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The Godunov scheme for scalar conservation laws with

discontinuous bell-shaped flux functions

Boris Andreianov∗ Clément Cancès†

Abstract

We consider hyperbolic scalar conservation laws with discontinuous flux function of
type ∂tu + ∂xf(x, u) = 0, with f(x, u) = fL(u)11R−(x) + fR(u)11R+(x). Here fL,R are
compatible bell-shaped flux functions as appear in numerous applications. In [2] and [7],
it was shown that several notions of solution make sense, according to a choice of the so-
called (A,B)-connection. In this note, we remark that every choice of connection (A,B)
corresponds to a limitation of the flux under the form f(u)|x=0 ≤ F̄ , first introduced in
[13]. Hence we derive a very simple and cheap to compute explicit formula for the the
Godunov numerical flux across the interface {x = 0}, for each choice of the connection.
This gives a simple to use numerical scheme governed only by the parameter F̄ .

1 Introduction

Since it arises in several real life applications like traffic flow modeling [8], multiphase flows in porous
media [3, 9, 10, 16] or water treatment [14], the Cauchy problem of the type

∂tu+ ∂xf(x, u) = 0, u(·, 0) = u0, (1)

where the flux function f is discontinuous w.r.t. the space variable have been widely studied during
the last 20 years. A particular attention has been paid to the most simple case, i.e.

f(x, u) = fL(u)11R−(x) + fR(u)11R+(x). (2)

In the sequel, we assume that the flux functions fL,R are compatible and bell-shaped, i.e.,

(A1) the functions fL,R are Lipschitz continuous and such that fL(0) = fR(0), fL(1) = fR(1);

(A2) there exists bL,R ∈ [0, 1] such that f ′
L,R(u)(u− bL,R) < 0 for a.e. u ∈ [0, 1].

We also require the following condition on the initial data u0:

(A3) u0 is a measurable function satisfying 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R.

For such a problem, it is natural to consider entropy solutions in the sense of Kružkov [17] away
from the flux discontinuity at x = 0, i.e. functions u ∈ L∞(R × R+; [0, 1]) such that (3) holds with
qL,R(u, κ) := sign(u − κ)(fL,R(u) − fL,R(κ)). It has been pointed out in [2] that prescribing the
balance of the fluxes at the interface is not sufficient to ensure uniqueness for the solution of the
problem (1). Namely, some entropy criterion has to be fulfilled by the solution at the interface, and
different physical contexts lead to different interface coupling criteria and thus to different notions of
solution. In Section 2, we give a short introduction to the problem by following the theory introduced
in [7] and extensively developed in [5]. We re-interpret the “(A,B)-connections” of [2, 7] in terms of
interface flux constraints “f(u)|x=0 ≤ F̄(A,B)” introduced in [13]. Due to this idea of flux limitation at
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the interface, in Section 3, we establish an explicit formula for the flux at the interface corresponding
to any Riemann problem. This yields the flux for the Godunov scheme for approximation of solutions
to problem (1) for any choice of interface coupling (i.e., for any choice of a connection (A,B) or of an
interface flux constraint F̄ = F̄(A,B)).

2 Connections, flux limitation and L1 dissipative germs

Definition 2.1 (Connections and L1 dissipative germs; see [2, 7] and [5]) For fL,R satisfying (A1), (A2),
a couple (A,B) ∈ [0, 1]2 is said to be a connection if A ∈ [bL, 1], B ∈ [0, bR] and fL(A) = fR(B). We
define the corresponding L1 dissipative germ G(A,B) (cf. [5]) to be the singleton {(A,B)}, and we set

G∗

(A,B) =
{

(cL, cR) ∈ [0, 1]2 s.t. fL(cL) = fR(cR) and qR(cR, B)− qL(cL, A) ≤ 0
}

.

We denote by U ⊂ [0, 1]2 the set of all the connections corresponding to the flux functions fL, fR.
Finally, we define the optimal connection (Aopt, Bopt) by

(Aopt, Bopt) ∈ U , with either Aopt = bL or Bopt = bR.

As it was shown in [18], under Assumption (A2), a function u ∈ L∞(R∗×R+; [0, 1]) satisfying (3) ad-
mits one-sided traces γL,R(u) ∈ L∞(R+) achieved in a strong sense. This permits to give the next
definition.

