
HAL Id: hal-00631503
https://hal.science/hal-00631503

Submitted on 12 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Efficient Local Region and Clustering-Based
Ensemble System for Intrusion Detection

Huu Hoa Nguyen, Nouria Harbi, Jérôme Darmont

To cite this version:
Huu Hoa Nguyen, Nouria Harbi, Jérôme Darmont. An Efficient Local Region and Clustering-Based
Ensemble System for Intrusion Detection. 15th International Database Engineering and Applications
Symposium (IDEAS 2011), Sep 2011, Lisbon, Portugal. pp.185-191. �hal-00631503�

https://hal.science/hal-00631503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Efficient Local Region and Clustering-Based Ensemble

System for Intrusion Detection
Huu Hoa Nguyen

Université de Lyon (ERIC Lyon 2)
5 Pierre Mendès-France, France

nhhoa@eric.univ-lyon2.fr

Nouria Harbi
Université de Lyon (ERIC Lyon 2)
5 Pierre Mendès-France, France

nouria.harbi@univ-lyon2.fr

Jérôme Darmont
Université de Lyon (ERIC Lyon 2)
5 Pierre Mendès-France, France

jerome.darmont@univ-lyon2.fr

ABSTRACT

The dramatic proliferation of sophisticated cyber attacks, in

conjunction with the ever growing use of Internet-based services

and applications, is nowadays becoming a great concern in any

organization. Among many efficient security solutions proposed

in the literature to deal with this evolving threat, ensemble

approaches, a particular family of data mining, have proven very

successful in designing high performance intrusion detection

systems (IDSs) resting on the mutual combination of multiple

classifiers. However, the strength of ensemble systems depends

heavily on the methods to generate and combine individual

classifiers. In this thread, we propose a novel design method to

generate a robust ensemble-based IDS. In our approach,

individual classifiers are built using both the input feature space

and additional features exploited from k-means clustering. In

addition, the ensemble combination is calculated based on the

classification ability of classifiers on different local data regions

defined in form of k-means clustering. Experimental results prove

that our solution is superior to several well-known methods.

Categories and Subject Descriptors

H.2.8 [Database Application], H.6.5 [Security and Protection]

Keywords

Data mining, ensemble system, intrusion detection, cyber attack.

1. INTRODUCTION
Recent years have seen an increasing awareness of the risk of

cyber attacks not only coming from outside but also inside

organizations. The vast spectrum of security breaches, resulting

from the popularity of Internet-based services and applications,

makes organizational information systems more and more subject

to potential vulnerabilities by intruders. For years, there has been

a considerable increase in both types and complexities of attacks

that are difficult to detect by using traditional methods (e.g.,

signature-based techniques). Such security-related concerns have

motivated researchers to propose many solutions in the literature

to face with this dramatically growing threat. Among them, data

mining, by regarding the task of detecting cyber attacks as a

classification problem, has brought on a noticeable success in

developing intrusion detection systems (IDSs) that efficiently

detect various types of cyber attacks ranging from virus infections

to phishing scams. The strong point of this approach lies in its

good generalization abilities to correctly classify (or detect) both

known and unknown attacks. However, different inducers

(learning algorithms), or even the same inducer but with different

input parameters, often exhibit different pros and cons. Hence, it

is not easy to determine a single perfect classifier for the target

classification model. An efficient approach to avoid mistaken

risks in choosing a single poor or inappropriate classifier is to

employ an ensemble system (or multiple classifier system) resting

on the mutual combination of multiple classifiers for the

classification problem. Ensemble systems exploit the mutual

complementary decision boundaries of individual classifiers to

improve performance of the whole. However, the effectiveness of

ensemble systems heavily depends on the ways to generate and

combine individual classifiers. As a whole, individual classifiers

are required to have the diversity of decision boundaries.

Classifier diversity can be achieved in several ways ranging from

the sampling techniques based on instance space (e.g., bagging

[1]) and feature space (e.g., random subspace [2]) to the

adjustment of inducer parameters and/or paradigm architectures.

In addition, the combination of classifier outputs can be grounded

under different techniques (e.g., voting, decision template).

In this thread, we propose a novel design approach to generate a

high performance ensemble system. In our approach, individual

classifiers are trained using both the input feature space and

additional features exploited from k-means clustering. The

objective is to enhance both strength and diversity of individual

classifiers. Furthermore, the selection and combination of

ensemble members are calculated according to their classification

abilities over different local data regions defined in form of k-

means clustering on a separate validation set. Such a selection and

combination method expresses the particular potentials of

classifiers more appropriately, and thus produces a higher

performance. To this goal, we first present cornerstones to

generate and combine individual classifiers. Then, we describe a

concrete algorithm for creating a high performance ensemble

system. Eventually, we experimentally show that our solution

outperforms several well-known methods.

The rest of this paper is organized as follows. Section 2 surveys

some main studies related to our work. We present methods to

generate ensemble classifiers in Section 3. Section 4 comes up

with a technique to combine ensemble classifiers. Section 5

presents the algorithm we propose for creating an ensemble-based

IDS. Section 6 portrays the experimental results of our algorithm.

