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ABSTRACT 

The dramatic proliferation of sophisticated cyber attacks, in 

conjunction with the ever growing use of Internet-based services 

and applications, is nowadays becoming a great concern in any 

organization. Among many efficient security solutions proposed 

in the literature to deal with this evolving threat, ensemble 

approaches, a particular family of data mining, have proven very 

successful in designing  high performance intrusion detection 

systems (IDSs) resting on the mutual combination of multiple 

classifiers. However, the strength of ensemble systems depends 

heavily on the methods to generate and combine individual 

classifiers. In this thread, we propose a novel design method to 

generate a robust ensemble-based IDS. In our approach, 

individual classifiers are built using both the input feature space 

and additional features exploited from k-means clustering. In 

addition, the ensemble combination is calculated based on the 

classification ability of classifiers on different local data regions 

defined in form of k-means clustering. Experimental results prove 

that our solution is superior to several well-known methods.  

Categories and Subject Descriptors 

H.2.8 [Database Application], H.6.5 [Security and Protection]  

Keywords 

Data mining, ensemble system, intrusion detection, cyber attack. 

1. INTRODUCTION 
Recent years have seen an increasing awareness of the risk of 

cyber attacks not only coming from outside but also inside 

organizations. The vast spectrum of security breaches, resulting 

from the popularity of Internet-based services and applications, 

makes organizational information systems more and more subject 

to potential vulnerabilities by intruders. For years, there has been 

a considerable increase in both types and complexities of attacks 

that are difficult to detect by using traditional methods (e.g., 

signature-based techniques). Such security-related concerns have 

motivated researchers to propose many solutions in the literature 

to face with this dramatically growing threat. Among them, data 

mining, by regarding the task of detecting cyber attacks as a 

classification problem, has brought on a noticeable success in 

developing intrusion detection systems (IDSs) that efficiently 

detect various types of cyber attacks ranging from virus infections 

to phishing scams. The strong point of this approach lies in its 

good generalization abilities to correctly classify (or detect) both 

known and unknown attacks. However, different inducers 

(learning algorithms), or even the same inducer but with different 

input parameters, often exhibit different pros and cons. Hence, it 

is not easy to determine a single perfect classifier for the target 

classification model. An efficient approach to avoid mistaken 

risks in choosing a single poor or inappropriate classifier is to 

employ an ensemble system (or multiple classifier system) resting 

on the mutual combination of multiple classifiers for the 

classification problem. Ensemble systems exploit the mutual 

complementary decision boundaries of individual classifiers to 

improve performance of the whole. However, the effectiveness of 

ensemble systems heavily depends on the ways to generate and 

combine individual classifiers. As a whole, individual classifiers 

are required to have the diversity of decision boundaries. 

Classifier diversity can be achieved in several ways ranging from 

the sampling techniques based on instance space (e.g., bagging 

[1]) and feature space (e.g., random subspace [2]) to the 

adjustment of inducer parameters and/or paradigm architectures. 

In addition, the combination of classifier outputs can be grounded 

under different techniques (e.g., voting, decision template). 

In this thread, we propose a novel design approach to generate a 

high performance ensemble system. In our approach, individual 

classifiers are trained using both the input feature space and 

additional features exploited from k-means clustering. The 

objective is to enhance both strength and diversity of individual 

classifiers. Furthermore, the selection and combination of 

ensemble members are calculated according to their classification 

abilities over different local data regions defined in form of k-

means clustering on a separate validation set. Such a selection and 

combination method expresses the particular potentials of 

classifiers more appropriately, and thus produces a higher 

performance. To this goal, we first present cornerstones to 

generate and combine individual classifiers. Then, we describe a 

concrete algorithm for creating a high performance ensemble 

system. Eventually, we experimentally show that our solution 

outperforms several well-known methods. 

The rest of this paper is organized as follows. Section 2 surveys 

some main studies related to our work. We present methods to 

generate ensemble classifiers in Section 3. Section 4 comes up 

with a technique to combine ensemble classifiers. Section 5 

presents the algorithm we propose for creating an ensemble-based 

IDS. Section 6 portrays the experimental results  of our algorithm. 

The paper finally gives a conclusion of our approach in section 7. 

