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Asymptotic behavior of the number of Eulerian
orientations of graphs

M.I. Isaev
Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
e-mail: isaev.m.i@gmail.com

Abstract

We consider the class of simple graphs with large algebraic connectivity (the second-
smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the
asymptotic behavior of the number of Eulerian orientations. In addition, we establish
some new properties of the Laplacian matrix, as well as an estimate of a conditionality
of matrices with the asymptotic diagonal predominance

1. BBenenue

The eulerian orientation of the graph G is the orientation of its edges such that for every
vertex the number of incoming edges and outgoing edges are equal. We denote the number
of Eulerian orientations EO(G). It is easy clear that EO(G) = 0, if the degree of at least
one vertex of GG is odd. Eulerian orientations of the complete graph K, are called regular
tournaments.

In [7] it is shown that for even n — oo

2n+1 (n—1)/2
EO(K,) = < ) n/2e=1/2 (1 + O(n*m*e)) (1.1)

™

for any ¢ > 0.

Undirected graphs without loops and multiple edges are called simple.

The problem of counting the number of the Eulerian orienations of an undirected simple
graph is complete for the class #P. Thus this problem is difficult in terms of complexity
theory. The problem of counting Eulerian orienations can be reduced to counting perfect
matching for a class of graphs for which it can be done approximately with high probability
in polynomial time, see [4].

For the simple graph G we define n x n matrix ) by

-1, {v;,u} € EG,

0, B OCTAJIBHBIX CJIydasX,

rwhere n = |VG| and d; denotes the degree of v; € VG. The matrix Q = Q(G) is called
the Laplacian matrix of the graph G. The eigenvalues A\; < Ay < ... < A, of the matrix )
are always non-negative real numbers and \; = 0. The eigenvalue \; is called the algebraic
connectivity of the graph G. (For more information about the spectral properties of the
Laplace matrix see, for example, [2] and [5].)



2 M.I. Isaev

According to the Kirchhoff’s Matrix-Tree-Theorem, see [3], we have that
1

where ¢(G) denotes the number of spanning trees of the graph G.

In the present work we generalize approach of [7]. We determine the asymptotic behavior
of the number of Eulerian orientations of simple graphs with large algebraic connectivity, see
Theorem 2.1. In Section 2 we give conventions and notations and formulate the main result.

In Section 3 we prove some basic properties of the Laplacian matrix. Some statements
seem to be of independent interest, for example, we obtain an estimate of a conditionality
of matrices with the asymptotic diagonal predominance, see Lemma 3.2. Also, we prove the
following property of simple graphs with large algebraic connectivity: when you remove the
vertex the number of spanning trees decreases by no more than cn times, for some ¢ > 0
depending only on Ay /n, see. Corollary 3.3.

We prove the main result in Section 4. We express EO(G) in terms of an n-dimensional
integral using Cauchy’s formula. The derivation of asymptotic estimation of this integral
uses three lemmas (Lemma 4.1, 4.2, 4.3), whose proofs are given in Section 5.

2. Main result

Let p > 1 be a real number and x € R". We use notation

n 1/p
1], = (ZI%I”) - (2.1)
j=1
For p = oo we have the maximum norm
Il = maxa . 2.2
The matrix norm corresponding to the p-norm for vectors is

| Ax|
IA]l, = sup ——=*

0 [1xl,

(2.3)

If A is the matrix of self-adjoint operator (symmetric matrix) then the norm ||A]|2 is equal
to the largest module of eigenvalue of A and the following inequality holds:

1Al = [[All, - (2.4)
For invertible matrices one can define the condition number.
uo(A)=[IAll, - [|ATH]) > (|44~ = 1. (2.5)
If f is bounded both above and below by ¢g asymptotically, we use the notation
f(n) = Ok, (9(n)) (2.6)
which implies as n — oo, eventually
kilg(n)| < [f(n)] < kalg(n)]. (2.7)

When functions f and g depend not only on n, but also on other parameters &, we use
notation (2.6) meaning that condition (2.7) holds uniformly for all possible values of &.
The main result of the present work is the following theorem.