The paper finally gives a conclusion of our approach in section 7.

Copyright ©2011 ACM. This is the author‟s version of the work. It is

posted here by permission of ACM for your personal use. Not for

redistribution. The definitive version was published in the proceedings

of IDEAS 2011, September 21-23, Lisbon [Portugal], Editors:

Bernardino, Cruz, Desai.

2. RELATED WORK
Over the past decade, many ensemble design methods have been

proposed for various application domains. This section provides a

succinct survey of some noticeable studies in ensemble systems

for the intrusion detection application.

Giacinto et al. present a multiple classifier system that uses the

KDD99 dataset [4] for intrusion detection [5]. The system

consists of various modules, where each is designed for a specific

service group. In other words, the instance space of the training

set is decomposed with respect to different service groups defined

by prior knowledge. For example, the Mail module-based

classifier is trained from those instances related to email services,

i.e., SMTP, POP2, POP3, NNTP, and IMAP4. This system uses

three different learning algorithms (i.e., Parzen, k-means, and v-

SVC) to induce ensemble classifiers.

Zhang and Zulkernine construct an ensemble-based IDS using an

adaptive random forest algorithm [3]. The system produces a

forest of classification trees in which each tree is built from a

different bootstrap sample. The proposed method only uses the

attribute service type (e.g., HTTP) as the target of classification.

In misuse detection, a given instance is passed through the trees

and then a majority voting mechanism is applied to label this

instance. For anomaly detection, the general idea is that if an

instance is classified as the one that is different from its own

service type, then this instance is regarded as an anomaly. For

example, if an HTTP instance is classified as FTP service type,

this instance is determined as an anomaly.

Roli and Giacinto propose a multiple classifier system comprising

three different groups of classifiers that correspond to three

feature subsets predefined by domain knowledge [7]. Specifically,

each group of classifiers is trained from one out of the three

predefined feature subsets (i.e., intrinsic, traffic, and content

feature subsets). A subsequent work of the same authors describes

an ensemble architecture including multiple one-class k-means

classifiers [8]. Each classifier is built from an instance subspace

related to a specific attack type (e.g., Neptune is one of twenty

three attack types and belongs to DoS attack class).

Several studies have also applied Soft Computing algorithms for

building ensemble systems for the intrusion detection problem.

For example, Abadeh et al. propose a parallel genetic local search

algorithm to generate fuzzy rule sets for each class label in the

training set [11]. Each of these rule sets is utilized to build a fuzzy

classifier. Then, a decision fusion procedure is in charge of

determining a class label for a given instance. Likewise, Zainal et

al. describe an ensemble model that uses three different learning

algorithms to build three classifiers, i.e., Linear Genetic

Programming (LGP), Neural Fuzzy Inference, and Random Forest

(RF) [12]. Each classifier is trained on the same training set and

assigned to a weight calculated based on classifier performance.

Finally, apart from other methods that build classifiers from

network packet headers, Perdisci et al. introduce a multiple

classifier system for anomaly intrusion detection given network

packet payloads [14]. This system applies a dimensionality

reduction algorithm to retrieve several compact representations of

payload in different feature spaces. Then, each representation of

payload is used to train a one-class SVM classifier.

By contrast to the surveyed methods, our approach, on one hand,

exploits supplemental cluster features resulting from k-means

clustering for generating the diversity of classifiers. On the other

hand, the selection and combination of classifiers are based on

dynamic local validation regions with respect to a given testing

instance. Intuitively, such factors all together contribute to the

performance improvement of the whole system.

3. GENERATION OF CLUSTER FEATURES

AND INDIVIDUAL CLASSIFIERS

3.1 Generation of Cluster Features
Clustering aims to organize data into groups (clusters) according

to their similarities measured by some concepts. In metric spaces,

similarity is often defined in term of a distance norm measured

between data vectors. The potentiality of clustering is to express

the latently natural relationships between data points. Clusters are

represented by their centers (or centroids) that are found in the

partitioning process of a clustering algorithm. In our approach, the

k-means clustering algorithm [15] is used for constructing

additional cluster features. These features are then incorporated

into the input space for building individual classifiers.

Let us first denote S={X,Y} the original training set of n data

points X={x1,…,xn}, where each point xi is an m-dimensional

vector (xi1,…,xim) assigned to a label yiY belonging one of the c

classes ={1, …,c}. Let us also denote V the set of k centroids

obtained by portioning X into k clusters, using k-means clustering.

Let W={wij | wij[0,1], i=1…n, j=1…k} be an cluster membership

matrix, where wij is a membership weight that data point xi

belongs to cluster j. The matrix W is calculated by Formula 1.

2 2

1

1 1

(,) (,)

k

ij

qi j i q

w
d x v d x v

   
    
   
   

 (1)

where k is the number of clusters, and d(xi,vj) is the distance from

data point xiX to centroid vjV.

