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Vanishing capillarity solutions of Buckley-Leverett

equation with gravity in two-rocks’ medium.

Boris Andreianov∗ Clément Cancès†

Abstract

For the hyperbolic conservation laws with discontinuous flux function there may exist several consistent
notions of entropy solutions; the difference between them lies in the choice of the coupling across the flux
discontinuity interface. In the context of Buckley-Leverett equations, each notion of solution is uniquely
determined by the choice of a “connection”, which is the unique stationary solution that takes the form of
an undercompressive shock at the interface. To select the appropriate connection, following Kaasschieter
(Comput. Geosci., 3(1):23–48, 1999) we use the parabolic model with small parameter that accounts for
capillary effects. While it has been recognized in Cancès (Netw. Heterog. Media, 5(3):635–647, 2010)
that the “optimal” connection and the “barrier” connection may appear at the vanishing capillarity limit,
we show that the intermediate connections can be relevant and the right notion of solution depends on
the physical configuration. In particular, we stress the fact that the “optimal” entropy condition is not
always the appropriate one (contrarily to the erroneous interpretation of Kaasschieter’s results which is
sometimes encountered in the literature).

We give a simple procedure that permits to determine the appropriate connection in terms of the
flux profiles and capillary pressure profiles present in the model. This information is used to construct
a finite volume numerical method for the Buckley-Leverett equation with interface coupling that retains
information from the vanishing capillarity model. We support the theoretical result with numerical
examples that illustrate the high efficiency of the algorithm.

Keywords scalar conservation laws with discontinuous flux functions, discontinuous capillarity; two-phase
flows in heterogeneous porous media, finite volume schemes
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Introduction

The Buckley-Leverett equation is a scalar conservation law

∂ts+ ∂xf(x, s) = 0

with a particular form of the flux function f(x, ·); the dependence in x describes the medium heterogeneities,
and the whole equation serves as a model for two-phase immiscible flow in one-dimensional medium with
neglected capillarity effects. The details of the models (with and without capillarity) are recalled in the
sequel. When the dependence of f on x is regular, the notion of Kruzhkov entropy solution [42] has been
recognized as the appropriate one; in particular, it is known that, whatever be the form of the capillary
pressure curves, the “vanishing capillarity limit” yields the Kruzhkov solution (e.g., in the autonomous case,
one can deduce this convergence result from the approach of [15]; for the general case, the result of [48] can be
used). The situation is much more delicate when the medium consists of two or more geological layers with
radically different physical properties and a sharp transition between the layers; mathematically, this means
that x 7→ f(x, ·) presents discontinuities. Several works were devoted to the study of such discontinuous-
flux Buckley-Leverett model ; let us mention Gimse and Risebro [38, 39], Kaasschieter [41], Adimurthi et
al. [1, 2], Bürger et al. [19] (see also [20]), and the works [24, 25, 26] of the second author. These works
were mainly considering the model problem with interface located at x = 0 and piecewise constant in x flux
f(x, ·) = fL(·)11x<0 + fR(·)11x>0; this will also be our framework in this paper.

In particular, Adimurthi, Mishra and Veerappa Gowda in [2] have pointed out the fact that infinitely
many notions of solution, all of them equally consistent from the mathematical point of view, may coexist for
the discontinuous-flux Buckley-Leverett equation; this fact was illustrated numerically in [19]. The so-called
“optimal entropy solutions” (here and in the sequel, we follow the terminology of [24, 25, 26]) were recognized
as the vanishing capillarity limits (with discontinuous capillarity π(x, ·) = πL(·)11x<0 + πR(·)11x>0) in some
physical situations: see [41, 1, 24]. Let us highlight the fact that in many physical situations, the “optimal
entropy solutions” are not appropriate. Indeed, in [25] it was shown that the so-called “barrier entropy
solutions” appear, in another physical range of parameters. Roughly speaking, the optimal entropy solutions
correspond to the maximization of the flux of one phase across the interface while the barrier entropy solutions
correspond to the situation where the flux of this same phase across the interface is minimized (cf. [26]). As
shown in [25], the occurrence of the barrier entropy solution can be linked to the oil trapping phenomenon.
In this paper we show, both theoretically and numerically, that all intermediate notions of entropy solutions,
described by Adimurthi, Mishra and Veerappa Gowda in [2] and by Bürger, Karlsen and Towers in [20], do
appear as vanishing capillarity limits for some choice of nonlinearities (see Theorem 5 and the subsequent
comment). More importantly, we indicate a simple procedure that permits to identify the adequate notion
of solution, given the graphs of the flux functions fL,R and of the capillarity functions πL,R. In Section 2.3
we make clear the relation of the conclusions of our work to the conclusions of the pioneering work [41] of
Kaasschieter that are sometimes misinterpreted in the recent literature.

While the starting point of our analysis is exactly the same as in the work [41], we exploit the theoretical
framework of the paper [7] of Karlsen, Risebro and the first author (see also Bürger et al. [20]) in order to
avoid the lengthy analysis of vanishing capillarity profiles corresponding to different initial Riemann data.
Namely, from the facts established in [2, 20, 7] and those assessed in [23, 28], we deduce that only one vanishing
capillarity profile should be constructed explicitly. The choice of the profile follows a simple geometrical rule
(see Fig. 1 and Proposition 3). The main result of the paper, i.e. Theorem 5, combines elements of the
general approach to scalar conservation laws with discontinuous flux (see [7]) with some recent results on
two-phase flows in two rocks’ media (see [28, 23]).

The paper is organized as follows. In Section 1, we recall the parabolic model for two-rocks’ porous
medium, and the notions of bounded-flux and mild solutions as introduced in [28]. The key point here is
the so-called Kato inequality, which is a localized L1 contraction principle satisfied by two mild solutions. In
Section 1.3, we point out a particular mild solution; this is a viscosity profile connecting some states (sπL, s

π
R)

defined from transmission conditions across the interface. This profile gives rise to the particular stationary
solution c(x) = sπL11x<0+ s

π
R11x>0 for the hyperbolic Buckley-Leverett model in two-rocks’ medium described

in Section 2. Namely, c(·) can be obtained as a vanishing capillarity limit, therefore it must be considered
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as an admissible solution for the hyperbolic model. Using this fact and the general structure of entropy
solutions to our hyperbolic model, in Theorem 5 we eventually identify the vanishing capillarity limits as
the G(sπL,sπR)-entropy solutions in the sense of [7]. Finally, in Section 3 we illustrate numerically the above
theoretical results. For solving the hyperbolic model obtained as the vanishing capillarity limit, we use a
simple finite volume Godunov scheme designed in [4] to approximate the discontinuous-flux Buckley-Leverett
equation in a way compatible with the more precise parabolic model with capillarity. In order to illustrate
the efficiency of the procedure, we compare the results provided by this Godunov scheme with those provided
by the scheme (analyzed in [23]) that approximates the parabolic problem. In particular, we observe a
remarkable computational gain in considering the simplified model, as well as a good concordance in the
numerical results.

1 Parabolic model for two-phase flow in two-rocks’ medium

This section is devoted to the parabolic model of two-phase flow with discontinuous capillary pressure in one
space dimension. Following the previous work of the second author [28, 23, 29] (see also [49, 21]), the frame
of multivalued capillary pressures is introduced in order to give a extended sense to the continuity of the
capillary pressure at the medium’s discontinuity. We will use the notions of bounded-flux and mild solutions
that have been proved to be well-suited for this problem in [28, 23]. This model will be re-scaled, letting a
scaling parameter appear in front of the capillary diffusion. Letting the capillarity parameter ǫ tend to zero
will be the main purpose of this paper, and especially of Section 2.2.

1.1 Immiscible two-phase flows with discontinuous capillary pressure

We consider a one-dimensional porous medium made of two different rocks ΩL = (−∞, 0) and ΩR = (0,+∞),
separated by an interface Γ = {x = 0}. The medium is assumed to be vertical, but we use the subscripts L
(“Left”) for the lower rock, and R (“Right”) for the upper rock in order to comply with the notation used in
the context of conservation laws with discontinuous flux. Two immiscible and incompressible phases a, b are
flowing within this medium. Writing the volume balance of each phase in Ωi yields

φi∂tsα + ∂xvα = 0 (α ∈ {a, b}, i ∈ {L,R}), (1)

where sα ∈ [0, 1] denotes the saturation of the phase α and φi ∈ (0, 1) denotes the porosity of the rock Ωi.
The filtration speed vα of the phase α is prescribed by the Darcy-Muskat law (see e.g. [13])

vα = −Ki
krα,i(sα)

µα
(∂xpα − ραg) (α ∈ {a, b}, i ∈ {L,R}), (2)

where Ki is the intrinsic permeability of Ωi, µα, pα and ρα are respectively the viscosity, the pressure and the
density of the phase α, and g is the gravity. Whenever ρa 6= ρb, the presence of gravity induces the buoyancy
force. The relative permeability krα,i of the phase α in Ωi is supposed to be Lipschitz continuous, increasing
on [0, 1] and such that krα,i(0) = 0. The pore volume is supposed to be fully saturated by the fluid, i.e.

sa + sb = 1, (3)

while the phase pressures are supposed to be linked by the capillary pressure relation

pa − pb = πi(sa), (i ∈ {L,R}), (4)

where the functions πi are increasing. As noticed by H. W. Alt et al. [3], the natural topology for the phase
pressure pα stems from the estimate

∑

i

∫

Ωi

krα,i(sα) (∂xpα)
2
dx ≤ C. (5)

Therefore, if sα = 0 (and thus krα,i(sα) = 0), no control is provided by (5) on the pressure pα. As suggested
in [29] (see also [17, 16]), we extend the pressure in the following multivalued way

pa(x, t) = [−∞, pb(x, t) + πi(0)] if x ∈ Ωi and sa(x, t) = 0, (6a)

pb(x, t) = [−∞, pa(x, t)) − πi(1)] if x ∈ Ωi and sa(x, t) = 1, (6b)
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for i = L,R. Therefore, as it was already the case in [21, 28], the capillary pressure function has to be
extended into the maximal monotone graph π̃i from [0, 1] to [−∞,+∞] defined by

π̃i(s) =






πi(s) if s ∈ (0, 1),

[−∞, πi(0)] if s = 0,

[πi(1),+∞] if s = 1.