Asymptotic behavior of the number of Eulerian orientations of graphs 3

Theorem 2.1. Let G be simple graph with n vertices having even degree and the algebraic
connectivity Ao > yn for some v > 0. Then as n — oo

EO(G) = Oy, 1, (Q\EGH”%W”% / \/@) , (2.8)

where t(G) enotes the number of spanning trees of the graph G and constants ki, ko > 0
depend only on o.

Remark 2.1. Taking into account (1.3), the value ¢(G) can be represented as the principal
minor of the Laplacian matrix Q).

Remark 2.2. For the complete graph \; = n, FK, = @ and t(K,) = n" 2. The result
of Theorem 2.1 for this case is in agreement with asymptotic formula (1.1).

Remark 2.3. There is the result on the asymptotic behavior of Eulerian circuits analogous
to Theorem 2.1, see [1].

3. Some basic properties of the Laplacian matrix
In what follows we suppose that
G is a simple graph. (3.1)

The Laplacian matrix @ of the graph G has the eigenvector [1,1,...,1]T, corresponding to

the eigenvalue A\g = 0. We use notation Q = @ + J, where J denotes the matrix with every

entry 1. Note that ) and Q have the same set of eigenvectors and eigenvalues, except for the

eigenvalue corresponding to the eigenvector [1,1,...,1]%, which equals 0 for Q and n for Q
Using (2.4), we get that

An = [1Q]2 < [|Q]]2 < IIQlllzmgxz:Iijl =n. (3.2)
k=1
We denote by G, the graph which arises from G by removing vertices vy, vs, ..., v, and

all adjacent edges.

Lemma 3.1. Let condition (3.1) holds for graph G with n vertices. Then

Mo(G) < 1 - mind,, (3.3)
J

n—
Ao (Gr) > Aa(G) —, (3.4)
where \(G) is the algebraic connectivity of G and d; is the degree of the vertex v; € VG.
The proof of Lemma 3.1 can be found in [2].

Lemma 3.2. Let a > 0 and I be identity n x n matriz. Then for any n and n x n symmetric
matriz X such that the matriz I + X is nonsingular and | X;;| < a/n,

p2(l + X) < poo(I + X) < Cpip(I + X)), (3.5)

where C' depends only on a. (does not depend on n)
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Proof of Lemma 3.2. The left-hand side of (3.5) follows from (2.4). We order the eigenvalues
of I + X modulo

Xl < xal <o <l (3.6)
Using (2.4), we get that
Xl = 1+ Xl < NI+ X < Mo + X <1+ (3.7)
We consider x = (x1,...,2,) € R" such that ||x|| ., = 1. For simplicity, we assume that
1
r1 = [|x]|,, = 1. We denote by J = {j | x; > 2—}
a

Case 1. |J| < 42 Estimating the first coordinate of (I + X') x, we get that
a

a afn 1 1
I+ 0K 2 0= 2 [ S+ Skl | 21-2 (1140030 ) = J el (8

JET iET

Case 2. |J| > 4£ Note that
a

1
\/ﬂ 1+ X)x|2, > (T + X)xl, = [xal - Ixll, = xal -4/ 1T - 102 Xl (3.9)
Then ||
X1
I+ X0x] = o0 Il (310

Combining(3.8) u (3.10), we get that at least one of the following inequalities holds.

4q3/2
[T+ X)), <4 mwm ||(I+X)7Y| < ol (3.11)
1
From (3.7) we have that
I+ X, <1l+a. (3.12)
Taking into account |x,| <14 a and ps(I + X) = ||Xn|| > 1, we obtain (3.5) [
X1

The proofs of Lemma 4.1, Lemma 4.2 and Lemma 4.3 are based on the following property
of the Laplacian matrix.

Corollary 3.1. Let G be a simple graph with n vertices and algebraic connectivity of the
graph Ao > yn for some v > 0. Then there is some constant co, > 0, depending only on v,

such that
c

Q7 = 1Q Moo < = (3.13)
n
Proof of Corollary 3.1. Using (3.3), we get that
n—1
dj > o >~(n—1)>yn/2. (3.14)

n
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Taking into account (3.2), all eigenvalues of @ are in the interval [yn;n]. Inequality (3.13)
follows easily from the assertion of Lemma 3.2 for the matrix QTQQ where

0, otherwise.