Let U={ui | ui =max(wij), i=1…n, j=1…k} hold the maximum

membership weight of each data point xi, and Z={zi | zi =argmaxj

(wij), i=1…n, j=1…k} contains the cluster (symbolic) number

assigned to each data point xi. For conciseness, we term two

column matrices Z and U as “cluster features”. We also term the

training set added with cluster features {X, Z, U, Y} as a

“manipulated training set”. These notations and terminologies are

depicted in Figure 1. Here, cluster features are exploited by

partitioning n training data points into four clusters, where x1

belongs to cluster '4' with a membership weight equal to 0.4, and

so on. The manipulated training set is employed to build an

individual classifier.

Training set

X Y

x1 y1

x2 y2

… ...

xn yn

X Z U Y

x1 '4' 0.40 y1

x2 '3' 0.45 y2

… … … ...

xn … … yn

 Cluster features

A manipulated training set

Partition

X into 4

clusters

Centroid 1

Centroid 2

Centroid 3

Centroid 4

x1

x2

0.3

0.14

0.16 0.4

0.18

0.45

0.12 0.25

Figure 1. A manipulated training set, resulting from adding

cluster features into the input space.

3.2 Generation of Individual Classifiers
Obviously, by changing parameter k (the number of clusters in k-

means clustering), we receive different values of cluster features,

and hence different classifiers trained by a given inducer. More

precisely, we generate an ensemble system of t classifiers induced

from the training set manipulated with values k ranging from 2 to

t+1. In other words, each individual classifier is trained using both

the input feature space and cluster features exploited from k-

means clustering with k{2,3,…,t+1}.

Although it is applicable for any type of inducers, our approach

uses Decision Tree (DT) [16] as a base inducer to build individual

classifiers for the ensemble. Because the DT inducer is very

sensitive to perturbation of the training set, incorporating cluster

features into the input space intensifies the diversity of classifiers.

Basically, cluster features exploited from relevant values of k

often benefit DT inducer in determining more appropriate splits,

thus outputting more efficient classification trees. For example, let

us examine an artificial dataset S partially plotted in Figure 2(a).

This dataset comprises 12,000 data points, where the square-

shaped region contains 3,000 uniformly-distributed data points

(plotted) and the outside region includes 9,000 points (not

plotted). A decision tree DT* built from both the initial features

(A1, A2) and cluster features (Z, U, with k=4) of the dataset S is

partially depicted in Figure 2(b). Noticeably, for the square-

shaped data region, DT* only contains 9 nodes (4 leaves) but

attains a 99.41% accuracy, whereas the tree (not shown) generated

from the initial features (A1, A2) comprises 51 nodes (26 leaves)

but only achieves a 97.24% accuracy (10-fold cross valuation).

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

Class 1

Class 2

Class 3

Class 4

Class 5

Centroids

Centroid 2

Centroid 3

Centroid 1

Centroid 4

Class label noise

Class 1

Class 2

Class 5 Class 4

Class 3

A2

A1
Class label noise

<= 0.625779

='2

Z

='1'

......
='3' ='4'

U

> 0.625779

1 (489/11)A1

<= 3 > 3

A2

<= 3 > 3

5 (594/9) 2 (674/6)

A2

4 (558/8) 3 (568/8)

<= 3 > 3

(a) (b)

Figure 2. (a) The 2D scatter plot of a dataset S; (b) A decision

tree DT* generated using both initial and cluster features.

4. ENSEMBLE COMBINATION
In the ensemble context, there are two basic approaches, i.e.,

combination and selection, to classify unforeseen instances. The

first approach fuses (or combines) the output of ensemble

members in some fashion (e.g., majority voting) to achieve a final

decision, whereas the second approach attempts to dynamically

select one best ensemble member with respect to some criteria for

classifying a given testing instance. Our method follows the first

approach, because the second is known to be sensitive to

determining an appropriate classifier for a given testing instance.

Typically, ensemble members are often weighted in some manners

to further improve the overall performance of the final model.

Such weighting indicates the influence degree of each ensemble

member to the final decision. One common way to weight

classifiers is to estimate their performance on a full validation or

training set. However, such estimates are insufficient to reflect

particular abilities of individual classifiers, especially in

application domains where the distribution of target classes is

heavily biased. This is because, for example, a classifier exhibits

its high performance on the global region but very poor

performance on certain local regions. For solving this problem,

some researchers define a dynamic local region surrounding an

unlabeled test instance in terms of k-nearest neighbors in the

training set, and then estimate the accuracy of classifiers in this

region to determine the best one for classifying the test instance

[17]. In our opinion, the estimation of such k-nearest-based local

accuracy, although efficient, is somewhat unfit for those

application domains where classification is required to be instant

or online, such as intrusion detection. This is because, in case the

training set is large, calculating the k-nearest neighbors for each

incoming test instance in the operation phase is time-consuming

and hence hardly applicable in this situation.

Hence, we propose a combination method by weighting the

performance of ensemble members based on dynamic local

regions defined in terms of cluster prototypes (or centroids) in the

validation set. The basic idea is to estimate the accuracy of each

ensemble member in a cluster (region) whose centroid is closest to

the test instance needed to be classified. The keystone is to

intensify correct decisions and reduce incorrect decisions of each

classifier in local regions surrounding the test instance. One

obvious advantage to our combination solution is that, in the

operation phase, identifying the local regions in the validation set

is considered to be instantaneous. Another applicability is that the

method is little sensitive to selecting the number of local regions

(clusters). This is because it attempts to weight classifier abilities

in different local regions for combination purpose rather than

dynamic classifier selection. The ensemble combination method

we propose is formally defined as follows.

