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Abstract— The illumination of a dimer metallic nanostructure is known to produce an in-
tense source of light, with nanometric size. This confinement of light in the gap between the
two material structures can induce an increase of the absorption of the electromagnetic energy
in the nanaoantenna itself, and therefore its warm-up. The multiphysics problem associated to
this photo-thermal effect is modeled through a Finite Element Method (FEM). This contribu-
tion consists in computing both the electromagnetic field and the temperature, and discussing
the influence of the gap, in the case of a bow-tie nanoantenna. The applications could be the
development of nanodevices with thermal properties.

1. INTRODUCTION

The concept of micro-thermic was recently introduced in nanotechnology [1, 2]. The topics of in-
terest were essentially the thermal radiations of Atomic Force Microscope (AFM) and the thermal
gradient distribution [3, 4]. Nevertheless, only a few experimental data on the thermal properties
of nano-materials are available [5, 6] but a large new field of investigation is open, experimentally
and theoretically, on the thermal effects at the micro and nanoscale [7, 8]. The fluorescence life-
time of molecules in the vicinity of metallic nanostructures is known to depends on materials and
separation [9, 10] but also on temperature. Therefore, a temperature mapping near nanostruc-
tures has been recently proposed, by measuring fluorescence anisotropy [6]. Despite this lack, it is
straightforward that laser induced effects can lead to non negligible thermal effects on near-field
optics probes. Therefore, it becomes necessary to develop theoretical and numerical models in
photo-thermics [11, 12] in order to predict the elevation of temperatures in such structures.

Among the family of nanosensors and nanodevices, the nanoantennas that are of great interest
in various engineering domains (optics, photonics, biology. . . ), the bow-tie nanoantenas support
multiple resonances and have promising spectral properties [13, 14]. In such dimer nanoantennas,
a strong field enhancement appears in the gap, depending on material and geometry of the two
top-to-tail gold triangles [13, 15] which can lead to act as thermal nanometric source [16].

In this paper, we investigate the influence of the gap which is a critical parameter of nanoan-
tennas, on the photo-induced heating, through FEM solving of the electromagnetic and thermic
partial differential equations, in a (2D) geometry. The paper is organized as follows. Section 2 is
devoted to describe the method used to compute the coupled partial differential equations (PDE),
including optical and thermal contributions. In Section 3, a discussion on the physical parame-
ters, and numerical results are given. The application to bow-tie nanoantenna are presented and
discussed, before concluding.

2. MODEL AND FEM FORMULATION

FEM has proved to be an efficient method for the computation of electromagnetic field around
nanostructures [8]. The main advantages of the FEM are first its ability to treat any type of
geometry and material inhomogeneity (with complex permittivity) [8], second the control of the
accuracy of computation to evaluate accuracy of solutions, by using a non regular mesh of the
domain of computation. The FEM is also known to be efficient in the resolution of multiphysics
problems as well as non linear ones.

The PDE system is formed of the Helmholtz’ for non-magnetic material with harmonic time
dependence, and the Poisson’s equations (the stationary heat equation, coupled by a source term
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in the second one [12]:
[
∇ ·

(
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εr(y, z)
∇

)
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]
Hx(y, z) = 0 (1)

[∇ · (λ(y, z)∇)]T (y, z) +
ωε0=(εr(y, z))

2
|E(y, z)(εr)|2 = 0, (2)

where ∇ = (∂x, ∂y, ∂z) is the differential vector operator, in cartesian coordinates, · is the scalar
product, c is the speed of light in vacuum, ω the angular frequency of the monochromatic wave,
λ(y, z), the thermal conductivity, εr(y, z) the relative permittivity of media, and ε0, the permittivity
of vacuum. The shape of the gold bow-tie nanoantenna is defined in the (y, z) plane, as the
electric field E(y, z) which is deduced from the magnetic field H(y, z) along x direction, through
the Maxwell-Ampere’s equation.

