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Abstract

We propose in this work a patch-based image labeling method relying on a label propagation frame-
work. Based on image intensity similarities between the input image and an anatomy textbook, an
original strategy which does not require any non-rigid registration is presented. Following recent devel-
opments in non-local image denoising, the similarity between images is represented by a weighted graph
computed from an intensity-based distance between patches. Experiments on simulated and in-vivo MR
images show that the proposed method is very successful in providing automated human brain labeling.

1 Introduction

Automated brain labeling [28, 7, 24, 23] is a crucial step in neuroimaging studies since it provides a segmen-
tation map of contiguous meaningful brain regions. Label propagation (also called label fusion) is a way to
segment an image and it is usually performed by registering one or several labeled images to the image to
be segmented. The labels are then mapped and fused using classification rules to produce a new label map
of the input image [30, 15, 3, 2, 16, 8, 33, 35, 26, 38, 34, 25, 19]. The principle of such registration-based
labeling approach is shown in Figure 1. This segmentation approach is highly versatile since the main pre-
requisite is an anatomy textbook, i.e. a set of measured images (such as Magnetic Resonance (MR) imaging
or Computerized Tomography (CT)) and the corresponding label maps. The use of label propagation has
been extensively investigated for automatic brain MR segmentation, especially for structures such as hip-
pocampus, caudate, putamen, amygdala, etc., and cortex areas. The keypoints of registration-based label
propagation approaches concern the accuracy of the non-rigid registration, the fusion rules [11, 30, 36, 15, 3],
the selection of the labeled images [37, 2, 35] and the labeling errors in primary manual segmentation.

Because of the use of a registration algorithm, one makes the implicit (and strong) assumption that there
exists a one-to-one mapping between the input image and all the anatomical images of the textbook. In the
case where no one-to-one mapping is possible, a registration-based labeling framework propagates incorrect
labels. Moreover, local incorrect matching due to inherent registration errors can also lead to segmentation
errors. Finally, as shown in a recent evaluation study [22], there is a non-negligible discrepancy in term
of quality of matching between non-rigid registration techniques. Thus, even if several algorithms are now
freely available, the non-rigid registration procedure remains a complex step to setup and it is usually quite
CPU time consuming.

In this work, following recent developments in non-local image denoising [6, 17], we propose an alternate
strategy for label propagation which does not require any non-rigid registration. The proposed algorithm
makes use of local similarities between the image to be labeled and the images contained in the anatomy
textbook. The key idea is similar to a fuzzy block matching approach which avoids the constraint of
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Figure 1: Principle of registration-based label propagation methods. The input data (shown with green
borders) are an anatomy textbook (i.e. a set of n anatomical images with the corresponding label maps),
and one anatomical image I. The set of anatomical images of the textbook is (non-linearly) registered to
the input image I, and each label map is deformed with respect to the estimated transformation hi. The
final image segmentation (shown with red borders) is then obtained by fusing all the deformed label maps
(shown with blue borders).

a strict one-to-one mapping. The method described in this article has been developed irrespective of a
similar patch-based approach recently proposed by Coupé et al. [10]. The contributions of our work can be
summarized as follows: 1) a patch-based framework for automated image labeling, 2) investigation of several
patch aggregation strategies (pair-wise vs group-wise labeling and pointwise vs multipoint estimation), 3)
comparison of fusion rules (majority voting rule vs STAPLE [36]), 4) application to human brain labeling
using publicly available simulated (Brainweb) and in-vivo (IBSR and NA0-NIREP) datasets, 5) comparison
with a non-rigid registration-based technique.

2 Patch-based Label Propagation

2.1 Patch-based Principle

Recently, Buades et al. [6] have proposed a very efficient denoising algorithm relying on a non-local frame-
work. Since then, this non-local strategy has been studied and applied in several image processing applica-
tions such as non-local regularization functionals in the context of inverse problems [20, 27, 14, 29, 31] or
medical image synthesis [32].

Let us consider, over the image domain Ω, a weighted graph w that links together the voxels of the
input image I with a weight w(x,y), (x,y) ∈ Ω2. This weighted graph w is a representation of non-local
similarities in the input image I.

In [6], the non-local graph w is used for denoising purpose using a neighborhood averaging strategy (called
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non-local means (NLM)):

∀x ∈ Ω, Inlm(x) =

∑

y∈Ωw(x,y)I(y)
∑

y∈Ωw(x,y)
(1)

where w is the graph of self-similarity computed on the noisy image I, I(y) is the gray level value of the
image I at the voxel y and Inlm is a denoised version of I.

The weighted graph reflects the similarities between voxels of the same image. It can be computed using
a intensity-based distance between patches [9]:

w(x,y) = f

(
∑

x′∈PI(x),y′∈PI(y)
(I(x′)− I(y′))

2

2Nβσ̂2

)

(2)

where PI(x) is a 3D patch of the image I centered at voxel x; f is a kernel function (f(x) = e−x in [6]), N is
the number of voxels of a 3D patch; σ is the standard deviation of the noise and β is a smoothing parameter.
With the assumption of Gaussian noise in images, β can be set to 1 (see [6] for theoretical justifications) and
the standard deviation of noise σ is estimated via pseudo-residuals as defined in [13].