Let E = {C2,…,Ct+1} be the set of t classifiers, where each Ck is

induced from the training set added with cluster features resulting

from a k-means clustering with k clusters. Suppose that each

classifier produces its outputs in form of the estimate of posterior

probabilities, where P(Ck, j | x) represents the support degree

produced by classifier Ck to class j for a given test instance x. Let

us also assume that the instance space of the validation set is

divided into q regions (clusters) {R1,…,Rq} by a k-means

clustering, and R*  {R1,…,Rq} is the region whose centroid is

closest to the test instance (x) needed to be classified. Then, the

overall accuracy of classifier Ck on region R*, which is denoted by

OA(Ck | R
*), is formulated in Formula 2.

*

*

*

Nr of instances in correctly classified by
(|)

Total number of instances in

k

k

C
OA C 

R
R

R
 (2)

According to the Bayes theorem, the posterior probability

estimate that the test instance x belongs to class j given by the

ensemble E is provided in Formula 3. Note that in case the overall

accuracy of all classifiers on region R* equals to zero (i.e., OA(Ck |

R*)=0,  CkE), the posterior probability given by the ensemble

E is calculated from Formula 4. By such a formulation, the final

prediction of the test instance x is given in Formula 5.

 

   

   

*

*

| , |

|

| , |

k

j k

k k i

C E

E i

k k j

C E

O A C P C x

P x

O A C P C x










 




 

  
 



 

R

R

 (3)

 

 

 

, |

|

, |

k

j k

k i

C E

E i

k j

C E

P C x

P x

P C x










 


 
  
 



 

(4)

 Label() argmax | , 1...
E i

i

x P x i c


  (5)

With respect to generating local validation regions, the number of

cluster prototypes (q) is basically determined by experiment.

Usually, the value of parameter q is much smaller than the total

number of instances (n) in the validation set. However, if q is too

small, the concept of “local region” is no longer applicable and

thus the particular ability of each classifier is not exploited either.

When q is too large, it takes more time for determining region R*.

Moreover, in this case, region R* may comprise only a few

instances, which is sensitive to or insufficient for evaluating the

classification ability of classifiers. Normally, a reasonable value of

q can be found by some prior knowledge such as subclasses (e.g.,

attack types) or visualization analyses.

5. ENSEMBLE-BASED IDS

5.1 Global Approach

 ,S X Y
Original

Training Set

(Labelled)

R*

Label(x)

 2 3 1
, , ...,

t
E C C C




 
2

2
, ,()()C I    

X
X X V Y

 ……………………………..

 
1

1
, ,()()

t

t
C I 




  

X
X X V Y

(I: a base inducer, Ck: a classifier

 : a matrix concatenation operator)

M
u

lt
ip

le
 c

la
ss

if
ie

r

sy
st

em

R1

Rq

…

L
o

ca
l

re
g

io
n

s

Split S



2

(,) 


X
X V ,…,

1

(,)
t







X
X V

(Function  returns two

cluster features Z and U)

Cluster feature sets

Partition X

into k clusters

(k=2,…,t+1)



Build
classifiers



Split S into q

subsets, by

clustering X

into q clusters



Determine

a region

closest to x



Choose b top-ranked

classifiers according

to overall accuracy on

region R*



*E
R

={b top-ranked

classifiers evaluated

on R* } E
n

se
m

b
le

m
em

b
er

s

 Packets,

 Logs,

 Audits, etc.

Data stream

Preprocess



Extracted/

Constructed/

Transformed

Features

- Domain expert

- Semi-classification

- Visualization

Label data



Data

stream
Unlabelled

instance x

 

Combine

11

 ,  S X Y

Training

Set

 ,  S X Y

Validation

Set

2 3 1

, ...,
t 

  X X X
V V V

(
k

X
V : a set of k centroids)

Centroid sets

Construct

cluster features

Extracted/

Constructed/

Transformed

Features P
re

p
ro

ce
ss





Figure 3. Ensemble-based intrusion detection approach

Our approach for generating an ensemble-based IDS is

graphically described in Figure 3. Since the task of intrusion

detection is regarded as a classification problem, it is first required

to have a well-labeled IDS dataset. In general, data can be

gathered from various sources such as network traffic packets,

operation system audits, system log files (e.g., system calls, shell

commands), and application log files. These heterogeneous data

are then preprocessed (e.g., data integration, feature extraction,

construction, and/or transformation) to establish a well-formed

dataset (Step 1). Subsequently, derived data are labeled using

domain expert knowledge and/or other supporting techniques

(e.g., semi-classification, data visualization) to form an original

IDS training set (Step 2). Next, the original training set is split

into two separate sets (i.e., a training set and a validation set) by a

stratification sampling based on classes or subclasses (Step 3).

Subsequently, a multiple classifier system is built using both

initial and cluster features by the method described in Section 3

(Steps 4-6). Then, local regions are created by splitting the

validation set into q subsets, using k-means clustering (Step 7).