 

Copyright ©2011 ACM. This is the author‟s version of the work. It is 

posted here by permission of ACM for your personal use. Not for 

redistribution. The definitive version was published in the proceedings 

of IDEAS 2011, September 21-23, Lisbon [Portugal], Editors: 

Bernardino, Cruz, Desai. 

 



2. RELATED WORK 
Over the past decade, many ensemble design methods have been 

proposed for various application domains. This section provides a 

succinct survey of some noticeable studies in ensemble systems 

for the intrusion detection application.  

Giacinto et al. present a multiple classifier system that uses the 

KDD99 dataset [4] for intrusion detection [5]. The system 

consists of various modules, where each is designed for a specific 

service group. In other words, the instance space of the training 

set is decomposed with respect to different service groups defined 

by prior knowledge. For example, the Mail module-based 

classifier is trained from those instances related to email services, 

i.e., SMTP, POP2, POP3, NNTP, and IMAP4. This system uses 

three different learning algorithms (i.e., Parzen, k-means, and v-

SVC) to induce ensemble classifiers. 

Zhang and Zulkernine construct an ensemble-based IDS using an 

adaptive random forest algorithm [3]. The system produces a 

forest of classification trees in which each tree is built from a 

different bootstrap sample. The proposed method only uses the 

attribute service type (e.g., HTTP) as the target of classification. 

In misuse detection, a given instance is passed through the trees 

and then a majority voting mechanism is applied to label this 

instance. For anomaly detection, the general idea is that if an 

instance is classified as the one that is different from its own 

service type, then this instance is regarded as an anomaly. For 

example, if an HTTP instance is classified as FTP service type, 

this instance is determined as an anomaly. 

Roli and Giacinto propose a multiple classifier system comprising 

three different groups of classifiers that correspond to three 

feature subsets predefined by domain knowledge [7]. Specifically, 

each group of classifiers is trained from one out of the three 

predefined feature subsets (i.e., intrinsic, traffic, and content 

feature subsets). A subsequent work of the same authors describes 

an ensemble architecture including multiple one-class k-means 

classifiers [8]. Each classifier is built from an instance subspace 

related to a specific attack type (e.g., Neptune is one of twenty 

three attack types and belongs to DoS attack class ).  

Several studies have also applied Soft Computing algorithms for 

building ensemble systems for the intrusion detection problem. 

For example, Abadeh et al. propose a parallel genetic local search 

algorithm to generate fuzzy rule sets for each class label in the 

training set [11]. Each of these rule sets is utilized to build a fuzzy 

classifier. Then, a decision fusion procedure is in charge of 

determining a class label for a given instance. Likewise, Zainal et 

al. describe an ensemble model that uses three different learning 

algorithms to build three classifiers, i.e., Linear Genetic 

Programming (LGP), Neural Fuzzy Inference, and Random Forest 

(RF) [12]. Each classifier is trained on the same training set and 

assigned to a weight calculated based on classifier performance.       

Finally, apart from other methods that build classifiers from 

network packet headers, Perdisci et al. introduce a multiple 

classifier system for anomaly intrusion detection given network 

packet payloads [14]. This system applies a dimensionality 

reduction algorithm to retrieve several compact representations of 

payload in different feature spaces. Then, each representation of 

payload is used to train a one-class SVM classifier.  

By contrast to the surveyed methods, our approach, on one hand, 

exploits supplemental cluster features resulting from k-means 

clustering for generating the diversity of classifiers. On the other 

hand, the selection and combination of classifiers are based on 

dynamic local validation regions with respect to a given testing 

instance. Intuitively, such factors all together contribute to the 

performance improvement of the whole system.   

3. GENERATION OF CLUSTER FEATURES 

AND INDIVIDUAL CLASSIFIERS 

3.1 Generation of Cluster Features 
Clustering aims to organize data into groups (clusters) according 

to their similarities measured by some concepts. In metric spaces, 

similarity is often defined in term of a distance norm measured 

between data vectors. The potentiality of clustering is to express 

the latently natural relationships between data points. Clusters are 

represented by their centers (or centroids) that are found in the 

partitioning process of a clustering algorithm. In our approach, the 

k-means clustering algorithm [15] is used for constructing 

additional cluster features. These features are then incorporated 

into the input space for building individual classifiers. 