2.2 Label Propagation

In this work, we propose to investigate the use of such a non-local patch-based approach for label propagation.
Let T be an anatomy textbook containing a set of T1-weighted MR images I and the corresponding label
maps L: T = {(Ii,Li), i = 1, · · · , n}.

2.2.1 Weighted Graph and Label Propagation

Let us consider, over the image domain Ω, a weighted graph wi that links together voxels x of the input
image I and voxels y of the image Ii with a weight wi(x,y), (x,y) ∈ Ω2. wi is computed as follows:

wi(x,y) = f

(∑

x′∈PI(x),y′∈PIi
(y) (I(x

′)− Ii(y′))
2

2Nβσ̂2

)

. (3)

This weighted graph wi is a representation of non-local similarities between the input image I and the image
Ii of the textbook (see Figure 2).

The assumption on which the proposed method relies is the following one: if patches of the input image I

are locally similar to patches of the anatomy textbook, they should have a similar label. The label propagation
procedure is then performed using the set of graphs {wi}i=1,··· ,n which reflects the local similarities between
I and {Ii}i=1,··· ,n.

In the context of denoising [6], Buades et al. assume that every patch in a natural image has many similar
patches in the same image. Thus, the graph w is computed between each voxel of the input image (which
has led to the term “non-local” algorithm):w = {w(x,y), ∀(x,y) ∈ Ω2}. This is because of the assumption
that similarities can be found in the entire image I. However, in the context of human brain labeling, the
location of the brain structures is not highly variable and it is then not desirable to go through the entire
image domain Ω to find good examples for the segmentation of a specific part of a brain. In this work, the
graph is computed using a limited number of neighbors: w = {w(x,y), ∀x ∈ Ω,y ∈ N (x)}, where N (x) is
the neighborhood of the voxel x. The size of the considered neighborhood N is directly related to the brain
variability. The influence of this parameter is evaluated in the Section 3.2.

2.2.2 Pair-wise Label Propagation

For clarity sake, let start with an input image I and a textbook T which contains only one anatomical
image and the corresponding labeled image: T = (I,L) (this is the basis of pair-wise label propagation
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Figure 2: Weighted graph building. The set of graphs {wi}i=1,··· ,n is a representation of non-local interactions
between the input image I and the images {Ii}i=1,··· ,n of the textbook. Ni(x) is the neighborhood of the
voxel x in the image Ii.

techniques). Using the patch-based approach described previously, the image I can be labeled using the
following equation:

∀x ∈ Ω, L(x) =

∑

y∈N (x)w(x,y)L(y)
∑

y∈N (x)w(x,y)
(4)

where L(y) is a vector of [0, 1]M (M is the total number of labels) representing the proportions for each
label at the voxel y in the image L (this notation unifies the case where the anatomy textbook contains hard
or fuzzy label maps). Thus, L(x) = (l1(x), l2(x), · · · , lM (x)) are the membership ratios of the voxel x with
respect to the M labels, such that

∑

k lk(x) = 1 and lk(x) ∈ [0, 1], ∀k ∈ [[1,M ]]. Then, for each voxel x of I,
the equation (4) leads to a fuzzy labeling of the input image I since L(x) ∈ [0, 1]M . A hard segmentation H

of the image I can be obtained by taking the component of L(x) with the highest value. The hardening of
the fuzzy label vector L(x) to get a binary label vector H(x) is done as follows:

hk(x) =

{

1 if lk(x) = ‖L(x)‖∞
0 otherwise.

(5)

Now, let us consider a textbook T containing n pairs of images: T = {(Ii,Li), i = 1, · · · , n}. The most
straightforward approach is to perform n times the pair-wise procedure previously described, leading to n
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fuzzy segmentations {Li(x)}i=1,··· ,n (or n hard segmentations {Hi(x)}i=1,··· ,n). Then, these n label maps
can be fused using a classifier combination strategy [21]. Thus, for instance, under the assumption of equal
priors and by hardening the fuzzy label maps Li to get a set of hard segmentations {Hi}i=1,··· ,n, the final
labeling Λ(x) at the voxel x can be obtained by applying the majority voting (MV) rule:

λk(x) =

{

1 if
∑n

i=1 hik(x) = maxMj=1

∑n

i=1 hij(x)
0 otherwise.

(6)

where hij is a binary value corresponding to the label j of the image i at the voxel x and Λ(x) =
(λ1(x), λ2(x), · · · , λM (x)).

The pair-wise labeling approach using the majority voting rule to fuse the labels is described in Algo-
rithm 1. A version of this pair-wise technique using STAPLE as the final label fusion is also evaluated in
the Section 3.