(7)

At the interface Γ, we require the balance of the phase fluxes, i.e. (formally)

vα(0
−, t) = vα(0

+, t) (α ∈ {a, b}), (8)

and the continuity of the extended phase pressures, i.e.

pα(0
−, t) ∩ pα(0

+, t) 6= ∅. (9)

Here and at the sequel, the values at x = 0± denote the one-sided traces of different quantities, in some sense
that has to be made precise in each case.

Now, summing (1) for α = a, b we find that ∂x(va + vb) = 0. Thanks to (8), we can claim that the total
flow rate q := va + vb only depends on time. For the sake of simplicity, we assume that q is constant in
time. However, our results can be generalized to the case of time dependent q by means of an adaptation of
the tools developed in [6, 5, 22]. Without loss of generality, we assume that q ≥ 0 and that the buoyancy
coefficient (ρa−ρb)g is nonnegative (these conditions can be enforced by changing x by −x and by exchanging
the role of a and b). The equation (1) for the phase a can now be rewritten under the form

φi∂tsa + ∂x (fi(sa)− λi(sa)∂xπi(sa)) = 0, (10)

where, for i = L,R,

λi(s) = Ki
kra,i(s)krb,i(1− s)

µbkra,i(s) + µakrb,i(1− s)
, fi(s) = q

kra,i(s)

kra,i(s) +
µa

µb
krb,i(1− s)

+ (ρa − ρb)gλi(s). (11)

Since we assumed that kra,i(s), krb,i(s) are zero if and only if s = 0, the functions λi verify λi(0) = λi(1) = 0
and λi(s) > 0 if s ∈ (0, 1), while the functions fi are such that fi(0) = 0 and fi(1) = q. For classical choices
of relative permeabilities kra,i and krb,i (see e.g. [13]), the flux functions fi, i = L,R, are bell-shaped in the
sense (A1) below.

For the sake of readability, we remove the index a in sa; thus s stands for the saturation of the phase a.
Denoting by ϕi the Kirchhoff’s transform function defined by

ϕi(s) =

∫ s

0

λi(z)π
′
i(z)dz,

we convert equation (10), valid in Ωi, into

φi∂ts+ ∂x (fi(s)− ∂xϕi(s)) = 0. (12)

Thus equation (8) becomes

lim
x→0−

(fL(s)− ∂xϕL(s)) = lim
x→0+

(fR(s)− ∂xϕR(s)) ; (13)

the precise sense of equality (13) will be specified later. Notice that traces at x = 0± of ϕi(s) exist whenever
ϕi(s(t, ·)) ∈ H1(Ωi). Since each ϕi admits a continuous inverse function, also the one-sided traces of s on
Γ exist in the strong L1(0, T ) sense. Denote by sL, sR the traces on Γ from ΩL and ΩR respectively; it has
been shown in [21, 28, 29] that relation (9) implies

π̃L(sL) ∩ π̃R(sR) 6= ∅. (14)

Note that in this paper, buoyancy is taken into account, and, as it will be stressed in the sequel, it plays
a major role in the following study. Indeed, it makes the flux fi defined by (11) bell-shaped in the sense of
assumption (A1) below. In the case where the gravity was neglected, existence of traveling wave solutions
to problem (12)–(14) was investigated in [52], while existence and uniqueness of (regular) weak solutions was
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shown in [14, 28, 49]. The effective equations in a stratified porous medium were formally derived in [51],
and rigorously recovered in [49]. Numerical schemes were proposed in [37, 1, 40, 36] and analyzed in [35]. To
our knowledge, the only results available concerning the analysis of problem (12)–(14) in presence of gravity
are [41] for the traveling waves and [23] for the existence and uniqueness of the solutions, existence being
proved by establishing the convergence of a suitable finite volume scheme. Multi-dimensional extensions have
been recently performed [29, 17, 16].

Due to the large dimensions of the sedimentary basins, and since the time scale involved in the migration
of hydrocarbons is also large, it is natural to rescale the variables by choosing x := x/ǫ, t := t/ǫ for some
small positive ǫ. The problem (12)–(14), completed with the initial condition (15d), thus turns into

φi∂ts
ǫ + ∂x (fi(s

ǫ)− ǫ∂xϕi(s
ǫ)) = 0 in Ωi × (0,∞), (15a)

lim
x→0−

(fL(s
ǫ)− ǫ∂xϕL(s

ǫ)) = lim
x→0+

(fR(s
ǫ)− ǫ∂xϕR(s

ǫ)) in (0, T ), (15b)

π̃L(s
ǫ
L) ∩ π̃R(s

ǫ
R) 6= ∅ in (0, T ), (15c)

sǫ|t=0
= s0 in R. (15d)

Here, as usual, i = L,R and sǫL, s
ǫ
R denote the traces of sǫ at x = 0− and x = 0+, respectively. The flux

transmission property (15b) should be understood in the weak sense, e.g., according to the theory of [33].
Let us now make precise the assumptions on the data required for our analysis. It is worth noting that

all of them are fulfilled by the model commonly used in oil-engineering (see [13, 9]).

(A1) The flux functions fi belong to Lip([0, 1]) and satisfy fi(0) = 0, fi(1) = q ≥ 0. Moreover, fi is a
so-called bell-shaped function, i.e. there exists si ∈ (0, 1] such that f ′

i(s)(si − s) > 0 for a.e. s ∈ (0, 1).

(A2) The capillary pressure functions πi belong to Liploc((0, 1)) ∩ L
1((0, 1)) and they are strictly increasing

on (0, 1).

(A3) The Kirchhoff transforms ϕi belong to Lip([0, 1]) and they are strictly increasing on [0, 1].

(A4) s0 is measurable with 0 ≤ s0 ≤ 1.

Hereabove, i = L,R; and by Lip and Liploc we denote the spaces of Lipschitz and locally Lipschitz continuous
functions, respectively.

1.2 Bounded-flux solutions and mild solutions of (15)

This section is devoted to a brief summary of the state of the art for the mathematical analysis of the
system (15) for fixed ǫ. Some existence and uniqueness results can be found in [14, 49], but we focus here
on the frame developed in [28, 23]. In particular, up to our knowledge, the result of [23] is the only one that
allows to take non-monotone flux function fi (as it is the case when buoyancy is taken into account).

The mathematical analysis of the system (15) for fixed ǫ is carried out in [14, 49, 28] in cases where the
gravity (and thus the buoyancy) is neglected, and in [23] in presence of buoyancy. Let us recall the framework
of bounded-flux solutions introduced in [28, 23] for this problem.

Definition 1 (bounded-flux solution) A function sǫ ∈ L∞(R × R+; [0, 1]) is said to be a bounded flux
solution of problem (15) with initial datum s0 if ∂xϕi(s

ǫ) ∈ L∞(Ωi × R+), if π̃L(s
ǫ
L(t)) ∩ π̃R(s

ǫ
R(t)) 6= ∅ for

a.e. t ∈ R+, and if, for all ψ ∈ C∞
c (R× R+),

∫∫

R×R+

φis
ǫ∂tψ +

∫

R

φis0ψ(·, 0) +
∑

i∈{L,R}

∫∫

Ωi×R+

(fi(s
ǫ)− ǫ∂xϕi(s

ǫ)) ∂xψ = 0. (16)

From now on, we use the Kruzhkov and semi-Kruzhkov (or Serre) entropy fluxes

Φi(a, b) = sign(a− b)(fi(a)− fi(b)), Φ±
i (a, b) = sign±(a− b)(fi(a)− fi(b)), (17)

where sign+(a) = 1 if a > 0 and 0 otherwise, and sign−(a) = −sign+(−a). In the sequel, for a ∈ R, we
denote by a+ (resp. a−) the positive (resp. negative) part of a, i.e. a± = sign±(a)a.
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Proposition 1 Let sǫ, šǫ be two bounded-flux solutions of (15) in the sense of Definition 1 corresponding to
initial data s0, š0 respectively. Then for all ψ ∈ C∞

c (R× R+;R+), the following Kato inequality holds:

∑

i∈{L,R}

∫∫

Ωi×R+

φi(s
ǫ − šǫ)±∂tψ +

∑

i∈{L,R}

∫

Ωi

φi(s0 − š0)
±ψ(·, 0)

+
∑

i∈{L,R}

∫∫

Ωi×R+

(
Φ±

i (s
ǫ, šǫ)− ǫ∂x (ϕi(s

ǫ)− ϕi(š
ǫ))±

)
∂xψ ≥ 0. (18)

Corollary 2 For all initial datum s0 satisfying (A4) there exists at most one bounded-flux solution sǫ to (15).

The proof of Proposition 1 and Corollary 2 is a straightforward generalization of the results of [23, Section 4]
at least in the case of L1 data with values in [0, 1], the L1 assumption being used to ensure that ∂xϕL,R(s) → 0
as x → ±∞. For the general case, let us point out that the L1 assumption is bypassed, e.g., by exploiting
the Kato inequality in the way of Maliki and Touré [44]. Thus (A4) is a sufficient assumption in Corollary 2.

Still in [23], the existence of a bounded-flux solution is proven thanks to the convergence of a Finite
Volume scheme under the assumption (A5) that the initial flux is bounded. Putting this existence result
together with the uniqueness result exposed in Corollary 2 yields to following theorem.

Theorem 1 Assume that (A1)–(A4) hold. In addition, let the initial datum be regular in the sense

(A5) for i = L,R, assume ∂xϕi(s0) ∈ L∞(Ωi). Furthermore, assume that the initial data are connected;
namely, denoting by s0,i the trace of s0 on Γ from Ωi, we suppose that π̃L(s0,L) ∩ π̃R(s0,R) 6= ∅.

