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Abstract. The need to increase accuracy in detecting sophisticated cyber 

attacks poses a great challenge not only to the research community but also to 

corporations. So far, many approaches have been proposed to cope with this 

threat. Among them, data mining has brought on remarkable contributions to 

the intrusion detection problem. However, the generalization ability of data 

mining-based methods remains limited, and hence detecting sophisticated 

attacks remains a tough task. In this thread, we present a novel method based on 

both clustering and classification for developing an efficient intrusion detection 

system (IDS). The key idea is to take useful information exploited from fuzzy 

clustering into account for the process of building an IDS. To this aim, we first 

present cornerstones to construct additional cluster features for a training set. 

Then, we come up with an algorithm to generate an IDS based on such cluster 

features and the original input features. Finally, we experimentally prove that 

our method outperforms several well-known methods. 

Keywords: classification, fuzzy clustering, intrusion detection, cyber attack. 

1   Introduction 

In recent years, with the dramatically increasing use of network-based services and 

the vast spectrum of information technology security breaches, more and more 

organizational information systems are subject to attack by intruders. Among many 

approaches proposed in the literature to deal with this threat, data mining brings on a 

noticeable success to the development of high performance intrusion detection 

systems (IDSs). The preeminence of such an approach lies in its good generalization 

abilities to correctly classify (or detect) both known and unknown attacks. However, 

as an inherent essence, the effectiveness of data mining-based IDSs depends heavily 

upon the quality of IDS datasets. In practice, IDS datasets are often extracted from 

raw traces in a chaotic system environment, and hence could hold implicit 

deficiencies, e.g., the existence of noise in class labels due to mistakes in 

measurement, and the lack of base features. Moreover, due to the sophisticated 

characteristics of attacks and the diversification of normal events, different data 

regions could behave differently, i.e., true class labels could seriously be interlaced.  

Such factors pose a great difficulty for inducers to identify appropriate decision 

boundaries from the input space of IDS datasets. In other words, when the input space 



is not robust enough to discriminate class labels, making further treatments from 

alternative knowledge sources as new supplemental features is highly desirable. To 

this aim, one common approach is to transform the input space into a higher 

dimensional space from which data are more separable. New additional features can 

be found by either manual ways based on prior knowledge or automatic analysis 

methods (e.g., principle component analysis). However, in a high dimensional input 

space, finding new relevant features is a tough task that often requires human 

analyses, but derived features are sometimes not as good as expected. As a result, in 

practice, one often applies standard dimensional-transformation methods (e.g., 

polynomial, radial basic function) to application domains where class discrimination 

is ambiguous and additional features are hard to be identified. Yet, such methods are 

greatly affected by input parameters and data distribution, thus not always outputting 

a high performance classifier.  In this vision, it is desirable to find additional features 

in a less complex way so that general-purpose algorithms such as Decision Trees 

(DT) or Support Vector Machines (SVM) can learn the data more efficiently.  

Such a context motivates us to propose a novel approach that treats fuzzy cluster 

information as additional features. These features are selectively incorporated into the 

input space for building an efficient IDS. we experimentally show that our solution 

approach is considerably superior to several well-known methods. 

 The remainder of this paper is organized as follows. Section 2 presents the 

problem formulation of our approach, whereas section 3 describes our solution for 

generating an IDS. Section 4 shows the experimental results we achieved. Section 5 

finally gives a conclusion of the method we propose. 

2   Problem formulation 

Clustering aims to organize data into groups (clusters) according to their similarities 

measured by some concepts. Unlike crisp clustering that crisply assigns each data 

point to a separate cluster, fuzzy clustering allows each data point to belong to various 

clusters with different membership degrees (or weights). Fuzzy clusters are expressed 

by their centers (or centroids) that are simultaneously found in the partitioning 

process of a fuzzy clustering algorithm. The number of clusters (k) is often inputted as 

a parameter to a fuzzy clustering algorithm. The nk membership matrix W={wij  

[0,1]} of n data points is found in the fuzzy clustering process. For example, Figure 1 

describes the instance space of a training set partitioned into four fuzzy clusters, 

where membership weights that data point x1 belongs to clusters '1', '2', '3', and '4' are 

0.3, 0.14, 0.16, and 0.4, respectively.    