L ifj =k,
Qjp = { Vit / (3.15)
|

The following lemma will be applied to estimate the determinant of a matrix close to the
identity matrix I.

Lemma 3.3. Let X be an n x n matriz such that | X||, < 1. Then for fized m > 2

det(f + X) = exp tr(X") + En(X) |, (3.16)
r=1
where tr is the trace function and
n 1 X5
|En(X)| < — ——=2—. (3.17)
m 1 — X[,

The proof of Lemma 3.3 is based on evaluating the trace of the matrix In(/ + X), using
the representation as a convergent series. Lemma 3.3 was also formulated and proved in [6].

Lemma 3.4. Let G be a simple graph with n vertices and algebraic connectivity of the graph
Ay > yn for some v > 0. et Gy be the graph which arises from G by removing verter vy and
all adjacent edges. Then there is a constant ¢ > 0 depending only on vy such that

det Q

cn

det Q; >

(3.18)

Proof of Lemma 3.4. Note that the matrix Mj; that results from deleting the first row and the
first column of @ coincides with the matrix (; with the exception of the diagonal elements.
Let Q be a diagonal matrix such that

1, if{v,v;} € EG,
ij:{ tos, ;) (3.19)

0, otherwise.

Define n x n matrix X by

= { ﬁ, ecmm {vy,v;} ¢ EG,{v1,v,} ¢ EG, and j, k # 1

0, otherwise.

X

J

(3.20)

After performing one step of the Gaussian elimination for Q + Q + X, we obtain that
det(Q +Q + X) = (dy + 1) det Q1 (3.21)

Using (2.4), (3.14), we have that

1€+ X2 < [I9f]2 + || X[[2 < [I2f]2 + || X[l <1+

IA

n_ 3 (3.22)
di+17 vy
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Since the algebraic connectivity Ay > yn

. . 3 3
1(Q+ X)Q M2 < |2+ X|]2]|Q 1”23@%27 (3.23)

Combining Lemma 3.3 and (3.23), we get that as n — oo

det (1+ Q2+ X)Q7) =exp (tr (@ +X)Q7) + B ((2+ X)Q7) ) =
> exp (—n% + O(nl)) . (3.24)

Using (3.21) and (3.24) we get that as n — oo

(dy + 1) det Q; = det <[ + (2 + X)Q’1> det Q > det Q exp (=3/7*+0(n™")). (3.25)
Since d; + 1 < n, we obtain (3.18). [
Corollary 3.2. Let the assumptions of Lemma 3.4 hold. Let G, be the graph which arises

from G by removing vertices vy, vs, ..., v, and all adjacent edges. Then there is a constant
c1 > 0 depending only on v such that

A det Q(G)
det Q(G,) > ————— 3.26
Qe = 5 (3.26)
for any r < yn/2.
Proof of Corollary 3.2. From (3.4) we have that
Xo(Gy) > yn—1r > yn/2. (3.27)
Using r times the assertion of the Lemma 3.4, we obtain (3.26). ]
According to (1.3)
1 det Q
t(G) - E)\Q)\Q e )\n,1 = 77,2 y (328)

then the following proposition holds.

Corollary 3.3. Let the assumptions of Lemma 3.4 hold. Then there is a constant ¢ > 0
depending only on v such that

t(Gy) > —= 3.29
(Gh) 2 en ( )
where t(G) denotes the number of spanning trees of the graph G.

Lemma 3.5. Let a > 0 and the assumptions of Lemma 3.4 hold. Then for any set A C VG
such, that |A| > an, there is a function h : VG — Ny, having following properties:

h(v) =0, ecauv € A, h(v) < H, das mobwz v € VG, (3.30)

{we VG | (w,v) € EG u h(w) < h(v)} | > an, ecauv ¢ A, (3.31)

where constants H,o > 0 depend only on a and .
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Proof of JIEMMBI 3.5. At first, we construct the set Ay = {v € VG | h(v) = 1}, having
property (3.31).

