∈ N such that
r+2s = µL(d)−1. Let x (resp. y) be a set of r (resp. s) distinct points of L (resp. X \L).

Then, the critical points of the projection π : [u, J, z, ζ] ∈ Md
r,s(X,L; x, y) 7→ J ∈ Jω are

those for which u is not an immersion.

Proof:

This Proposition 1.6 is analogous to Lemma 2.13 of [28] and follows from the automatic
transversality in dimension four, see Theorem 2 of [11]. From Theorem 1.2, π is of vanishing
index whereas from Proposition 1.3, its kernel is isomorphic to H0

D(∆,Nu,−z,−ζ). When u
is not an immersion, the sheaf Nu,−z,−ζ contains a skyscraper part carried by its critical

points and which contributes to the kernel H0
D(∆,Nu,−z,−ζ), so that [u, J, z, ζ] is indeed a

critical point of π. When u is an immersion, this normal sheaf is the sheaf of sections of a
bundle of Maslov index −1. From Theorem 2 of [11], H0

D(∆,Nu,−z,−ζ) is then reduced to
{0}. �

Proposition 1.7 Under the hypothesis of Proposition 1.6 :
1) If J ∈ Jω is generic, then all elements of Md

r,s(X,L; J, x, y) are immersed discs.

2) If t ∈ [0, 1] 7→ Jt ∈ Jω is a generic path, then every element of ∪t∈[0,1]M
d
r,s(X,L; Jt, x, y)

which is not immersed has a unique ordinary cusp which is on ∂∆. The latter are non-
degenerated critical points of π.
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The ordinary cusps given by Proposition 1.7 are by definition modeled on the map
t ∈ R 7→ (t2, t3) ∈ R2 at the neighborhood of the origin.

Proof:

The first part follows from Proposition 1.6 and Sard-Smale’s theorem [23]. The second
part is proven exactly in the same way as the first part of Proposition 2.7 of [28] and the
fact that these critical points are non-degenerated follows along the same lines as Lemma
2.13 of [28]. We do not reproduce these proofs here. �

2 Open Gromov-Witten invariants in dimension four

2.1 One-disc open Gromov-Witten invariants

Let (X,ω) be a closed connected symplectic four-manifold. Let L ⊂ X be a closed La-
grangian surface, of Maslov class µL ∈ H2(X,L;Z). Let d ∈ H2(X,L;Z) be such that
µL(d) > 0 and r, s ∈ N such that r + 2s = µL(d) − 1. Let x (resp. y) be a set of
r (resp. s) distinct points of L (resp. X \ L). For every J ∈ Jω generic, the moduli
space Md

r,s(X,L; J, x, y) is then finite and consists only of immersed discs, see Proposition

1.7. We denote, for every [u, J, z, ζ] ∈ Md
r,s(X,L; J, x, y), by m(u) the intersection index

[u(
◦

∆)] ◦ [L] ∈ Z/2Z, where
◦

∆= {z ∈ C | |z| < 1} denotes the interior of the disc ∆. In

fact, J being generic, the intersection u(
◦

∆)∩L is transversal, so that the intersection index

m(u) coincides with the parity of the number of intersection points between u(
◦

∆) and L,
compare §2.1 of [28].

We then set

GW r
d (X,L; x, y, J) =

∑

[u,J,z,ζ]∈Md
r,s(X,L;J,x,y)

(−1)m(u) ∈ Z.

Theorem 2.1 Let (X,ω) be a closed connected symplectic four-manifold and L ⊂ X
be a closed Lagrangian surface which we assume to be orientable. Let d ∈ H2(X,L;Z) be
such that µL(d) > 0 and ∂d = 0 ∈ H1(L;Z). Let r, s ∈ N be such that r + 2s = µL(d)− 1
and x (resp. y) be a collection of r (resp. s) distinct points of L (resp. X \L). Let finally
J ∈ Jω be generic. Then, the integer GW r

d (X,L; x, y, J) neither depends on the choice of
x, y nor on the generic choice of J .

Before proving Theorem 2.1 in section 2.2, let us first formulate further results or
consequences. The invariant provided by Theorem 2.1 can be denoted without ambiguity
by GW r

d (X,L) ∈ Z. As the usual Gromov-Witten invariants, it also does not change
under deformation of the symplectic form ω, whereas it indeed depends in general on d
and r, compare §3 of [28]. Note that Theorem 2.1 also holds true when (X,ω) is convex
at infinity. Moreover, if X does not contain any Maslov zero pseudo-holomorphic disc
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with boundary on L, for instance if L is monotone, then assuming in Theorem 2.1 that
∂d = 0 ∈ H1(L;Z/qZ) for some q > 1 instead of ∂d = 0 ∈ H1(L;Z), one concludes that
the reduction modulo q of the integer GW r

d (X,L; x, y, J) neither depends on the choice of
x, y nor on the generic choice of J .

Corollary 2.2 Under the hypothesis of Theorem 2.1, the cardinality of the set
Md

r,s(X,L; J, x, y) is bounded from below by |GW r
d (X,L)|. �

Proposition 2.3 Under the hypothesis of Theorem 2.1, assume that L is a Lagrangian
sphere and that r = 1. Then, the lower bounds given by Corollary 2.2 are sharp, achieved
by any generic almost-complex structure with a very long neck near L. Moreover,
(−1)[d]◦[L]GW 1

d (X,L) ≤ 0.
When L is a torus and r = 1, GW 1

d (X,L) = 0, while GW r
d (X,L) always vanishes,

whatever r is, when L is of genus greater than one. However, in both cases, the lower bounds
given by Corollary 2.2 are still sharp, achieved by any generic almost-complex structure with
a very long neck near L.

The notion of almost-complex structure with very long neck has been introduced by Y.
Eliashberg, A. Givental and H. Hofer in [6]. Also, the intersection index [d] ◦ [L] ∈ Z/2Z
is well defined even though d ∈ H2(X,L;Z) is only a relative homology class, since it does
not depend on the choice of a lift of d in H2(X ;Z).

