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Abstract

We consider the class of simple graphs with large algebraic connectivity (the second-
smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the
asymptotic behavior of the number of Eulerian orientations. In addition, we establish
some new properties of the Laplacian matrix, as well as an estimate of a conditionality
of matrices with the asymptotic diagonal predominance

1. Введение

The eulerian orientation of the graph G is the orientation of its edges such that for every
vertex the number of incoming edges and outgoing edges are equal. We denote the number
of Eulerian orientations EO(G). It is easy clear that EO(G) = 0, if the degree of at least
one vertex of G is odd. Eulerian orientations of the complete graph Kn are called regular
tournaments.

In [7] it is shown that for even n → ∞

EO(Kn) =

(

2n+1

πn

)(n−1)/2

n1/2e−1/2
(

1 +O(n−1/2+ε)
)

(1.1)

for any ε > 0.
Undirected graphs without loops and multiple edges are called simple.
The problem of counting the number of the Eulerian orienations of an undirected simple

graph is complete for the class #P . Thus this problem is difficult in terms of complexity
theory. The problem of counting Eulerian orienations can be reduced to counting perfect
matching for a class of graphs for which it can be done approximately with high probability
in polynomial time, see [4].

For the simple graph G we define n× n matrix Q by

Qjk =







−1, {vj , vk} ∈ EG,
dj, j = k,
0, в остальных случаях,

(1.2)

гwhere n = |V G| and dj denotes the degree of vj ∈ V G. The matrix Q = Q(G) is called
the Laplacian matrix of the graph G. The eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn of the matrix Q
are always non-negative real numbers and λ1 = 0. The eigenvalue λ2 is called the algebraic
connectivity of the graph G. (For more information about the spectral properties of the
Laplace matrix see, for example, [2] and [5].)

1



2 M.I. Isaev

According to the Kirchhoff’s Matrix-Tree-Theorem, see [3], we have that

t(G) =
1

n
λ2λ3 · · ·λn, (1.3)

where t(G) denotes the number of spanning trees of the graph G.
In the present work we generalize approach of [7]. We determine the asymptotic behavior

of the number of Eulerian orientations of simple graphs with large algebraic connectivity, see
Theorem 2.1. In Section 2 we give conventions and notations and formulate the main result.

In Section 3 we prove some basic properties of the Laplacian matrix. Some statements
seem to be of independent interest, for example, we obtain an estimate of a conditionality
of matrices with the asymptotic diagonal predominance, see Lemma 3.2. Also, we prove the
following property of simple graphs with large algebraic connectivity: when you remove the
vertex the number of spanning trees decreases by no more than cn times, for some c > 0
depending only on λ2/n, see. Corollary 3.3.

We prove the main result in Section 4. We express EO(G) in terms of an n-dimensional
integral using Cauchy’s formula. The derivation of asymptotic estimation of this integral
uses three lemmas (Lemma 4.1, 4.2, 4.3), whose proofs are given in Section 5.

2. Main result

Let p ≥ 1 be a real number and x ∈ R
n. We use notation

‖x‖p =
(

n
∑

j=1

|xj |p
)1/p

. (2.1)

For p = ∞ we have the maximum norm

‖x‖∞ = max
j

|xj |. (2.2)

The matrix norm corresponding to the p-norm for vectors is

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

. (2.3)

If A is the matrix of self-adjoint operator (symmetric matrix) then the norm ‖A‖2 is equal
to the largest module of eigenvalue of A and the following inequality holds:

‖A‖p ≥ ‖A‖2 . (2.4)

For invertible matrices one can define the condition number.

µp(A)= ‖A‖p ·
∥

∥A−1
∥

∥

p
≥
∥

∥AA−1
∥

∥

p
= 1. (2.5)

If f is bounded both above and below by g asymptotically, we use the notation

f(n) = Θk1,k2 (g(n)) , (2.6)

which implies as n → ∞, eventually

k1|g(n)| ≤ |f(n)| ≤ k2|g(n)|. (2.7)

When functions f and g depend not only on n, but also on other parameters ξ, we use
notation (2.6) meaning that condition (2.7) holds uniformly for all possible values of ξ.