An incoming event to be classified is first preprocessed and

transformed into a testing record (instance) as those used for

constructing the original training set (Step 8). This unlabeled

testing instance is then compared to the prototypes of local

regions, by a distance metric, to determine one nearest region R*

(Step 9). Because our approach employs the so-called

overproduction method to generate a large amount of classifiers

(i.e., t classifiers), the next step is to choose b top-ranked (highest

performance) classifiers (b  t), evaluated on region R*, for

classifying the testing instance (Step 10). Finally, the testing

instance is inputted to b top-ranked classifiers for ensemble

combination as described in Section 4 (Step 11).

For calculating distances between data points, we employ the

heterogeneous distance metric weighed by information gain [6].

Furthermore, to tackle the wide dispersion in different ranges,

continuous features are also normalized by min_max scaling [15].

5.2 Algorithm for Generating an Ensemble-

based IDS
Our algorithm for generating an ensemble system of classifiers,

called CBE, is depicted by the pseudo-code from Figure 4. Built-

in functions are shown in Figure 5, whereas related notations are

indicated in Table 1.

Table 1. Notations used in Figures 3-5

Notation Description
k

D
V A set of k centroids, { | 1 ... }

k

j
v j k 

D
V , derived

by clustering a given dataset D into k clusters.

 A function to calculate cluster features for a given

dataset D. This function is described in Figure 5.

 A vertical concatenation operator between two

matrices.

E A set of t classifiers,  2 3 1
, , ...,

t
E C C C


 , where

each classifier
k

C is trained from the training set

concatenated with cluster features resulting from

clustering the training set into k clusters.

V A set of t centroid sets,  
2 3 1

, , ...,
t

V


  


X X X
V V V

E
R

 A set of q classifier sets,  1...|
i

E E i q 
R R

,

where each
i

E
R

 consists of b top-ranked

classifiers evaluated on region
i

R

TRAINING PHASE

Input: S={X,Y}: an original training set; I: a base inducer; t:

total number of classifiers; b: number of top-ranked classifiers

(bt); q: number of local regions.

Output: , , andE V E
R

Initialization:    , Split  S S S //    S S

 where  ,  S X Y is the training set of n  instances,

  ,  S X Y is the validation set of n  instances

Step1: Generate a multiple classifier system

1: For k=2 to t+1 do

2:  -M eans ,
k

k k



X

V X // Partition X into k clusters [15]

3:  , ,()()
k

k
C I 


  

X
X X V Y // Build

k
C using inducer I

4: End For

5:  
2 3 1
, , ...,

t
E C C C


 // Store the generated classifiers

6:  
2 3 1

, , ...,
t

V


  


X X X
V V V // Store the generated centroid sets

Step2: Create q local validation regions

7:    1 2
, , ..., CreateLocalRegions ,

q
qR R R S (Fig. 5)

 where , , 1...{ }
i i i

i q  R X Y

Step3: Evaluate the performance (overall accuracy) of each

classifier on each local validation region

8: For each pair  ,
k

k
C E V


 

X
V and each (1...)

i
i qR do

9:    | , ,()()
k

k i k i i i
OA C C    

X
R X X V Y (Formula 2)

Step4: Determine b top-ranked classifiers (highest performance

classifiers evaluated based on OA(Ck | Ri)) for each region

10: For each (1...)
i

i qR do

11:  
* * *

*
(|)

^ R ank|
k k k

i
k i

O A C
E C C E C b

 
   

 
R R

12:  | 1...
i

E E i q 
R R

 // Store the top-ranked classifier sets

OPERATION PHASE

For a given unlabelled test instance x,

13: Determine one region  *

1
, ...,

q
R R R such that its centroid

is closest to x.

14:     Label() Combine , ,
k

k
x C E x x


 

* XR
V (Fig. 5)

where

*
 is the set of top-ranked classifiers on R ,()

 is the centroid set used to build ,()
k k

k

E b E E

C V
 

 





* * RR R

X X
V V

Figure 4. Algorithm CBE

BUILT-IN FUNCTIONS

Function ,()
k

 X
D V

// Construct cluster features for nd data points of a given data set D

 Compute
ij

w , ()
k

i j
x v


   

X
D V , using Formula 1

 m ax(), 1 ... , 1 ...
i ij d

u w j k i n  

 arg m ax (), 1... , 1...
i ij d

j

z w j k i n  

 Return  (,) 1...|
i i d

z u i n

End Function

Function  CreateLocalRegions , qS //  = , : Validation set  S X Y

  -M eans ,
k

k q



X

V X //Partition X into q clusters [15]

 Compute
ij

w , ()
k

i j
x v



   
X

X V , using Formula 1

 arg m ax (), 1 ... , 1 ...|
i i ij

j

l l w j q i n
 

    
 

L

 Split S into q regions  { , }
i i i

 R X Y according to L, (i=1..q)

 Return  { , } 1...|
i i i

i q  R X Y

End function

Function   ˆCombine ,
k

C E x
*

R

// x̂ is a unlabeled testing instance concatenated with cluster features

 If  *
|

k
OA C R == 0,

k
C  E *

R

 then

 Compute  ˆ| , 1... ,
E i

P x i c  using Formula 4.