Proof:

When the genus of L is greater than one, this result is a particular case of Proposition
1.10 of [31] (see also Proposition 4.4 of [32]). When L is a torus, the proof goes along
the same lines as Theorem 1.4 of [31] and we do not reproduce it here. The upshot
is that after splitting (X,ω) near the flat L in the sense of symplectic field theory, for
all J-holomorphic disc homologous to d and passing through x, y, the component in the
Weinstein neighborhood of L which contains the unique real point x is just a once punctured
disc - while it could have more punctures if r > 1. At the puncture, the disc is asymptotic
to a closed Reeb orbit. The boundary of the disc is thus homologous to a closed geodesic
of the flat torus L and thus not homologous to zero in L. As a consequence, for an almost-
complex structure with very long neck, none of the J-holomorphic discs homologous to d
which pass through x, y have trivial boundary in homology.

Finally, when L is a sphere, the proof goes along the same lines as Theorem 1.1 of [31]
and we do not reproduce it here. Again, the upshot is that for an almost-complex struc-
ture with very long neck and standard near L, all the J-holomorphic discs homologous to d
which pass through x, y have boundary close to a geodesic - while this boundary would be
some immersed loop of L if r > 1. This boundary thus divides L into two components L±

which are both homeomorphic to Lagrangian discs. We can then glue one such Lagrangian
disc to our J-holomorphic disc D to get an integral two-cycle which lifts d in homology.
The intersection index of this two-cycle with L equals m(D) + 1 mod (2), where the +1
term is the Euler characteristic of the Lagrangian disc. We thus deduce that for every such
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disc D, m(D) = [d] ◦ [L] + 1, the sharpness and the result. �

The following Lemma 2.4 relates this open Gromov-Witten invariant with the real
enumerative invariant introduced in [26], [28].

Lemma 2.4 Let (X,ω, cX) be a closed real symplectic four-manifold which contains
a Lagrangian sphere L in its real locus RX = fix(cX). Let d ∈ H2(X ;Z) be such that
c1(X)d > 0 and (cX)∗d = −d and let 1 ≤ r ≤ c1(X)d− 1 be an odd integer. Then,

χd
r(L) = 2s−1

∑

d′∈H2(X,L;Z) | d′−(cX)∗d′=d

(−1)d
′◦[RX\L]GW r

d′(X,L) ∈ Z,

where s = 1
2
(c1(X)d− 1− r). In particular, 2s−1 divides χd

r .

Recall that a real symplectic manifold is a symplectic manifold (X,ω) together with an
antisymplectic involution cX , see [25], [26]. The invariant χd

r has been introduced in [26],
[28]. When the real locus RX is not connected, it is understood that χd

r(L) denotes the
part of the invariant obtained by choosing all the r real points in the component L, see
[29], [27]. Note that if r does not have the same parity as c1(X)d − 1, then all invariants
vanish by convention so that the formula of Lemma 2.4 holds true. Note finally that even
though d′ ∈ H2(X,L;Z), the difference d′ − (cX)∗d

′ is well defined in H2(X ;Z) since it
does not depend on the choice of a lift of d′ in H2(X ;Z). Also, the intersection index of d′

with the complement RX \ L is well defined.

Proof:

Let J ∈ RJω be generic, see [28] and x (resp. y) be a collection of r distinct points

in L (resp. s pairs of complex conjugated points in X \ RX). By definition, χd
r(L) =

∑

C∈Rd(x,y,J)
(−1)m(C) ∈ Z, where Rd(x, y, J) denotes the finite set of real rational J-

holomorphic curves homologous to d which contain x∪ y. Each such real rational curve is
the union of two holomorphic discs with boundary on L, exchanged by cX . Their relative
homology class d′ thus satisfies d′ − (cX)∗d

′ = d. Moreover, each of these discs contains x
and one point of every pair of complex conjugated points {yi, yi}, 1 ≤ i ≤ s. There are 2s

ways to choose such a point in every pair and we denote by Y this set of 2s s-tuples. Now,
Schwarz reflection associates to every J-holomorphic disc u′ : ∆ → X with boundary on
L a real rational J-holomorphic curve u : CP 1 → X such that u ◦ conj = conj ◦ u and
its restriction to the upper hemisphere coincides with u′. We deduce from this Schwarz
reflection a 2 : 1 surjective map

S :
⋃

y′∈Y

⋃

d′∈H2(X,L;Z) | d′−(cX)∗d′=d

Md′

r,s(X,L; J, x, y′) → Rd(x, y, J).

By definition, for every [u, J, z, ζ] ∈ Md′

r,s(X,L; J, x, y), m(u) + d′ ◦ [RX \ L] = m(S(u))
mod (2). Indeed, m(S(u)) denotes the number of isolated real double points of the real
rational J-holomorphic curve S(u), see [28]. These isolated real double points are exactly
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the transverse intersection points of u with RX . In the component L of RX , there arem(u)
such intersection points by definition, while in the complement of L in RX , this number
of intersection points is counted modulo two by the intersection index d′ ◦ [RX \ L]. The
result follows. �

Remark 2.5 1) In the case of the quadric ellipsoid, the invariant χd
r(L) has been computed

in [30], [31] for small r. One can proceed in the same way and express GW r
d (X,L) in terms

of a similar invariant defined in the cotangent bundle of the two-sphere and of enumerative
invariants computed by Ravi Vakil in the second Hirzebruch surface, see Theorem 3.16 of
[31]. When r is small, the open Gromov-Witten invariant of the cotangent bundle of the
two-sphere is easy to compute, see Lemma 3.5 of [31], but for larger r, such a computation
is not known yet. Note that an algorithm to compute χd

r(L) for every r has been proposed
in [22].

2) The last part of Lemma 2.4 actually provides a stronger congruence than the one I
already established in [30], [31] using symplectic field theory, see Theorem 2.1 of [31] or
Theorem 1.4 of [32].

3) Lemma 2.4 indicates an obstruction to get similar results for higher genus mem-
branes, that is higher genus J-holomorphic curve with boundary on L. Indeed, we know
that in a simply connected real projective surface, there is one and only one smooth real
curve (of genus 1

2
(L2 − c1(X)L+ 2)) in the linear system of an ample real line bundle L,

which pass through a real collection of 1
2
(L2 + c1(X)L) points, whatever this collection is.