The boundary conditions result from the integration of the PDE and therefore from the flux
continuity [17]:

n12 ·
[(

1
ε2
∇H2

)
−

(
1
ε1
∇H1

)]
= 0 and n12 · [(λ2∇T2)− (λ1∇T1)] = 0 (3)

where n12 is the normal to the boundary vector, εk, k = 1, 2, are the complex permittivity and λi,
the thermal conductivity of the nanoantenna and surrounding medium respectively. The electro-
magnetic boundary condition (Eq. (3)) in 2D geometries, is formally equivalent to the continuity of
the tangential component of the electric field. The boundary conditions on the fictitious external
boundary of the domain of computation (vacuum), corresponding to the free propagation of the
diffracted field H2 −Hi [17] and to the incoming illumination Hi, are defined by:

n12 · [(∇H2)] =  [k · n] ~Hi + 
ω

c
(H2 −Hi) and n12 · [(λ2∇T2)] = 0, (4)

where Hi is the illuminating monochromatic, lying along x, magnetic field: Hi = H0
i exp(jωt−k·r),

with k = (0, ω/c, 0), the wave vector, and j the square root of −1. The solution of this FEM
formulation, including a improved remeshing procedure, has been checked and compared with
rigorous Mie theory [18–20]. To evaluate the temperature, the power P of the laser and the
numerical aperture NA of the objective lens used to focus the beam of power on the nanoantenna

must be used to calculate the amplitude of the incoming magnetic field: H0
i = ω NA

1.22

√
2Pπε0

c .

3. PHYSICAL PARAMETERS AND NUMERICAL RESULTS

In the photo-thermal problem, two parameters are involved: the relative permittivity εr(y, z) and
the thermal conductivity λ(y, z). The relative permittivity appears in both Equations (1) and (2)
and is consequently a critical parameter for the heating computation. Nevertheless, unlike models of
phase change [8], we can suppose that there are no variations of material properties or of geometry
of the nanoantenna. Actually, the temperature elevation is supposed to be small enough to be
able to neglect dilations [6, 11]. The corresponding correction of the optical properties of such
nanostructures has been rarely introduced, for the following reasons that are directly related to the
typical size L of the nanostructures:

• No quantum effects are observed at this scale in metallic structures. As to it, the thermal De
Broglie wavelength of a conduction electron in the gold nanostructure being Λ, the quantum
effect can be neglected if the mean-free path of electrons is greater than Λ = 4 nm.

• the thermal dilation of nanostructures is neglected and therefore, neither variation of density
nor change in optics properties has been took into account [21].

• Indeed, the size of each triangle of the bow-tie is almost one order of magnitude greater than
the nanometric critical size for bulk permittivity validity of gold spherical nanoparticles [22].
If the size of the nanostructure is smaller than the bulk mean-free path of electron in gold
(le ≈ 42 nm), the effective mean-free path of electron is reduced typically to the size of
the nanostructure [23]. Moreover, the mean-free path of photon in a gold sphere of radius
45 nm, for λ0 = 600 nm, through Mie theory has been found to be smaller than the bulk
value: 11 nm [24]. Nevertheless, the non negligible decrease of the imaginary part of the
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permittivity of nanostructures has been observed for silver nanowires by fitting models with
experiments [25]. In that paper, the imaginary part of the effective permittivity of silver has
been shown to be the bulk one divided by three.

Therefore, even if in the investigated case of nanoantenna, the size L of the nanoantenna verifies
L > le > Λ, a correction of the imaginary part of the permittivity is proposed to take into account
the balance between diffusive and ballistic electrons in the nanostructures. The correction of the
imaginary part of the permittivity =(εr), which is proportional to the electric conductivity of
material, is deduced from the model described in [26]. The ratio of the imaginary part of the
permittivity of the nanomaterial (εr) to the bulk one (εb) is known for nanowires [26]: =(εr) =
C=(εb) =

[
1 + 3

16(1− p)le 3L
S

]−1=(εb), where p is the fraction of electrons scattered elastically at
the surface of material, le = 42nm the electron mean-free path in bulk gold, 3L the perimeter of
the triangular cross-section and S = L2

√
3/4 the cross-sectional area.

The evaluation of C for bow-tie shape remains open and therefore, we evaluate its variation
for p in the interval [0; 1], including the geometry of each nanostructure of the bow-tie antenna:
C ∈ [0.71; 1]. Usually the parameter p is estimated to get the best fit with experimental data.
In the following, C = 0.83 is used, corresponding to an equal contribution of diffuse and specular
reflections of electron at surface, p = 0.5, and therefore, εr = −9.5 + j for gold at λ0 = 632.8 nm
(instead of εr = −9.5 + 1.22j for bulk material). This correction induces the decrease of the source
term of the heat equation (Eq. (2)). The imaginary part of the permittivity of gold appears in
Eqs. (1)–(2)) as a pure factor and therefore, the temperature variation in gold is proportional to it.