 Else Compute  ˆ| , 1... ,
E i

P x i c  using Formula 3.

  ˆ ˆLabel() argmax | , 1...

i

E i
x P x i c



 

End function

Figure 5. Built-in functions called by the CBE algorithm

In the training phase, the algorithm initially splits the original

training set into a training set and a validation set. The splitting

ratio is basically around 7:3, depending on the size of the original

training set. Then, it overproduces a system of t classifiers; each

built from both the original features and the cluster features

resulting from k-means clustering (Lines 1-5). The algorithm also

stores the generated centroid sets that are later used to construct

cluster features for validation and testing data points (Line 6).

Then, it creates q local regions by partitioning the validation set

into q clusters (Line 7). Subsequently, it evaluates the

performance (overall accuracy) of each classifier on each region

(Lines 8, 9). Here, cluster features of local regions are calculated

based on the corresponding centroid sets exploited from the

training set. Finally, the algorithm chooses b top-ranked (highest

performance) classifiers for each local region (Lines 10-12).

In the operation phase, for an unlabeled testing instance x, the

algorithm first determines one local region R* whose centroid is

closest to x (Line 13). Then, it uses b top-ranked classifiers on this

region for ensemble combination to produce a final prediction for

the test instance (Line 14). Note that cluster features of the testing

instance (x) are calculated based on those centroid sets employed

to build b top-ranked classifiers.

6. EXPERIMENTS

6.1 Dataset
Our experiments are conducted on the intrusion detection dataset

KDD99 [4]. Although the dataset has been criticized by the IDS

community mainly because it is unrepresentative of a real-life

network scenario [10], so far it is still the only intrusion detection

evaluation benchmark for research purposes. The KDD99 dataset

comprises 494,021 training instances and 311,029 testing

instances. Due to data volume, the research community mostly

uses small subsets of the dataset for evaluating IDS methods.

Each instance in the dataset represents a network connection, i.e.,

a sequence of network packets starting and ending at some well

defined times, between which data flows to and from a source IP

address to a target IP address. Such a connection instance is

described by a 41-dimensional feature vector and labeled with

respect to 5 classes: Normal, Probe, DoS (denial of service), R2L

(remote to local), and U2R (user to root).

To facilitate experiments without losing generality, we only use a

smaller set of the KDD99 dataset for the purpose of evaluating

and comparing our method to others. In particular, the training

and testing sets used in our experiments are made up of 33,016

instances and 169,687 instances that are selectively extracted from

the KDD99 training and testing sets, respectively. The principle

for forming such reduced sets is to get all instances in each small

group (attack type), but only a limited amount of instances in each

large group, from both the KDD99 training and testing sets. More

explicitly, for forming the reduced training set, we randomly

select five percent of each large group Neptune, smurf, and

normal, while gathering all instances in the remaining groups

from the KDD99 training set. For sampling the reduced testing

set, we randomly select 50 percent of each large group Neptune,

smurf, and normal, while collecting all instances in the remaining

groups from the KDD99 testing set. Class distribution of these

two reduced sets is shown in Table 2.

Table 2. Class distribution of the reduced datasets

Class Training Set Testing Set

DoS 22,867 118,807

Probe 4,107 4,166

R2L 1,126 16,347

U2R 52 70

Normal 4,864 30,297

Total 33,016 169,687

6.2 Experimental Results
In our experiments, the reduced training set of 33,016 instances,

also termed the original training set, is disjointedly split into a

training set and a validation set with a fraction of 75% and 25%,

respectively. Intuitively, such a splitting fraction is reasonable to

the size of the original training set. In addition, the split is carried

out by randomly sampling the original training set (without

replacement) based on each stratification of normal traffic and

attack types. This is to ensure sufficient representative of each

subclass in both the training and validation sets. The other input

parameters of our algorithm (CBE) are established as follows.

The total number of classifiers (parameter t) is set to 150. The

reason for choosing such a large number is because, firstly, the

training phase of Decision Tree (i.e., base inducer for CBE) is not

time-consuming, compared to that of many other inducers such as

Support Vector Machines or Artificial Neural Networks.

Secondly, as an inherent essence of the overproduction-based

ensemble approach, it is necessary to generate a large amount of

different classifiers. This not only aims to increase the diversity of

classifiers but also the possibility of selecting best classifiers for

the ensemble combination. However, when t is too large, it

becomes much more time-consuming in the training phase.

The number of top-ranked classifiers (parameter b) is set to 10.

This setting is just like many other popular methods (e.g.,

boosting, bagging) that typically use 10 classifiers for the

ensemble combination. Besides, the number of local validation

regions (parameter q) is basically set to 23 (i.e., the total number

of normal traffic and attack types or subclasses in the KDD99

intrusion detection dataset). Nevertheless, to have a wider

comparative view, we experimentally run the CBE algorithm with

some more values of parameter q, i.e., 50, 100, 150, and 200.