Let us first denote S={X,Y} the original training set of n data points X={x1,…,xn}, 

where each point xi  is an m-dimensional vector (xi1,…,xim) and assigned to a label 

yiY belonging one of the c classes ={1, …,c}. Let B={bi| bi=max(wij), j=1…k} 

hold the maximum membership weight of each point xi, and Z={zi| zi=argmaxj(wij), 

j=1…k } contains the cluster (symbolic) number assigned to each point xi.  

For conciseness in describing the approach, we term two column matrices Z and B 

as two “basic cluster features”. In addition, we name the j
th

 column of the membership 

matrix (W) as Pj, and term the columns P1, ..., Pk  as “extended cluster features”. We 



also term the training set added with cluster features {X, Z, B, P1, …, Pk, Y} as a 

“manipulated training set”. These notations and terminologies are depicted in Figure1. 

 
X Z B P1 P2 P3 P4 Y 

x1 '4' 0.4 0.3 0.14 0.16 0.4 y1 

x2 '3' 0.45 0.12 0.35 0.45 0.18 y2 

… … … …. …. … … ... 

xn … … …. …. … … yn 

 Basic cluster features Extended cluster features (W) 

Class labels n training data points Centroid 1 

Centroid 2 

Centroid 3 

Centroid 4 

x1 

x2 

0.3 

0.14 

0.16 0.4 

 

Fig. 1. A manipulated training set, resulting from adding cluster features into the input space. 

The problem formulation follows: “Given a training set S={X,Y} and an inducer I, 

the goal is to find a high performance classifier induced by I over the m initial 

features of S and the supplemental cluster features {Z, B, P1, P2, …, Pk} resulting 

from a parameterized-by-k fuzzy clustering based on X”.  

Undoubtedly, fuzzy clustering has a great potential in expressing the latently 

natural relationships between data points. Here, a question is whether information 

about fuzzy clusters benefits certain inducing types. Basically, there exist some types 

of inducers to which fuzzy cluster features are helpful. For example, in the SVM 

context, the decision boundary often falls into a low density region, but the true 

boundary might not pass through this region, thus resulting in a poor classifier. 

However, when supplemented with relevant cluster features, data points in high 

dimensional spaces can become more uniform and discriminatory, hence avoiding an 

improper separation across this region. In fact, the crucial factor to the success of 

SVM lies in a kernel trick that maps the initial input space to a much higher 

dimensional feature space, where the transformed data are expected to be more 

separable from a linear hyper-plane function. In order words, while other inducers 

somewhat find dimensionality a curse, blessing of dimensionality can enable SVM to 

be more effective. Under such a sense, incorporating relevant cluster features into the 

input space discernibly benefits SVM inducers.  

Another consideration relates to the univariate Decision Tree (DT) setting. Due to 

its greedy characteristic, the DT inducer examines only one ahead partitioning step for 

growing child trees, rather than considering deeper partitioning steps that can achieve 

a better tree. This characteristic can lead to an improper tree-growing termination 

(e.g., the XOR problem), and thus generate a poor classifier. In this vision, cluster 

features help the DT inducer to determine splits more properly for tree growing. 

3   Fuzzy Cluster Feature-based Classification 

3.1   Cluster Feature Generation and Selection 

Basically, cluster features can be generated by any fuzzy clustering algorithm. 