Algorithm 1 Pair-wise labeling method using the majority voting rule

inputs: an image I and an anatomy textbook T = {(Ii,Li), i = 1, · · · , n}
ouput: a label image Λ
for all x ∈ Ω do

for i = 1 to n do

Compute Li(x) using Equation (4)
Compute Hi(x) using Equation (5)

end for

Compute Λ(x) by aggregating the set of labels {Hi}i=1,··· ,n (Equation (6))
end for

2.2.3 Group-wise Label Propagation

We propose to study a group-wise combination strategy which takes all the images of the textbook to produce
a fuzzy labeling. Indeed, the Equation (4) can be applied for an arbitrary number of labeled images:

∀x ∈ Ω, L(x) =

∑n

i=1

∑

y∈N (x) wi(x,y)Li(y)
∑n

i=1

∑

y∈N (x)wi(x,y)
. (7)

Again, this leads to a fuzzy labeling which can be thresholded to obtain a hard labeling by taking the
maximum of each vector L(x):

hk(x) =

{

1 if lk(x) = ‖L(x)‖∞
0 otherwise.

(8)

In this case, the final segmentation Λ can be set to L (resp. H) if a final fuzzy (resp. hard) labeling is
desired. Unlike the pair-wise approach, the weight of each label map Li is automatically set by using the
local patch-based similarity measure (see Equation (3)) with the input image I. There is no need to apply
a classifier combination strategy. This is described in Algorithm 2.

Algorithm 2 Group-wise labeling method

inputs: an image I and an anatomy textbook T = {(Ii,Li), i = 1, · · · , n}
ouput: a label image Λ
for all x ∈ Ω do

Compute L(x) using Equation (7)
Compute H(x) using Equation (8)
Λ(x)← H(x)

end for
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2.3 Pointwise and Multipoint Estimation

In the previous section, according to the classification proposed by Katkovnik et al. in [17], the patch-
based labeling techniques (both pair-wise and group-wise) provide pointwise estimates (Equations (4) and
(7)). This means that the pair-wise and group-wise methods estimate one label vector L for every voxel
x. However, since the patch-based similarity measure is the core of the proposed labeling methods, one
can obtain a label patch estimate at each considered voxel. This is called a multipoint label estimator. In
contrast to the pointwise estimator, a multipoint estimator gives the estimate for a set of points (in our case,
a patch).

For instance, a multipoint estimate for the group-wise labeling method is given by:

∀x ∈ Ω, PL(x) =

n
∑

i=1

∑

y∈N (x)

wi(x,y)PLi
(y). (9)

where PLi
(y) is a 3D patch of the label map Li centered at the voxel y, and PL(x) is one multipoint label

estimate centered at the voxel x. Thus, by going through the entire image domain Ω, one label patch
estimate is obtain for each voxel. Since there is an overlap between all these label patches (each containing
N voxels), for every voxel x ∈ Ω, we have N label estimates. Indeed, the label patch estimate of each voxel
y which belongs to the patch P (x) contributes to the final label estimate of the voxel x. These N estimates
can then be aggregated using a combination classifier. In this work, we have used the majority voting rule
to fuse these N estimates.

As suggested in [9], it is possible to speed-up the algorithm by considering a subset Ω⋆ of the image
domain Ω with the constraint that there is at least one label estimate for each voxel. For instance, by using
patches of size 3 × 3 × 3 voxels, one can consider only voxels with even spatial index (in each dimension)
which leads to a speed-up of 8. Such an approach (denoted as fast multipoint in this article) is evaluated
in the Section 3. Moreover, for pointwise and multipoint estimation, based on the mean and variance of
patches [9], a voxel preselection can be used to avoid useless computation.

Finally, several patch-based label propagation algorithms can be derived from the proposed framework
depending of the following choices: pair-wise (PW) vs group-wise (GW), point-wise vs (possibly fast) mul-
tipoint estimates, majority voting (MV) rule vs STAPLE.

3 Experiments

3.1 Evaluation Framework

In this work, experiments have been carried out on three publicly available image datasets: Brainweb
[4], the Internet Brain Segmentation Repository (IBSR) database and the NA0 database developed for
the Non-rigid Image Registration Evaluation Project (NIREP). These three complementary image datasets
provide different challenges for label propagation techniques: Brainweb dataset is used to mainly evaluate
the separation power between 2 principal brain structures (white matter and gray matter), IBSR is a well
known dataset for segmentation algorithms evaluation since it contains 32 brain structures (white matter,
cortex, internal gray structures such as hippocampus, caudate, thalamus, putamen, etc.), and the NA0
dataset which has been originally created for registration evaluation purpose, provide also a good evaluation
framework for cortical parcellation algorithms.

The Brainweb dataset1 is a set of 20 T1-weighted simulated data with these specific parameters: SFLASH
(spoiled FLASH) sequence with TR=22ms, TE=9.2ms, flip angle=30 deg and 1 mm isotropic voxel size.
Each anatomical model consists of a set of 3-dimensional tissue membership volumes, one for each tissue class:
background, cerebro-spinal fluid (CSF), gray matter (GM), white matter (WM), fat, muscle, muscle/skin,
skull, blood vessels, connective (region around fat), dura matter and bone marrow. Example images from
the Brainweb dataset are shown in Figure 3 (first column).