Let us first denote S={X,Y} the original training set of n data 

points X={x1,…,xn}, where each point xi  is an m-dimensional 

vector (xi1,…,xim) assigned to a label yiY belonging one of the c 

classes ={1, …,c}. Let us also denote V the set of k centroids 

obtained by portioning X into k clusters, using k-means clustering. 

Let W={wij | wij[0,1], i=1…n, j=1…k} be an cluster membership 

matrix, where wij is a membership weight that data point xi 

belongs to cluster j. The matrix W is calculated by Formula 1. 
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where k is the number of clusters, and d(xi,vj) is the distance from 

data point  xiX to centroid vjV. 

Let U={ui | ui =max(wij), i=1…n, j=1…k} hold the maximum 

membership weight of each data point xi, and Z={zi | zi =argmaxj 

(wij), i=1…n, j=1…k} contains the cluster (symbolic) number 

assigned to each data point xi. For conciseness, we term two 

column matrices Z and U as “cluster features”. We also term the 

training set added with cluster features {X, Z, U, Y} as a 

“manipulated training set”. These notations and terminologies are 

depicted in Figure 1. Here, cluster features are exploited by 

partitioning n training data points into four clusters, where x1 

belongs to cluster '4' with a membership weight equal to 0.4, and 

so on. The manipulated training set is employed to build an 

individual classifier. 
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Figure 1. A manipulated training set, resulting from adding 

cluster features into the input space. 

3.2 Generation of Individual Classifiers 
Obviously, by changing parameter k (the number of clusters in k-

means clustering), we receive different values of cluster features, 

and hence different classifiers trained by a given inducer. More 



precisely, we generate an ensemble system of t classifiers induced 

from the training set manipulated with values k ranging from 2 to 

t+1. In other words, each individual classifier is trained using both 

the input feature space and cluster features exploited from k-

means clustering with k{2,3,…,t+1}. 

Although it is applicable for any type of inducers, our approach 

uses Decision Tree (DT) [16] as a base inducer to build individual 

classifiers for the ensemble. Because the DT inducer is very 

sensitive to perturbation of the training set, incorporating cluster 

features into the input space intensifies the diversity of classifiers. 

Basically, cluster features exploited from relevant values of k 

often benefit DT inducer in determining more appropriate splits, 

thus outputting more efficient classification trees. For example, let 

us examine an artificial dataset S partially plotted in Figure 2(a). 

This dataset comprises 12,000 data points, where the square-

shaped region contains 3,000 uniformly-distributed data points 

(plotted) and the outside region includes 9,000 points (not 

plotted). A decision tree DT* built from both the initial features 

(A1, A2) and cluster features (Z, U, with k=4) of the dataset S is 

partially depicted in Figure 2(b). Noticeably, for the square-

shaped data region, DT* only contains 9 nodes (4 leaves) but 

attains a 99.41% accuracy, whereas the tree (not shown) generated 

from the initial features (A1, A2) comprises 51 nodes (26 leaves) 

but only achieves a 97.24% accuracy (10-fold cross valuation).  
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Figure 2. (a) The 2D scatter plot of a dataset S; (b) A decision 

tree DT* generated using both initial and cluster features. 

4. ENSEMBLE COMBINATION 
In the ensemble context, there are two basic approaches, i.e., 

combination and selection, to classify unforeseen instances. The 

first approach fuses (or combines) the output of ensemble 

members in some fashion (e.g., majority voting) to achieve a final 

decision, whereas the second approach attempts to dynamically 

select one best ensemble member with respect to some criteria for 

classifying a given testing instance. Our method follows the first 

approach, because the second is known to be sensitive to 

determining an appropriate classifier for a given testing instance. 

Typically, ensemble members are often weighted in some manners 

to further improve the overall performance of the final model. 

Such weighting indicates the influence degree of each ensemble 

member to the final decision. One common way to weight 

classifiers is to estimate their performance on a full validation or 

training set. However, such estimates are insufficient to reflect 

particular abilities of individual classifiers, especially in 

application domains where the distribution of target classes is 

heavily biased. This is because, for example, a classifier exhibits 

its high performance on the global region but very poor 

performance on certain local regions. For solving this problem, 

some researchers define a dynamic local region surrounding an 

unlabeled test instance in terms of k-nearest neighbors in the 

training set, and then estimate the accuracy of classifiers in this 

region to determine the best one for classifying the test instance 

[17]. In our opinion, the estimation of such k-nearest-based local 

accuracy, although efficient, is somewhat unfit for those 

application domains where classification is required to be instant 

or online, such as intrusion detection. This is because, in case the 

training set is large, calculating the k-nearest neighbors for each 

incoming test instance in the operation phase is time-consuming 

and hence hardly applicable in this situation. 