However, for concreteness, we express cluster features with the fuzzy c-means 

clustering [6], which typically solves the minimization problem to the objective 



function of Formula 1. In a common form, the objective function (Formula 1) reaches 

to a minimum over W (membership matrix) and V (centroids), by Formulas 2 and 3.  
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    where  is a fuzzy constant and d(xi,vj) is the distance from xi (X ) to vj (V) 

Fuzzy c-means clustering tries to find the best fit for a fixed value of k, the number 

of clusters. However, as an essential problem of clustering, determining an 

appropriate parameter k is a tough task. The most common way to find the reasonable 

number of clusters is to run the clustering with various values of k  {2,…, kmax} and 

then use a validity measure (e.g., partition coefficient ) to evaluate cluster fitness.  

In our approach, however, we need data to be grouped in a way that reveals helpful 

information for inducers, not for clustering itself, even though the number of clusters 

might be wrong. In other words, using validity measures to determine the best number 

of clusters is not reliable enough to derive good cluster features for classifiers. In such 

a vision, instead of endeavoring to find the best k with validity measures, we use the 

over-production method to generate several candidate classifiers for different values 

of k and then evaluate their performance to determine the best one. Evaluating the 

performance of candidate classifiers can be based either on a validation set or Cross 

Validation (CV) method [9]. Thus, a proper value of k is simultaneously found in the 

process of finding a maximum performance classifier from candidate classifiers. 

In addition, the use of cluster features should be examined individually for a 

concrete inducing type. Intuitively, two basic cluster features (Z, B) are benefic 

enough for DT inducer, instead of including k extended cluster features (P1,…,Pk). By 

contrast, in the SVM context, it is applicable to employ either only the basic cluster 

features (Z, B) or all the cluster features (Z, B, P1,…,Pk) for building a classifier. 

Another solution that can be applied for any inducing type is to employ feature 

selection techniques (e.g., filter, wrapper) to pick out high merit features from both m 

initial input features and all (k+2) cluster features. The objective is to apply feature 

selection techniques on (m+k+2) features to bring about a smaller but more qualitative 

feature subset than those only on m initial features. Here, note is that feature selection 

is simultaneously carried out in the process of building candidate classifiers. In a 

nutshell, formally, there are three possibilities to incorporate cluster features into the 

initial features (A1, …, Am), i.e.,   (A1, …, Am, Z, B),  (A1, …, Am, Z, B, P1, …, Pk), or 

Feature Selection(A1, …, Am, Z, B, P1, …, Pk). 

3.2   Algorithm for generating a fuzzy cluster feature-based classifier 

Our algorithm for generating a classifier from both initial and cluster features, called 

CFC, is depicted from Figure 2. Related notations are indicated in Table 1.  



Table 1. Notations used in Figure 2. 

Notation Description 

Ck A candidate classifier resulting from a clustering with k fuzzy clusters. 

Ck* The best classifier among |K| candidate classifiers. 

Vk 
A k  m matrix of k centroids obtained from clustering X into k clusters. 

Vk* 
A k*  m matrix of k* centroids, corresponding to Ck*. 

Wk 
An n  k membership matrix of n data points xi  X, corresponding to Vk. 

k
B  A column matrix containing the maximum membership weight of each xi  X. 

k
Z  A column matrix representing the cluster (symbolic) number of each xi  X. 

  A horizontal concatenation operator between two matrices.  

 
Training phase 

Input: S={X, Y}: The original training set   

    I: a base inducer  

   K: a predefined integer set representing possible number of clusters  

   : a feature selection technique that returns a specific feature subset  

   T: a type to employ features for building classifiers  

Output: 
*k

C , *k
V  

1: Normalize( )X X       //Normalize continuous features  

2: For each k  K do 

3:  { , } FuzzyC lustering ( , )
k k

W V X k  

4:    { | m ax( ), 1 ... , 1 ... }
k

i i ijB b b w i n j k     

5:    { | arg m ax ( ), 1 ... , 1 ... }
k

i i j ijZ z z w i n j k     

6:    Case              //D is a manipulated training set 

7:  T = 1: ( )
k k

D X Z B     //Initial  features & basic cluster features  

8:  T = 2: ( )
k k k

D X Z B W    //Initial  features & all cluster features  

9:  T = 3:  