1http://mouldy.bic.mni.mcgill.ca/brainweb
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Figure 3: MR image datasets used for the evaluation and the corresponding segmentation. First column:
Brainweb database, second column: IBSR database, third column: NA0-NIREP database.

For the IBSR dataset2, the MR brain data sets and their manual segmentations are provided by the
Center for Morphometric Analysis at Massachusetts General Hospital. It contains 18 images of healthy
brains and the corresponding segmentation of the whole brain into 32 structures. Example images from
the IBSR dataset are shown in Figure 3 (second column). The following pre-processing has been applied
on IBSR images: 1) N3-based bias field correction using MIPAV3, 2) ITK-based histogram matching using
3DSlicer4, 3) affine registration using ANTs5 [5]. For each image to segment, all the images of the anatomy
textbook are registered to this current image. Then, the label maps are also transformed (using a nearest
neighbor interpolation). A total of 18*17 affine registrations have been performed.

The evaluation database NA06 consists of a population of 16 annotated 3D MR image volumes corre-
sponding to 8 normal adult males and 8 females. The 16 MR data sets have been segmented into 32 gray
matter regions of interest (ROIs) (see Figure 3 (third column). MR images were obtained in a General
Electric Signa scanner operating at 1.5 Tesla, using the following protocol: SPGR/50, TR 24, TE 7, NEX 1
matrix 256 × 192, FOV 24 cm. 124 contiguous coronal slices were obtained, with 1.5 or 1.6 mm thick, and
with an interpixel distance of 0.94 mm. Three data sets were obtained for each brain during each imaging
session. These were coregistered and averaged post hoc using Automated Image Registration (AIR 3.03,
UCLA)7. The final data volumes had anisotropic voxels with an interpixel spacing of 0.7 mm and interslice

2http://www.cma.mgh.harvard.edu/ibsr
3http://mipav.cit.nih.gov
4http://www.slicer.org
5http://www.picsl.upenn.edu/ANTS
6http://www.nirep.org
7http://bishopw.loni.ucla.edu/air5
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spacing of 1.5 - 1.6mm. All brains were reconstructed in three dimensions using Brainvox8. Before tracing
ROIs, brains were realigned along a plane running through the anterior and posterior commissures (i.e., the
AC-PC line); this ensured that coronal slices in all subjects were perpendicular to a uniformly and anatom-
ically defined axis of the brain. The following pre-processing has been applied on NA0 images: 1) N3-based
bias field correction using MIPAV, 2) ITK-based histogram matching using 3DSlicer.

As it is usually used for label propagation method evaluation, for each aforementioned dataset, a leave-
one-out study is performed. Each image is separately selected as the image to be segmented. Using the
provided segmentations of the remaining images as the anatomy textbook, label propagation is performed
to obtain a segmentation of the considered image. In all cases, the Dice Index (DI) overlap is used as a
segmentation quality measure:

DI =
2.TP

2.TP + FP + FN
(10)

where TP is the number of true positives, FP is the number of false positives and FN , the number of false
negatives. The Dice index is computed for hard segmentations.

3.2 Neighborhood N , Patch P and β

Experiments were carried out on the Brainweb dataset to determine the influence of the size of the neigh-
borhood N (which can be viewed as a local search area for similar patches), the size of the patches P and
the smoothing parameter β (Equation 2). A pair-wise label propagation approach with the MV rule to fuse
label maps has been used to determine the optimal parameter set. We found that the highest overlap value
for both gray matter and white matter is obtained with the smallest size of patches (i.e. 3 × 3 × 3 voxels),
the lower value of β (0.5) and large neighborhood N (the dice index stabilizes at a neighborhood size of
11 × 11 × 11 voxels). These findings are similar to some results obtained for image denoising [9] or image
reconstruction [31]. β is a noise level dependent parameter. While the lowest value of β provides the best
overlap results on Brainweb images (which are almost noiseless), we have found that a value of 1 is more
appropriate for in-vivo brain MR images. In the next sections, the following setting has been used: a patch
size of 3 × 3 × 3 voxels, a neighborhood size of 11 × 11 × 11 voxels, and β = 1.

3.3 Influence of the size of the anatomy textbook

The evolution of the mean Dice index with respect to the size of the anatomy textbook has also been studied.
This experiment has been carried out on the IBSR dataset, using up to 30 image permutations for each image
to label. The behavior of the fast multipoint patch-based approach is compared with a non-rigid registration-
based method (using ANTs [5], with the following command line: ANTS 3 -m PR[target.nii, source.nii,

1, 2] -i 100x100x10 -o output.nii -t SyN[0.25] -r Gauss[3,0] and the majority voting rule as la-
bel fusion strategy). In both cases, it has been found that increasing the size of the anatomy textbook
provides higher overlap values (which stabilize quickly around 8 images). Figure 4 shows the evolution of
the mean Dice index with respect to the number of images contained in the anatomy textbook. For all the
results shown in the next sections, the maximum number of images has been used.