Then there exists a unique bounded-flux solution sǫ of problem (15) corresponding to s0. Furthermore, sǫ

belongs to C(R+;L
1
loc(R)). Moreover, if š0 also satisfies (A4) and (A5), if s0 − š0 ∈ L1(R) and if we denote

by šǫ the unique bounded-flux solution corresponding to š0, then for all t ≥ 0 we have

∑

i∈{L,R}

∫

Ωi

φi (s
ǫ(·, t)− šǫ(·, t))± ≤

∑

i∈{L,R}

∫

Ωi

φi (s0(x)− š0(x))
± . (19)

Upon generalizing the notion of solution by a closure procedure, the above existence and uniqueness frame-
work can be extended to initial data that only satisfy (A4), but not (A5). This approach is a slightly
improved variant of the technique exploited in [28, 23].

Definition 2 (mild solution) A function sǫ ∈ L∞(R×R+; [0, 1]) is said to be a mild solution if for i = L,R,
∂xϕi(s

ǫ) ∈ L2
loc(Ω̄i ×R+), if π̃L(s

ǫ
L(t)) ∩ π̃R(s

ǫ
R(t)) 6= ∅ for a.e. t ∈ R+, and if there exists a sequence (sν,ǫ)ν

of bounded flux solutions tending towards sǫ in L1
loc(R× R+).

Theorem 2 Assume that (A1)–(A4) hold, then there exists a unique mild solution sǫ of (15) corresponding
to s0. Furthermore, sǫ belongs to C(R+;L

1
loc(R)). Moreover, if šǫ is a mild solution corresponding to an initial

datum š0 then the Kato inequality (18) holds.

Proof: Let us start with the case of a compactly supported initial datum. In this case, smoothing s0
and modifying it near the origin as proposed in [24, 25], we can approximate s0 in L1(R) by a sequence
(sν0)ν∈N

of initial data that are regular in the sense (A5). Denoting by sν,ǫ the unique bounded-flux solution
corresponding to the initial data sν0 , we see from (19) that the sequence (sν,ǫ)ν is a Cauchy sequence in
C(R+;L

1(R)) Therefore, it admits a unique limit value sǫ.
Let us show that sǫ is a mild solution. Let K be an arbitrary bounded interval of R, let T > 0, and let

χi : Ωi → [0, 1] be a smooth function with compact support such that χi ≡ 1 on Ωi. Choosing formally

(x, t) 7→ π(x, sν,ǫ(x, t))11(0,T )(t)χi(x)

as test function in the weak formulation (16) on sν,ǫ (this point is thoroughly justified, by means of two steps
of regularization of the problem in [28] — see also [29] for the multidimensional case) provides that

ǫ

∫ T

0

∑

i∈{L,R}

∫

Ki

(∂xϕi(s
ν,ǫ))

2 ≤ C, (20)
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where Ki = K∩Ωi and where C does not depend on ν nor on ǫ (but on K). Then ϕi(s
ν,ǫ) is uniformly bounded

in L2((0, T );H1(Ki)) with respect to ν. Since ϕi(s
ν,ǫ) converges strongly towards ϕi(s

ǫ) in C([0, T ];L2(Ki)),
by interpolation, it also converges strongly in L2((0, T );Hs(Ki)) (to the same limit) as soon as s < 1.
Hence, we infer the strong convergence of the one-sided traces ϕi(s

ν,ǫ
i ) on the interface in the L2(0, T )

sense towards ϕi(s
ǫ
i). The functions ϕ−1

i being invertible, we deduce that sν,ǫi tends to sǫi . Since the set{
(sL, sR) ∈ [0, 1]2 | π̃L(sL) ∩ π̃R(sR) 6= ∅

}
is closed, one recovers at the limit ν → ∞ the property π̃L(s

ǫ
L) ∩

π̃R(s
ǫ
R) 6= ∅ a.e. in (0, T ), and then a.e. in R+ since T has been chosen arbitrary. This ends the existence

proof for compactly supported data.
Next, given a general initial datum s0, we can approximate it by a monotone sequence (sm0 )m∈N by setting

sm0 := s011|x|<m. Using the comparison principle contained in (19), we see that the corresponding sequence
(sm,ǫ) of mild solutions is non-decreasing, then it converges to some limit sǫ a.e. on R × [0, T ]. It follows
that sǫ is itself a mild solution.

Finally, mild solutions being constructed as L1
loc limits of bounded-flux solutions, the Kato inequality (18)

remains true because it is stable by L1
loc convergence. A mild solution is a weak solution, i.e. it satisfies (16);

therefore, we deduce from [27] that sǫ belongs to C([0, T ];L1
loc(Ωi)). Since sǫ ∈ L∞(R × R+), one obtains

that sǫ ∈ C([0, T ];L1
loc(R)). �

As a consequence of the Kato inequality, the comparison and L1-contraction property (19) remains valid
for mild solution instead of bounded-flux solution. Last but not least, all the equations of system (15) are
still fulfilled, in the distributional sense or in the appropriate trace sense, by the mild solutions, ensuring that
they are effective solutions to the problem. To sum up, Theorem 2 sets up a well-posedness framework for
(15), for all ǫ > 0.

Remark 1 Let us explain the terminology used in this section. The denomination bounded-flux solutions
has been introduced in [28]; the name is due to the regularity property ∂xϕi(s

ǫ) ∈ L∞(Ωi × R+). Note that
this non-trivial property is derived thanks to a maximum principle for the flux F ǫ

i (x, t) = f ǫ
i (s

ǫ)− ǫ∂xϕi(s
ǫ)

(recall that ǫ > 0 is fixed). Further, the denomination mild solution is the usual term used in the theory of
nonlinear semigroups generated by accretive operators: is denotes the solution obtained by means of implicit
semi-discrete in time approximation. Solution in the sense of Definition 2 being the limit of bounded flux
solutions, it is indeed a mild solution in the latter sense. This fact can be inferred from the arguments
of [23], where the solutions provided by a fully discrete time-implicit finite volume approximation are shown
to converge towards the mild solution.

1.3 Looking for a stationary profile solution

Clearly, ǫ in (15) can be seen as a vanishing capillarity parameter. In order to understand the limit problem,
as ǫ → 0, in this paragraph we point out an evident stationary profile U : R 7→ [0, 1] such that for all ǫ,
U(x/ǫ) yields a bounded-flux solution to problem (15). In the simplest case, U is constant on each side from
zero; in the other case, U is constant on one side only.

Given πL,R and fL,R, we define two curves P and U in the unit square [0, 1]× [0, 1] (see Fig. 1). Recall
that we have extended πL,R to maximal monotone graphs π̃L,R from [0, 1] to R̄, thus extending the domain
of π−1

L,R to whole R̄ (the inverse of a maximal monotone graph is a maximal monotone graph). Define the set

P :=
{
(sL, sR) ∈ [0, 1]2 | π̃L(sL) ∩ π̃R(sR) 6= ∅

}
, (21)

then the curve P is the maximal monotone graph from [0, 1] to [0, 1] defined as the composition π̃−1
R ◦ π̃L of

two maximal monotone graphs. The curve U is implicitly given by

U :=
{
(sL, sR) | fL(sL) = fR(sR), sL ≥ s̄L and sR ≤ s̄R

}
. (22)

Due to assumption (A1), U is the graph of a strictly decreasing function on an interval that we denote
[soptL , sbarL ]. More specifically, the extremity (soptL , soptR ) of the curve U lies inside (0, 1)2; we have either

soptL = s̄L or soptR = s̄R according to the order of the values max[0,1] fL and max[0,1] fR. The other extremity

(sbarL , sbarR ) lies either on the part {1} × [0, soptR ] or on the part [soptL , 1] × {0} of the boundary of the unit
square, according to the sign of the total flux q.
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0 sL

sπR

sbarR

1

1

s
opt
L

sR

s
opt
R

sπL

U

D

P

Figure 1: The maximal monotone graph P (in red) is defined by (21) from the capillary pressure
function πL,R, and the decreasing curve U (in green) is defined by (22) from the convective flux
functions fL,R. The vanishing capillarity limit is fully characterized by their intersection, as stated
in the “selection rule” at the end of the section. The segment D (horizontal, in the case soptL = s̄L)
is used in the proof of Prop. 3.

Proposition 3
(i) Assume that U∩P 6= ∅, and denote by (sπL, s

π
R) its unique element. Then c(x) = cǫ(x) := sπL11x<0+s

π
R11x>0

is a bounded-flux solution of (15) for every ǫ > 0, it is therefore a vanishing capillarity limit.
(ii) Assume that U ∩ P = ∅. Then c(x) := soptL 11x<0 + soptR 11x>0 is a vanishing capillarity limit, i.e., there
exists a sequence cǫ of stationary bounded-flux solutions of (15) that converges to c(·) in L1

loc(R), as ǫ→ 0.

In the above statement, saying that a function is a solution of (15) we do not specify the initial condition.

Proof:
(i) It is enough to check that the function c(·) fits the definition of a bounded-flux solution. Indeed, it is
constant on each side of the interface, so that the equation is verified pointwise away from {x = 0}. Next, the
capillary pressures are connected in the sense πL(s

π
L) ∩ πR(s

π
R) 6= ∅ because (sπL, s

π
R) ∈ P . Finally, because

(sπL, s
π
R) ∈ U , we have

(fL(c)− ǫ∂xc)|x=0− = fL(s
π
L) = fR(s

π
R) = (fR(c)− ǫ∂xc)|x=0+ .

(ii) The proof in this case is similar to the proof of [24, Proposition2.9], in which a particular choice of P
was done. We consider separately two cases: either soptL = s̄L, or s

opt
R = s̄R. In the first case we complement

U by the horizontal segment D := [0, soptL ]× {soptR } (see Fig. 1); in the second case we complement U by the

vertical segment D := {soptL } × [soptR , 1]. In each of the cases, there is an intersection point (s̃πL, s̃
π
R) of the

maximal monotone graph P with the union U ∪D which is a maximal anti-monotone graph. Since U ∩P = ∅
by assumption, the point (s̃πL, s̃

π
R) belongs to D.