     ( , )
k k k

F X Z B W Y      //Apply  a feature selection  

     ( )
k k k

D X Z B W   [F]  //Project data by the derived subset 

10:    End Case 

11:    ( , )
k

C I D Y      //Build a  classifier, using the manipulated training set D & inducer I 

12:     Performance( )
k

C  {Average performance of q-fold CV based on (D,Y) and I } 

13: End For 

14:
*

arg m ax Perform ance( ),
kk C k

C C k K     //Determine one best classifier  

15: Return 
*

*
,

k

k
C V  

Operation  phase 

16: For an unlabeled testing instance x: 

17: Normalize( )x x        //Normalize continuous features 

18: Compute membership weights ( | 1... *)jw j k  that x   belongs to 
*k

jv V  (Formula 3) 

19: max( | 1... *)jb w j k   

20: arg max ( | 1... *)j jz w j k   

21: Label x, by taking cluster features { , , }jz b w into account, using 
*k

C  

Fig. 2. Algorithm CFC. 



The key idea is that, for each clustering with different number of clusters (kK), 

the algorithm builds and valuates a candidate classifier from the training set 

manipulated with a given feature selection type, by q-Fold Cross Validation [9]. The 

resulting classifier is the one exhibiting maximum performance. 

In the training phase, the algorithm first normalizes continuous features (e.g., by a 

variance-based spread measure) to avoid the dispersion in different ranges (Line 1). 

Here, it is noticed that the normalized data (X) is merely for clustering purpose, 

whereas classifiers are built by using the original data (X). In addition, instead of 

executing clustering with parameter k ranging from 2 to a given kmax value, the 

algorithm uses a predefined set K={k} to mainly focus on important values of k, 

which can be recognized by experiment or prior knowledge (Line 2). As mentioned in 

Section 3.1, there are three cases to incorporate cluster features into the initial 

features. Hence, for general purpose, the algorithm introduces an input parameter T 

for specifying the way to employ features for building classifiers (Lines 6-10). 

Subsequently, the algorithm builds and evaluates one candidate classifier for each 

clustering (Lines 11, 12). Here, note is that evaluating candidate classifiers is based 

on the averaged performance of q-fold stratified cross validation from the 

manipulated training set. Finally, the algorithm determines one best classifier from |K| 

candidate classifiers, together with a corresponding centroid set (Lines 14, 15). 

 In the operation phase, for an unlabeled testing instance x, the algorithm first 

normalizes x in the same way as those applied to the training set. Then, cluster 

features of x are calculated based on the centroid set *k
V (Lines 18-20). Finally, the 

corresponding features are input to classifier 
*k

C  for final prediction (Line 21). 

4   Experiments 

4.1   Dataset 

Our experiments are conducted on the intrusion detection dataset KDD99 [3]. This 

dataset was derived from the DARPA dataset, a format of TCPdump files captured 

from the simulation of normal and attack activities in the network environment of an 

air-force base, created by MIT’s Lincoln Laboratory. The KDD99 dataset comprises 

494,021 training instances and 311,029 testing instances. Due to data volume, the 

research community mostly uses small subsets of the dataset for evaluating IDS 

methods. Each instance in the dataset represents a network connection, i.e., a 

sequence of network packets starting and ending at some well defined times, between 

which data flows to and from a source IP address to a target IP address under some 

well defined protocol. Such a connection instance is described by a 41-dimensional 

feature vector and labeled with respect to five classes: Normal, Probe, DoS (denial of 

service), R2L (remote to local), and U2R (user to root).    