3.4 Pointwise vs blockwise

Comparison of pair-wise (using the majority voting rule for label fusion) vs group-wise approaches is shown
in Table 1 for the Brainweb images, in Table 2 for IBSR and in Table 6 for NA0-NIREP. We have also
compared three types of estimators: pointwise vs multipoint vs fast multipoint. As mentioned in [17] (“in
multipoint image estimation a weighted average of a few sparse estimates is better than single sparse estimate

alone”), the results obtained on the three datasets suggest that the use of a multipoint estimator leads to the
best segmentation (i.e. the highest overlap measures). Finally, the pair-wise approach and the group-wise
approach lead to very similar results.

8http://www.nitrc.org/projects/brainvox
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Figure 4: Mean dice index with respect to the number of images used for label propagation Left: patch-
based approach, right: registration-based approach using ANTS (using, for each case, majority voting to
fuse labels). (a) : left white matter, (b): left cortex, (c): left thalamus, (d): left hyppocampus.
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3.5 Aggregation strategy

For the label fusion step, the majority voting rule is compared to the simultaneous truth and performance
level estimation (STAPLE) [36]. STAPLE estimates the performance of each classifier iteratively and weights
it accordingly, relying on an expectation-maximization (EM) optimization approach. We used the implemen-
tation provided by T. Rohlfing9. As already reported in [3], STAPLE based fusion rule does not necessary
lead to higher Dice coefficients compared to the majority voting rule.

3.6 Comparison with previously reported results

The results obtained on the IBSR dataset are reported in Table 5 (highest Dice coefficients are in bold). In
this table are also shown results reported in the literature, including non-rigid registration-based approaches
and segmentation techniques. This experiment clearly shows that the proposed patch-based framework is
very competitive with respect to recently published methods.

3.7 Computational Time

Table 7 shows the comparison of the computational time for a non-rigid registration-based approach (using
ANTs [5]) and the proposed patch-based techniques. We choose ANTs as it has been ranked as one of the
best among fourteen non-rigid registration algorithms [22]. The use of pointwise or multipoint estimator
leads to higher computational time than using non-rigid registration. However, the fast multipoint approach
provides a very time efficient algorithm. Moreover, the multi-threading of the proposed label propagation
method is particularly adapted due its blockwise nature. As eight processors were used for our experiments,
the computational time with multi-threading is about 8 times smaller. In this case, the propagation of one
label image with the fast multipoint estimator can be performed in about 1mn.

3.8 Visual Evaluation

Figures 5 and 6 show visual comparison between the proposed patch-based approach with a non-rigid
registration-based approach (ANTs + majority voting). The first row of this figure corresponds to the
mean image obtained using the T1-weighted MR images of the anatomy textbook. Such mean image is one
way of visual evaluation used for non-rigid registration algorithms. The proposed patch-based method can
also provided such mean image by simply using intensities (instead of labels) of the images contained in the
textbook. The second row corresponds to obtained brain segmentation. This figure illustrates well the fact
that the proposed technique allows one to get a better delineation of brain structures (and especially the
cortex for instance).

3.9 Combining patch-based strategies and registration-based techniques

The main purpose of the proposed patch-based method is to avoid long time computation due to non-
rigid registration. However, one can wonder if the two techniques should cooperate to reach better results.
To one side, one of the advantages of the patch-based approach is to possibly consider multiple examples
within the same image of the anatomy textbook. The consequence of the local search windows use is to
relax the one-to-one constraint usually involved in non-rigid registration-based label propagation approaches.
Experiments on the IBSR dataset have clearly shown that the use of the patch-based approach leads to very
satisfactory segmentation results for brain structures with sharp contrast. On the other side, the use of
one-to-one constraint leads to a topologically regularized segmentation. We have experimentally observed
that this aspect is important for cortex parcellation. Indeed, the delineation of cortical areas does not rely
on intensity contrast within the cortex. It appears then that the intensity similarity assumption which the
patch-based approach relies on is not sufficient to provide the highest quality cortical parcellation.

9http://www.stanford.edu/ rohlfing/software/index.html
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Figure 5: Visual evaluation of brain segmentation results (IBSR, image #7). First row: T1-weighted images,
second row: corresponding segmentation, third row: misclassified voxels. Left: ground-truth, middle: patch-
based technique, right: non-rigid registration-based approach (using ANTs).
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Figure 6: Surface rendering of segmentation results (IBSR, image #7). Left: ground-truth, middle: patch-
based technique, right: non-rigid registration-based approach (using ANTs).