If |A] > n —~n/4, then let A; = {v e VG | v ¢ A}. Taking into account (3.14), we get
that property (3.31) hold for aw = 7/4. In this case H = 1.

For |A] <n —vn/4 define x € R" such that

1= A|/n, wv; €A,
xﬂ‘{ CAl/n,  u ¢ A (3:32)

Since xy +22+...+x, =0

A AN 2 3,,2
Q= x!Qx 2 dallf 2 alal (2 2 nan = T
n
On the other hand,
x'Qx = Z (z; — x1)%, (3.34)
{vj,vk}EEG

which is equal to the number of edges (v, w) € EG, where v € A,w ¢ A. We denote A; the
set of vertices w ¢ A, having at least an adjacent vertices in A, where o = éafy?’.

xTQx < n|Ai| + an|VG). (3.35)

Combining (3.33) and (3.35), we get that |A;| > an.

We make further construction of the function h inductively, using for the k-th step the
set A®) = AUA,U...UA;. The number of steps does not exceed 1/ as |Ay| > an for each
step, perhaps with the exception of the last one. [ |

4. Proof of Theorem 2.1

In a similar way as in 7] (see the proof of Theorem 3.1) we note that the function

H (z; 7 oy + 1 ty) (4.1)

{Ujvvk}eEG

is the generating function the number of orientations of graph G by the differences in the
numbers of incoming and outgoing edges at each vertex. The value FO(G) is the constant
term, which we can extract via Cauchy’s Theorem using the unit circle as a contour for each
variable. Making the substitution z; = €% for each j, we find that

EO(G) = 2/EClr—s, &= / H cos Aji, d@, (4.2)
Un(ﬂ'/2) {vj,vk}EEG
where Ajp = 0; — 0y,
Un(p) = {(@1,02,- -, 0) | J15] < p 21 meex j}, (43)

and using the fact that for graphs with vertices of even degree the integrand is unchanged
by the substitutions §; — 6; + 7.
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Let’s start the evaluation S from the part that makes a major contribution to the integral
We fix some sufficiently small constant € > 0. Let

_ _ h+...+0,
Vo= {8 € Un(m/2) | 16, — 0] (mod ) < n~ 2+, e g = 20y gy
n
By Taylor’s theorem we have that for @ € 1
1 1 1t6e
[T costj=exp -5 oAy - = Y AL +OMnTTE) ) (45)
{vj v }€EG {vj v }€EG {vj v }€EG

We denote by Sy the contribution to S in the integration over the region V.

Lemma 4.1. Let G be a simple graph with n vertices and the algebraic connectivity Ay > yn
for some v > 0. Then for any a,b >0 as n — oo

/exp —a Z A?k—b Z A?k dl = Oy, 1, n/e‘“eTQQdO : (4.6)

Vo {vj, v }€EG {vj, v }€EG Rn
where constants ki, ky > 0 depend only on a, b and ~.

Lemma 4.1 follows from Lemma 8.3 of [1]. The proof is given in Section 5.
Combining (3.28), (4.2), (4.5), (4.6) and

/e_aeTQQdO = ﬂ"/Za_"/Z/\/ det Q. (4.7)

]Rn
we get that
So = Ok, (2—7rl / \/t(G)> , (4.8)

where constants ki, ky > 0 depend only on 7.
Thus it remains to show that the other parts are negligible One can show that

1 9
| cos(7)| < exp(—=a?) for |z| < —m. (4.9)
2 16
Divide the interval [—%7?, %7?] mod 7 into 32 equal intervals Hy, ..., H3; such that Hy =

[— 7, a5 For each j, define the region W; C U, (7/2) as the set of points 8 € U,(7/2),
having at least 5;n coordinates in H;. Clearly, the W;’s cover U, (r/2) and also each W
can be mapped to W, by a uniform translation of the 6; mod 7. This mapping preserves the

integrand of (4.2), and also maps V; to itself, so we have that
/ [ cosade <32z (4.10)
Un (7)2)— Vo {vj, v }€EG

where
7 = [T [lcosa ae. (4.11)
Wo—Vo {Ujmk}EEG
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We proceed by defining integrals Sy, Sy, S3 in such a way that Z 6is obviously bounded
by their sum. We then show that each of them is negligible. Let