To facilitate experiments without losing generality, we only use a smaller set of the 

KDD99 dataset for the purpose of evaluating and comparing our method to others. In 

particular, the training and testing sets used in our experiments are made up of 33,016 

instances and 169,687 instances that are selectively extracted from the KDD99 



training and testing sets, respectively. The principle for forming such reduced sets is 

to get all instances in each small group (attack type), but only a limited amount of 

instances in each large group, from both the KDD99 training and testing sets. More 

explicitly, for forming the reduced training, we randomly select five percent of each 

large group Neptune, smurf, and normal, while gathering all instances in the 

remaining groups from the KDD99 training set. For sampling the reduced testing set, 

we randomly select 50 percent of each large group Neptune, smurf, and normal, 

whereas collecting all instances in the remaining groups from the KDD99 testing set. 

Class distribution of these two reduced sets is shown in Table 2. 

 Table 2. Class distribution of the reduced training and testing sets used in experiments. 

Class Training set Testing set  Class Training set Testing set 

DoS 22,867  118,807   U2R 52  70  

Probe 4,107  4,166   Normal 4,864  30,297  

R2L 1,126  16,347   Total 33,016  169,687  

4.2   Experiment Setup 

In our experiments, the predefined set K is set to {2, 3, …, 50}. The convergence 

criterion (termination tolerance) of fuzzy c-means clustering is set to 10
-6

, whereas the 

fuzzy degree (exponent  in Formulas 1-3) is set to 3. On the other hand, continuous 

futures are normalized by max_min value ranges [6]. To handle different feature types 

as well as express different merit contributions of features in the Euclidian space, we 

calculate distances between data points by the metric proposed in Formula 4. 
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The base inducers (I) tested in our method are the C4.5 decision tree [5] and the 

SVM [2] with polynomial and radial basic function kernels. The feature selection 

technique () used in this experiment is Correlation-based Feature Subset Evaluation 

(CfsSubsetEval) with genetic search [7]. CfsSubsetEval evaluates the merit of a 

feature subset by considering the individual predictive ability of each feature along 

with the degree of redundancy between them. Those subsets that are highly correlated 

with the class while having low intercorrelation are preferred. 

Candidate classifiers are evaluated by an attack type-based stratified cross 

validation (q=10 folds). The maximum performance classifier is determined based on 

overall accuracy (i.e., the ratio of the number of correctly classified instances to the 

total number of instances in the training set).  



4.3   Experiment Results 

The experimental comparison of our method to other well-known methods is featured 

in Table 3. All the compared classifiers are built from the same training set and tested 

on the same testing set as described in Section 4.1. Moreover, Figure 4 depicts True 

Positive Rates (TPRs) and False Positive Rates (FPRs) of classifiers with respect to 

each class label, whereas Figure 3 portrays average TPRs and FPRs of classifiers. 

TPR of a class c is the ratio of “the number of correctly classified instances in the 

class c” to “the total number of instances in the class c”. FPR of a class c is the 

ratio of “the number of instances that do not belong to the class c but are classified 

as c” to “the total number of instances that do not belong to the class c”.  

To have a wider comparative view, we run our algorithm (CFC) with different 

settings of two parameters (i.e., I: base inducer; T: the way to employ cluster features 

for building classifiers). The results of such runs are listed in Rows 10-18 of Table 3. 

As shown in Figures 3 and 4, our method, in general, considerably outperforms the 

others with respect to TPRs in all five classes and on average. Particularly, CFC 

classifiers are significantly better than all the others in detecting hard classes (i.e., 

R2L and U2R). On the other hand, FPRs of CFC classifiers are generally lower than 

those of the others. Our method also considerably improves the classification ability 

of base inducers (SVM and DT) in both viewpoints, i.e., applying or not applying 

feature selection. More concretely, by using the same feature selection technique, the 

SVM classifier built from the manipulated training set (i.e., CFC(I=SVM,T=3)) is 

considerably superior to the SVM classifier built from the original training set (i.e., 

SVM_FS). Similarly, the performance of CFC(I=DT,T=3) is considerably better than 

that DT_FS. This tells that applying a feature selection technique on the manipulated 

training set produces a higher qualitative feature subset (including base features and 

cluster features) than that on the original training set.   