Table 8 shows the mean Dice index obtained on the NA0-NIREP dataset using the multipoint pair-
wise patch-based approach, a non-rigid registration-based technique using ANTs (using majority voting or
STAPLE as fusion rule) and the mixed approach. This latter technique simply consists in fusing the labeling
obtained with a non-rigid registration algorithm, with the hard cortical mask obtained with a patch-based
technique. The mixed approach clearly leads to higher Dice index compared to the two other techniques
(which provide similar overlap scores separately). It is also interesting to note that in the combining approach,
STAPLE seems to provide a better label fusion framework than the majority voting rule. Figure 7 presents
a cortex parcellation result using the combined approach with STAPLE.

4 Discussion

Label propagation is a versatile image segmentation technique which can be applied to a large variety
of images. In this work, we focus on the development of a new label propagation framework applied to
automated human brain labeling. A patch-based label propagation has been proposed whose purpose is
to relax the one-to-one constraint existing in non-rigid registration-based techniques. Indeed, this image
similarity-based approach can be seen as a one-to-many block matching technique. It allows the use of
several good candidates (i.e. the most similar patches) to estimate label patches. Several patch-based
algorithms have been derived depending on the patch aggregation strategies and the label fusion rules (if
needed). Comparison with previously proposed non-rigid registration-based methods on publicly available
in-vivo MR brain images has shown a great potential of this method.

The proposed approach is also related to supervised learning methods which try to learn the link between
image intensity patches and label patches. In our work, instead of learning the link between image intensity
and labels, the label estimation relies on a weighted graph which represents directly the similarity between
intensity of the input image and intensity of the anatomy textbook images. As mentioned in the Introduction,
the work presented in this article shares similarities with the one done by Coupé et al. [10]. Indeed, they have
proposed a patch-based strategy relying on a group-wise technique for label fusion. The main methodological
differences concern the smoothing parameter in the definition of patch weights and the voxel pre-selection.
About validation, they have investigated one aggregation strategy (group-wise) on two regions of interest:
hippocampus and lateral ventricles (on a non-publicly available dataset).

The experiments on three freely available T1-weighted MR image datasets (Brainweb, IBSR, NA0-
NIREP) have shown that the proposed framework can lead to high quality segmentation of a large number
of brain structures. It has been shown that CPU time consuming non-rigid registration steps can be avoided.
The proposed patch-based technique does not require an accurate correspondence between the input image
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Figure 7: Visual evaluation of cortex parcellation results (NA0-NIREP, image #6). First row: ground truth,
second row: combination technique (ANTs + patch + STAPLE).
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Figure 8: Surface rendering of cortex parcellation results (NA0-NIREP, image #6). First row: ground truth,
second row: combination technique (ANTs + patch + STAPLE).
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and the anatomy textbook. The usual assumption of one-to-one mapping is relaxed by using local search
windows. Further work may investigate the use of more complex similar patch search steps. For instance,
using a rotation-invariant patch match is one of the possible extensions of the proposed method (in particular
when considering large patches), while keeping in mind that it might increase the CPU time. However, the
results obtained with translation-based patch match are already very competitive with respect to existing
methods. Some possible methodological extensions are local adaptivity of patch size and search window size,
choice of kernel function f and the use of graph operators.

As the algorithm relies on the assumption of similar intensities between the input image and the anatomy
textbook, the segmentation accuracy may depend on the contrast of the structure to segment or intensity
variations (such as intensity bias). Intensity variations might disturb the search process of similar patches,
which would lead to a final labeling obtained with less relevant patch examples. The sensitivity of intensity
variations can be captured by the smoothing factor beta. However, using a fixed global value of β in
conjunction with common correction techniques such as intensity bias correction and histogram matching,
the proposed algorithm provides very satisfactory results. Also for the IBSR data, it can be noticed that the
segmentation of the pallidum is not as good as the segmentation of other brain structures. The reason for
failure is that this structure has no clear contrasted boundaries in MR T1-weighted images. Thus, contrary to
registration-based techniques which can propagate spatial relations of the structures, a pure intensity-based
method such as the one proposed in this work cannot provide a satisfactory delineation of the pallidum. This
assertion is corroborated by the experiments performed on the NA0-NIREP dataset. Because of the key
assumption of intensity similarity, a non-rigid registration-based label propagation approach outperforms
the proposed patch-based method. In this context of cortex parcellation, we have shown that these two
techniques can be complementary. In particular, the joint use of non-rigid registration and patch-based
strategy can significantly improve the segmentation result. Thus, further work may explore the incorporation
of a regularization term and prior information such as spatial relations or a topological atlas into the patch-
based framework.

Contrary to registration-based techniques, especially for the group-wise approach using a patch selection,
if there is no correspondence between the input and the anatomy textbook (i.e. the image similarity is lower
than the threshold used in the patch selection step), no label is propagated. This prevents an incorrect
label being introduced in the estimation of the final label image. Thus, further work is to evaluate the
robustness of this label propagation method to images which contain lesions or tumors, and to use this
patch-based technique to potentially detect these pathological patterns. Another research direction concerns
the use of a database of images as IBSR to segment pathological images. Such a ”cross-site” study will
analyze the robustness of the method in the presence of large anatomical variability, including the initial
affine registration, intensity and shape variations, and the research of examples in the anatomy textbook.