Hence, we propose a combination method by weighting the 

performance of ensemble members based on dynamic local 

regions defined in terms of cluster prototypes (or centroids) in the 

validation set. The basic idea is to estimate the accuracy of each 

ensemble member in a cluster (region) whose centroid is closest to 

the test instance needed to be classified. The keystone is to 

intensify correct decisions and reduce incorrect decisions of each 

classifier in local regions surrounding the test instance. One 

obvious advantage to our combination solution is that, in the 

operation phase, identifying the local regions in the validation set 

is considered to be instantaneous. Another applicability is that the 

method is little sensitive to selecting the number of local regions 

(clusters). This is because it attempts to weight classifier abilities 

in different local regions for combination purpose rather than 

dynamic classifier selection. The ensemble combination method 

we propose is formally defined as follows. 

Let E = {C2,…,Ct+1} be the set of t classifiers, where each Ck is 

induced from the training set added with cluster features resulting 

from a k-means clustering with k clusters.  Suppose that each 

classifier produces its outputs in form of the estimate of posterior 

probabilities, where P(Ck, j | x) represents the support degree 

produced by classifier Ck to class j for a given test instance x. Let 

us also assume that the instance space of the validation set is 

divided into q regions (clusters) {R1,…,Rq} by a k-means 

clustering, and R*  {R1,…,Rq} is the region whose centroid is 

closest to the test instance (x) needed to be classified. Then, the 

overall accuracy of classifier Ck on region R*, which is denoted by 

OA(Ck | R
*), is formulated in Formula 2. 

*

*

*
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( | )
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C
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 (2) 

According to the Bayes theorem, the posterior probability 

estimate that the test instance x belongs to class j given by the 

ensemble E is provided in Formula 3. Note that in case the overall 

accuracy of all classifiers on region R* equals to zero (i.e., OA(Ck | 

R*)=0,  CkE), the posterior probability given by the ensemble 

E is calculated from Formula 4. By such a formulation, the final 

prediction of the test instance x is given in Formula 5. 
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With respect to generating local validation regions, the number of 

cluster prototypes (q) is basically determined by experiment. 

Usually, the value of parameter q is much smaller than the total 

number of instances (n) in the validation set. However, if q is too 

small, the concept of “local region” is no longer applicable and 

thus the particular ability of each classifier is not exploited either. 

When q is too large, it takes more time for determining region R*. 

Moreover, in this case, region R* may comprise only a few 

instances, which is sensitive to or insufficient for evaluating the 

classification ability of classifiers. Normally, a reasonable value of 

q can be found by some prior knowledge such as subclasses (e.g., 

attack types) or visualization analyses.  

5. ENSEMBLE-BASED IDS 

5.1 Global Approach 
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Figure 3. Ensemble-based intrusion detection approach 

Our approach for generating an ensemble-based IDS is 

graphically described in Figure 3. Since the task of intrusion 

detection is regarded as a classification problem, it is first required 

to have a well-labeled IDS dataset. In general, data can be 

gathered from various sources such as network traffic packets, 

operation system audits, system log files (e.g., system calls, shell 

commands), and application log files. These heterogeneous data 

are then preprocessed (e.g., data integration, feature extraction, 

construction, and/or transformation) to establish a well-formed 

dataset (Step 1). Subsequently, derived data are labeled using 

domain expert knowledge and/or other supporting techniques 

(e.g., semi-classification, data visualization) to form an original 

IDS training set (Step 2). Next, the original training set is split 

into two separate sets (i.e., a training set and a validation set) by a 

stratification sampling based on classes or subclasses (Step 3). 

Subsequently, a multiple classifier system is built using both 

initial and cluster features by the method described in Section 3 

(Steps 4-6). Then, local regions are created by splitting the 

validation set into q subsets, using k-means clustering (Step 7). 