The main result of the present work is the following theorem.
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Theorem 2.1. Let G be simple graph with n vertices having even degree and the algebraic
connectivity λ2 ≥ γn for some γ > 0. Then as n → ∞

EO(G) = Θk1,k2

(

2|EG|+n−1
2 π−n−1

2

/

√

t(G)
)

, (2.8)

where t(G) enotes the number of spanning trees of the graph G and constants k1, k2 > 0
depend only on σ.

Remark 2.1. Taking into account (1.3), the value t(G) can be represented as the principal
minor of the Laplacian matrix Q.
Remark 2.2. For the complete graph λ1 = n, EKn = n(n−1)

2
and t(Kn) = nn−2. The result

of Theorem 2.1 for this case is in agreement with asymptotic formula (1.1).
Remark 2.3. There is the result on the asymptotic behavior of Eulerian circuits analogous
to Theorem 2.1, see [1].

3. Some basic properties of the Laplacian matrix

In what follows we suppose that

G is a simple graph. (3.1)

The Laplacian matrix Q of the graph G has the eigenvector [1, 1, . . . , 1]T , corresponding to
the eigenvalue λ0 = 0. We use notation Q̂ = Q + J , where J denotes the matrix with every
entry 1. Note that Q and Q̂ have the same set of eigenvectors and eigenvalues, except for the
eigenvalue corresponding to the eigenvector [1, 1, . . . , 1]T , which equals 0 for Q and n for Q̂.

Using (2.4), we get that

λn = ||Q||2 ≤ ||Q̂||2 ≤ ||Q̂||1 = max
j

n
∑

k=1

|Q̂jk| = n. (3.2)

We denote by Gr the graph which arises from G by removing vertices v1, v2, . . . , vr and
all adjacent edges.

Lemma 3.1. Let condition (3.1) holds for graph G with n vertices. Then

λ2(G) ≤ n

n− 1
min
j

dj, (3.3)

λ2(Gr) ≥ λ2(G)− r, (3.4)

where λ1(G) is the algebraic connectivity of G and dj is the degree of the vertex vj ∈ V G.

The proof of Lemma 3.1 can be found in [2].

Lemma 3.2. Let a > 0 and I be identity n×n matrix. Then for any n and n×n symmetric
matrix X such that the matrix I +X is nonsingular and |Xij | ≤ a/n,

µ2(I +X) ≤ µ∞(I +X) ≤ Cµ2(I +X), (3.5)

where C depends only on a. (does not depend on n)
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Proof of Lemma 3.2. The left-hand side of (3.5) follows from (2.4). We order the eigenvalues
of I +X modulo

|χ1| ≤ |χ2| ≤ . . . ≤ |χn|. (3.6)

Using (2.4), we get that

|χn| = ‖I +X‖2 ≤ ‖I +X‖∞ ≤ ‖I‖∞ + ‖X‖∞ ≤ 1 + a. (3.7)

We consider x = (x1, . . . , xn) ∈ R
n such that ‖x‖∞ = 1. For simplicity, we assume that

x1 = ‖x‖∞ = 1. We denote by J =

{

j | xj >
1

2a

}

.

Case 1. |J | < n

4a
. Estimating the first coordinate of (I +X)x, we get that

‖(I +X)x‖∞ ≥ x1 −
a

n





∑

j∈J

|xj |+
∑

j /∈J

|xj |



 ≥ 1− a

n

(

n

4a
· 1 + n · 1

2a

)

=
1

4
‖x‖∞ . (3.8)

Case 2. |J | ≥ n

4a
. Note that

√

n ‖(I +X)x‖2∞ ≥ ‖(I +X)x‖2 ≥ |χ1| · ‖x‖2 ≥ |χ1| ·
√

|J | · 1

4a2
‖x‖∞ . (3.9)

Then

‖(I +X)x‖∞ ≥ |χ1|
4a3/2

‖x‖∞ . (3.10)

Combining(3.8) и (3.10), we get that at least one of the following inequalities holds.

∥

∥(I +X)−1
∥

∥

∞
≤ 4 или

∥

∥(I +X)−1
∥

∥

∞
≤ 4a3/2

|χ1|
. (3.11)

From (3.7) we have that

‖I +X‖∞ ≤ 1 + a. (3.12)

Taking into account |χn| ≤ 1 + a and µ2(I +X) =
|χn|
|χ1|

≥ 1, we obtain (3.5) �

The proofs of Lemma 4.1, Lemma 4.2 and Lemma 4.3 are based on the following property
of the Laplacian matrix.