Finally, as mentioned in other works [37, 2, 35] and as shown in the experiments performed on the
Brainweb dataset, the label image can be estimated using a subset of the anatomy textbook (the observed
convergence rate is about 10 example images). This remark leads to the issue of atlas selection, i.e. identifying
a subset of representative examples in the textbook with respect to the input image. This can be particularly
important when using a large anatomy textbook to avoid useless heavy computational burden.
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brain structure Patch-based LWV-MSD Fischl et al. Khan et al. MA-IDMIN+ Sdika Akselrod
(left/right when available) 2009 [3] 2002 [12] 2009 [18] 2010 [26] 2010 [34] 2007 [1]

Cerebral WM 0.93 - 0.92 0.78 - 0.78 - - - 0.91 0.87
Cerebral Cortex 0.95 - 0.95 0.81 - 0.81 - - - 0.94 0.86
Lateral Ventricle 0.93 - 0.92 0.83 - 0.82 0.78 0.85 - 0.90 -
Inferior Lat Vent 0.60 - 0.56 0.22 - 0.22 - - - 0.44 -
Cerebellum WM 0.88 - 0.88 0.79 - 0.79 - - - 0.86 -
Cerebellum Cortex 0.95 - 0.95 0.86 - 0.86 - - - 0.95 -
Thalamus 0.89 - 0.89 0.87 - 0.88 0.86 0.89 0.89 0.89 0.84
Caudate 0.88 - 0.89 0.83 - 0.83 0.82 0.83 0.85 0.86 0.80
Putamen 0.89 - 0.89 0.86 - 0.86 0.81 0.87 0.90 0.88 0.79
Pallidum 0.79 - 0.79 0.78 - 0.79 0.71 0.72 0.83 0.79 0.74
3rd Ventricle 0.80 0.74 - - - 0.77 -
4th Ventricle 0.84 0.77 - - - 0.81 -
Brain Stem 0.93 0.91 - - - 0.93 0.84
Hippocampus 0.83 - 0.83 0.74 - 0.76 0.75 0.76 0.80 0.81 0.69
Amygdala 0.75 - 0.75 0.72 - 0.72 0.68 0.66 0.75 0.74 0.63
CSF 0.68 0.61 - - - 0.70 0.83

Accumbens area 0.68 - 0.66 0.67 - 0.67 0.58 0.61 - 0.72 -
Ventral DC 0.82 - 0.82 0.82 - 0.82 - - - 0.85 0.76

Table 5: Comparison (using the mean Dice index) of the group-wise multipoint patch-based approach with
other segmentation methods. “Patch-based” denotes multipoint group-wise patch-based approach. Highest
Dice coefficients are in bold.

brain structure pair-wise group-wise
(left/right) pointwise multipoint fast multipoint pointwise multipoint fast multipoint

Occipital Lobe 0.74 - 0.77 0.79 - 0.81 0.76 - 0.78 0.74 - 0.77 0.78 - 0.80 0.76 - 0.78
Cingulate Gyrus 0.73 - 0.76 0.77 - 0.80 0.76 - 0.77 0.73 - 0.76 0.76 - 0.79 0.75 - 0.77
Insula Gyrus 0.82 - 0.85 0.85 - 0.88 0.83 - 0.86 0.82 - 0.85 0.84 - 0.87 0.83 - 0.86
Temporal Pole 0.80 - 0.84 0.83 - 0.87 0.81 - 0.85 0.80 - 0.84 0.82 - 0.86 0.81 - 0.85
Superior Temporal Gyrus 0.71 - 0.70 0.75 - 0.74 0.73 - 0.71 0.71 - 0.70 0.74 - 0.73 0.73 - 0.71
Infero Temporal Region 0.80 - 0.81 0.84 - 0.84 0.81 - 0.82 0.80 - 0.81 0.83 - 0.83 0.82 - 0.82
Parahippocampal Gyrus 0.79 - 0.81 0.82 - 0.84 0.80 - 0.82 0.79 - 0.81 0.81 - 0.83 0.80 - 0.82
Frontal Pole 0.78 - 0.77 0.82 - 0.82 0.80 - 0.79 0.78 - 0.77 0.81 - 0.80 0.79 - 0.78
Superior Frontal Gyrus 0.77 - 0.77 0.80 - 0.81 0.78 - 0.78 0.77 - 0.77 0.80 - 0.80 0.79 - 0.79
Middle Frontal Gyrus 0.75 - 0.73 0.78 - 0.77 0.76 - 0.74 0.75 - 0.73 0.78 - 0.76 0.76 - 0.75
Inferior Gyrus 0.65 - 0.71 0.70 - 0.75 0.67 - 0.72 0.65 - 0.71 0.69 - 0.74 0.67 - 0.72
Orbital Frontal Gyrus 0.80 - 0.80 0.84 - 0.84 0.81 - 0.81 0.80 - 0.80 0.83 - 0.83 0.81 - 0.81
Precentral Gyrus 0.72 - 0.69 0.76 - 0.74 0.73 - 0.70 0.72 - 0.69 0.75 - 0.73 0.73 - 0.71
Superior Parietal Lobule 0.71 - 0.69 0.75 - 0.73 0.73 - 0.70 0.71 - 0.69 0.74 - 0.72 0.72 - 0.70
Inferior Parietal Lobule 0.74 - 0.70 0.78 - 0.74 0.75 - 0.71 0.74 - 0.70 0.77 - 0.73 0.75 - 0.72
Postcentral Gyrus 0.65 - 0.60 0.70 - 0.65 0.65 - 0.60 0.65 - 0.60 0.69 - 0.63 0.67 - 0.61