The experimental comparison of our method (implemented in

Matlab) to other seven well-known algorithms is presented in

Table 3. All the compared ensemble methods (Rows 2-12) employ

the same base inducer (i.e., DT) and the same number of base

classifiers (i.e, 10). To avoid biases related to sampling and

randomization factors , we run our CBE algorithms (Rows 8-12)

as well as the other six ensemble algorithms (Rows 2-7) ten times,

and then get the average result of runs. The performance of

classifiers (algorithms) is evaluated by True Positive Rates (TPRs)

and False Positive Rates (FPRs). The TPR of a class c is the

ratio of “the number of correctly classified instances in the class

c” to “the total number of instances in the class c”. The FPR of

a class c is the ratio of “the number of instances that do not

belong to the class c but are classified as c” to “the total

number of instances that do not belong to the class c”.

Table 3. TPRs and FPRs (%) of classifiers (algorithms)

Algorithms DoS Prob R2L U2R Normal Avg

1. DT TP 94.67 76.12 6.01 50.00 97.70 86.20

 FP 5.51 0.41 0.05 0.01 14.24 6.41

2. Boosting TP 95.48 89.46 6.82 47.14 99.28 87.45

 FP 0.41 0.32 0.01 0.01 14.91 2.96

3. Bagging TP 94.76 77.04 6.24 37.14 98.36 86.42

 FP 3.02 0.45 0.04 0.00 14.96 4.80

4. Decorate TP 94.92 75.69 5.42 48.57 97.95 86.35

 FP 4.25 0.47 0.10 0.01 14.37 5.56

5. RC TP 94.42 83.81 11.41 51.43 98.43 86.86

 FP 0.59 0.32 0.47 0.04 14.69 3.09

6. Dagging TP 95.29 79.85 10.08 48.57 97.61 87.10

 FP 0.83 0.34 0.08 0.01 14.84 3.25

7. RS TP 95.18 76.34 7.71 18.57 98.85 86.91

 FP 3.87 0.39 0.03 0.00 14.01 5.22

8. CBE TP 98.12 95.08 25.03 88.57 99.41 91.23

 (q=23) FP 0.38 0.31 0.02 0.00 10.08 2.08

9. CBE TP 98.63 96.62 26.29 81.43 99.49 91.76

 (q=50) FP 0.36 0.19 0.01 0.00 9.66 1.98

10. CBE TP 97.59 94.39 22.39 78.57 99.36 90.58

 (q=100) FP 0.78 0.32 0.02 0.00 10.71 2.47

11. CBE TP 97.16 95.94 22.51 85.71 99.27 90.31

 (q=150) FP 1.02 0.29 0.02 0.00 10.97 2.68

12. CBE TP 97.02 95.17 22.12 87.14 99.65 90.22

 (q=200) FP 1.13 0.35 0.01 0.00 10.94 2.75

Note:

- DT refers to Decision Tree [16] with input parameters

established as follows: Pruning method=pessimistic pruning,

Confidence=0.25, the minimum number of instances per

leaf=6, and Counting at leaves is smoothed based on Laplace.

- Classifiers 2-7 uses the following algorithms:

Boosting, Bagging [1], Decorate [9], Dagging [18],

RC (Random Committee), and RS (Random Subspace) [2].

- Classifiers 8-12 are built from our algorithm parameterized

with: CBE(I=DT, t=150, b=10, q={23, 50, 100, 150, 200}).

- Column Avg is the average weighted by the number of

instances on each class.

 As shown in Table 3, in general, while producing a lower FPR,

our method (CBE) outperforms the other seven classifiers with

respect to TPR in all five classes. Particularly, CBE is

considerably superior to all the others in detecting (classifying)

R2L, U2R, and Probe attacks. Regarding R2L (a „hard‟ class), on

the whole average, CBE gives a 23.67% TPR (with a 0.02%

FPR), whereas the classifier having highest performance on this

class (i.e., Random Committee) produces an 11.44% TPR (with a

0.46% FPR). Likewise, for „hard‟ class U2R, on the whole

average, our method produces an 84.29% TPR (with a 0% FPR),

while the best classifier on this class (i.e., Random Committee)

gives a 51.43% TPR (with a 0.04% FPR). With respect to class

Probe, the average TPR of five CBE classifiers is 15.68% higher

than that of the other seven classifiers. The experiment results also

tell that the average performance of five CBE classifiers reaches

90.82% TPR (2.39% FPR), whereas performance of the other

seven classifiers fluctuates from 86.20% TPR (6.41% FPR) to

87.45% TPR (2.96% FPR).

Although reaching a very high TPR, all the tested fifteen

classifiers incur a very high FPR on class Normal. This is mainly

because there is a large mount of R2L instances misclassified as

Normal instances. In fact, R2L instances are very similar to

Normal instances in the KDD99 dataset, thus many classification

methods proposed in the literature (e.g., KDD99 winners [19])

incur a very high FPR on class Normal.

It is also noticed that, as the main drawback of overproduction-

based ensemble approaches, our method takes more time in the

training phase than the others. This is because it overproduces a

large pool of candidate classifiers and then chooses some

competent classifiers from the pool for ensemble combination.