Corollary 3.1. Let G be a simple graph with n vertices and algebraic connectivity of the
graph λ2 ≥ γn for some γ > 0. Then there is some constant c∞ > 0, depending only on γ,
such that

||Q̂−1||1 = ||Q̂−1||∞ ≤ c∞
n
. (3.13)

Proof of Corollary 3.1. Using (3.3), we get that

dj ≥ λ2
n− 1

n
≥ γ(n− 1) ≥ γn/2. (3.14)
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Taking into account (3.2), all eigenvalues of Q̂ are in the interval [γn;n]. Inequality (3.13)
follows easily from the assertion of Lemma 3.2 for the matrix ΩT Q̂Ω, where

Ωjk =

{

1√
dj+1

, if j = k,

0, otherwise.
(3.15)

�

The following lemma will be applied to estimate the determinant of a matrix close to the
identity matrix I.

Lemma 3.3. Let X be an n× n matrix such that ‖X‖2 < 1. Then for fixed m ≥ 2

det(I +X) = exp

(

m−1
∑

r=1

(−1)r+1

r
tr(Xr) + Em(X)

)

, (3.16)

where tr is the trace function and

|Em(X)| ≤ n

m

‖X‖m2
1− ‖X‖2

. (3.17)

The proof of Lemma 3.3 is based on evaluating the trace of the matrix ln(I +X), using
the representation as a convergent series. Lemma 3.3 was also formulated and proved in [6].

Lemma 3.4. Let G be a simple graph with n vertices and algebraic connectivity of the graph
λ2 ≥ γn for some γ > 0. et G1 be the graph which arises from G by removing vertex v1 and
all adjacent edges. Then there is a constant c > 0 depending only on γ such that

det Q̂1 ≥
det Q̂

cn
. (3.18)

Proof of Lemma 3.4. Note that the matrix M11 that results from deleting the first row and the
first column of Q̂ coincides with the matrix Q̂1 with the exception of the diagonal elements.
Let Ω be a diagonal matrix such that

Ωjj =

{

1, if {v1, vj} ∈ EG,
0, otherwise.

(3.19)

Define n× n matrix X by

Xjk =

{

1
d1+1

, если {v1, vj} /∈ EG, {v1, vk} /∈ EG, and j, k 6= 1

0, otherwise.
(3.20)

After performing one step of the Gaussian elimination for Q̂+ Ω +X, we obtain that

det(Q̂+ Ω +X) = (d1 + 1) det Q̂1, (3.21)

Using (2.4), (3.14), we have that

||Ω+X||2 ≤ ||Ω||2 + ||X||2 ≤ ||Ω||2 + ||X||1 ≤ 1 +
n

d1 + 1
≤ 3

γ
. (3.22)
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Since the algebraic connectivity λ2 ≥ γn

||(Ω +X)Q̂−1||2 ≤ ||Ω+X||2||Q̂−1||2 ≤
3

γλ2
≤ 3

γ2n
(3.23)

Combining Lemma 3.3 and (3.23), we get that as n → ∞

det
(

I + (Ω +X)Q̂−1
)

= exp
(

tr
(

(Ω +X)Q̂−1
)

+ E2

(

(Ω +X)Q̂−1
))

≥

≥ exp

(

−n
3

γ2n
+O(n−1)

)

.
(3.24)

Using (3.21) and (3.24) we get that as n → ∞

(d1 + 1) det Q̂1 = det
(

I + (Ω +X)Q̂−1
)

det Q̂ ≥ det Q̂ exp
(

−3/γ2 +O(n−1)
)

. (3.25)

Since d1 + 1 ≤ n, we obtain (3.18). �

Corollary 3.2. Let the assumptions of Lemma 3.4 hold. Let Gr be the graph which arises
from G by removing vertices v1, v2, . . . , vr and all adjacent edges. Then there is a constant
c1 > 0 depending only on γ such that

det Q̂(Gr) ≥
det Q̂(G)

(c1n)r
(3.26)

for any r ≤ γn/2.

Proof of Corollary 3.2. From (3.4) we have that

λ2(Gr) ≥ γn− r ≥ γn/2. (3.27)

Using r times the assertion of the Lemma 3.4, we obtain (3.26). �

According to (1.3)

t(G) =
1

n
λ2λ2 · · ·λn−1 =

det Q̂

n2
, (3.28)

then the following proposition holds.