Table 6: Comparison (using the mean Dice index) of several possible combination of patch-based approaches
(using optimal global parameter setting) on the NA0-NIREP dataset. When structures are separated into
left/right, two overlap scores are reported. For the pair-wise results, labels have been fused using the majority
voting rule. Highest overlap rates are shown in bold.
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data method 1 core 8 cores
time per image total time time per image total time

Brainweb
non-rigid registration (using ANTs [5]) 50 950 - -
pointwise / multipoint 67 1200 9 170
fast multipoint 10 185 1.3 25

IBSR
non-rigid registration (using ANTs [5]) 40 680 - -
pointwise / multipoint 60 1000 8 130
fast multipoint 10 165 1.2 22

NIREP
non-rigid registration (using ANTs [5]) 78 1170 - -
pointwise / multipoint 58 840 7.5 110
fast multipoint 10 145 1.3 19

Table 7: Approximate mean computational time (in minutes) using an Intel Xeon E5420 2.5GHz. The
time per image corresponds to the label propagation using one example. Total time stands for the image
segmentation process using the entire textbook (the Brainweb textbook contains 19 images with 11 labels,
the IBSR textbook contains 17 images with 32 labels and the NA0-NIREP textbook contains 15 with 33
labels).

brain structure pair-wise patch ANTs ANTs Combination Combination
(left/right when available) + MV + MV + STAPLE (MV) (STAPLE)

Occipital Lobe 0.79 - 0.81 0.80 - 0.81 0.70 - 0.72 0.81 - 0.83 0.83 - 0.86

Cingulate Gyrus 0.77 - 0.80 0.81 - 0.81 0.78 - 0.78 0.81 - 0.82 0.82 - 0.84

Insula Gyrus 0.85 - 0.88 0.85 - 0.87 0.82 - 0.84 0.86 - 0.88 0.86 - 0.89

Temporal Pole 0.83 - 0.87 0.83 - 0.85 0.79 - 0.82 0.84 - 0.86 0.84 - 0.87

Superior Temporal Gyrus 0.75 - 0.74 0.78 - 0.77 0.73 - 0.73 0.79 - 0.78 0.80 - 0.79

Infero Temporal Region 0.84 - 0.84 0.84 - 0.84 0.79 - 0.79 0.86 - 0.85 0.86 - 0.86

Parahippocampal Gyrus 0.82 - 0.84 0.83 - 0.85 0.80 - 0.82 0.84 - 0.86 0.84 - 0.86

Frontal Pole 0.82 - 0.82 0.82 - 0.80 0.77 - 0.75 0.84 - 0.82 0.85 - 0.84

Superior Frontal Gyrus 0.80 - 0.81 0.80 - 0.80 0.75 - 0.75 0.82 - 0.81 0.82 - 0.83

Middle Frontal Gyrus 0.78 - 0.77 0.79 - 0.76 0.73 - 0.68 0.81 - 0.78 0.82 - 0.80

Inferior Gyrus 0.70 - 0.75 0.75 - 0.75 0.70 - 0.69 0.76 - 0.76 0.78 - 0.78

Orbital Frontal Gyrus 0.84 - 0.84 0.84 - 0.83 0.81 - 0.80 0.85 - 0.84 0.86 - 0.85

Precentral Gyrus 0.76 - 0.74 0.77 - 0.75 0.71 - 0.69 0.78 - 0.76 0.80 - 0.79

Superior Parietal Lobule 0.75 - 0.73 0.75 - 0.75 0.65 - 0.64 0.77 - 0.76 0.80 - 0.80

Inferior Parietal Lobule 0.78 - 0.74 0.76 - 0.75 0.69 - 0.67 0.78 - 0.77 0.80 - 0.79

Postcentral Gyrus 0.70 - 0.65 0.72 - 0.70 0.67 - 0.62 0.73 - 0.70 0.76 - 0.74

Table 8: Complementarity between patch-based strategies and registration-based techniques on the NA0-
NIREP dataset, using a multipoint estimation approach. When structures are separated into left/right, two
overlap scores are reported. Highest overlap rates are shown in bold.
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