Now, if there were an analogous open Gromov-Witten invariant obtained by just counting
membranes, we would deduce for configurations with s pairs of complex conjugated points
that 2s−1 divides one, a contradiction. Already for genus zero membranes with two bound-
ary components one sees such an obstruction. For instance, through say six real points
and one complex point in the quadric ellipsoid, there could be, depending on the position of
the points, either one or zero such genus zero membranes with two boundary components
homologous to the hyperplane section in H2(X,L;Z). The reason is that applying Schwarz
reflection to such a membrane, one gets a dividing real algebraic curve of bidegree (2, 2) in
the quadric passing through six real points and two complex conjugated ones. But depending
on the position of these points we know that the unique real curve passing through these
points can be either dividing or non-dividing, a contradiction.

When the Lagrangian surface L is not orientable, we only obtain the following quite
weaker result at the moment.

Theorem 2.6 Let (X,ω) be a closed connected symplectic four-manifold and L ⊂ X be
a closed Lagrangian surface homeomorphic to the real projective plane. Let d ∈ H2(X,L;Z)
be such that µL(d) > 0 and ∂d 6= 0 ∈ H1(L;Z/2Z). Let r, s ∈ N be such that r + 2s =
µL(d)−1 and x (resp. y) be a collection of r (resp. s) distinct points of L (resp. X\L). Let
finally J ∈ Jω be generic. Then, the reduction modulo 2 of the integer GW r

d (X,L; x, y, J)
neither depends on the choice of x, y nor on the generic choice of J .
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This Theorem 2.6 thus only provides an invariant GW r
d (X,L) ∈ Z/2Z.

2.2 Proof of Theorems 2.1 and Theorem 2.6

Lemma 2.7 Let L be a connected Lagrangian submanifold of a connected 2n-dimensional
symplectic manifold (X,ω), n > 1. Then, for every r, s ≥ 0, the group of Hamiltonian dif-
feomorphisms of X which preserve L acts transitively on the configuration space of distinct
points {(x, y) ∈ Lr × (X \ L)s | x, y are distinct points}.

Proof: Let us assume first that r = 1 and s = 0. Let x0, x1 ∈ L and (xt)t∈[0,1] be
a smooth path of L joining them. Then, there exists a Hamiltonian flow (φt)t∈[0,1] of X
which preserves L and such that for every t ∈ [0, 1], φt(x0) = xt. Moreover, outside of an
arbitrary small neighborhood of ∪t∈[0,1]{xt} in X and for every t ∈ [0, 1], φt can be the
identity. Indeed, from Weinstein’s neighborhood theorem and the compactness of [0, 1],
it suffices to prove this result for (X,L) = (Cn,Rn). Moreover, the path (xt)t∈[0,1] can
then be assumed to be linear in Rn since any diffeomorphism of Rn extends to a sym-
plectomorphism of Cn = T ∗Rn. Now, the translation in the path (xt)t∈[0,1] is induced by
some linear Hamiltonian H on Cn. Given a neighborhood U of ∪t∈[0,1]{xt}, there exists a
smooth function χ of Cn, invariant under the complex conjugation, which vanishes in the
complement of U and equals one in a neighborhood of ∪t∈[0,1]{xt}. The Hamiltonian flow
(φt)t∈[0,1] induced by the Hamiltonian χH is then the identity outside of U and is such that
for every t ∈ [0, 1], φt(x0) = xt. The result follows when r = 1, s = 0 and follows along the
same lines in general. �

Let J0 and J1 be two generic elements of Jω. From Lemma 2.7, it suffices to prove that
GW r

d (X,L; x, y, J0) = GW r
d (X,L; x, y, J1). Let γ : t ∈ [0, 1] 7→ Jt ∈ Jω be a generic path

such that γ(0) = J0 and γ(1) = J1. Denote by Mγ = π−1(Im(γ)) the one-dimensional
submanifold of Md

r,s(X,L; x, y) and by πγ : Mγ → [0, 1] the associated projection. From
Propositions 1.7 and 2.12, πγ has finitely many critical points, all non-degenerated, which
correspond to simple discs with a unique ordinary cusp on their boundary. All the other
points of Mγ correspond to immersed discs.

Lemma 2.8 Let (X,ω) be a closed symplectic four-manifold and L ⊂ X be a closed
Lagrangian surface. Let t ∈ [0, 1] 7→ Jt ∈ Jω be a generic path of tame almost-complex
structures. Let ut : ∆ → X, t ∈ [0, 1], be a continuous family of Jt-holomorphic immersions

such that ut(∂∆) ⊂ L. Then, the intersection index [ut(
◦

∆)] ◦ [L] ∈ Z/2Z does not depend
on t ∈ [0, 1].

Proof:

Since these maps are immersions, L is Lagrangian and [0, 1] compact, there exists

ǫ > 0 such that for every t ∈ [0, 1], [ut(
◦

∆)] ◦ [L] = [ut(∆(1 − ǫ))] ◦ [L] ∈ Z/2Z and
ut(∂∆(1 − ǫ)) ∩ L = ∅, where ∆(1 − ǫ) = {z ∈ C | |z| ≤ 1− ǫ}. The sum of u0(∆(1 − ǫ)),
the chain (t, z) ∈ [0, 1] × ∂∆(1 − ǫ) 7→ (t, ut(z)) and −u1(∆(1 − ǫ)) defines an inte-
gral two-cycle homologous to zero. Its intersection index modulo two with L equals
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[u1(
◦

∆)] ◦ [L]− [u0(
◦

∆)] ◦ [L], hence the result. �

Denote by B4 the open unit ball of C2 and by Jst the standard complex structure on
this ball.

Lemma 2.9 Let J be an almost complex structure of class C l on B4 tamed by the
standard symplectic form. Let u0 : {z ∈ C | ℑ(z) ≥ 0 and |z| ≤ 1} → B4 be a J-
holomorphic map having an isolated singularity of order µ at 0 = u0(0) and mapping the
boundary [−1, 1] to R2. Then, as soon as J is close enough to Jst = J(0) in C1 norm,
for every v ∈ R2 and every integer ν ≤ 2µ + 1, there exist ǫ > 0 and a family of maps
wλ ∈ Lk,p({z ∈ C | ℑ(z) ≥ 0 and |z| ≤ 1};C2,R2), λ ∈] − ǫ, ǫ[, such that w0 = 0,
.
w0=

d
dλ
|λ=0(wλ)(0) = 0 and for every λ ∈] − ǫ, ǫ[, the map uλ(t) = u0(t) + tν(λv + wλ(t))

is J-holomorphic.