An incoming event to be classified is first preprocessed and 

transformed into a testing record (instance) as those used for 

constructing the original training set (Step 8). This unlabeled 

testing instance is then compared to the prototypes of local 

regions, by a distance metric, to determine one nearest region R* 

(Step 9). Because our approach employs the so-called 

overproduction method to generate a large amount of classifiers 

(i.e., t classifiers), the next step is to choose b top-ranked (highest 

performance) classifiers (b  t), evaluated on region R*, for 

classifying the testing instance (Step 10). Finally, the testing 

instance is inputted to b top-ranked classifiers for ensemble 

combination as described in Section 4 (Step 11). 

For calculating distances between data points, we employ the 

heterogeneous distance metric weighed by information gain [6]. 

Furthermore, to tackle the wide dispersion in different ranges, 

continuous features are also normalized by min_max scaling [15]. 

5.2 Algorithm for Generating an Ensemble-

based IDS 
Our algorithm for generating an ensemble system of classifiers, 

called CBE, is depicted by the pseudo-code from Figure 4. Built-

in functions are shown in Figure 5, whereas related notations are 

indicated in Table 1. 

Table 1. Notations used in Figures 3-5 

Notation Description 
k

D
V  A set of k centroids, { | 1 ... }

k

j
v j k 

D
V , derived 

by clustering a given dataset D into k clusters. 

  A function to calculate cluster features for a given 

dataset D. This function is described in Figure 5. 

  A vertical concatenation operator between two 

matrices.   
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TRAINING PHASE 

Input: S={X,Y}: an original training set; I: a base inducer; t: 

total number of classifiers; b: number of top-ranked classifiers 

(bt); q: number of local regions. 
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Step1: Generate a multiple classifier system 
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C using inducer I 

4: End For 

5:  
2 3 1
, , ...,

t
E C C C


   // Store the generated classifiers 

6:  
2 3 1

, , ...,
t

V


  


X X X
V V V  // Store the generated centroid sets 

Step2: Create q  local validation regions 

7:    1 2
, , ..., CreateLocalRegions ,

q
qR R R S       (Fig. 5) 

  where , , 1...{ }
i i i

i q  R X Y     

Step3: Evaluate the performance (overall accuracy) of  each 

classifier on each local validation region 

8:  For each pair  ,
k

k
C E V


 

X
V  and each ( 1... )

i
i qR do 

9:         | , ,( )( )
k

k i k i i i
OA C C    

X
R X X V Y    (Formula 2) 

Step4: Determine b top-ranked classifiers (highest performance 

classifiers evaluated based on OA(Ck | Ri)) for each region 

10: For each ( 1... )
i

i qR do 

11:       
* * *

*
( | )

^ R ank|
k k k

i
k i

O A C
E C C E C b

 
   

 
R R

       

12:  | 1...
i

E E i q 
R R

 // Store the top-ranked classifier sets   

OPERATION  PHASE 

For a given unlabelled test instance x, 

13: Determine one region  *

1
, ...,

q
R R R  such that its centroid 

is closest to x. 

14:     Label( ) Combine , ,
k

k
x C E x x


 

* XR
V  (Fig. 5)    

where  

*
 is the set of  top-ranked classifiers on R ,( )

 is the centroid set used to build ,( )
k k

k

E b E E

C V
 

 





* * RR R

X X
V V

 

Figure 4. Algorithm CBE 

BUILT-IN FUNCTIONS 

Function ,( )
k

 X
D V      

// Construct cluster features for nd data points of a given data set D 

 Compute 
ij

w , ( )
k

i j
x v


   

X
D V , using Formula 1   

 m ax( ), 1 ... , 1 ...
i ij d

u w j k i n     

 arg m ax ( ), 1... , 1...
i ij d

j

z w j k i n    

 Return  ( , ) 1...|
i i d

z u i n  

End Function 

Function  CreateLocalRegions , qS  //  = , : Validation set  S X Y  

  -M eans ,
k

k q



X

V X   //Partition X into q clusters [15] 

 Compute 
ij

w , ( )
k

i j
x v



   
X

X V , using Formula 1 

 arg m ax ( ), 1 ... , 1 ...|
i i ij

j

l l w j q i n
 

    
 

L     

 Split S  into q regions  { , }
i i i

 R X Y according to L, (i=1..q) 

 Return  { , } 1...|
i i i

i q  R X Y  

End function 

Function   ˆCombine ,
k

C E x
*

R

 

// x̂  is a unlabeled testing instance concatenated with cluster features 

 If  *
|

k
OA C R == 0, 

k
C  E *

R

 then 

   Compute  ˆ| , 1... ,
E i

P x i c   using Formula 4. 