1
Vi={0 € Wy | |6;| > == for fewer than n° values of j},
32 (4.12)

1
Vo={0€V,||0;] > 67 for at least one value of j}.

Then our three integrals can be defined as

S = H | cos Aji| d6,

Wofvl {’UJ ,Uk}eEG

Sy = / H | cos Aji| d6, (4.13)

Vo {vjvvk}eEG
S = / H | cos Aji| dO.
Vl—VQ—VO {Ujﬂ}k}eEG
We begin with S;. Let h be the function from Lemma 3.5 for the set A = {v; | |0;] < &7}
We denote [,,,;,, such natural number that inequality

6] > 6i47r(1 +1/H) (4.14)

holds for at least n®/H indices of the set {j | h(v;) = l}. Existence of [,,;, follows from the
definition of the region V;. If 6; and 6, are such that

1 1
6,1 > =7 (L 4 bnin/H) and [64] < (14 (o — 1)/H) (4.15)

or vice versa, we have that |cos Aj| < cos(g;m/H). This includes at least (an — n®)n®/H
edges {v;, vt} € EG. Using (3.2) and (3.28), we get that as n — oo

Sy <" (cos MLH>(M_NE)RE/H = O(exp(—cn1+€)> Q%W%ﬂ/m (4.16)

for some constant ¢ > 0, depending only on ~.
For 1 <r < nflet S3(r) denote the contribution to Sy of those § € V3 such that |6;] > %ﬂ'
for exactly r values of j. If |0;] < 57 and |6 > s=7 or vice versa, we have that

1
| cos Aji| < cos (Eﬂ') (4.17)

This includes at least r(yn/2 — n) edges {v;, vy} € EG, because the degree of any vertex
of the graph G is at least yn/2, see (3.14). For pairs (j, k) such that |6;], [0 < %=, we use
(4.9). We put @' = (61,...,0,_,).

Sy(r) < " <Cosi)"(”"/2"6)z / exp _% ST oAy e (4.18)

32 =
" Un—r(m/2) {vj, 0, }EEG

where the first sum is over graphs, arises from G by removing all possible sets of r vertices.
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Lemma 4.2. Let the assumptions of Lemma 4.1 hold. Then
9 2" i n
exp | —3 Z Ajy | dO < —. (4.19)
Section 5.

Lemma 4.2 was formulated and proved in [1] (see Lemma 6.1). The proof is given also in

Using Lemma 3.1 and Corollary 3.2, we get that

A (Gr) =

> yn —n, (4.20)
A det Q
det Q(G,) > - 4.21
QG = o (1.21)
According to Lemma 4.2 we have that

1 277,7;71 n—r+1
/ exp | —3 Z A?k do’ <
Up—r(m/2)

{vj »Uk }GEGT

- (4.22)
det Q(G)
Combining (4.18) with (4.21), (4.22) and allowing n" for the choice of the set of r vertices
for G, we get that

r(yn/2—n®) (cln)r/Q

: (4.23)
det )
Using (3.2) and summing over 0 < r < n®, we find that

SQ = Z SQ(T‘) = O(C_n e
r=1

)25 7" [ VG)
for some constant ¢ > 1, depending only on ~.

(4.24)
Note that Aj, < %7? for @ € Vi — V5, thus
Vi—VoCVa={0€U,(n/2)|0; — 0] (modn) < 7/8}, (4.25)
where o o
gt o (4.26)
n
Since the integrand is invariant under uniform translation of all the 6;’s mod 7 as well as Vg
and V3 are mapped into itself, we can fix § = 0 and multiply it by the ratio of its range 7 to
the length n='/? of the vector 1[1,1,...,1]". Thus we get that
Sy < wnl/? H | cos Aji|dL, (4.27)
LOUn (1/8)\Vy (Vi Vk}EEG
where L denotes the orthogonal complement to the vector [1,1,
in (4.18) we find that

,1]T. In a similar way as

|
Sy < 7n!/? / S B DN

(4.28)
LNUp (7/8)\Vo {vj v }EEG
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Lemma 4.3. Let the assumptions of Lemma 4.1 hold. Then as n — oo

2"——1 n-l 1/2
)& (4.29)

~

1
L\Un (n71/2+s) {vj,vk}EEG det Q

for some ¢ > 0, depending only on ~.