This is a version of (a weaker form of) Lemma 3.1.1 of [21] for a boundary point of a disc.
A sketch of proof of such a version for an interior point was already given in [28], Lemma
2.5, and we reproduce the analog here.

Sketch of proof:

One can write the equation σ∂(uλ, jst, J) = 0, where jst denotes the complex structure
of {z ∈ C | ℑ(z) ≥ 0 and |z| ≤ 1}, in the form

(x+ yjst)
−νσ∂(u0(t) + (x+ yjst)

ν(λv + wλ(t)), jst, J) = 0,

where by definition x+ yjst = t. The linearization of this equation writes

(x+ yjst)
−ν(∂ +R)|(uλ,jst,J)((x+ yjst)

ν(v+
.
wλ (t))) = 0,

which takes the form

(∂ +R)(ν)|(uλ,jst,J)
.
wλ (t) = −(∂ +R)(ν)|(uλ,jst,J)(v)

for some generalized ∂-type operator D(ν) = (∂ +R)(ν) = (x+ yjst)
−ν(∂ +R)|(uλ,jst,J)(x+

yjst)
ν . To solve this equation, it is thus sufficient to find a right inverse T (ν) of this op-

erator D(ν) such that T (ν)(α)(0) = 0 for every α ∈ Lk−1,p({z ∈ C | ℑ(z) ≥ 0 and |z| ≤
1},Λ0,1{z ∈ C | ℑ(z) ≥ 0 and |z| ≤ 1} ⊗ C2). As soon as J is close enough to Jst = J(0)
in C1 norm, the existence of such a right inverse follows from the existence of a right
inverse for the standard ∂-operator on {z ∈ C | ℑ(z) ≥ 0 and |z| ≤ 1}, which follows by
restriction from the existence of a right inverse for the standard ∂-operator on the disc
{z ∈ CP 1 | ℑ(z) ≥ 0}, see Lemma 1.2.2 of [16] for instance. �

Remark 2.10 Without loosing that much generality, we could have restricted ourselves
throughout this paper to almost-complex structures J on X, tamed by the symplectic form
and which in a given Weinstein neighborhood of the Lagrangian surface L turn the canonical
involution (q, p) ∈ T ∗L 7→ (q,−p) ∈ T ∗L into a J-holomorphic one. Then, Lemma 2.9
would follow by Schwarz reflection from the corresponding Lemma 2.5 of [28]
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Lemma 2.11 Let [ut0, Jt0 , zt0 , ζt0
] ∈ Mγ be a critical point of πγ which is a local

maximum (resp. minimum). There exists a neighborhood W of [ut0 , Jt0 , zt0 , ζt0
] in Mγ

and η > 0 such that for every t ∈]t0 − η, t0[ (resp. t ∈]t0, t0 + η[), π−1
γ (t) ∩W consists of

two points [u±
t , Jt, z

±
t , ζ

±

t
] such that m(u+

t ) 6= m(u−
t ) ∈ Z/2Z and for every t ∈]t0, t0 + η[

(resp. t ∈]t0 − η, t0[), π
−1
γ (t) ∩W is empty.

Proof:

This Lemma 2.11 is analog to Proposition 2.16 of [28] and we only sketch its proof.
Let B be a small enough ball centered at the critical value of ut0 in X . Let P be the
space of pseudo-holomorphic maps from {z ∈ C | ℑ(z) ≥ 0 and |z| < 1} to B mapping the
boundary ] − 1, 1[ to L ∩ B. Let C ⊂ P be the subspace of maps which are immersions
away from a unique point of ]− 1, 1[ which is cuspidal of multiplicity two. This space C is
a submanifold of codimension one of P since its defining condition on the first jet of the
pseudo-holomorphic maps costs one degree of freedom, which is proven as Lemma 2.6 of
[28] by replacing the reference to Lemma 2.5 of [28] with a reference to Lemma 2.9, compare
Lemma 4.4.3 of [21]. The one-parameter family of pseudo-holomorphic discs parameterized
by W provides by restriction to B a path of P transversal to C at [ut0 , Jt0 ]. This is due to
the fact that the tangent vector of this path at [ut0 , Jt0 , zt0 , ζt0

] generates H0
D(∆,Nu,−z,−ζ)

by Proposition 1.3, while the normal sheaf Nu,−z,−ζ is skyscaper, compare Proposition 1.6.
A generator of the latter provides a complex vector field tangent to the image of ut0 with
a simple pole at the cusp, see Lemma 4.3.1 of [21]. Such a tangent vector is precisely
transverse to T[ut0

,Jt0 ]
C in T[ut0

,Jt0 ]
P, compare Lemma 2.6 [28]. For the same reason, the

perturbation t ∈ C 7→ (t2, t3 + ǫt) ∈ C2 of the standard real ordinary cusp provides by
restriction to a ball B′ of C2 centered at the origin and symplectomorphic to B a path u′

ǫ of
P ′ transversal to C′ at ǫ = 0, where P ′ and C′ are the analogs of P and C in B′. Note that
m(u′

ǫ) = 1 (resp. m(u′
ǫ) = 0) for ǫ > 0 (resp. ǫ < 0), while from Lemma 2.8 follows that the

intersection index m is constant on each component of P ′ \ C′. Let us choose a symplectic
diffeomorphism φ between B and B′ which maps L ∩ B onto R

2 ∩ B′. It suffices then to
connect φ ◦ ut0 to u′

0 or any point sufficently close to u′
0 by a smooth path in C′. This can

be done by zooming at the origin of B′, since we may assume that φ∗Jt0 is the standard
complex structure at the origin and that φ ◦ut0 : z → (z2, z3)+ o(z3) ∈ B′, as follows from
Lemma 2.9, compare Corollary 1.4.3 of [16]. Let aδ : (z1, z2) ∈ C2 7→ (δ2z1, δ

3z2) ∈ C2,
δ ∈]0, 1] and hδ : z ∈ C 7→ δz ∈ C, then a−1

δ ◦ φ ◦ hδ provides a path of C′ parameterized
by δ ∈]0, 1] which is close to the standard cusp u′

0 for δ close to zero and equals φ ◦ ut0 for
δ = 1. The result follows. �

When the one-dimensional cobordism Mγ is compact, Lemmas 2.8 and 2.11 imply The-
orem 2.1, since as t varies in [0, 1], Lemma 2.8 guarantees the invariance ofGW r

d (X,L; x, y, Jt)
between two critical values of πγ whereas Lemma 2.11 guarantees its invariance while cross-
ing the critical values.