 Else Compute  ˆ| , 1... ,
E i

P x i c   using Formula 3. 

  ˆ ˆLabel( ) argmax | , 1...

i

E i
x P x i c



   

End function 

Figure 5. Built-in functions called by the CBE algorithm 

In the training phase, the algorithm initially splits the original 

training set into a training set and a validation set. The splitting 

ratio is basically around 7:3, depending on the size of the original 

training set. Then, it overproduces a system of t classifiers; each 

built from both the original features and the cluster features 

resulting from k-means clustering (Lines 1-5). The algorithm also 

stores the generated centroid sets that are later used to construct 

cluster features for validation and testing data points (Line 6). 

Then, it creates q local regions by partitioning the validation set 

into q clusters (Line 7). Subsequently, it evaluates the 

performance (overall accuracy) of each classifier on each region 

(Lines 8, 9). Here, cluster features of local regions are calculated 

based on the corresponding centroid sets exploited from the 

training set. Finally, the algorithm chooses b top-ranked (highest 

performance) classifiers for each local region (Lines 10-12). 

In the operation phase, for an unlabeled testing instance x, the 

algorithm first determines one local region R* whose centroid is 

closest to x (Line 13). Then, it uses b top-ranked classifiers on this 

region for ensemble combination to produce a final prediction for 

the test instance (Line 14). Note that cluster features of the testing 

instance (x) are calculated based on those centroid sets employed 

to build b top-ranked classifiers. 

6. EXPERIMENTS 

6.1 Dataset 
Our experiments are conducted on the intrusion detection dataset 

KDD99 [4]. Although the dataset has been criticized by the IDS 

community mainly because it is unrepresentative of a real-life 

network scenario [10], so far it is still the only intrusion detection 

evaluation benchmark for research purposes. The KDD99 dataset 

comprises 494,021 training instances and 311,029 testing 

instances. Due to data volume, the research community mostly 

uses small subsets of the dataset for evaluating IDS methods. 

Each instance in the dataset represents a network connection, i.e., 

a sequence of network packets starting and ending at some well 



defined times, between which data flows to and from a source IP 

address to a target IP address. Such a connection instance is 

described by a 41-dimensional feature vector and labeled with 

respect to 5 classes: Normal, Probe, DoS (denial of service), R2L 

(remote to local), and U2R (user to root). 

To facilitate experiments without losing generality, we only use a 

smaller set of the KDD99 dataset for the purpose of evaluating 

and comparing our method to others. In particular, the training 

and testing sets used in our experiments are made up of 33,016 

instances and 169,687 instances that are selectively extracted from 

the KDD99 training and testing sets, respectively. The principle 

for forming such reduced sets is to get all instances in each small 

group (attack type), but only a limited amount of instances in each 

large group, from both the KDD99 training and testing sets. More 

explicitly, for forming the reduced training set, we randomly 

select five percent of each large group Neptune, smurf, and 

normal, while gathering all instances in the remaining groups 

from the KDD99 training set. For sampling the reduced testing 

set, we randomly select 50 percent of each large group Neptune, 

smurf, and normal, while collecting all instances in the remaining 

groups from the KDD99 testing set. Class distribution of these 

two reduced sets is shown in Table 2. 

Table 2. Class distribution of the reduced datasets 

Class Training Set Testing Set 

DoS 22,867  118,807  

Probe 4,107  4,166  

R2L 1,126  16,347  

U2R 52  70  

Normal 4,864  30,297  

Total 33,016  169,687  

6.2 Experimental Results 
In our experiments, the reduced training set of 33,016 instances, 

also termed the original training set, is disjointedly split into a 

training set and a validation set with a fraction of 75% and 25%, 

respectively. Intuitively, such a splitting fraction is reasonable to 

the size of the original training set. In addition, the split is carried 

out by randomly sampling the original training set (without 

replacement) based on each stratification of normal traffic and 

attack types. This is to ensure sufficient representative of each 

subclass in both the training and validation sets. The other input 

parameters of our algorithm (CBE) are established as follows. 