Definition 2.2 (G(A,B)-entropy solution) A function u ∈ L∞(R∗ × R+; [0, 1]) is said to be a G(A,B)-
entropy solution of (1),(2) if it satisfies

∀κ ∈ [0, 1] ∂t|u− κ| − ∂xqL,R(u, k) ≤ 0 in D′(ΩL,R), (3)

and for a.e. t > 0, one has (γL(u)(t), γR(u)(t)) ∈ G∗

(A,B).

The theory developed in [5] shows that for all (A,B) ∈ U , there exists a unique G(A,B)-entropy
solution to problem (1) in the sense of Definition 2.2. Equivalent characterizations of the G(A,B)-
entropy solutions in terms of up-to-the-interface entropy inequalities were used in [5, 7]. In this paper,
we will rather benefit from the point of view developed in [13] and then in [4, 12]; to this end, we
establish the link between connections and flux limitation at the interface. We need more notations
(see Fig. 1). For (A,B) ∈ U ,

set F̄(A,B) := fL(A) = fR(B); notice that F̄(Aopt,Bopt) = F̄ opt := max(A,B)∈U F̄(A,B).

The set U of connections can be parametrized by F̄ (we write F̄(A,B) or (AF̄ , BF̄ ) to stress this link)

which takes values in [F̄ barr, F̄ opt] :=
[

max(fL,R(0), fL,R(1)), min(fL(bL), fR(bR))
]

.
Set O := G∗

(Aopt,Bopt). Then O \ {(Aopt, Bopt)} is the set of all couples (a, b) ∈ [0, 1]2 \ U such that

fL(a) = fR(b). In contrast to under-compressive states (A,B) ∈ U , every couple (a, b) ∈ O will be
called an over-compressive state (note that (Aopt, Bopt) ∈ U ∩O is both under- and over-compressive).
We have

G∗

(A,B) = {(A,B)} ∪ OF̄(A,B)
, where OF̄(A,B)

:=
{

(cL, cR) ∈ O s.t. fL(cL) = fR(cR) ≤ F̄(A,B)

}

(4)

is a restriction of O. The connection (A,B) is the only under-compressive state belonging to G∗

(A,B).

From (4), we readily see that OF̄ depends in a monotone way on F̄ ∈ [F̄ barr, F̄ opt].

In [13] (see also [4, 12]), L1-contractive semigroups of solutions were constructed even for the
classical case fL = fR, by imposing an interface flux constraint of the form fL,R(γL,R(u)) ≤ F̄ at
{x = 0}. In the case fL 6= fR, the situation is exactly similar. Namely, each connection (A,B)
makes appear a set of trace couples G∗

(A,B) satisfying (4), so that the different G(A,B)-entropy solutions

for (1),(2) for different (A,B) ∈ U correspond to different levels F̄(A,B) of interface flux constraint.
Kružkov solutions (in the case fL = fR) and optimal entropy solutions (in the general case) shall be
seen as the unconstrained ones.
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Figure 1: On the left hand side, the two flux functions fL,R have been plotted together. A
choice (A,B) ∈ U of connection is drawn, as well as the particular values A⋆ and B⋆ such
that fL(A

⋆) = fR(B
⋆) = F̄(A,B). As it plays a particularly important role, the connection

(Aopt, Bopt) is also represented. On the right hand side, we have drawn the sets U (red dashed
line), O ≡ O(Aopt,Bopt) (solid line) and its subset O(A,B) (green solid line, outside of the grey
rectangle). The grey rectangle represents the open set of (uL, uR) ∈ [0, 1]2 that fail to satisfy
[ fL(uL) ≤ F̄(A,B) ] & [ fR(uR) ≤ F̄(A,B) ].

3 The Godunov scheme

Consider the Riemann problem (1),(2) with initial datum u0 = uL11R− + uR11R+ . Let us compute the
flux across the interface {x = 0} of the G(A,B)-entropy solution u of the Riemann problem in order to
be able to build the Godunov scheme (see [15]). Note that such scheme is proved to be convergent
in [5].

In the case fL = fR, the numerical scheme proposed in [4] used the flux min{F̄ ,F(uL, uR)}, i.e.,
a given interface numerical flux F(·, ·) for the unconstrained problem was limited to a given maximal
value F̄ . Moreover, in the particular case where F(·, ·) is the Godunov flux for the unconstrained
problem, it is shown in [12] that the resulting scheme for the constrained problem is also the Godunov
one. Here, we show that the same property holds for general fL,R, namely, the Godunov flux through
the interface {x = 0} corresponding to the G(A,B)-entropy solution is the Godunov flux corresponding
to the optimal entropy solution on which we apply a constraint afterwards. Notice that, in addition,
an explicit formula for the Godunov flux for the optimal entropy solution is well known since [1].