When Mγ is not compact, its Gromov compactification is given by the following Propo-
sition 2.12.
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Proposition 2.12 Let L be a closed orientable Lagrangian surface of a closed con-
nected symplectic four-manifold (X,ω). Let d ∈ H2(X,L;Z) be such that µL(d) > 0 and
r, s ∈ N such that r+2s = µL(d)− 1. Let x (resp. y) be a set of r (resp. s) distinct points
of L (resp. X \L). Let t ∈ [0, 1] 7→ Jt ∈ Jω be a generic path. Then, every Jt-holomorphic
element of Pr,s(X,L), homologous to d and containing x ∪ y, t ∈ [0, 1], is simple. Like-
wise, every Jt-holomorphic stable disc homologous to d which contains x ∪ y, t ∈ [0, 1], is
either irreducible, or its image contains exactly two irreducible components which are both
immersed discs transversal to each other. In the latter case, if the Maslov index of such
a component is positive, then the source contains a unique disc mapped to this component
and the map is an immersion.

Proof:

Let us assume that a Jt-holomorphic element of Pr,s(X,L) homologous to d and contain-
ing x∪y, t ∈ [0, 1], is not simple. From Theorem 1.5, such a Jt-holomorphic disc u : ∆ → X
splits into simple discs uD : ∆ → X , so that d =

∑

D mD(uD)∗[∆] ∈ H2(X,L;Z). Let us
denote by (Di)i∈I the connected components of the complement ∆ \ G(u) given by The-
orem 1.5 and set di = (uDi

)∗[∆]. From Theorem 1.2, the µL(di) are non-negative. But
the union of these simple discs has to contain the points x ∪ y, so that from Theorem
1.2,

∑

i∈I(µL(di) − 1) ≥ #(x ∪ y) − 1 ≥ µL(d) − 2. Since
∑

i∈I mDi
µL(di) = µL(d) and

these Maslov indices are even, we deduce that #I = 2. Hence, either mD1
= mD2

= 1 or
µL(di) = 0 for some i ∈ {1, 2}. In both cases, one of the discs, say uD2

, together with its
incidence conditions, has vanishing Fredholm index, while the other one, uD1

, has index
−1 and a common edge with uD2

. Perturbing the almost-complex structure on the image
of uD2

, one observes that the latter condition is of positive codimension while it is inde-
pendent of the former Fredholm −1 condition. As a consequence, such a non-simple disc
cannot appear over a generic path of almost-complex structures (Jt)t∈[0,1].

Let us assume now that there exists a Jt-holomorphic disc u given by Theorem 1.4
which contains x∪y and is homologous to d, t ∈]0, 1[. The preceding arguments again lead
to the fact that such a Jt-holomorphic disc contains in its image exactly two irreducible
components, both being discs. Indeed, from Theorem 1.2, the Fredholm index of a simple
disc in a class d1 ∈ H2(X,L;Z) is µL(d1) − 1 whereas the index of a pseudo-holomorphic
sphere in a class d2 ∈ H2(X ;Z) is µL(d2)− 2. As a consequence, the index of a stable disc
with α disc-components and β spherical components in its image equals µL(d

′)− α − 2β,
where d′ ∈ H2(X,L;Z) denotes the total homology class of these image components. We
deduce that µL(d

′)−α−2β ≥ #(x∪y)−1, so that either α = 2, β = 0 and µL(d
′) = µL(d),

or α = 0 and β = 1. The latter is however excluded since r is odd so that the index of
a Jt-holomorphic sphere passing through x ∪ y is then less than −1 in this case. Hence,
the image of u contains two irreducible components of classes d1, d2 ∈ H2(X ;Z) such that
µL(d1) + µL(d2) = µL(d).

Moreover, these two irreducible components of the image of u are immersed from Propo-
sition 1.7 and transverse to each other, since to have a point of non transverse intersection
for two discs costs one degree of freedom, so that in the space of pairs of discs passing
through x, y and of total homology class d, the ones which are not transversal to each
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other form a codimension one stratum, compare Proposition 2.11 of [28]. As a conse-
quence, the projection from this stratum to Jω gets of Fredholm index −2 and its image
is avoided by the generic path t ∈ [0, 1] 7→ Jt ∈ Jω.

Finally, we deduce as in the first part of this proof that if µL(d1) (resp. µL(d2)) is posi-
tive, then the stable disc at the source of u contains a unique component which is mapped
onto the disc of class d1 (resp. d2). Moreover, the restriction of u to this component has
to be an immersion, since the image disc is immersed. �

Let ([u1, Jt0 , z1, ζ1] , [u2, Jt0 , z2, ζ2]) be a pair of discs given by Proposition 2.12, Di =
Im(ui), and di = (ui)∗(∆) ∈ H2(X,L;Z), i ∈ {1, 2}. We may assume without loss of
generality that µL(d2) is positive and deduce from Proposition 2.12 that there exists a
positive integer b such that bd1 + d2 = d, with b = 1 in case µL(d1) > 0 . From the
hypothesis we know that b[∂d1] = −[∂d2] ∈ H1(L,Z), so that [∂d1] ◦ [∂d2] = 0. Let us
equip L with an orientation and denote by R+ (resp. R−) the number of positive (resp.
negative) intersection points between ∂D1 and ∂D2, the latter being canonically oriented
by the complex structure. We deduce that R+ = R−. Our main observation is then the
following, which we formulate in a more general setting since it will be useful as well in
the next paragraph.