Nevertheless, the detection (classification) time of our method is

comparable to that of the others, because choosing 10 top-ranked

classifiers for each local validation region is carried out in the

training phase. In addition, since the number of local validation

regions is often small (e.g., 50), the time to determine region R*

with respect to a testing instance in the detection phase is

negligible. The average running time of all tested algorithms

(executed on a computer with 2.8GHz CPU, 4GB RAM) is shown

in Table 4.

Table 4. Training time and detection time (in second)

Algorithms Nr of generated

individual classifiers

Training

time

Detection

time

DT 07.02 02.15

Boosting 10 46.45 04.49

Bagging 10 39.09 03.89

Decorate 10 447.76 04.65

RC 10 03.79 03.81

Dagging 10 15.12 03.55

RS 10 23.88 04.37

CBE 150 11,852.6 04.76

7. CONCLUSION
We propose in this paper an efficient design approach for

generating a robust ensemble system for intrusion detection. The

use of cluster features exploited from different clustering

processes intensifies both performance and diversity of individual

classifiers. In addition, the selection and combination of ensemble

members, based on different local validation regions, express the

particular classification abilities of classifiers more appropriately,

and accordingly further enhance performance of the whole

system. The tactic to achieve a robust ensemble-based IDS is

concretely formulated via a set of algorithms. Moreover, we

experimentally show that our method clearly outperforms all the

tested seven methods. In particular, our method is considerably

superior to all evaluated methods with respect to R2L, U2R, and

Probe classes. Although the experiments are conducted on the

KDD99 intrusion detection dataset, the approach we propose can

be generally used to improve classification in other application

domains. However, to be more objective in evaluating any data

mining solution as well as overcome criticized drawbacks of the

KDD99 dataset, our future work will be to test the proposed

algorithms on other real datasets. In particular, our current effort

is fulfilling a honeypot system for the goal of gathering both real

intrusion and normal traffic activities. Such a real dataset will then

be employed to evaluate the algorithms we proposed.

8. REFERENCES
[1] Breiman, L. 1996. Bagging predictors. Machine Learning.

24, 2, 123-140.

[2] Ho. T. K. 1998. The random subspace method for

constructing decision forests. IEEE Trans. Pattern Anal.

Mach. Intell. 20(8), 832–844 .

[3] Zhang, J. and Zulkernine, M. 2006. Anomaly based network
intrusion detection with unsupervised outlier detection. In
Proceedings of ICC'06. Istanbul, 2388-2393.

[4] KDD99 data. http://kdd.ics.uci.edu/databases/kddcup99

[5] Giacinto, G., Perdisci, R., Del Rio, M., and Roli, F. 2008.

Intrusion detection in computer networks by a modular

ensemble of one-class classifiers. Inform. Fusion, 1, 69-82.

[6] Nguyen, H.H., Harbi, N., and Darmont, J. 2011. An efficient

fuzzy clustering-based approach for intrusion detection. In

Proceedings of ADBIS 2011. Vienna, Austria.

[7] Giacinto, G. and Roli, F. 2002. Intrusion detection in

computer networks by multiple classifier systems, In

Proceedings of Pattern Recognition, 390-393.

[8] Giacinto, G., Perdisci, R., and Roli, F. 2005. Network

intrusion detection by combining one-class classifiers. Image

Analysis and Processing. LNCS 3617, 58-65.

[9] Melville, P. and Mooney, R.J. 2005. Creating diversity in

ensembles using artificial data. Inform. Fusion, 6, 1, 99-111.

[10] Vigna, G., Jonsson, E., and Krügel, C. 2003. An analysis of

the 1999 Darpa/Lincoln laboratory evaluation data for

network anomaly detection. RAID 2003. 2820, 220-237.

[11] Saniee, A., Habibi, J., Barzegar, Z., and Sergi, M. 2007. A

parallel genetic local search algorithm for intrusion detection

in computer networks. Eng. Appl. Artif. Intell. 20, 1058-1069

[12] Zainal, A., Maarof, M.A, Shamsuddin, S.M., and Abraham,

A. 2008. Ensemble of one-class classifiers for network

intrusion detection system. ISIAS' 08. 180-185.

[13] Kohavi. R. 1996. Scaling up the accuracy of naive-bayes

classifiers: a decision-tree hybrid. KDD 96. 202-207.

[14] Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., and Lee, W.

2009. McPAD: A multiple classifier system for accurate

payload based anomaly detection. Comput. Net. 53, 864-881.

[15] Lloyd. S.P. 1982. Least square quantization in PCM. IEEE

Trans. Inform. Theory. 28, 2, 129-137.

[16] Quinlan. R. 1993. C4.5: Programs for Machine Learning.

[17] Giacinto, G. and Roli, F. 2001. Dynamic classifier selection

based on multiple classifier behavior. Pattern Recogn. 34.

[18] Ting, K.M. and Witten, I.H. 1997. Stacking bagged and

dagged models. ICML 97 (San Francisco, CA). 367-375.

[19] Elkan, C. 2000. Results of the KDD'99 classifier learning.

SIGKDD Explorations. 1, 2, 63-64.