Consider the first case: we have s̃πR = soptR , s̃πL < soptL , and fL(·)− fL(s
opt
L ) ≤ 0 on [0, 1]. We construct the

solution of the following Cauchy problem for the ordinary differential equation:

{
λL(U(ξ))

[
πL(U(ξ))

]′
= fL(U(ξ)) − fL(s

opt
L ), ξ ∈ (−∞, 0]

U(0) = s̃πL.
(23)

Existence of a local solution is clear from the Cauchy-Peano theorem, and it is easily seen that the solution
is non-increasing and it can be continued to a global on (−∞, 0] solution satisfying limξ→−∞ U(ξ) = soptL .
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Set cǫ(x) := U(x/ǫ)11x<0 + soptR 11x>0; as in (i), we check that this function is a bounded-flux solution of
(15) for every ǫ > 0. Indeed, differentiating (23) in the weak sense and recalling the definition of ϕL we see
that equation (15a) is satisfied pointwise for x 6= 0. The capillary pressures are connected at {x = 0} because
(s̃πL, s

opt
R ) ∈ P ; and the fluxes are connected at {x = 0} because

(fL(c)− ǫ∂xc)|x=0− = fL(s
opt
L ) = fR(s

opt
R ) = (fR(c)− ǫ∂xc)|x=0+ .

The limit of sǫ(·) being c(x) := soptL 11x<0 + soptR 11x>0, this ends the proof for this case.

In the second case, we have s̃πL = soptL , soptR < s̃πR, and fR(·) − fR(s
opt
R ) ≤ 0 on [0, 1]. Analogously to the

first case, we construct a profile cǫ(x) := soptL 11x<0+U(x/ǫ)11x>0. Here U(·) is a non-increasing function with

limξ→+∞ U(ξ) = soptR ; it solves the ODE problem analogous to (23) but posed on [0,+∞), with fR,s̃
π
R,s

opt
R

replacing fL,s̃
π
L,s

opt
L , respectively. �

With the above proposition in hand, we highlight the following

Selection Rule: We set (sπL, s
π
R) to be the intersection point of U and P if the two curves cross

(see Fig. 1), and we set it to be (soptL , soptR ) if U and P do not cross.

2 Buckley-Leverett equation in two-rocks’ medium

Taking the limit ǫ → 0 in the problem (15) provides formally that the limit s of sǫ satisfies the hyperbolic
scalar conservation law with discontinuous flux function

φ(x)∂ts+ ∂xf(x, s) = 0, (24)

that is known to have several mathematically consistent notions of solution (see [2]). In Section 2.1, we recall
some elements of the theory on the scalar conservation laws with discontinuous flux functions detailed in [7],
that will be of great interest to identify the notion of solution that describes the vanishing capillarity limit.

2.1 The formal discontinuous-flux model, connections, entropy solutions

Buckley-Leverett equation in two-rocks’ medium is a particular case of conservation law with discontinuous
flux. When the interface between the media is located at {x = 0}, this general problem takes the form

∂t

[
(φL11x<0 + φR11x>0) s

]
+ ∂x

[
fL(s)11x<0 + fR(s)11x>0

]
= 0. (25)

Remark 2 In the case φL = φR, problem (25) has been much studied in the literature (see the references
in [7]). Let us stress that the introduction of constant coefficients φL and φR does not change the properties
of problem: namely, the definitions and results stated below can be reduced to those of [7] and the other
references upon introducing the new unknown u(x, t) := (φL11x<0 + φR11x>0) s(x, t) and the new fluxes gL,R :
u 7→ fL,R(u/φL,R).

The notion of L1-dissipative germ (L1D germ, for short) has been formulated in [7] in order to describe the
different semigroups of entropy solutions satisfying the L1 contraction principle. For fluxes fL,R satisfying
(A1), (25) can be seen as the formal limit, as ǫ → 0, of (15). We interpret this idea by saying that an
admissible solution s to (25), in the Buckley-Leverett context, should be a vanishing capillarity limit, i.e.,
a limit of some sequence (sǫ)ǫ→0 of solutions of (15). Due to Theorems 1,2, it is clear that the vanishing
capillarity limits do satisfy the L1 contraction principle; thus the setting of [7] is suitable for our needs.

Let us give the definitions underlying the theory of problem (25).

Definition 3 (admissibility germs; complete, maximal and definite germs)

· Any set G of couples (sL, sR) ∈ [0, 1]2 satisfying the Rankine-Hugoniot relation

∀(sL, sR) ∈ G fL(sL) = fR(sR) (26)

and the L1-dissipativity relation

∀(sL, sR), (zL, zR) ∈ G ΦL(sL, zL) ≥ ΦR(sR, zR), (27)

where ΦL,R are defined in (17), is called an L1D admissibility germ (a germ, for short) associated with
the couple of fluxes (fL, fR) defined on [0, 1].
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· A germ G is called complete if all Riemann problem at x = 0 for (25) admits a self-similar solution s
such that (sL, sR) ∈ G, where sL, resp. sR, is the limit of s(t, ·) as x→ 0−, resp.as x→ 0+.

· We say that G′ is an extension of a germ G if G ⊂ G′ and G′ still satisfies the L1-dissipativity property
in (27) and the Rankine-Hugoniot condition in (26).

· A germ G is called maximal, if it does not admit a nontrivial extension.

· A germ G is called definite, it it admits only one maximal extension.

In relation with definite and maximal germs, consider one more definition.

Definition 4 (dual of a germ) Let G be an L1D-admissibility germ. The dual of G is the set

G∗ :=
{
(zL, zR) ∈ [0, 1]2

∣∣ fL (zL) = fR (zR)

and for all (sL, sR) ∈ G, ΦL (sL, zL) ≥ ΦR (sR, zR)
}
.

(28)

It is shown in [7] that, if G is a definite germ, then its dual G∗ is the unique maximal extension of G.

We are in a position to define different notions of entropy solution.For simplicity, consider a finite time
horizon T > 0.

Definition 5 Given a couple of continuous functions (fL, fR) defined on [0, 1] and a definite germ G asso-
ciated with this couple, we say that s ∈ L∞(R× (0, T ); [0, 1]) is a G-entropy solution of (25) if the Kruzhkov
entropy inequalities hold away from the interface {x = 0}:

∀κ ∈ [0, 1] ∂t
(
φL,R |s− κ|

)
− ∂xΦL,R(s, κ) ≤ 0 in D′(ΩL,R × (0, T )), (29)

and and for a.e. t ∈ (0, T ), one has
(
sL(t) , sR(t)

)
∈ G∗, where sL(·) (the trace as x → 0−) and sR(·) (the

trace as x→ 0+) are the interface traces of s in the strong L1(0, T ) sense.
We say that s is a G-entropy solution of the Cauchy problem with s(·, 0) = s0 if the initial condition s0 is

assumed in the sense of strong L1
loc initial trace.

Notice that under assumption (A1), the traces sL,R and s(·, 0) do exist ([53, 46, 47, 27]).

Remark 3 According to the results of [53], [46] and [27], it is not a restriction to assume that, up to
a re-definition of s(t, ·) on a set of zero measure of t ∈ [0, T ], a G-entropy solution of (25) belongs to
C([0, T ];L1

loc(R)).

The following result is contained in [7] (see in particular [7, Theorem6.4])

Theorem 3 (Well-posedness for G-entropy solutions) Assume (A1) holds, and G is a definite germ of
which the dual G∗ is complete. Then for all measurable initial datum s0 with values in [0, 1] there exists a
unique G-entropy solution to problem (25). Moreover, the finite volume scheme for (25) with Godunov flux
converges to the corresponding G-entropy solution, for all initial datum.

Remark 4 It is required in [7, Theorem 6.4] that fL,R be defined on R. Nevertheless, let us point out that
in our case, solutions with [0, 1]-valued initial data always take values in [0, 1]. Indeed, assumptions (A1)
contain the compatibility conditions fL(0) = fR(0), fL(1) = fR(1). Moreover, it is easily seen that (0, 0) and
(1, 1) belong to G∗, whatever be the germ G; therefore 0 and 1 are constant G-entropy solutions. This ensures,
in particular, that approximate solutions constructed by the Godunov scheme lie in between zero and one.

Under assumptions (A1), it is easy to classify all possible L1D admissibility germs. According to the
analysis of [7, Section 4.8]1, each maximal germ is complete, and it is entirely determined by a definite germ
which is a singleton. Such singletons are called connections in the below definition.

Definition 6 (Adimurthi et al. [2], Bürger et al. [20]) For fL,R satisfying (A1), a couple (A,B) ∈
[0, 1]2 is said to be a connection if A ∈ [s̄L, 1], B ∈ [0, s̄R] and fL(A) = fR(B).

1While this analysis has been carried out under the assumption q = 0, the general case is completely analogous
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Being a connection means that u(t, x) := A11x<0+B11x>0 is a stationary weak solution of (25) that represents
an undercompressive shock: the (strict) Lax condition fails from both sides from the jump.

Notice that the set U of all connections (see Fig. 1) is given by (22). Let us describe its extremities. We
define the optimal connection (Aopt, Bopt) by

(Aopt, Bopt) ∈ U , with either Aopt = s̄L or Bopt = s̄R.

and the barrier connection (Abar, Bbar) by

(Abar, Bbar) ∈ U , with either Abar = 1 or Bbar = 0.

The common value F̄ = fL(A) = fR(B) is called the connection level and denoted by F̄(A,B); when

(A,B) runs over U , F̄(A,B) fills the interval [F̄ bar, F̄ opt]; here F̄ bar = max{0, q} = fL(A
bar) = fR(B

bar),
while F̄ opt = min{max[0,1] fL,max[0,1] fR} = fL(A

opt) = fR(B
opt).

Reciprocally, the connection at level F̄ ∈ [F̄ bar, F̄ opt] is denoted by (AF̄ , BF̄ ). Such a connection is indeed
unique, since fL,R are strictly monotone on [0, s̄L,R] and on [s̄L,R, 1].