Proposition 2.13 Let (X,ω) be a closed connected symplectic four-manifold and L ⊂
X be a closed Lagrangian surface. Let ([u1, J0, z1, ζ1], [u2, J0, z2, ζ2]) ∈ Md1

r1,s1
(X,L; J0, x1, y1)×

Md2
r2,s2

(X,L; J0, x2, y2) be a pair of immersed pseudo-holomorphic discs transversal to each
other. Assume that r1 + 2s1 = µL(d1), r2 + 2s2 = µL(d2)− 1 and that L is orientable and
oriented in the neighborhood of u1(∂∆). Let (Jλ)λ∈]−ǫ,ǫ[ be a path transversal to the Fred-
holm −1 projection π1 : Md1

r1,s1
(X,L; x1, y1) → Jω. Then, as soon as ǫ is small enough,

for every intersection point w of u1(∂∆) ∩ u2(∂∆), the pair ([u1, J0, z1, ζ1], [u2, J0, z2, ζ2])

deforms by perturbation of w to exactly one disc in Md1+d2
r1+r2,s1+s2(X,L; Jλ, x1 ∪ x2, y1 ∪ y

2
)

for positive λ and does not deform in Md1+d2
r1+r2,s1+s2

(X,L; Jλ, x1∪x2, y1∪ y
2
) for negative λ,

or vice versa. Moreover, the values of λ for which such a deformation holds only depend
on the sign of the local intersection index u1(∂∆) ◦ u2(∂∆) at w in L.

In the statement of Proposition 2.13, it is understood that the points x1, x2, y1, y2 are
not on singular points of the stable disc. Also, the last part of the statement means that
the values of λ for which the deformation holds do not depend on the Maslov index µL(d2),
the value of r2 or on the chosen disc [u2, J0, z2, ζ2] and intersection point w.

Proof:

Since all nearby discs to the stable one are immersed, we may, without loss of gener-
ality, deform (Jλ)λ∈]−ǫ,ǫ[ or J0 in the image of π1 as long as ([u1, J0, z1, ζ1], [u2, J0, z2, ζ2])
remains J0-holomorphic, as follows from symplectic isotopy. We may then assume that J0

is standard near x2, y2 and blow up these points to restrict ourselves to the case where
r2 = s2 = 0. We are then going to deduce Proposition 2.13 from Proposition 2.14 of [28].
Let b, f ∈ RP 1 and F ′ = {b} × CP 1, B′ = CP 1 × {f} be the two associated real rational
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curves of CP 1 × CP 1. These curves transversely intersect at one real point. We may add
a finite number of pairs of complex conjugated sections Bi = CP 1 × {fi} to F ′, where
fi ∈ CP 1 \RP 1 and blow up some pairs of complex conjugated points on F ′ together with
one real point on B′ in order to get, after perturbation, a real projective surface (Y, cY )
whose real locus is a once blown-up torus, together with smooth real rational curves B,F
intersecting transversely at one real point. This number of sections and blown-up points
can moreover be chosen such that c1(Y )[F ] = µL(d1), where di = (ui)∗(∆) ∈ H2(X,L;Z),
i ∈ {1, 2}. Let F+ be one hemisphere of F , so that its interior is a connected component
of F \ RF . It induces an orientation on ∂F+ = RF . Let us choose an orientation of RY
near RF and denote by B+ (resp. B−) the hemisphere of B such that [∂F+] ◦ [∂B±] = ±1
locally at the unique intersection point. Let U+ (resp. U−) be a neighborhood of F+∪B+

(resp. F+ ∪ B−) in Y . Choose r1 distinct points on RF \ B and s1 distinct pairs of
complex conjugated points on F \ RF , where r1 + 2s1 = c1(Y )[F ]. Denote by JY (resp.
RJY ) the space of almost-complex structures of Y tamed by a chosen symplectic form
ωY (resp. for which cY is antiholomorphic) and by J ′

0 the given complex structure of Y .
Let us denote by J +

Y (resp. RJ +
Y ) the codimension one subspace of JY (resp. RJY ) for

which F+ deforms as a pseudo-holomorphic disc with boundary on RY passing through
the chosen points on F+. This space contains J ′

0 and coincides with the space for which
the pair F+∪B+ or F+∪B− deforms as a pair of pseudo-holomorphic discs with boundary
on RY passing through the chosen points. Let z be a smooth point of F+ \ ∂F+ away
from the already chosen ones and (J ′

λ)λ∈]−ǫ,ǫ[ be a path of RJY which coincides with J ′
0

outside of a neighborhood of z and is transversal to J +
Y , see [28]. From Proposition 2.14

of [28], we may assume that for λ ∈]0, ǫ[ (resp. λ ∈] − ǫ, 0[), F+ ∪ B+ (resp. F+ ∪ B−)
deforms as a unique J ′

λ-holomorphic disc with boundary on RY passing through the chosen
points, whereas for λ ∈]− ǫ, 0[ (resp. λ ∈]0, ǫ[), it has no J ′

λ-holomorphic deformation with
boundary on RY passing through the chosen points. These deformations, being close to
F+ ∪ B±, are all immersed and thus regular from Proposition 1.6. As a consequence, we
deduce by symplectic isotopy that the latter result neither depends on the choice of the
transversal path (J ′

λ)λ∈]−ǫ,ǫ[, nor even of the crossing point J ′
0 in JY which makes F+ ∪B±

holomorphic, since this set is connected. Moreover, this result does not depend on the
specific position of the chosen points on F , r1 being fixed, since this set is again connected.

Now, for every positive (resp. negative) intersection point w+ (resp. w−) of u1(∂∆) ∩
u2(∂∆), there exists, deforming ωY if necessary, a symplectic immersion from U+ (resp.
U−) to a neighborhood V of u1(∆) ∪ u2(∆) in X which maps RY ∩ U+ (resp. RY ∩ U−)
on L and w on w+ (resp. w−). Moreover, there exists holomorphic parameterizations
v1 : ∆ → F+ and v2 : ∆ → B+ (resp. v2 : ∆ → B−) such that u1 = φ ◦ v1 and u2 = φ ◦ v2.
We then fix the points v1(z1), v1(ζ1) on F+. The immersion φ maps the wall J +

Y on
the corresponding codimension one subspace of Jω made of almost-complex structures for
which the disc [u1, Jt0 , z1, ζ1] deforms as a disc passing through x1 ∪ y

1
. The result now

follows from the fact that, up to homotopy, the latter does not depend on the choice of
the point w+ (resp. w−), so that on one side of the codimension one subspace of Jω, the
stable disc ([u1, Jt0 , z1, ζ1], [u2, Jt0 , z2, ζ2]) deforms by perturbation of w± to a simple disc
while on the other side, it does not, the side only depending on the sign ±. �
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Proposition 2.14 Under the hypothesis of Theorem 2.1, Let ([u1, Jt0 , z1, ζ1], [u2, Jt0 , z2, ζ2]) ∈