Corollary 3.3. Let the assumptions of Lemma 3.4 hold. Then there is a constant c > 0
depending only on γ such that

t(G1) ≥
t(G)

cn
, (3.29)

where t(G) denotes the number of spanning trees of the graph G.

Lemma 3.5. Let a > 0 and the assumptions of Lemma 3.4 hold. Then for any set A ⊂ V G
such, that |A| ≥ an, there is a function h : V G → N0, having following properties:

h(v) = 0, если v ∈ A, h(v) ≤ H, для любых v ∈ V G, (3.30)
∣

∣

∣
{w ∈ V G | (w, v) ∈ EG и h(w) < h(v)}

∣

∣

∣
≥ αn, если v /∈ A, (3.31)

where constants H,α > 0 depend only on a and γ.
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Proof of Леммы 3.5. At first, we construct the set A1 = {v ∈ V G | h(v) = 1}, having
property (3.31).

If |A| > n − γn/4, then let A1 = {v ∈ V G | v /∈ A} . Taking into account (3.14), we get
that property (3.31) hold for α = γ/4. In this case H = 1.

For |A| ≤ n− γn/4 define x ∈ R
n such that

xj =

{

1− |A|/n, vj ∈ A,
−|A|/n, vj /∈ A.

(3.32)

Since x1 + x2 + . . .+ xn = 0

xTQx = xT Q̂x ≥ λ2‖x‖22 ≥ λ2|A|
(

n− |A|
n

)2

≥ γn an (γ/4)2 =
aγ3n2

16
. (3.33)

On the other hand,

xTQx =
∑

{vj ,vk}∈EG

(xj − xk)
2, (3.34)

which is equal to the number of edges (v, w) ∈ EG, where v ∈ A,w /∈ A. We denote A1 the
set of vertices w /∈ A, having at least αn adjacent vertices in A, where α = 1

32
aγ3.

xTQx ≤ n|A1|+ αn|V G|. (3.35)

Combining (3.33) and (3.35), we get that |A1| ≥ αn.
We make further construction of the function h inductively, using for the k-th step the

set A(k) = A∪A1∪ . . .∪Ak. The number of steps does not exceed 1/α as |Ak| ≥ αn for each
step, perhaps with the exception of the last one. �

4. Proof of Theorem 2.1

In a similar way as in [7] (see the proof of Theorem 3.1) we note that the function

∏

{vj ,vk}∈EG

(xj
−1xk + xk

−1xj) (4.1)

is the generating function the number of orientations of graph G by the differences in the
numbers of incoming and outgoing edges at each vertex. The value EO(G) is the constant
term, which we can extract via Cauchy’s Theorem using the unit circle as a contour for each
variable. Making the substitution xj = eiθj for each j, we find that

EO(G) = 2|EG|π−nS, S =

∫

Un(π/2)

∏

{vj ,vk}∈EG

cos∆jk dθ, (4.2)

where ∆jk = θj − θk,

Un(ρ) = {(x1, x2, . . . , xn) | |xj | ≤ ρ для всех j}, (4.3)

and using the fact that for graphs with vertices of even degree the integrand is unchanged
by the substitutions θj → θj + π.
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Let’s start the evaluation S from the part that makes a major contribution to the integral
We fix some sufficiently small constant ε > 0. Let

V0 = {θ ∈ Un(π/2) | |θj − θ̄| (modπ) ≤ n−1/2+ε, где θ̄ =
θ1 + . . .+ θn

n
}. (4.4)

By Taylor’s theorem we have that for θ ∈ V0

∏

{vj ,vk}∈EG

cos∆jk = exp



−1

2

∑

{vj ,vk}∈EG

∆2
jk −

1

12

∑

{vj ,vk}∈EG

∆4
jk +O(n−1+6ε)



 . (4.5)

We denote by S0 the contribution to S in the integration over the region V0.

Lemma 4.1. Let G be a simple graph with n vertices and the algebraic connectivity λ2 ≥ γn
for some γ > 0. Then for any a, b > 0 as n → ∞

∫

V0

exp



−a
∑

{vj ,vk}∈EG

∆2
jk − b

∑

{vj ,vk}∈EG

∆4
jk



 dθ = Θk1,k2



n

∫

Rn

e−aθT Q̂θdθ



 , (4.6)

where constants k1, k2 > 0 depend only on a, b and γ.