Further, set O := G∗
(Aopt,Bopt) (see Fig.2b). From the bell-shapedness assumption in (A1) one easily sees

that O \ {(Aopt, Bopt)} is the set of all couples (a, b) ∈ [0, 1]2 \ U such that fL(a) = fR(b). In contrast to
under-compressive states (A,B) ∈ U , every couple (a, b) ∈ O will be called an over-compressive state (note
that (Aopt, Bopt) ∈ U ∩ O is both under- and over-compressive). We have

Proposition 4 (see Section 4.8 in [7], see also [4])
For every connection (A,B) ∈ U , the singleton G(A,B) := {(A,B)} is a definite germ; its dual is given by

G∗
(A,B) = {(A,B)} ∪ OF̄(A,B)

, where OF̄(A,B)
:=

{
(zL, zR) ∈ O s.t. fL(zL) = fR(zR) ≤ F̄(A,B)

}
. (30)

Moreover, every maximal germ contains one and only one connection (A,B) ∈ U , therefore it can be repre-
sented under the form (30).

fL,R(s)

s̄L = sopt

s

sbarR B s
opt
R

fR(s)

fL(s)

F̄ opt

F̄ bar = q

sbarL = 10 A

F̄(A,B)

(a) Flux functions, flux limitations and connections

A

sbarR

B

s
opt
R

s
opt
L

1

0 1

sL

sR

(b) The sets O and U

Figure 2: On Figure 2a, the two flux functions fL,R have been plotted. Given a value
F̄(A,B) ∈ [F̄ bar, F̄ opt], we construct the unique corresponding connection (A,B) ∈ U . On
Figure 2b, we have plotted the corresponding sets O (green solid line) and U (red dashed
line). For a given flux limitation F̄(A,B), the grey rectangle represents the open set{
(sL, sR) ∈ [0, 1]2 | (fL(sL) > F̄(A,B))&(fR(sR) > F̄(A,B))

}
. So, the maximal germ G∗

(A,B) is made

of the union of singleton {(A,B)} and of the subset OF̄(A,B)
of O which is outside of the grey

rectangle.

Remark 5 The point of view developed in our note [4] is that, at least for the purpose of interpretation of the
solutions’ behavior and for their numerical approximation, it is convenient to characterize different notions of
G-entropy solution by the connection level F̄ rather than by the corresponding connection (AF̄ , BF̄ ). Indeed,
as one can see from the representation (30), the possible trace couples (sL, sR) of G(AF̄ ,BF̄ )-entropy solutions
obey the constraint fL,R(sL,R) ≤ F̄ . In particular, the only free parameter required to construct the Godunov
scheme for problem (25) with fluxes (A1) is the connection level F̄ (see [4] and Section 3.2 below for details).
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Finally, we recall an equivalent characterization of G(A,B)-entropy solutions with the help of adapted entropy
inequalities introduced by Baiti and Jenssen [11] and Audusse and Perthame [8].

Theorem 4 (see [7], see also [20]) Given a connection (A,B) ∈ U , a function s ∈ L∞(R × (0, T )) is
a G(A,B)-entropy solution of (25) with fluxes (A1) if and only if it satisfies, away from the interface, the
Kruzhkov entropy inequalities (29) and moreover, given c(x) = A11x<0+B11x>0, it satisfies the global adapted
entropy inequality

∂t
(
φ(x)|s − c(x)|

)
− ∂xΦ(x; s, c(x)) ≤ 0 in D′(R× (0, T )). (31)

Here φ(x) = φL11x<0 + φR11x>0; similarly, Φ(x; s, c) = ΦL(s, c)11x<0 +ΦR(s, c)11x>0.

2.2 Identifying the vanishing capillarity solutions

We have now introduced enough material to be able to carry out the proof of our main result. The following
theorem permits to characterize the semigroup of vanishing capillary limits by identifying it to the appropriate
G(A,B)-entropy solutions’ semigroup; we see that the underlying connection (A,B) only depends on the
nonlinearities present in the problem.

Theorem 5 (Main result) Assume we are given nonlinearities fL,R and πL,R satisfying (A1),(A2),(A3).
Let (sπL, s

π
R) ∈ U be the connection obtained according to the Selection Rule of Section 1.3, i.e., it is either

the intersection point of the curves U and P (see Fig.1) or the optimal connection (soptL , soptR ) when U ∩P = ∅.
Let sǫ be the unique mild solution of problem (15), and let s denote the unique G(sπL,sπR)-entropy solution

of the discontinuous-flux Buckley-Leverett equation (25) corresponding to the same initial datum s0, then

sǫ → s in L1
loc(R× R+).

In particular, any solution of (25) obtained as vanishing capillarity limit obeys the flux limitation con-
straint at the interface: fL(s(t, 0

−)) = fR(s(t, 0
+)) ≤ F̄π where F̄π = fL,R(s

π
L,R) is the corresponding

connection level.

Let us point out that, choosing πL,R appropriately, we can make appear any given point of the curve U as the
intersection point (sπL, s

π
R). Thus it follows from Theorem 5 that, given a notion of G(A,B)-entropy solution,

this notion corresponds to some choice of vanishing capillarity profiles πL,R.

Proof: The proof combines the results of Propositions 1, 3 and characterization (31) of G(A,B)-entropy
solutions.

To start with, fix some (not labelled) sequence ǫ decreasing to zero. According to Theorem 2, for all ǫ > 0
fixed, the problem (15) is well posed in the setting of mild solutions, i.e there exists a unique corresponding
mild solution sǫ. Moreover, the Kato inequality (18) holds for all couple of solutions sǫ, šǫ corresponding to
initial data s0, š0. Assume for a moment that there exists s ∈ L∞(R× R+; [0, 1]) such that

up to a subsequence, sǫ tends to s in L1
loc(R× R+) as ǫ tends to 0. (32)

First, write the Kato inequality (18) for a solution sǫ of problem (15) and for the capillarity profile
cǫ constructed in the proof of Proposition 3. Using the convergence sǫ → s, cǫ → c as ǫ → 0, c(x) =
cπL11x<0 + cπR11x>0, we can pass to the limit in this inequality. We inherit the “hyperbolic Kato inequality”

∑

i∈{L,R}

∫∫

Ωi×R+

(
φi|s− c(x)|∂tψ +Φi(s, c(x))∂xψ

)
+

∑

i∈{L,R}

∫

Ωi

φi|s0 − c(x)|ψ(·, 0) ≥ 0

for all ψ ∈ D(R× [0, T )), ψ ≥ 0. Restricting the choice of test functions to D(R× (0, T )), we find the global
adapted entropy inequality (31) with (A,B) = (sπL, s

π
R). Second, it follows from classical arguments (see

e.g. [15, 31]) that s is a Kruzhkov entropy solution away from the interface, in the sense (29). Moreover,
it assumes the initial datum s0, hence s is the (unique) G(sπL,sπR)-entropy solution corresponding to datum
s0. Now, applying (32) to subsequences of (sǫ)ǫ, from the uniqueness of the accumulation point we deduce
that limǫ→0 s

ǫ exists. Thus, provided (32) is justified, we prove that the vanishing capillarity limit exists and
it coincides with the unique G(sπL,sπR)-entropy solution. This ends the proof of the theorem, except for the
justification of (32).

If we assume that fL,R are genuinely nonlinear on every interval, then according to the well-known
compactification results of [43, 45, 48] we can extract an L1

loc convergent subsequence of sǫ. In the general
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case, we can use the framework of G-entropy-process solutions in the way of [5]. Indeed, extracting a nonlinear
weakly-∗ convergent subsequence of (sǫ)ǫ, due to the existence of G-entropy solutions (see Theorem 3) we
can prove that the G(sπL,sπR)-entropy-process solution coincides with the unique G(sπL,sπR)-entropy solution for
the same initial datum. Let us point out that the proof is not straightforward, because one global adapted
entropy inequality (as in Theorem 4) is not sufficient in this argument (see [5] for the case fL ≡ fR). �

Remark 6 Another way to prove (32) is to restrict our attention to a dense set of initial data s0, and to
derive additional estimates on the solution, like a BV estimate on a Temple function [10, 32, 24], or, using
a variant of the technique of Bürger, Garćıa, Karlsen and Towers [18, 20], one can derive a BVloc estimate
on the solution with small capillarity sǫ. This latter point is detailed in Appendix A.1.

2.3 Comparison of our conclusions with those of Kaasschieter [41]

Our work builds on the idea of Kaasschieter [41] that the physically admissible solutions of the Buckley-
Leverett equation with discontinuous flux should be seen as vanishing capillarity limits. In [41], the author
analyzes solutions of the general Riemann problem; here, due to the tools borrowed from [7], we reduce the
analysis to a study of one particular stationary solution.

Then we are able to observe the following important fact. Although the analysis of [41] is fully correct
under a seemingly non-restrictive assumption of “genericity”, it follows from our analysis that the assumption
made by Kaasschieter is truly restrictive. Namely, in [41] the case where a solution u(t, x) = U

(
x
t

)
to the

Riemann problem fulfulls simultaneously the constraints

fL(U(0−)) = fR(U(0+)) and πL(U(0−)) = πR(U(0+)) (33)

is eluded because it is considered as “merely coincidental”. Our analysis shows, in an indirect way, that this
case is realized for many Riemann problems. Namely, whenever F̄π < F̄ opt and whenever the values s± at
±∞ are such that the flux given by

min (fL(min(s−, s̄L)), fR(max(s+, s̄L)))

exceeds the value F̄π, the situation (33) does happen (see formula (42) in the the next section), moreover,

f ′
L(U(0−)) ≤ 0 and f ′

R(U(0+)) ≥ 0. (34)

Therefore, our conclusion differs drastically from the one of [41]. Indeed, the conclusion of [41] should
sound as follows: “the appropriate entropy solution is the optimal entropy solution, except may be when
(33)–(34) happen”. Yet the case (33) is not merely coincidental, and it cannot be seen as exceptional.
Thus one should recast the conclusion of the Kaasschieter work [41] as follows: “the appropriate solution
notion is G(sπL,sπR)-entropy solution, in particular, the optimal entropy solution occurs whenever (33)–(34) is
impossible”.

3 Numerical approximation of the flow in two-rocks’ medium

The goal of this section is, first of all, to provide numerical evidence for convergence of sǫ towards the
appropriate entropy solution s (recall that the notion of solution strongly depends on the capillarity profiles
πL,R, see Section 2, and secondly, to discuss about “time saved versus accuracy lost” by solving the simpler
problem (25) instead of solving the finer problem (15). To do so, we introduce two numerical schemes: the
first one, used to discretize the parabolic problem (15), was proved to be convergent by the second author
in [23]; the second one, introduced by the authors in [4], is the exact Godunov scheme adapted to the
connection (sπL, s

π
R), and is based on the notion of flux limitation ([32]) discussed in Section 2.1.