Md1
r1,s1

(X,L; J0, x1, y1)× Md2
r2,s2

(X,L; J0, x2, y2) be a pair of transversal immersed pseudo-

holomorphic discs in the Gromov compactification Mγ of Mγ such that bd1 + d2 = d,
b ≥ 1. There exists a neighborhood W of ([u1, Jt0 , z1, ζ1], [u2, Jt0 , z2, ζ2]) in Mγ and

η > 0 such that the contribution of π−1
γ (t) ∩ W to GW r

d (X,L; x, y, Jt) does not depend
on t ∈]t0 − η, t0 + η[\{t0}. �

Proof:

Let R+ (resp. R−) be the number of positive (resp. negative) intersection points
between u1(∂∆) and u2(∂∆). By hypothesis, R+ = R−. If b = 1, then the result follows
from Proposition 2.13. Let us assume that b > 1, so that µL(d1) = 0, r + 2s = µL(d2)− 1
and let u : ∆ → X be a stable disc in the Gromov compactification Mγ of Mγ with image
([u1, Jt0 ], [u2, Jt0 , z, ζ]), see Proposition 2.12. We set ∆ = ∆0 ∪ · · · ∪∆b the decomposition
of ∆ into irreducible components, where ∆0 denotes the unique one which has the same
image as u2. This uniqueness follows from Proposition 2.12, since µL(d2) is positive.

The union ∆1∪· · ·∪∆b contains k connected components ∆1, . . . ,∆k, 1 ≤ k ≤ b, which
are k nodal discs attached to ∆0 at k of the R++R− preimages under u of u1(∂∆)∩u2(∂∆).
These nodal discs are mapped onto u1(∆). We denote by ui the restriction of u to ∆i and
by ai ∈ ∆i the marked point where ∆i is attached to ∆0, 1 ≤ i ≤ k, so that ui : ∆i → X
is a stable map. Given any ordered subset α1, . . . , αk of k of the R+ +R− special points of
∂∆0 and any stable maps ui : ∆i → u1(∆) such that ui(ai) = u(αi), we get by attaching
(∆i, ai) to (∆0, αi) a stable map which might be in the Gromov compactification Mγ of
Mγ.

Now let us glue k copies of a neighborhood of u1(∆) in X to a neighborhood of
u2(∆) = u(∆0) along neighborhoods of the αi, 1 ≤ i ≤ k, in order to get a manifold
V together with an immersion v : V → X such that u factors through v. By pulling back
Jt0 under v and successively deforming v∗Jt0 to v∗Jt in each of the k copies of the neigh-
borhood of u1(∆), we see as in the proof of Proposition 2.13 that the algebraic number of
v∗Jt holomorphic curves we get for t > t0 or t < t0 only depends on the stable maps ui up
to deformation and on the signs of the special points α1, . . . , αk where they are attached.
Since R+ = R−, whatever the stable maps ui are, we get as many of them attached to
positive as to negative special points of ∂∆0. The result follows. �

Remark 2.15 1) In Remark 2.12 of [28], I forgot to consider the case where elements of
RMd(x) degenerate to an element of the diagonal ∆ of Corollary 2.10. This may happen
in the presence of a sphere of vanishing first Chern class as in Proposition 2.12. This case
should have been included in Proposition 2.14 of [28] and can for instance be treated as in
Proposition 2.14, since real rational curves are pairs of complex conjugated discs.

2) Note that, as pointed out to me by R. Crétois, stable discs in the compactification
Mγ of Mγ, with b = 2 say, can for instance contain at the source three components, the
component ∆0 mapped onto u2(∆), a component ∆1 attached to it and mapped onto u1(∆)
and a component ∆2, which is attached to ∂∆1 at one point where u is not injective (let us
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assume here that u1(∂∆) contains double points) and thus also mapped onto u1(∆). Such
a map u can then be an immersion and we can prove as in Propositions 2.13, 2.14 that it
indeed appears in the Gromov compactification Mγ.

This Proposition 2.14, together with Lemmas 2.8 and 2.11, implies Theorem 2.1 in
general, since it guarantees the invariance of GW r

d (X,L; x, y, Jt) while crossing the limit

values πγ(Mγ \Mγ). �

Finally, Theorem 2.6 follows along the same lines as Theorem 2.1. When Mγ is com-
pact, GW r

d (X,L) is invariant. When Mγ is not compact, its Gromov compactification
is given from Proposition 2.12 by adding to it pairs of transversal immersed pseudo-
holomorphic discs. Let ([u1, Jt0 , z1, ζ1] , [u2, Jt0, z2, ζ2]) be such a pair, Di = Im(ui), and
di = (ui)∗(∆) ∈ H2(X,L;Z), i ∈ {1, 2}. From the hypothesis we know that either [∂d1] or
[∂d2] vanishes in H1(L,Z/2Z). As a consequence, the discs ([u1, Jt0 , z1, ζ1] , [u2, Jt0 , z2, ζ2])
have an even number of intersection points. Now, the analog to Proposition 2.14 tells us
that there exists R+, R− ∈ N, such that R++R− is this even number of intersection points
and one checks that the contribution of π−1

γ (t) ∩W to GW r
d (X,L; x, y, Jt) then jumps by

a multiple of two as t crosses the value t0, hence the result. �

2.3 Higher open Gromov-Witten invariants

We are now going to extend the results of §2.1 by introducing k-disc open Gromov-Witten
invariants, for every positive integer k. The advantage is that not only pseudo-holomorphic
discs with vanishing boundary will play a rôle here. Let us adopt again the notations of
§2.1. Let (X,ω) be a closed connected symplectic four-manifold. Let L ⊂ X be a closed
Lagrangian surface of Maslov class µL ∈ H2(X,L;Z) and k ∈ N∗. Let d ∈ H2(X,L;Z)
be such that µL(d) ≥ k and r, s ∈ N such that r + 2s = µL(d) − k. Let finally x (resp.
y) be a set of r (resp. s) distinct points of L (resp. X \ L). For every J ∈ Jω generic,

denote by Md,k
r,s (X,L; J, x, y) the union

⋃

d1,...,dk∈H2(X,L;Z) | d1+···+dk=dM
d1,...,dk
r,s (X,L; J, x, y),

where Md1,...,dk
r,s (X,L; J, x, y) denotes the finite set of unions of k J-holomorphic discs with

boundaries on L, containing x, y and with respective relative homology classes d1, . . . , dk.
We do not prescribe how these r + 2s points x, y get distributed among the k discs. For

every unions of k discs [u, J, z, ζ] = {[u1, J, z1, ζ1], . . . , [uk, J, zk, ζk]} ∈ Md,k
r,s (X,L; x, y), we

set m(u) =
∑k

i=1m(ui) ∈ Z/2Z. Then, we set

GW r
d,k(X,L; x, y, J) =

∑

[u,J,z,ζ]∈Md,k
r,s (X,L;J,x,y)

(−1)m(u) ∈ Z.