Theorem 3.1 (Main result) The Godunov flux for G(A,B)-entropy solutions at the interface x = 0
is given by

F(uL, uR) = min
(

F̄(A,B), fL (min(uL, bL)) , fR (max(uR, bR))
)

. (5)

Moreover, whenever Fopt(uL, uR) > F̄(A,B), i.e., the constraint is active, one has

γL(u) = A, γR(u) = B.

Proof: As it has been explicitly stated in [1], it follows from the bell-shaped behavior of the flux functions
(see Assumption (A2)) that the flux of the (Aopt, Bopt)-entropy solution of the above Riemann problem
across the discontinuity {x = 0} is given by

Fopt(uL, uR) = min (fL (min(uL, bL)) , fR (max(uR, bR))) . (6)

We have two possibilities. First, assume that Fopt(uL, uR) ≤ F̄(A,B); we see from Fig. 1 that
the traces couple (γL(u

opt), γR(u
opt)) belongs to O ∩ G∗

(A,B) = OF̄(A,B)
. Therefore, in this case

the G(Aopt,Bopt)-entropy solution of the Riemann problem coincides with the G(A,B)-entropy solution.
Therefore, in the case under consideration the flux across the interface, which is given by formula (6),
is also given by formula (5).
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Second, assume that Fopt(uL, uR) > F̄(A,B), so that (A,B) 6= (Aopt, Bopt). In this case, one has

fL(A) < fL(γL(u
opt)) = min

(

fL(min(uL, bL)), fL(max(bL, γL(u
opt)

)

)). (7)

Denoting by A⋆ ∈ [0, bL] and B⋆ ∈ [bR, 0] the values such fL(A
⋆) = fL(A) = F̄(A,B) = fR(B

⋆) = fR(B)
(see Fig. 1), one deduces from (7) that uL > A⋆ and uR < B⋆. Therefore, using (A2), one obtains
that

fL(A) = F̄(A,B) = min (fL(min(uL, bL)), fL(max(bL, A))).

Similarly, one obtains that fR(B) = F̄(A,B) = min (fR(min(B, bR)), fR(max(bR, uR))). These two
relations imply that the boundary {x = 0} is characteristic for each of the Cauchy-Dirichlet problems

{

∂tu+ ∂xfL(u) = 0 in D′(R∗
− × R

∗
+),

u(x, 0) = uL for x < 0,
u(0, t) = A for t > 0;

{

∂tu+ ∂xfR(u) = 0 in D′(R∗
− × R

∗
+),

u(x, 0) = uR for x > 0,
u(0, t) = B for t > 0.

(8)

This ensures that the boundary conditions prescribed in (8) are fulfilled in a strong sense by the
function u (see [6]). Defining u as the juxtaposition of the entropy solutions of problems (8) in the
sense of [6], we see that u satisfies (3) and it takes the initial datum uL11R− + uR11R+ . Moreover, we
have (γL(u)(t), γR(u)(t)) = (A,B) ∈ G∗

(A,B) for all t > 0, ensuring that u is the unique G(A,B)-entropy

solution (see [7, 5]) to the Riemann problem under study. Thus the Godunov flux for this Riemann
problem is the flux of u across the interface. The latter is given by F(uL, uR) = F̄(A,B), so that
formula (5) is true also in this case. �

As a conclusion, remark that the numerical fluxes of the Godunov scheme given by formula (5) are
cheap to compute. In particular, no integration is needed to compute the solution of the Godunov
scheme, in contrast, e.g., to the Engquist-Osher-type scheme proposed in [7].

Moreover, the scheme based on (5) readily adapts to any level F̄ of interface flux constraint. We
refer to [3] (see also [9, 10]) for an example of determination of the level of constraint in the setting of
Buckley-Leverett equations for two-phase flow in a two-rocks’ medium. Indeed, in this model different
values F̄ ∈ [F̄ barr, F̄ opt] can appear as physically motivated ones, depending to the capillary pressure
profiles.
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[17] S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. 81
(123):228–255, 1970.

[18] E. Yu. Panov. Existence of strong traces for quasi-solutions of multidimensional conservation
laws. J. Hyperbolic Differ. Equ., 4(4):729–770, 2007.

5