Lemma 4.1 follows from Lemma 8.3 of [1]. The proof is given in Section 5.
Combining (3.28), (4.2), (4.5), (4.6) and

∫

Rn

e−a θT Q̂θdθ = πn/2a−n/2
/

√

det Q̂, (4.7)

we get that

S0 = Θk1,k2

(

2
n−1
2 π

n+1
2

/

√

t(G)
)

, (4.8)

where constants k1, k2 > 0 depend only on γ.
Thus it remains to show that the other parts are negligible One can show that

| cos(x)| ≤ exp(−1

2
x2) for |x| ≤ 9

16
π. (4.9)

Divide the interval [−1
2
π, 1

2
π] mod π into 32 equal intervals H0, . . . , H31 such that H0 =

[− 1
64
π, 1

64
π]. For each j, define the region Wj ⊆ Un(π/2) as the set of points θ ∈ Un(π/2),

having at least 1
32
n coordinates in Hj. Clearly, the Wj ’s cover Un(π/2) and also each Wj

can be mapped to W0 by a uniform translation of the θj mod π. This mapping preserves the
integrand of (4.2), and also maps V0 to itself, so we have that

∫

Un(π/2)−V0

∏

{vj ,vk}∈EG

cos∆jk dθ ≤ 32Z, (4.10)

where

Z =

∫

W0−V0

∏

{vj ,vk}∈EG

| cos∆jk| dθ. (4.11)
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We proceed by defining integrals S1, S2, S3 in such a way that Z бis obviously bounded
by their sum. We then show that each of them is negligible. Let

V1 = {θ ∈ W0 | |θj | ≥
1

32
π for fewer than nε values of j},

V2 = {θ ∈ V1 | |θj | ≥
1

16
π for at least one value of j}.

(4.12)

Then our three integrals can be defined as

S1 =

∫

W0−V1

∏

{vj ,vk}∈EG

| cos∆jk| dθ,

S2 =

∫

V2

∏

{vj ,vk}∈EG

| cos∆jk| dθ,

S3 =

∫

V1−V2−V0

∏

{vj ,vk}∈EG

| cos∆jk| dθ.

(4.13)

We begin with S1. Let h be the function from Lemma 3.5 for the set A = {vj | |θj | ≤ 1
64
π}.

We denote lmin such natural number that inequality

|θj| ≥
1

64
π(1 + l/H) (4.14)

holds for at least nε/H indices of the set {j | h(vj) = l}. Existence of lmin follows from the
definition of the region V1. If θj and θk are such that

|θj| ≥
1

64
π(1 + lmin/H) and |θk| ≤

1

64
π(1 + (lmin − 1)/H) (4.15)

or vice versa, we have that | cos∆jk| ≤ cos( 1
64
π/H). This includes at least (αn − nε)nε/H

edges {vj, vk} ∈ EG. Using (3.2) and (3.28), we get that as n → ∞

S1 ≤ πn
(

cos
π

64H

)(αn−nε)nε/H

= O
(

exp(−cn1+ε)
)

2
n−1
2 π

n+1
2

/

√

t(G) (4.16)

for some constant c > 0, depending only on γ.
For 1 ≤ r ≤ nε let S2(r) denote the contribution to S2 of those θ ∈ V2 such that |θj | ≥ 1

16
π

for exactly r values of j. If |θj| ≤ 1
32
π and |θk| ≥ 1

16
π or vice versa, we have that

| cos∆jk| ≤ cos

(

1

32
π

)

(4.17)

This includes at least r(γn/2 − nε) edges {vj , vk} ∈ EG, because the degree of any vertex
of the graph G is at least γn/2, see (3.14). For pairs (j, k) such that |θj |, |θk| ≤ 1

16
π, we use

(4.9). We put θ′ = (θ1, . . . , θn−r).

S2(r) ≤ πr
(

cos
π

32

)r(γn/2−nε)∑

Gr

∫

Un−r(π/2)

exp



−1

2

∑

{vj ,vk}∈EGr

∆2
jk



 dθ′, (4.18)

where the first sum is over graphs, arises from G by removing all possible sets of r vertices.
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Lemma 4.2. Let the assumptions of Lemma 4.1 hold. Then

∫

Un(π/2)

exp



−1

2

∑

{vj ,vk}∈EG

∆2
jk



 dθ ≤ 2
n−1
2 π

n+1
2 n

√

det Q̂
. (4.19)

Lemma 4.2 was formulated and proved in [1] (see Lemma 6.1). The proof is given also in
Section 5.