Regarding the SVM context, although we further test PSVM (Polynomial SVM) 

with exponent degrees ranging from 2 to 6, its performance remains worse than 

CFC(PSVM(degree=2),T={1,2,3}). On average,  CFC(PSVM (degree=2),T={1,2,3}) 

gives a 91.96% TPR (with a 2.2% FPR), whereas PSVM(degree={2,…,6}) produces 

an 86.84% TPR  (with a 3.44% FPR). We also test RSVM (Radial Basic Function 

SVM) with widths Gamma ranging from 0.1 to 1.0, but its performance still 

underperforms CFC(RSVM(Gamma=0.1),T={1,2,3}). More precisely, on average, 

RSVM(Gamma={0.1,0.2,...,1}) produces an 86.72% TPR (with a 3.62% FPR), 

whereas CFC(RSVM(Gamma=0.1),T={1,2,3}) gives a 91.15% TPR (with a 2.3% 

FPR). This tells that cluster features benefit SVM in high dimensionality. 

87.05 86.27 86.69 86.18 86.49 87.03 86.94 87.02 87.09 90.89 90.18 91.49 91.70 91.24 92.92 90.37 90.96 92.12

3.00 5.82 3.20 4.68 3.25 3.27 5.03 3.32 4.61 2.35 2.90 2.16 2.18 2.35 2.08 2.45 2.38 2.07
0
10
20
30
40
50
60
70
80
90

100

TPR

FPR

 

Fig. 3. Average True Positive and False Positive Rates (%) of classifiers 



  Table 3. True Possitive and False Possitive rates (%) of classifiers.  