3.1 A finite volume scheme for the parabolic model

First, we have to compute the mild solutions sǫ of the degenerate parabolic problem. This is done by means
of the fully implicit finite volume scheme studied in [35, 23].

For ∆x > 0, we denote by
(
xj+1/2

)
j∈Z

= {(j + 1/2)∆x | j ∈ Z} the set of the “cell centers” and by

(xj)j∈Z
= {j∆x | j ∈ Z} the sets of the “edges”. Given ∆t > 0, we use (tn)n = {n∆t |n∈N} for time steps.
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For s0 ∈ L∞(R; [0, 1]), the initial data is discretized as follows:

sǫ,0j+1/2 =
1

∆x

∫ xj+1

xj

s0(x)dx. (35)

The implicit scheme is then given by

∀j ∈ Z, ∀n ∈ N, φj
sǫ,n+1
j+1/2 − sǫ,nj+1/2

∆t
∆x+ F ǫ,n+1

j+1 − F ǫ,n+1
j = 0, (36)

where the fluxes F ǫ,n+1
j have to be made explicit. Let j ∈ Z \ {0}; for ψ standing for one of the symbols

φ, f, ϕ, π, s, we denote a space dependent function which is constant in ΩL,R as follows:

ψj := ψ(·, xj) =

{
ψL if j < 0
ψR if j > 0.

Now we introduce the exact Riemann solver for the convection within ΩL,R. For (a, b) ∈ [0, 1]2 and
j ∈ Z \ {0}, we set

Gj(a, b) =

{
mins∈[a,b] fj(s) if a ≤ b,
maxs∈[a,b] fj(s) if a ≥ b.

Note that Gj(a, a) = fj(a), that Gj is Lipschitz continuous w.r.t. both variables, and that Gj is non-
decreasing w.r.t to its first argument and non-increasing w.r.t. the second. It is well known that for bell-
shaped fluxes, Gj can be computed by the formula

Gj(a, b) = min (fj(min(a, sj)), fj(max(b, sj))) ; (37)

let us recall that s̄L,R = argmax fL,R (see Assumption (A1)).
For j 6= 0 (i.e. in the case where the edge j is not at the interface), one defines

F ǫ,n+1
j = Gj(s

ǫ,n+1
j−1/2, s

ǫ,n+1
j+1/2)− ǫ

ϕj(s
ǫ,n+1
j+1/2)− ϕj(s

ǫ,n+1
j−1/2)

∆x
. (38)

It remains to define the flux F ǫ,n+1
0 across the interface so that everything be defined in (36). To do so,

following [35], we introduce additional unknowns sǫ,n+1
0,L , sǫ,n+1

0,R that solve the following nonlinear system

π̃L(s
ǫ,n+1
0,L ) ∩ π̃R(s

ǫ,n+1
0,R ) 6= ∅, (39a)

F ǫ,n+1
0 := GL(s

ǫ,n+1
−1/2 , s

ǫ,n+1
0,L )− ǫ

ϕL(s
ǫ,n+1
0,L )− ϕL(s

ǫ,n+1
−1/2 )

∆x/2
(39b)

= GR(s
ǫ,n+1
0,R , sǫ,n+1

1/2 )− ǫ
ϕR(s

ǫ,n+1
1/2 )− ϕL(s

ǫ,n+1
0,R )

∆x/2
. (39c)

It is proven in [23] that for all (sǫ,n+1
−1/2 , s

ǫ,n+1
1/2 ), the system (39) admits a unique solution (sǫ,n+1

0,L , sǫ,n+1
0,R ), hence

the flux F ǫ,n+1
0 is well defined.

The results of the paper [23] can be summarized as follows.

Proposition 5 Let ǫ > 0 be fixed and let s0 ∈ L∞(R; [0, 1]), then

1. the scheme (36),(38),(39) admits a unique solution
(
sǫ,n+1
j+1/2

)

j∈Z,n∈N

;

2. if we define the approximate solution sǫh almost everywhere on R+ × R by

sǫh(x, t) = sǫ,n+1
j+1/2 if (x, t) ∈ (xj , xj+1)× (tn, tn+1),

then sǫh ∈ L∞(R×R+; [0, 1]) converges in L
1
loc(R×R+) towards the unique mild solution of the problem

as ∆x,∆t → 0.
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3.2 A finite volume scheme for the hyperbolic model

The scheme introduced in previous section is asymptotic preserving, in the sense that choosing ǫ = 0, and
obtaining therefore an approximate solution s0h (the solution to the scheme in the case ǫ = 0 is once again
unique), one can show that s0h tends to the vanishing capillarity limit described in Theorem 5. This point
is made explicit in Appendix A.2. Nevertheless, to produce numerical results for the hyperbolic problem
(25), we use the Godunov scheme under the form explained in our note [4] (see also [30]). Namely, we have
shown in [4, Theorem3.1] that in order to obtain the Godunov scheme for approximation of G(A,B)-entropy
solutions of (25) with fluxes (A1), it is enough to take the scheme of Adimurthi et al. [1] known for the
optimal connection (Aopt, Bopt) and to limit the flux at the interface to the maximum value F̄(A,B). More
precisely, in our case, the explicit Godunov scheme for computing the unique G(sπL,sπR)-entropy solution can
be rewritten as

φj
sn+1
j+1/2 − snj+1/2

∆t
∆x+ Fn

j+1 − Fn
j = 0, (40)

where the fluxes Fn
j are given by

Fn
j = Gj(s

n
j−1/2, s

n
j+1/2) if j 6= 0, (41)

Fn
0 = min

(
F̄π, fL(min(sn−1/2, s̄L)), fR(max(sn1/2, s̄L))

)
. (42)

In the previous formula (41), the exact Riemann solver Gj was defined by (37) while, in formula (42), the
quantity F̄π = fL,R(s

π
L,R) is the connection level corresponding to the connection chosen using the selection

rule of Section 1.3.
We now state a convergence result which is a consequence of the fact that the scheme prescribed by (40)–

(42) is monotone and preserves G(sπL,sπR) (it even preserves G∗
(sπL,sπR) since the scheme is the Godunov one).

Recall that it has been stated in Theorem 3 that the Godunov scheme is convergent. We refer to [7, 4] for
further explanations.

Proposition 6 Define sh : R × R+ → R by sh(x, t) = sn+1
j+1/2 if (x, t) ∈ (xj , xj+1) × (tn, tn+1), then, if we

denote by Lf a Lispchitz constant of both fL,R, and if there exists ζ ∈ (0, 1) such that

∆t ≤
(1− ζ)∆x

Lf
, (43)

then sh ∈ L∞(R × R+; [0, 1]). Moreover, under the CFL condition (43), when ∆x (and thus also ∆t) tends
to zero the discrete solution sh converges in L1

loc(R×R+) towards the unique G(sπL,sπR)-entropy solution of the
problem.

3.3 Numerical illustrations of convergence

We now give numerical evidence of convergence of the mild solution sǫ of the parabolic problem towards the
G(sπL,sπR)-entropy solution by comparing their respective approximations sǫh and sh.

3.3.1 The test cases

Concerning the design of the test cases, we have chosen a particularly simple configuration. The capillary
pressure functions πL,R are defined by

πL,R(s) = PL,R − ln(1− s), (44)

where the quantities PL,R, called entry pressures, play an important role in the selection of the correct solution
notion (cf. Section 1.3) and will vary from one case to another. Note that in the case where PR ≥ PL, the
set P defined in Section 1.3 by (21) has the particular simple expression

P =
{(
s,max

{
0, 1 + (s− 1)ePR−PL

})
, s ∈ [0, 1]

}
.
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(a) Capillary pressure curves

s̄L,R = s
opt
R s

opt
L

F̄ opt

fL

fR

(b) Flux functions fL,R

Figure 3: The capillary pressure curves (Fig. 3a) defined by (44)—here PL = 0 (blue) and PR = 2
(green)— satisfy lims→1 πL,R(s) = +∞. Therefore, the maximal extension π̃L,R of πL,R is obtained
by adding {0} × [−∞, PL,R) and {1} × {+∞} to the graph {(s, πL,R(s) | s ∈ [0, 1)}. For the
particularly simple choice of parameters and functions done in the simulations, the flux functions
fL,R are proportional one to the other. We have represented on Fig. 3b the optimal connection
that is relevant for the case presented in Section 3.3.2, but not in the one presented in Section 3.3.3.

Numerical values of the parameters. The only parameter we let vary between the two test cases is
the entry pressure PR. In the first case, which leads to the optimal connection, we choose PR = 0.5. In the
second case, we chose PR = 2, so that the selection rule presented in Section 1.3 provides another solution,
despite the fact that formally, the equation remains the same. The physical parameters and functions used
in the simulations are collected in the following tables. Concerning the scaling parameter ǫ, several values
has been used in order to illustrate the convergence of sǫ towards s (see Fig. 10). All the numerical tests
have been performed for the initial data u0 ≡ 0.5.

total flow rate q = 0;
gravity g = −9.81;
intrinsic permeabilities KL = 10−2, KR = 5.10−3;
porosity φL = φR = 1;
entry pressures PL = 0,

PR = 0.5 in Section 3.3.2,
PR = 2 in Section 3.3.3;

viscosities µa = 10−3 ,
µb = 3.10−3 ;

densities ρa = 0.87,
ρb = 1;

relative permeabilities kra,i(s) = s ,
krb,i(s) = (1− s);

time step ∆t = 2.5 ∗ 10−3,
space step ∆x = 10−2.

3.3.2 The optimal connection

In the case where PR = 0.5, the connection diagram (Fig. 4) is such that P ∩U = ∅. Therefore, the selection
rule of Section 1.3 and Theorem 5 claim that the good notion of solution for the vanishing capillarity limit
is the G(soptL ,soptR )-entropy solution.