Using Lemma 3.1 and Corollary 3.2, we get that

λ2(Gr) ≥ γn− nε, (4.20)

det Q̂(Gr) ≥
det Q̂

(c1n)
r . (4.21)

According to Lemma 4.2 we have that

∫

Un−r(π/2)

exp



−1

2

∑

{vj ,vk}∈EGr

∆2
jk



 dθ′ ≤ 2
n−r−1

2 π
n−r+1

2 n
√

det Q̂(Gr)
. (4.22)

Combining (4.18) with (4.21), (4.22) and allowing nr for the choice of the set of r vertices
for Gr, we get that

S2(r) ≤ 2
n−r−1

2 π
n+r+1

2 nr+1
(

cos
π

32

)r(γn/2−nε) (c1n)
r/2

√

det Q̂

. (4.23)

Using (3.2) and summing over 0 ≤ r ≤ nε, we find that

S2 =
nε
∑

r=1

S2(r) = O(c−n) 2
n−1
2 π

n+1
2

/

√

t(G) (4.24)

for some constant c > 1, depending only on γ.
Note that ∆jk ≤ 1

8
π for θ ∈ V1 − V2, thus

V1 − V2 ⊂ V3 = {θ ∈ Un(π/2) | |θj − θ̄| (modπ) ≤ π/8}, (4.25)

where

θ̄ =
θ1 + . . .+ θn

n
. (4.26)

Since the integrand is invariant under uniform translation of all the θj ’s mod π as well as V0

and V3 are mapped into itself, we can fix θ̄ = 0 and multiply it by the ratio of its range π to
the length n−1/2 of the vector 1

n
[1, 1, . . . , 1]T . Thus we get that

S3 ≤ πn1/2

∫

L∩Un(π/8)\V0

∏

{vj ,vk}∈EG

| cos∆jk|dL, (4.27)

where L denotes the orthogonal complement to the vector [1, 1, . . . , 1]T . In a similar way as
in (4.18) we find that

S3 ≤ πn1/2

∫

L∩Un(π/8)\V0

exp



−1

2

∑

{vj ,vk}∈EG

∆2
jk



 dL. (4.28)
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Lemma 4.3. Let the assumptions of Lemma 4.1 hold. Then as n → ∞

∫

L\Un(n−1/2+ε)

exp



−1

2

∑

{vj ,vk}∈EG

∆2
jk



 dL = O
(

exp(−cn2ε)
) 2

n−1
2 π

n−1
2 n1/2

√

det Q̂
(4.29)

for some c > 0, depending only on γ.

Lemma 4.3 was formulated and proved in [1] (see Lemma 6.2). The proof is given also in
Section 5.

Combining (3.28), (4.29) and (4.28), we get that as n → ∞

S3 = O
(

exp(−cn2ε)
) 2

n−1
2 π

n+1
2 n

√

det Q̂

= O
(

exp(−cn2ε)
)

2
n−1
2 π

n+1
2

/

√

t(G) (4.30)

for some c > 0, depending only on γ. Combining (4.8), (4.16), (4.24) and (4.30), we obtain
(2.8) as well as the following lemma.

Lemma 4.4. Let the assumptions of Lemma 4.1 hold. Then as n → ∞

S =
(

1 +O
(

exp(−cn2ε)
))

S0 (4.31)

for some c > 0, depending only on γ.