Classifier  DoS Probe R2L U2R Normal Average 

1. Boosting TP  95.36   82.48   5.51   35.71   99.22   87.05  

 FP  0.44   0.46   0.03   0.01   15.01   3.00  

2. Bagging TP  94.72   80.03   3.46   42.86   98.74   86.27  

 FP  4.64   0.41   0.30   0.02   14.18   5.82  

3. NBTree TP  94.53   83.32   9.54   51.43   98.08   86.69  

 FP  0.84   0.62   0.60   0.24   14.22   3.20  

4. DT TP  94.72   78.68   2.84   51.43   98.77   86.18  

 FP  2.85   0.57   0.03   0.10   14.96   4.68  

5. DT_FS TP  94.26   85.60   7.11   38.57   99.06   86.49  

 FP  0.82   0.93   0.26   0.05   14.70   3.25  

6. PSVM TP  95.14   84.09   9.43   38.57   97.61   87.03  

 FP  0.91   0.52   0.24   0.01   14.56   3.27  

7. PSVM_FS TP  95.44   73.84   8.86   44.29   97.65   86.94  

 FP  3.57   0.22   0.29   0.01   14.00   5.03  

8. RSVM TP  95.11   83.99   9.51   38.57   97.62   87.02  

 FP  0.98   0.53   0.23   0.01   14.55   3.32  

9. RSVM_FS TP  94.98   81.73   9.92   40.00   98.64   87.09  

 FP  3.04   0.55   0.17   0.01   13.75   4.61  

10. CFC(I=DT, T=1) TP  97.69   88.65   25.93   58.57   99.62   90.89  

 FP  0.76   0.53   0.02   0.03   10.12   2.35  

11. CFC(I=DT, T=2) TP  97.46   88.24   21.47   60.00   99.03   90.18  

 FP  1.45   0.75   0.03   0.04   10.46   2.90  

12. CFC(I=DT, T=3) TP  98.30   90.13   28.01   62.86   99.27   91.49  

 FP  0.70   0.65   0.03   0.04   9.24   2.16  

13. CFC(I=PSVM, T=1) TP  98.42   92.49   28.19   68.57   99.57   91.70  

 FP  0.81   0.68   0.03   0.03   8.93   2.18  

14. CFC(I=PSVM, T=2) TP  98.12   92.20   26.27   75.71   99.20   91.24  

 FP  0.87   0.48   0.02   0.04   9.70   2.35  

15. CFC(I=PSVM, T=3) TP  98.83   94.89   37.62   74.29   99.36   92.92  

 FP  1.08   0.71   0.03   0.03   7.31   2.08  

16. CFC(I=RSVM, T=1) TP  97.42   95.06   21.61   68.57   99.23   90.37  

 FP  0.76   0.61   0.04   0.02   10.65   2.45  

17. CFC(I=RSVM, T=2) TP  98.15   91.72   22.51   72.86   99.62   90.96  

 FP  0.83   0.58   0.03   0.03   9.96   2.38  

18. CFC(I=RSVM, T=3) TP  98.22   94.36   33.81   68.57   99.45   92.12  

 FP  0.79   0.70   0.02   0.03   8.39   2.07  

- DT refers to the C4.5 decision tree inducer [5] with established input parameters: 

pruning method = pessimistic pruning, confidence=0.2, and Min(#instances per leaf)=6. 

- Boosting uses the AdaBoost [8] with parameters: base inducer=DT, # classifiers=10. 

- Bagging uses the Bagging [4] with parameters: base inducer=DT, # classifiers=10. 

- PSVM refers to SVM inducer with Polynomial Kernel (exponent degree = 2). 

- RSVM refers to SVM inducer with Radial Basic Function Kernel (width gamma = 0.1). 

- Classifiers 1-9 are trained on the original training set (without cluster features), where 

classifiers 5, 7, and 9 employ the feature selection technique () as described in Section 

5.2, whereas classifiers 1-4, 6, and 8 do not apply the feature selection technique (). 

- Classifiers 10-18 are built from the CFC algorithm whose base inducers have the same 

parameter settings as stand-alone classifiers 4, 6, and 8. 

- The column Average is the average weighted by the number of instances on each class. 
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Fig. 4. True Positive Rates (%) of classifiers on each class. 

5   Conclusion and Future Work 

We propose in this paper a novel method in applying data mining to the intrusion 

detection problem. The incorporation of cluster features resulting from a fuzzy 

clustering into the training process is proven to be efficient for enhancing the strength 

of a base classifier. The tactic to achieve a high performance classifier from a training 

set supplemented with cluster features is addressed. We experimentally show that, as 

a whole, our method clearly outperforms all the tested methods. Although the 

experiments are conducted on the KDD99 IDS dataset, the approach we propose can 

be generally used to improve classification in other application domains. However, to 

be more objective in evaluating any data mining solution, our future work will be to 

test the proposed method on other real datasets. In particular, our current effort is 

fulfilling a honeypot system for gathering both real intrusion and normal traffic 

activities. Such a real dataset will then be used to evaluate the method we proposed. 

References 

1. Amiria, F., Yousefia, M.R., Lucasa, C., Shakeryb, A., Yazdanib, N.: Mutual Information 

Based Feature Selection for Intrusion Detection Systems. JNCA, V.34, pp.1184-1199 (2011) 

2.  Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. 

Advances in Kernel Methods - Support Vector Learning, pp. 185-208, MIT Press (1999) 

3.  UCI KDD Archive, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

4.  Breiman, L.: Bagging Predictors. Machine Learning, Vol. 24(2), pp. 123–140 (1996) 

5.  Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993) 

6.  Hoppner, F.: Fuzzy Cluster Analysis. John Wiley & Sons, pp. 37-43 (2000) 

7. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. Hamilton, 

New Zealand (1998) 

8. Freund, Y., Schapire R.E.: Experiments with a New Boosting Algorithm. In: Thirteenth 

International Conference on Machine Learning, San Francisco, pp. 148–156 (1996) 

9.  Andrew, Y.N.: Preventing Overfitting of Cross-Validation Data. ICML, pp. 245-253 (1997) 

10.Gupta K.K., Nath, B., Ramamohanarao, K.: Layered Approach Using Conditional Random 

Fields for Intrusion Detection. IEEE Trans. Dependable Sec. Comput, 7(1), pp. 35-49 (2010) 