Theorem 2.16 Let (X,ω) be a closed connected symplectic four-manifold, L ⊂ X
be a closed Lagrangian surface which we assume to be orientable and k ∈ N∗. Let d ∈
H2(X,L;Z) be such that µL(d) ≥ k and ∂d = 0 ∈ H1(L;Z). Let r, s ∈ N be such that
r + 2s = µL(d) − k and x (resp. y) be a collection of r (resp. s) distinct points of L
(resp. X \L). Let finally J ∈ Jω be generic. Then, the integer GW r

d,k(X,L; x, y, J) neither
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depends on the choice of x, y nor on the generic choice of J . The same holds true modulo
two when L is homeomorphic to the real projective plane and ∂d 6= 0 ∈ H1(L;Z/2Z).

The invariant provided by Theorem 2.16 can be denoted without ambiguity byGW r
d,k(X,L) ∈

Z, it is also left invariant under deformation of the symplectic form ω, whereas it depends
in general of d and r. Examples where this invariant can be non-trivial are given by toric
fibers of toric surfaces, already when counting the finite union of Maslov two discs for
r = k, see Proposition 6.1.4 of [3].

Corollary 2.17 Under the hypothesis of Theorem 2.16, the cardinality of the set
Md,k

r,s (X,L; J, x, y) is bounded from below by |GW r
d,k(X,L)|. �

Proof of Theorem 2.16:

The proof of Theorem 2.16 goes along the same lines as the one of Theorems 2.1 and 2.6.
Let J0 and J1 be two generic elements of Jω, it suffices to prove that GW r

d,k(X,L; x, y, J0) =
GW r

d,k(X,L; x, y, J1). Let γ : t ∈ [0, 1] 7→ Jt ∈ Jω be a generic path such that γ(0) = J0

and γ(1) = J1, Mγ = ∪t∈[0,1]M
d,k
r,s (X,L; Jt, x, y) the corresponding one-dimensional man-

ifold and πγ : Mγ → [0, 1] the associated projection. When Mγ is compact, Theorem
2.16 again follows from Lemmas 2.8 and 2.11. When Mγ is not compact, its Gromov
compactification is given from Proposition 2.12 by adding to it (k + 1)-tuple of transver-
sal immersed pseudo-holomorphic discs. Let ([u1, Jt0 , z1, ζ1] , . . . , [uk+1, Jt0, zk+1, ζk+1

]) be

such a (k + 1)-tuple, Di = Im(ui), and di = (ui)∗(∆) ∈ H2(X,L;Z), i ∈ {1, 2}. One of
these k + 1 discs, say D1, is, together with its incidence conditions, of Fredholm index −1
while the other are of vanishing Fredholm index. Again, from the hypothesis we deduce
that [∂d1] ◦ ([∂d2] + · · · + [∂dk+1]) = 0, so that by equipping L with an orientation and
denoting by R+ (resp. R−) the set of positive (resp. negative) intersection points between
∂D1 and ∂D2 ∪ · · · ∪ ∂Dk+1, we have R+ = R−. The latter holds true modulo 2 when L is
a real projective plane. Theorem 2.16 then follows from Propositions 2.13 and 2.14. �

When L is a Lagrangian sphere, these k-discs open Gromov-Witten invariants are
deduced from the one-disc invariants introduced in §2.1 in the following way.

Lemma 2.18 Let (X,ω) be a closed connected symplectic four-manifold, L ⊂ X be a
Lagrangian sphere and k ∈ N∗. Let d ∈ H2(X,L;Z) be such that µL(d) ≥ k and r, s ∈ N

such that r + 2s = µL(d)− k. Then,

GW r
d,k(X,L) =

1

k!

∑

d1,...,dk |
∑

di=d

∑

r1,...,rk |
∑

ri=r

(

r

r1, . . . , rk

)(

s

s1, . . . , sk

) k
∏

i=1

GW ri
di
(X,L),

where for 1 ≤ i ≤ k, si =
1
2
(µL(di)− ri − 1) and

(

r

r1,...,rk

)

=
(

r

r1

)(

r−r1
r2

)

. . .
(

rk−1+rk
rk−1

)

.

Note that if ri = µL(di) mod (2), GW ri
di
(X,L) = 0.

Proof:
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Let x (resp. y) be a collection of r (resp. s) distinct points of L (resp. X \ L)
and J ∈ Jω be generic. Then, k!GW r

d,k(X,L) counts the number of ordered unions of k
discs ([u1, J, z1, ζ1], . . . , [uk, J, zk, ζk]) containing x ∪ y and of total homology class d. The
images of zi, ζi under ui induce a partition of x, y into subsets xi, yi of respective cardi-

nalities ri, si, 1 ≤ i ≤ k. The number of such partitions equals respectively
(

r

r1,...,rk

)

and
(

s

s1,...,sk

)

, while ([u1, J, z1, ζ1], . . . , [uk, J, zk, ζk]) provides an element counted by the product
∏k

i=1GW ri
di
(X,L). Conversely, for every such partition, any k-tuple of discs counted by the

invariant
∏k

i=1GW ri
di
(X,L) provides an element counted by k!GW r

d,k(X,L) with respect
to the same sign. Hence the result. �

When L is fixed by an antisymplectic involution, the invariant χd
r introduced in [26],

[28] counts real rational curves which thus consist of pairs of complex conjugated discs, the
sum of the boundaries of which vanish in homology. However, the invariant GW r

d,2(X,L)
seems to count a much larger number of pairs so that I do not see a relation between the
two in general.
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