The total number of classifiers (parameter t) is set to 150. The 

reason for choosing such a large number is because, firstly, the 

training phase of Decision Tree (i.e., base inducer for CBE) is not 

time-consuming, compared to that of many other inducers such as 

Support Vector Machines or Artificial Neural Networks. 

Secondly, as an inherent essence of the overproduction-based 

ensemble approach, it is necessary to generate a large amount of 

different classifiers. This not only aims to increase the diversity of 

classifiers but also the possibility of selecting best classifiers for 

the ensemble combination. However, when t is too large, it 

becomes much more time-consuming in the training phase. 

The number of top-ranked classifiers (parameter b) is set to 10. 

This setting is just like many other popular methods (e.g., 

boosting, bagging) that typically use 10 classifiers for the 

ensemble combination. Besides, the number of local validation 

regions (parameter q) is basically set to 23 (i.e., the total number 

of normal traffic and attack types or subclasses in the KDD99 

intrusion detection dataset). Nevertheless, to have a wider 

comparative view, we experimentally run the CBE algorithm with 

some more values of parameter q, i.e., 50, 100, 150, and 200. 

The experimental comparison of our method (implemented in 

Matlab) to other seven well-known algorithms is presented in 

Table 3. All the compared ensemble methods (Rows 2-12) employ 

the same base inducer (i.e., DT) and the same number of base 

classifiers (i.e, 10). To avoid biases related to sampling and 

randomization factors , we run our CBE algorithms (Rows 8-12) 

as well as the other six ensemble algorithms (Rows 2-7) ten times, 

and then get the average result of runs. The performance of 

classifiers (algorithms) is evaluated by True Positive Rates (TPRs) 

and False Positive Rates (FPRs). The TPR of a class c is the 

ratio of “the number of correctly classified instances in the class 

c” to “the total number of instances in the class c”. The FPR of 

a class c is the ratio of “the number of instances that do not 

belong to the class c but are classified as c” to “the total 

number of instances that do not belong to the class c”. 

Table 3. TPRs and FPRs  (%) of classifiers (algorithms) 

Algorithms DoS Prob R2L U2R Normal Avg 

1. DT TP 94.67  76.12  6.01  50.00  97.70  86.20  

 FP 5.51  0.41  0.05  0.01  14.24  6.41  

2. Boosting TP 95.48  89.46  6.82  47.14  99.28  87.45  

 FP 0.41  0.32  0.01  0.01  14.91  2.96  

3. Bagging TP 94.76  77.04  6.24  37.14  98.36  86.42  

 FP 3.02  0.45  0.04  0.00  14.96  4.80  

4. Decorate TP 94.92  75.69  5.42  48.57  97.95  86.35  

 FP 4.25  0.47  0.10  0.01  14.37  5.56  

5. RC TP 94.42  83.81  11.41  51.43    98.43  86.86  

     FP 0.59  0.32  0.47  0.04  14.69  3.09  

6. Dagging TP 95.29  79.85  10.08  48.57  97.61  87.10  

 FP 0.83  0.34  0.08  0.01  14.84  3.25  

7. RS TP 95.18  76.34  7.71  18.57  98.85  86.91  

 FP 3.87  0.39  0.03  0.00  14.01  5.22  

8. CBE TP 98.12  95.08  25.03  88.57  99.41  91.23  

      (q=23) FP 0.38  0.31  0.02  0.00  10.08  2.08  

9. CBE TP 98.63  96.62  26.29  81.43  99.49  91.76  

      (q=50) FP 0.36  0.19  0.01  0.00  9.66  1.98  

10. CBE TP 97.59  94.39  22.39  78.57  99.36  90.58  

      (q=100) FP 0.78  0.32  0.02  0.00  10.71  2.47  

11. CBE TP 97.16  95.94  22.51  85.71  99.27  90.31  

      (q=150) FP 1.02  0.29  0.02  0.00  10.97  2.68  

12. CBE TP 97.02  95.17  22.12  87.14  99.65  90.22  

      (q=200) FP 1.13  0.35  0.01  0.00  10.94  2.75  

Note: 

- DT refers to Decision Tree [16] with input parameters 

established as follows: Pruning method=pessimistic pruning, 

Confidence=0.25, the minimum number of instances per 

leaf=6, and Counting at leaves is smoothed based on Laplace. 