5. Proofs of Lemmas 4.1 - 4.3

In this section we always assume that the assumptions of Lemma 4.1 hold. Let

φ = φ(θ) = [φ1(θ), . . . , φn(θ)]
T = Q̂θ. (5.1)

Let P (θ) be the orthogonal projection θ onto the space L, where L denotes the orthogonal
complement to the vector [1, 1, . . . , 1]T . Note that

Qθ = QP (θ). (5.2)

For any a > 0, we have that:

∫

Rn

e−aθT Q̂θdθ = πn/2a−n/2
/

√

det Q̂ (5.3)

and
∫

L

e−aθT Q̂θdL =

∫

L

e−aθTQθdL = π
n−1
2 a−

n−1
2 n1/2

/

√

det Q̂. (5.4)

Proof of Lemma 4.2. Note that

∑

{vj ,vk}∈EG

∆2
jk = θTQθ. (5.5)
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The diagonal of the cube Un(π/2) is equal to πn1/2. Using (5.2), we find that

∫

Un(π/2)

exp



−1

2

∑

{vj ,vk}∈EG

∆2
jk



 dθ ≤ πn1/2

∫

L

e−
1
2
θTQθdL. (5.6)

Combining (5.4) and (5.6), we obtain (4.19). �

Note that for some function g1(θ) = g1(θ2, . . . , θn)

θT Q̂θ =
φ1(θ)

2

d1 + 1
+ g1(θ). (5.7)

We recall that (see (3.14))

min
j

dj ≥ γn/2. (5.8)

Combining (5.7) and (5.8), we get that as n → ∞

∫

Rn

e−aθT Q̂θdθ =

+∞
∫

−∞

· · ·
+∞
∫

−∞

e−a g1(θ2,...,θn)





+∞
∫

−∞

e
−a

φ1(θ)
2

d1+1 dθ1



 dθ2 . . . dθn

=
(

1 +O
(

exp(−c̃n2ε)
))

∫

|φ1(θ)|≤
1
2
c−1
∞ n1/2+ε

e−aθT Q̂θdθ

(5.9)

for some c̃ > 0, depending obly on γ and a, where c∞ is the constant of (3.13). Combining
similar to (5.9) expressions for φ1, . . . φn, we find that as n → ∞

∫

||φ(θ)||∞≤ 1
2
c−1
∞ n1/2+ε

e−a θT Q̂θdθ =
(

1 +O
(

exp(−cn2ε)
))

∫

Rn

e−aθT Q̂θdθ (5.10)

for some c > 0, depending only on γ и a. Using (5.10) and (3.13), we get that as n → ∞
∫

Un(
1
2
n−1/2+ε)

e−a θT Q̂θdθ =
(

1 +O
(

exp(−cn2ε)
))

∫

Rn

e−aθT Q̂θdθ. (5.11)

Proof of Lemma 4.3. Note that

||P (θ)||∞ = ||θ − θ̄[1, 1, . . . , 1]T ||∞ ≤ 2||θ||∞, (5.12)

where

θ̄ =
θ1 + θ2 + . . . θn

n
. (5.13)

Thus

Un(
1

2
n−1/2+ε) ⊂

{

θ | P (θ) ∈ Un(n
−1/2+ε)

}

(5.14)
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Using (5.2), (5.5) and (5.14), we find that

∫

L∩Un(n−1/2+ε)

exp



−1

2

∑

{vj ,vk}∈EG

∆2
jk



 dL =

∫

L∩Un(n−1/2+ε)

e−
1
2
θTQθdL =

=

∫

P (θ)∈Un(n−1/2+ε)

e−
1
2
θT Q̂θdθ

/

+∞
∫

−∞

e−
1
2
nx2

dx ≥ n1/2

√
2π

∫

Un(
1
2
n−1/2+ε)

e−
1
2
θT Q̂θdθ.

(5.15)

Combining (5.3), (5.11) and (5.15), we obtain (4.29). �

Proposition 5.1. As n → ∞
∫

Un(n−1/2+ε)

exp



−a θT Q̂θ − b
∑

{vj ,vk}∈EG

∆4
jk



dθ =

= Θk1,k2





∫

Rn

e−aθT Q̂θdθ



 ,

(5.16)

where constants k1, k2 > 0 depend only on a, b and γ.

In thу present paper we give only the scheme of the proof of Proposition 5.1. The detailed
proof can be found in [1] (see Lemma 8.3).
Scheme of the proof of Proposition 5.1. Since a, b > 0

∫

Un(n−1/2+ε)

exp



−a θT Q̂θ − b
∑

{vj ,vk}∈EG

∆4
jk



 dθ ≤
∫

Rn

e−a θT Q̂θdθ. (5.17)

Let

Rk(θ) = 8bn

n
∑

j=k

θ4j , 1 ≤ k ≤ n. (5.18)

Using the representation of the integral as an iterated integral, one can show that
∫

Un(n−1/2+ε)