Lemma 4.3 was formulated and proved in [1] (see Lemma 6.2). The proof is given also in
Section 5.
Combining (3.28), (4.29) and (4.28), we get that as n — oo

n—1 n+1

S5 = O (exp(—cn™)) Zrmrn O (exp(—cn™)) Q%W%ﬂ/\/t(G) (4.30)

~

det Q

for some ¢ > 0, depending only on «. Combining (4.8), (4.16), (4.24) and (4.30), we obtain
(2.8) as well as the following lemma.

Lemma 4.4. Let the assumptions of Lemma 4.1 hold. Then as n — oo
S = (1+ 0 (exp(—cn™))) So (4.31)

for some ¢ > 0, depending only on .

5. Proofs of Lemmas 4.1 - 4.3
In this section we always assume that the assumptions of Lemma 4.1 hold. Let

¢ =$(0) =[6:(0),...,0.(0)]" = Q0. (5.1)

Let P(0) be the orthogonal projection 8 onto the space L, where L denotes the orthogonal
complement to the vector [1,1,...,1]T. Note that

Q8 = QP(0). (5.2)

For any a > 0, we have that:

/e_aeTéedO = ﬂ"/Za_"/Q/\/ det Q (5.3)

Rn

/e“BTQBdL = /e“OTQBdL = ﬁanlafanlnl/z/\/ det Q (5.4)

L L
Proof of Lemma 4.2. Note that

and

> AL =607Qe. (5.5)

{vj 7vk}eEG
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The diagonal of the cube U, (7/2) is equal to 7n'/2. Using (5.2), we find that

! _1lgT
/ exp 5 Z A?k do < 7Tn1/2/e 307Q0 1 (5.6)
Un(ﬂ'/2) {UJ,Uk}EEG 7
Combining (5.4) and (5.6), we obtain (4.19). .

Note that for some function g,(6) = g1(0s,...,0,)

R 9)2
6700 — 1 0). .
0=2"0 1 00 5.7)
We recall that (see (3.14))
mjin d; > yn/2. (5.8)
Combining (5.7) and (5.8), we get that as n — oo
+o0 +oo +o0 )
06700 19 _ —ag1(02,....00) —a &0
e de = coe | e 49102 e atidb; | db,...db,
Rn —0o0 —0o0 — 00 (59)
= (14 O (exp(—cn™))) / e 20"

\(251 (9)\§%c;1n1/2+5

for some ¢ > 0, depending obly on v and a, where ¢, is the constant of (3.13). Combining

similar to (5.9) expressions for ¢, ... ¢,, we find that as n — oo
/ e—207Q0 9 — (1 +0 (exp(—cn%))) /e“OTQOdO (5.10)
p(0)]|oo <gcac n1/2He R®

for some ¢ > 0, depending only on v u a. Using (5.10) and (3.13), we get that as n — oo

/ ea0"Q0 g9 — (14 O (exp(—cn™))) /e_aeTéedO. (5.11)

Un(gn=1/2+9) R

Proof of Lemma 4.3. Note that

1P(O)]loo =116 = O[1,1,..., 1] | oo < 2/|6]]x, (5.12)
where
GO0t 00 5.13)
n
Thus
Un(tn12%) (0] P(8) € Up(n /7)) (5.14)

2
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Using (5.2), (5.5) and (5.14), we find that

1
ep (-5 S Ah|dr= / e 40700 1 —

LNUn (n—1/2+¢) {vj v }EEG LU (n—1/2+¢)

(5.15)
= / e’%OTQOdH/ / e 2 / e 207049
P(G)EUn(n_1/2+5) —o0 Un(l _1/2+5
Combining (5.3), (5.11) and (5.15), we obtain (4.29). (]
Proposition 5.1. Asn — oo
/ exp | —a07QO—b > A} |do=
Un(n71/2+s) {UJ'?UI@}EEG (516)

o [ uia)

n

where constants ki, ky > 0 depend only on a, b and ~.