The numerical approximation of the optimal entropy solution obtained via the Godunov scheme described
in Section 3.2 is presented in Fig. 5a. It appears to be in good accordance with the solution for a small value
of ǫ given by the implicit scheme described in Section 3.1, and represented on Fig. 5b. In particular, the
wave starting from the interface with negative speed has the expected amplitude and the expected speed. As
already noticed on Fig. 5, we see on Fig. 6 that the shocks of the hyperbolic solution are smoothed by adding
some capillary diffusion. Let us also point out that the one-sided traces sL, sR of the hyperbolic solution
on the interface {x = 0} do not satisfy π̃L(sL) ∩ π̃R(sR) 6= ∅. Therefore, these traces are not suitable for
the parabolic approximation. We can see on both figures (particularly on Fig. 6a) that a boundary layer is
present on the right hand side from the interface.
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Figure 4: The connection diagram in a case where the intersection of P (in blue) and U (in green)
is empty; according to the Selection Rule of Section 1.3, it leads to considering the optimal entropy
solution.

(a) Solution sh to the hyperbolic problem (b) Solution sǫ
h
to the parabolic problem (ǫ = 10−3)

Figure 5

(a) Difference between sh and sǫ
h

(b) Solutions sh and sǫ
h
at different times

Figure 6
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3.3.3 Another connection

Choosing now PR = 2 provides the connection diagram presented in Fig. 7a, where it clearly appears that
P ∩ U 6= ∅. As previously, we denote by (sπL, s

π
R) the connection belonging to P ∩ U . Following the selection

rule of Section 1.3 and Theorem 5, the appropriate notion of entropy solution for the vanishing capillarity
limit is then the G(sπL,sπR)-entropy solution. As a consequence, the interface flux is limited to the maximal

value F̄π (formally, the limitation is equal to F̄ opt in the case where the optimal entropy solution is selected).

sπR

s
opt
R

sπLs
opt
L

(a) connection diagram

fL

F̄ π

F̄ opt

fR

sπR sπL

(b) flux limitation

Figure 7: The connection diagram in a case where the intersection of P (in blue) and U (in green)
is non-empty is presented on Fig. (7a). This results in a flux limitation, in the sense that at the
interface, the flux of the hyperbolic solution may not exceed the value F̄π = fL,R(s

π
L,R), where

(sπL, s
π
R) is the intersection point of U and P .

Here again, the approximate solution sǫh for small capillarity (ǫ = 10−3) is really close to the vanishing
capillarity solution (the G(sπL,sπR)-entropy solution). On Fig. 8, one can see that the shocks (for the hyperbolic
solution) are smoothed in presence of capillary diffusion. Three waves are generated by the medium discon-
tinuity: one wave with negative speed joining s0 = 0.5 to sπL ≃ 0.87, one wave with zero speed joining sπL to
sπR ≃ 0.11, and one wave with positive speed joining sπR to s0 = 0.5. Note that since π̃L(s

π
L) ∩ π̃R(s

π
R) 6= ∅,

then there is no boundary layer for sǫ as x→ 0.

(a) Solution sh to the hyperbolic problem (b) Solution sǫ
h
to the parabolic problem (ǫ = 10−3)

Figure 8

3.3.4 Convergence speed, numerical speed-up

One of the most important drawbacks of the numerical scheme presented in Section 3.1 for approximation
of solutions to the parabolic problem is being implicit: the scheme requires the use of an iterative method
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(a) Difference between both (b) Plot of both solutions for different time t

Figure 9

at each time step, making the solution expensive to compute. For example, computing the approximate
solution sǫh presented on Fig. 5b requires 2182.31 s of CPU time with Scilab, while the computation of the
approximate solution sh presented on Fig. 5a only requires 3.185 s of CPU time, the speed-up ration being
hence of about 685. Moreover, since it is explicit, the computation of sh requires less memory than the one
needed to obtain sǫh; this allows to solve the hyperbolic problem on a finer mesh.

Concerning the convergence speed, we first illustrate in Fig. 10 the convergence of sǫ towards s by plotting
log ‖sǫh − sh‖L1(0,T ;L1(−1,1)) as a function of ǫ. In accordance with the theory (see e.g. [15, 50]), Fig. 10 lets
us think that for all T > 0, one has

∫ T

0

∫

R

|sǫ(x, t) − s(x, t)|dxdt ≤ Cǫ1/2. (45)

Figure 10: log ‖sǫh−sh‖L1(0,T ;L1(−1,1)) as a function of ǫ (in blue) and a straight line with slope−1/2
(dashed green). We recover numerically the order of convergence that was expected from (45).
Note that the slope of the blue curve is damaged when ǫ is too large. This phenomenon is due
to the fact that the solution is computed on the finite domain x ∈ (−1, 1). When the diffusion
is large, the boundary conditions affects the numerical solution. The convergence rate is also
damaged for small ǫ. This comes from the fact that the numerical error become comparable to
the modeling error ‖sǫ − s‖ (this effect is particularly visible since the convection is discretized
in an implicit way in the scheme presented in Section 3.1 and in an explicit way in the Godunov
scheme presented in Section 3.2.

We now look at the convergence rate of the Godunov scheme. To our knowledge, no uniform bound on the
total variation of sh has been proved in the case fL 6= fR (see [30] for the case fL ≡ fR). Yet the particularly
simple configuration we are dealing with (a Riemann problem) ensures the existence of a variation bound.
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Carrying out a proof similar to the one performed in [30] provides an error estimate of type

∫ T

0

∫

R

|sh(x, t) − s(x, t)|dxdt ≤ C∆x1/2

(recall that ∆t ≤ C∆x thanks to (43)) This estimate is optimal in the case where fR or fL is linear. In the
framework of the test case presented in Section 3.3.1, the flux functions are genuinely nonlinear (see Fig. 3b).
As it is usual in this case, a convergence of order 1 is observed numerically: see Fig. 11.

Figure 11: Illustration of the convergence of order 1 in the genuinely nonlinear case. The blue
curve correspond to the plot of ‖sh− sref‖L1 as a function of ∆x, where sref is a reference solution
computed with a small ∆x = 10−3. The green dashed line has a slope equal to 1.

Conclusion

The goal of this paper was to investigate the limit, as ǫ → 0, of the system (15). This study is close to the
one performed by E. Kaasschieter [41], but here, we have taken advantage of the recent developments in the
theory of the scalar conservation laws with discontinuous flux function (see [20, 7] and references therein) to
avoid difficult calculations, and eventually achieved a full classification of possible physical situations. We
have identified the correct interface coupling in the discontinuous-flux Buckley-Leverett model in terms of the
profiles of the flux functions and capillary pressure functions on two sides from the interface. In particular,
we clarified the conclusions of the work [41] by proving that “optimal entropy solution” is not always the right
notion of solution in the Buckley-Leverett context. Finally, we constructed an adequate numerical method
and gave strong evidences on its efficiency.

A Appendix

A.1 The BVloc technique

The goal of this appendix is to prove the relation (32) by adapting to the continuous case, and under the
additional assumption that ϕL,R ∈W 2,∞([0, 1]), a technique developed in [18, 20].

Because of the finite speed of propagation and the L1
loc contraction property for G-entropy solutions,

completely analogous to the classical estimate of [42], it is enough to prove (32) for an L1
loc-dense subset of

initial data. Indeed, a limit of vanishing viscosity limits is still a vanishing viscosity limit.
Thus we pick s0 ∈ C∞

0 (R) and such that s0 ≡ 0 on some interval around zero (this is a way to ensure a
smooth transition across the interface {x = 0}). We extend the corresponding solution sǫ of (15) continuously
by s0 for t ≤ 0; notice that for t < 0, the so extended function sǫ satisfies

∂t
(
(φL11x<0 + φR11x>0)s

ǫ
)
+ ∂x

(
fL(s

ǫ)11x<0 + fR(s
ǫ)11x>0

)
= ǫ∂x

(
∂xϕL(s

ǫ)11x<0 + ∂xϕR(s
ǫ)11x>0

)
+ r(x)

where
r : x 7→ ∂x

[(
fL(s0)− ǫ∂xϕL(s0))11x<0 +

(
fR(s0)− ǫ∂xϕR(s0))11x>0

]
(46)
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is an L∞(R)∩L1(R) function, by the assumptions on s0 and because fL,R, ϕL,R were assumed regular enough.
Therefore the so extended function sǫ is an entire solution (i.e., a solution defined for t ∈ R) of problem

(15) with the additional source term r(x)11t<0. Now, the key fact is that we can control the L1 time translates
of sǫ by a linear modulus of continuity, because solutions of (15) with a source term verify the L1 contraction
principle completely analogous to (19):

∑

i∈{L,R}

∫

Ωi

φi|s
ǫ(t)− sǫ(t− τ)| ≤

∑

i∈{L,R}

∫

Ωi

φi|s
ǫ(0)− sǫ(−τ)|+

∫ t

0

∫

R

|r 11s<0 − r 11s−τ<0| ds = τ ‖r‖L1.

Therefore sǫ ∈ BV (0, T ;L1(R)), with a uniform in ǫ bound. Then we can use the idea of [18, Lemma 4.2] and
[20, Lemma 5.4]: for a > 0, using the mean-value theorem for each ǫ > 0 we can find a contour (0, T )× {aǫ}
with 0 < aǫ < a such that TotVar aǫ along these contours is uniformly bounded by C

a . The variation of s0 is
also bounded, therefore in the same way as in the classical estimate of Bardos, LeRoux and Nédélec [12] for
the Dirichlet problem for viscous conservation law (with boundary datum given by the values of sǫ on our
contour), we get the bound

TotVar sǫ|{(t,x) | t∈(0,T ), x≥a} ≤
C

a
,

with C that only depends on s0 and on the Lipschitz constant of fL,R and of ϕ′
L,R. Analogous estimate

holds for the variation on the set {(t, x) | t ∈ (0, T ), x ≤ a}. With the Cantor diagonal argument, we deduce
compactness of (sǫ)ǫ in L1

loc((0, T )× R+) and thus justify (32).

A.2 An asymptotic preserving scheme

As a consequence of Proposition 5 and Theorem 5, we have

lim
ǫ→0

(
lim

∆t,∆x→0
sǫh

)
= s in L1

loc(R× R+),

where sǫh is the solution to the scheme (35)–(39). In order to justify the comparison of the numerical solutions
sǫh and sh on Figures 5,6,8,9,10, in this appendix we aim to prove that

lim
∆x,∆t→0

(
lim
ǫ→0

sǫh

)
= s in L1

loc(R× R+).