φ4
je

−aθT Q̂θ−Rk(θ)dθ ≤ c′n2

∫

Un(n−1/2+ε)

e−aθT Q̂θ−Rk(θ)dθ+

+O
(

exp(−cn2ε)
)

∫

Rn

e−aθT Q̂θdθ

(5.19)

for some constants c, c′ > 0, depending only on a, b and γ.
Using (5.19), one can get that:

∫

Un(n−1/2+ε)

θ4j e
−aθT Q̂θ−Rk(θ)dθ ≤ c′1

n2

∫

Un(n−1/2+ε)

e−aθT Q̂θ−Rk(θ)dθ+

+O
(

exp(−c1n
2ε)
)

∫

Rn

e−aθT Q̂θdθ;

(5.20)
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∫

Un(n−1/2+ε)

e−a θT Q̂θ−Rk(θ)dθ ≥
(

1 +
c′2
n

)
∫

Un(n−1/2+ε)

e−a θT Q̂θ−Rk+1(θ)dθ+

+O
(

exp(−c2n
2ε)
)

∫

Rn

e−aθT Q̂θdθ,

(5.21)

for some constants c1, c
′
1, c2, c

′
2 > 0, depending only on a, b and γ. Note that

b
∑

{vj ,vk}∈EG

∆4
jk ≤ 8bn

n
∑

j=1

θ4j = R1(θ). (5.22)

Using several times inequality (5.21) for k = 1, 2, . . . , n−1 and combining with (5.22), (5.17),
we obtain (5.16). �

Proof of Lemma 4.1. Let

F (θ) = exp



−a θT Q̂θ − b
∑

{vj ,vk}∈EG

∆4
jk



 . (5.23)

Note that for θ ∈ L,

F (θ) = exp



−a
∑

{vj ,vk}∈EG

∆2
jk − b

∑

{vj ,vk}∈EG

∆4
jk



 . (5.24)

Since the integrand of (4.6) is invariant under uniform translation of all the θj ’s mod π as
well as V0 are mapped into itself, we can fix θ̄ = 0 and multiply it by the ratio of its range
π to the length n−1/2 of the vector 1

n
[1, 1, . . . , 1]T . Thus we get that

∫

V0

exp



−a
∑

{vj ,vk}∈EG

∆2
jk − b

∑

{vj ,vk}∈EG

∆4
jk



 dθ =

= πn1/2

∫

L∩Un(n−1/2+ε)

F (θ)dL.

(5.25)

In a similar way as in (5.15) we find that

∫

L∩Un(n−1/2+ε)

F (θ)dL =

∫

P (θ)∈Un(n−1/2+ε)

F (θ) dθ
/

+∞
∫

−∞

e−anx2

dx =

=
( π

an

)−1/2
∫

P (θ)∈Un(n−1/2+ε)

F (θ) dθ.

(5.26)

Using (5.11) and (5.14), we get that
∫

P (θ)∈Un(n−1/2+ε)

F (θ) dθ =

∫

Un(n−1/2+ε)

F (θ) dθ +O
(

exp(−cn2ε)
)

∫

Rn

e−aθT Q̂θ.
(5.27)
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Combining (5.16), (5.25), (5.26) and (5.27), we obtain (4.6). �

6. Final remarks

Combining (4.2), (4.5), (4.6), (4.31), (5.25), (5.26), (5.27), we find that:

Proposition 6.1. Let the assumtions of Theorem 2.1 hold. Then

EO(G) =
(

1 +O
(

n−1+6ε
))

2|EG|−1/2π−n+1/2n Int, (6.1)

where

Int =

∫

Un(n−1/2+ε)

exp



−1

2
θT Q̂θ − 1

12

∑

{vj ,vk}∈EG

∆4
jk



 dθ,

Q̂ = Q + J, ∆jk = θj − θk,

(6.2)

where Q = Q(G) denotes the Laplcian matrix and J is the matrix with every entry 1.

Integral(6.2) can be evaluated more precisely for specific classes of graphs in order to get
asymptotic formulas for EO(G) similar to (1.1). For example, for even n → ∞

EO(Kn,n) = e−1 2n
2+n− 1

2

πn− 1
2nn−1

(

1 +O(n−1/2+ε)
)

(6.3)

for any ε > 0, where Kn,n denotes the complete bipartite graph with n vertices in each part.
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