The choice of the edges L = 2r
√

π√
3

= 134 nm of the equilateral triangular shapes of the bow-tie

nanoantenna is governed to maintain the equivalent surface of matter equal to its of a cylindrical
particle with radius r = 50 nm used in the above correction of constants [26]. This typical size
is three times greater than the bulk mean-free path of electrons in gold (le = 42 nm). Therefore
the condition L > le > Λ is satisfied. The other numerical parameters of the photo-thermal
problem are following in the SI system: ω = 2.9767.1015 rad · s−1 (i.e., the wavelength in vacuum
is λ0 = 632.8 nm), ε1 = (−9.5 + j), ε2 = 1, P = 30 mW, NA = 0.6, λ1 = 118 W · m−1 · K−1,
λ2 = 0.026W ·m−1 · K−1. The radius of the domain of computation is 1µm. To avoid sharp tip
effects in computations, we use quadratic polynomial of interpolation in the FEM formulation and
spline rounding of the triangles vertices with 5 nm radius of curvature (Fig. 1(a)).

Figure 1(a) illustrate the refinement of the mesh where the electric field gradient is maximum.
The length of the edges of the cells of the mesh is smaller than 0.2 nm, to describe accurately
the skin effect in the vicinity of the interface between gold and air. With FEM, the accuracy is
the maximum of the difference of the norms of unknowns (|E| and T respectively), between nodes
and interpolation values along edges of each cell. This accuracy also called error, is lower than
−30 dB (Fig. 1(b)) and therefore, the maximum of the variations of the computed solutions are
lower than 10−3 between adjacent nodes. Moreover the insets in each figure show the acuteness
of each unknown of the photothermal problem, related to the small mesh size shown in Fig. 1(a).
Fig. 1(d) is the source term of the Poisson’s equation, that can be compared to those in [12] for
example. This source term exhibits a strong variation in gold. Its maximum is in the vicinity of
the gap. Despite its shape, a first inspection of Fig. 1(e) shows an uniform heating of the whole
structure as in Ref. [12]. The temperature elevation is more than 200 K, under the hypothesis that
all the laser power (30µm) is concentred in a zone of diameter 1.3 µm, without loss of energy. An
extrapolation of the curves in Fig. 3 of Ref. [11] with light flux of 2.3 ·106 W ·cm−2, for nanospheres
gives an elevation of temperature greater than 200 K, which is consistent with our results. Similarly,
the PDE Equations (1) and (2), exhibit a difference of temperature, proportional to the incoming
power. The obtained temperature elevation in gold is one order of magnitude greater than this
in a single structure [6], but are consistent with the measurement of temperature in the gap of a
rods dimer [12]. Actually, the temperature is directly related to the confinement of the intensity
depends on the radius of curvature of the triangles vertices, on the

Instead of insulating boundaries, we also use effusive external boundaries, to enable a loss of
thermal energy through the fictive external boundary but we do not observe induced variations of
the elevation of temperature in gold. Thus, we are encouraged to conduct a study of the temperature
variation depending on the gap. Fig. 1(f) shows the dependance of the intensity of the electric field,
of the heat source and of the temperature variation, as functions of the gap. The homogenization of
temperature in the whole nanostructure is responsible of the quasi-linear decrease of temperature
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Figure 1: (a) Example of mesh. The distance between nodes can be much smaller than 0.1 nm to reach
convergence [18]. The mesh is refined on the boundary of nanoantenna and in the gap, where the gradient
of the electric field is maximum. (b) Global error evaluated on the mesh. (c) Intensity of the electric field
for a gap of 2 nm. (d) Density of power absorbed in the gold nanostructure (source term of Eq. (2)). (e)
Temperature elevation. (f) Variations as a function of the gap width for the maximum of electric field
intensity, the maximum of the source term of the heat equation (in gold) and the elevation of temperature.

elevation, whereas the intensity and the source terms exhibits much stronger variations. gap and
on the incoming power.

4. CONCLUSION

FEM has been applied to the computation of temperature elevation in bow-tie nanoantenna illumi-
nated by a continuous laser. The photo-thermal heating strongly depends on the gap between the
two dimers. From a theoretical discussion on the validity of the physical parameters used in the
model as well as the careful bench of the numerical method, we deduce temperature elevations close
to those reported in recent papers. Let us underline that the temperature variation depends on
both imaginary part of the permittivity, and also on the thermal conductivity. This fact prohibits
any attempt to recover equivalent thermal conductivity, directly from the temperature measure-
ment of the nanostructures. This problem opens up an interesting thought about the resolution of
the photothermal inverse problem. Regarding models, we plan to investigate two tracks of interest:
the resolution of the problem with photothermal parameters obeying the laws of nonlinear behavior
on the one hand, and secondly the transition in 3D.
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