First of all, we need to identify which scheme governs limǫ→0 s
ǫ
h.

Lemma 7 Let sǫh be the solution of (35)–(39), then s0h := limǫ→0 s
ǫ
h (in the L1

loc sense) is a solution of the
scheme (35)–(39) where ǫ has been set to 0.

Proof: First of all, since, for all compact subset K of R × R+, the restriction of sǫh to K lies in a finite
dimensional space, the L1

loc convergence means the convergence of each sǫ,nj+1/2 (j ∈ Z, n ∈ N) towards some

s0,nj+1/2. Assume that this holds for n ∈ N (this is true for n = 0), let us show it for n+ 1.

Since, for all ǫ > 0, sǫ,n+1
j+1/2 ∈ [0, 1], then, up to a subsequence, sǫ,n+1

j+1/2 tends to some s0,n+1
j+1/2 ∈ [0, 1], and,

by a diagonal extraction process, one can assume that this convergence occurs for all j ∈ Z. Up to an new
subsequence, one can assume that sǫ,n+1

L,R tends to s0,n+1
L,R as well as ǫ tends to 0. Note that since the set P in

(21) is closed, (s0,n+1
L , s0,n+1

R ) ∈ P .

For j 6= 0, the flux F ǫ,n+1
j := Gj(s

ǫ,n+1
j−1/2, s

ǫ,n+1
j+1/2)− ǫ

ϕj(s
ǫ,n+1
j+1/2

)−ϕj(s
ǫ,n+1
j−1/2

)

∆x satisfies

lim
ǫ→0

F ǫ,n+1
j = Gj(s

0,n+1
j−1/2, s

0,n+1
j+1/2) := F 0,n+1

j .

Similarly, it follows from the formulas

F ǫ,n+1
0 = GL(s

ǫ,n+1
−1/2 , s

ǫ,n+1
L )− ǫ

ϕL(s
ǫ,n+1
L )− ϕL(s

ǫ,n+1
−1/2 )

∆x/2

= GR(s
ǫ,n+1
R , sǫ,n+1

1/2 )− ǫ
ϕR(s

ǫ,n+1
1/2 )− ϕR(s

ǫ,n+1
R )

∆x/2
,
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and from the property (s0,n+1
L , s0,n+1

R ) ∈ P , that

{
π̃L(s

0,n+1
L ) ∩ π̃R(s

0,n+1
R ) 6= ∅,

F 0,n+1
0 = GL(s

0,n+1
−1/2 , s

0,n+1
L ) = GR(s

0,n+1
R , s0,n+1

1/2 ).
(47)

�

The following lemma ensures that the transmission conditions system (47) yields a flux that is well defined.

Lemma 8 Let (uL, uR) ∈ [0, 1]2, then the system

{
π̃L(sL) ∩ π̃R(sR) 6= ∅,
F 0
0 (uL, uR) = GL(uL, sL) = GR(sR, uR)

(48)

admits a least one solution (sL, sR) ∈ P; moreover, the value F 0
0 (uL, uR) is defined uniquely by (48).

Proof: The set P can be naturally parametrized by p ∈ R̄ as follows:

P =
{(
π̃−1
L (p), π̃−1

R (p)
)
| p ∈ R̄

}
.

Therefore, finding (sL, sR) solution of (48) reduces to finding p ∈ R̄ such that

ΨL(p) := GL(uL, π̃
−1
L (p)) = GR(π̃

−1
R (p), uR) := ΨR(p), (49)

where the left-hand side ΨL is non-increasing while the right-hand side ΨR is non-decreasing. In addition,
we have ΨL(−∞) ≥ ΨR(−∞) and ΨL(+∞) ≤ ΨR(+∞): e.g.,

GL(uL, 0) ≥ GL(0, 0) = 0 = GR(0, 0) ≥ GR(0, uR)

due to the consistency and the monotonicity properties of the numerical fluxes GL,R(·, ·). As a consequence,
there exists at least one value of p and a unique value of ΨL,R(p) such that (49) holds. �

In the following proposition, we identify the flux given by (48) with the Godunov flux at the interface,
whose explicit formula was derived in [4].

Proposition 9 Let (uL, uR) ∈ [0, 1]2, then the flux F 0
0 (uL, uR) given by the nonlinear system (48) is equal

to the Godunov flux
F0(uL, uR) = min

(
F̄π, fL(min(uL, s̄L)), fR(max(s̄R, uR))

)
, (50)

where F̄π = fL,R(s
π
L,R) and (sπL, s

π
R) is the connection selected in Section 1.3.

Proof: We perform the proof by a case by case study relying on the resolution of the Riemann problem.
First, we need to introduce some notation. To start with, we extend the graphs fi by setting fi(0) = (−∞, 0]
and fi(1) = (−∞, q]. In this case, for all F < F̄ opt the sets of level F for fL, R have exactly two elements,
one on each side from s̄L,R. Then we denote by u⋆i the unique value of [0, 1], called conjugate of ui, such that
fi(u

⋆
i ) = fi(ui) and (s̄L − u⋆i )(s̄L − ui) ≤ 0.
Moreover, if fL(uL) ≤ F̄ opt (resp. fR(uR) ≤ F̄ opt), we denote by uRL (resp uLR) the unique value in

[0, 1], called transpose of uL (resp. uR), such that fL(uL) = fR(u
R
L) and (uL − s̄L)(u

R
L − s̄R) ≥ 0 (resp.

fR(uR) = fL(u
L
R) and (uR − s̄R)(u

L
R − s̄L) ≥ 0). We will denote by uR,⋆

L (resp. uL,⋆
R ) the transpose of the

conjugate of uL (resp. uR) (cf. Fig. 12a). Note that, for (uL, uR) ∈ U , one has uR = uR,⋆
L (and uL = uL,⋆

R ).
In the case where (uL, uR) ∈ O, then either uL = uLR (and uR = uRL) if (uL, uR) lies on an increasing branch

of O, or uL = uL,⋆
R (and uR = uR,⋆

L ) if (uL, uR) lies on the decreasing branch of O. We denote by (sπL, s
π
R)

the connection defined by the Selection Rule at the end of Section 1.3, and by sπ,⋆L,R, the conjugate values of
sπL,R.

(i) Assume first that uL ≥ sπ,⋆L and uR ≤ sπ,⋆R , then, thanks to Assumption (A1), the Godunov flux
given by formula (50) provides F0(uL, uR) = F̄π. Reciprocally, assume firstly that P ∩ U 6= ∅, so
that (sπL, s

π
R) ∈ P . From Assumption (A1) on the flux functions, we deduce that GL(uL, s

π
L) =

GR(s
π
R, uR) = F̄π. Thus formulas (48) and (50) yield the same value. The remaining case is when

P ∩ U = ∅, thus F̄π = F̄ opt. There are two symmetric situations: the one where F̄ opt = fL(s̄L) and
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the one where F̄ opt = fR(s̄R). Let us treat the first situation in detail: see Fig. 1, but imagine now
that P crosses D and not U . We see that there exists a value sL < soptL = s̄L such that (sL, s

opt
R ) ∈ P .

Moreover, since sL < s̄L = sπ,∗L ≤ uL, we do have GL(uL, sL) = fL(s
opt
L ). The latter value coincides

with fR(s
opt
R ), which also equals GR(s

opt
R , uR) because uR ≤ soptR . We arrive to the desired equality

GL(uL, sL) = GR(s
opt
R , uR) = F̄ opt with (sL, s

opt
R ) ∈ P : again, we see that formulas (48) and (50) yield

the same value.

(ii) Assume that uL ≤ sπ,⋆L and that uR ≤ uR,⋆
L , so that formula (50) provides that the flux at the interface

should be given by F0(uL, uR) = fL(uL). Let us find a convenient choice of (sL, sR) solution to (48) so
that F 0

0 (uL, uR) = F0(uL, uR). The fact that GL(uL, sL) = GR(sR, uR) = fL(uL) implies, because of
Assumption (A1), that sL can be chosen arbitrarily in [0, u⋆L], while sR has to be equal to uRL . Note that
(u⋆L, u

R
L) ∈ U , and that u⋆L ≥ sπL, u

R
L ≤ sπR. It can thus be seen on Fig. 1 that

(
[0, u⋆L]× {uRL}

)
∩P 6= ∅.

Choosing (sL, sR) at this last intersection in (48) ensures that formulas (48) and (50) yield the same
value for the flux F0(uL, uR).

(iii) The last case is then uR ≥ sπ,⋆R and uL ≥ uL,⋆
R , so that the flux given by (50) turns to be equal to

fR(uR). From similar argument as in the previous case, we deduce from GL(uL, sL) = GR(sR, uR) that
sR can be chosen arbitrary in [u⋆R, 1] while the condition sL = uLR is enforced. Here again, the segment
{uLR} × [u⋆R, 1] has a non-empty intersection with P . Choosing (sL, sR) ∈

(
{uLR} × [u⋆R, 1]

)
∩ P ensures

that, in this case again, the values given by the formulas (48) and (50) coincide.

The above case by case study is illustrated by Fig. 12b. �

As a direct consequence of formula (50) and of [4], taking ǫ = 0 in the scheme defined by (35)–(39) yields
the implicit Godunov scheme corresponding to the notion of G(sπL,sπR)-entropy solution. From the monotonicity

of the scheme, we deduce that the discrete solution s0h is unique (e.g. [34, 23]). The analysis carried out in [7]
for the explicit Godunov scheme can be straightforwardly adapted to the implicit case.

Corollary 10 Let s0h be the unique approximate solution provided by the scheme (35)–(39) in the case ǫ = 0,
then

lim
∆x,∆t→0

s0h = s in L1
loc(R× R+),

where s is the unique G(sπL,sπR)-entropy solution to the hyperbolic Buckley-Leverett equation in two-rocks’
medium.
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[27] C. Cancès and Th. Gallouët. On the time continuity of entropy solutions. J. Evol. Equ. 11(1):43–55,
2011.
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