In thy present paper we give only the scheme of the proof of Proposition 5.1. The detailed
proof can be found in [1] (see Lemma 8.3).
Scheme of the proof of Proposition 5.1. Since a,b > 0

/ exp | —a07Q0—b Y Al |do< / ) (5.17)

Up(n=1/2+¢) {vj, v }EEG R™
Let .
0)=8n» 6, 1<k<n. (5.18)

Using the representation of the integral as an iterated integral, one can show that

/ ¢?e’“9T@9’Rk(0)d0 < 'n2 / e*GOTQO*Rk(H)deL

Un(n—1/2+s) Un(n—1/2+s)

+0 (exp(—cn™)) /e“BTQBdO

R

(5.19)

for some constants ¢, ¢ > 0, depending only on a, b and ~.
Using (5.19), one can get that:

/ 0;16—(1 GTQG—Rk(O)dO < C_,l2 / e @ GTQG—Rk(O)d0+
n
Un(n=1/2+2) Un(n=1/2+2) (5.20)
+0 (exp(—c1n™)) /e“OTQOdH;

Rn
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A , ~

n
Un(n—l/2+5) Un(n_1/2+g) (5 21)
+0 (exp(—con™)) /e“OTQOdO,
R?’L
for some constants ¢y, ¢}, o, ¢, > 0, depending only on a, b and . Note that
bo> AL <8n) 0! =R(6) (5.22)
{vj vk }EEG j=1

Using several times inequality (5.21) for k = 1,2,...,n—1 and combining with (5.22), (5.17),
we obtain (5.16). n

Proof of Lemma 4.1. Let

F(0)=exp | —a07Q0 — b Z A?k . (5.23)

{Ujmk}eEG

Note that for 6 € L,

F(@) =exp | —a Z A% =D Z Al |- (5.24)

{vj, v }€EG {vj, v }€EG

Since the integrand of (4.6) is invariant under uniform translation of all the 6;’s mod 7 as
well as V{) are mapped into itself, we can fix § = 0 and multiply it by the ratio of its range
7 to the length n™/2 of the vector 1[1,1,...,1]7. Thus we get that

/exp —a Z A?k—b Z A?k do =

VO {'Uj,'l)k}eEG {'Uj,'l)k}eEG

(5.25)
= n/? / F(@)dL.
LU, (n—1/2+¢)
In a similar way as in (5.15) we find that
+oo
/ F(0)dL - / F(0)do / / R
LU (n=1/2+2) P(0)EUn (n=1/2F%) - (5.26)

- (5) e / F(6) d6.

P(0)EU, (n=1/2+¢)

Using (5.11) and (5.14), we get that

/ F(6)do = / F(0)d6 + O (exp(—cn™)) / e 01, (5.27)

P(0)€U, (n—1/2t¢) Un(n—1/2+¢) R
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Combining (5.16), (5.25), (5.26) and (5.27), we obtain (4.6). [

6. Final remarks

Combining (4.2), (4.5), (4.6), (4.31), (5.25), (5.26), (5.27), we find that:
Proposition 6.1. Let the assumtions of Theorem 2.1 hold. Then
EO(G) = (1 +0 (n_1+6€)) NECI=1 2=t 1/2 g, (6.1)

where

1 a 1
Int = / exp —§¢9Tc29—E > Al de,
{vj, v }€EG (62)

Q=Q+J, Nj=0;—0,

where Q) = Q(G) denotes the Laplcian matriz and J is the matriz with every entry 1.

Un(n—1/2+s)

Integral(6.2) can be evaluated more precisely for specific classes of graphs in order to get
asymptotic formulas for EO(G) similar to (1.1). For example, for even n — oo

L o]

EO(K,,)=e¢ (1+O(n~1/2%)) (6.3)

3l

for any € > 0, where K,,,, denotes the complete bipartite graph with n vertices in each part.
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