- Classifiers 2-7 uses the following algorithms:  

Boosting, Bagging [1], Decorate [9], Dagging [18],  

RC (Random Committee), and RS (Random Subspace) [2].  

- Classifiers 8-12 are built from our algorithm parameterized 

with: CBE(I=DT, t=150, b=10, q={23, 50, 100, 150, 200}). 

- Column Avg is the average weighted by the number of 

instances on each class. 

 As shown in Table 3, in general, while producing a lower FPR, 

our method (CBE) outperforms the other seven classifiers with 

respect to TPR in all five classes. Particularly, CBE is 

considerably superior to all the others in detecting (classifying) 

R2L, U2R, and Probe attacks. Regarding R2L (a „hard‟ class), on 



the whole average, CBE gives a 23.67% TPR (with a 0.02% 

FPR), whereas the classifier having highest performance on this 

class (i.e., Random Committee) produces an 11.44% TPR (with a 

0.46% FPR). Likewise, for „hard‟ class U2R, on the whole 

average, our method produces an 84.29% TPR (with a 0% FPR), 

while the best classifier on this class (i.e., Random Committee) 

gives a 51.43% TPR (with a 0.04% FPR). With respect to class 

Probe, the average TPR of five CBE classifiers is 15.68% higher 

than that of the other seven classifiers. The experiment results also 

tell that the average performance of five CBE classifiers reaches 

90.82% TPR (2.39% FPR), whereas performance of the other 

seven classifiers fluctuates from 86.20% TPR (6.41% FPR) to 

87.45% TPR (2.96% FPR). 

Although reaching a very high TPR, all the tested fifteen 

classifiers incur a very high FPR on class Normal. This is mainly 

because there is a large mount of R2L instances misclassified as 

Normal instances. In fact, R2L instances are very similar to 

Normal instances in the KDD99 dataset, thus many classification 

methods proposed in the literature (e.g., KDD99 winners [19]) 

incur a very high FPR on class Normal. 

It is also noticed that, as the main drawback of overproduction-

based ensemble approaches, our method takes more time in the 

training phase than the others. This is because it overproduces a 

large pool of candidate classifiers and then chooses some 

competent classifiers from the pool for ensemble combination. 

Nevertheless, the detection (classification) time of our method is 

comparable to that of the others, because choosing 10 top-ranked 

classifiers for each local validation region is carried out in the 

training phase. In addition, since the number of local validation 

regions is often small (e.g., 50), the time to determine region R* 

with respect to a testing instance in the detection phase is 

negligible. The average running time of all tested algorithms 

(executed on a computer with 2.8GHz CPU, 4GB RAM) is shown 

in Table 4. 

Table 4. Training time and detection time (in second) 

Algorithms Nr of generated 

individual classifiers 

Training 

time 

Detection 

time 

DT  07.02 02.15 

Boosting 10 46.45 04.49 

Bagging 10 39.09 03.89 

Decorate 10 447.76 04.65 

RC 10 03.79 03.81 

Dagging 10 15.12 03.55 

RS 10 23.88 04.37 

CBE 150 11,852.6 04.76 

7. CONCLUSION  
We propose in this paper an efficient design approach for 

generating a robust ensemble system for intrusion detection. The 

use of cluster features exploited from different clustering 

processes intensifies both performance and diversity of individual 

classifiers. In addition, the selection and combination of ensemble 

members, based on different local validation regions, express the 

particular classification abilities of classifiers more appropriately, 

and accordingly further enhance performance of the whole 

system. The tactic to achieve a robust ensemble-based IDS is 

concretely formulated via a set of algorithms. Moreover, we 

experimentally show that our method clearly outperforms all the 

tested seven methods.  In particular, our method is considerably 

superior to all evaluated methods with respect to R2L, U2R, and 

Probe classes. Although the experiments are conducted on the 

KDD99 intrusion detection dataset, the approach we propose can 

be generally used to improve classification in other application 

domains. However, to be more objective in evaluating any data 

mining solution as well as overcome criticized drawbacks of the 

KDD99 dataset, our future work will be to test the proposed 

algorithms on other real datasets. In particular, our current effort 

is fulfilling a honeypot system for the goal of gathering both real 

intrusion and normal traffic activities. Such a real dataset will then 

be employed to evaluate the algorithms we proposed. 
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