
HAL Id: hal-00631198
https://hal.science/hal-00631198

Submitted on 14 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Incremental Breadth-Depth XML Event Mining
Rashed Salem, Jérôme Darmont, Omar Boussaïd

To cite this version:
Rashed Salem, Jérôme Darmont, Omar Boussaïd. Efficient Incremental Breadth-Depth XML Event
Mining. 15th International Database Engineering and Applications Symposium (IDEAS 2011), Sep
2011, Lisbon, Portugal. pp.197-203. �hal-00631198�

https://hal.science/hal-00631198
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Incremental Breadth-Depth XML Event Mining

Rashed Salem, Jérôme Darmont and Omar Boussaïd
Université de Lyon (ERIC Lyon 2)

5 av. P. Mendès-France, 69676 Bron Cedex, France
{rashed.salem, jerome.darmont, omar.boussaid}@univ-lyon2.fr

ABSTRACT

Many applications log a large amount of events continuously.
Extracting interesting knowledge from logged events is an
emerging active research area in data mining. In this con-
text, we propose an approach for mining frequent events
and association rules from logged events in XML format.
This approach is composed of two-main phases: I) construct-
ing a novel tree structure called Frequency XML-based Tree
(FXT), which contains the frequency of events to be mined;
II) querying the constructed FXT using XQuery to discover
frequent itemsets and association rules. The FXT is con-
structed with a single-pass over logged data. We implement
the proposed algorithm and study various performance is-
sues. The performance study shows that the algorithm is
efficient, for both constructing the FXT and discovering as-
sociation rules.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Performance

Keywords

keywords: Mining logged events, XML mining, frequent
itemsets, association rules.

1. INTRODUCTION
Recently, the eXtensible Markup Language (XML) has

become widely used as the de facto standard for represent-
ing, exchanging, modeling, and maintaining semi-structured
data. The widespread of XML-based applications and in-
creasing amount of XML data pose several challenges for
mining XML data. Modern XML-based applications log
huge amounts of events at real-time, continuously. The
logged event data describe the status of each application

Copyright c©2011 ACM.
This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in the proceedings of IDEAS 2011, September 21-23, Lisbon
[Portugal], Editors: Bernardino, Cruz, Desai.

component and can be used to trace application activities.
Applications that log events in XML format range from
scientific to business and financial applications. Examples
of such applications include XML-based data warehousing,
web personalization and web-click logs, geographic infor-
mation systems, and e-commerce. Mining and analyzing
logged event from such applications help for achieving self-
management systems. Therefore, mining XML-formatted
logged events is becoming increasingly important. It should
have high attention from the database, data warehousing,
data mining, and machine learning research communities.
Mining logged events is the process of extracting knowl-

edge from continuous, rapid logged events. One of the most
important data mining techniques is association rule min-
ing. Association rule mining discovers interesting associ-
ation and/or correlation relationships among large sets of
logged events, and predicts upcoming events based on oc-
currence of previous ones. Mining association rules from
incremental XML-formatted logged events is different than
mining traditional static data, due to several specific issues
and challenges either related to data arrival [5, 7], or XML-
formatting nature [4, 12].
When logging events, they arrive continuously at mod-

erate or high speed, in unbounded amount, and changing
data distributions. Unlike in traditional data mining, there
is not enough time to rescan the whole database whenever
an update occurs. Therefore, a single-pass over events is
required. Logged events need to be processed incrementally
as fast as possible. Processing speed should be faster than
events arrival rate. Moreover, mined data should not need
to be recalculated each time requested. Unbounded amount
of logged events and limited system resources, such as disk
storage, memory usage, and CPU power, lead to the need for
event mining algorithms that adapt themselves to available
resources, otherwise accuracy result decreases. Also, while
traditional data mining techniques mine frequent itemsets
and discard non-frequent itemsets, this property is not valid
for logged events, where the frequency of itemsets is chang-
ing over time. On the other hand, extracting knowledge
from XML data is more difficult than an operational data,
because of the flexible, irregular, and semi-structured nature
of XML data.
To the best of our knowledge, there is no algorithm pro-

posed in the literature to discover interesting knowledge
from incremental XML-formatted logged events. Therefore,
we propose in this paper an incremental algorithm for this
purpose. Our algorithm is composed of two main phases:
firstly, we construct a new tree structure called Frequency

XML-based Tree (FXT) that stores frequencies of events
to be mined. Secondly, we query frequent event-sets and
association rules efficiently from the constructed FXT us-
ing XQuery. Our algorithm handles most processing logged
event issues. It satisfies a single-pass over data transac-
tions to construct the compact FXT structure. Although the
FXT is processed using XML technologies and constructed
in XML format, its construction time is fast enough. Asso-
ciation rules with different minimum supports are queried
at any time without re-constructing the FXT from scratch.

The rest of this paper is organized as follows. Related
work is discussed in section 2. In section 3, we present our
motivation and a description of logged events. Section 4 in-
troduces the general structure of the novel Frequency XML-
based Tree (FXT) and our algorithm for constructing the
FXT. Mining frequent itemsets and association rules from
the FXT is presented in section 5. Performance study of our
algorithm is discussed in section 6. Finally, we conclude and
highlight future trends in section 7.

2. RELATED WORK
There are two main types of approaches for XML data

mining in the literature. The first type of approaches ap-
plies relational data mining tools on XML data by mapping
XML documents to relational data model and storing them
in a relational database [11]. The second type of approaches
applies data mining techniques directly onto native-XML
data [2, 9, 10]. We are interested with the second type of
approaches, specifically mining frequent itemsets and asso-
ciation rules from XML data.

Mining association rules using XQuery.
Wan and Dobbie provide XQuery implementation of the

well-known Apriori algorithm [1], to extract association rules
from XML documents without any pre-processing or post-
processing [9]. Their algorithm is adapted to simple and
well-defined XML format. This algorithm is extended with
pre-processing step in order to mine more complex and ir-
regular XML documents [10]. Authors actually transform
complex documents into a format that can be mined by Wan
algorithm using XSLT. Braga et al. propose XMINE [2], a
tool to extract XML association rules from XML documents.
The XMINE operator is based on XPath and XQuery to ex-
press complex mining tasks on the content and the structure
of XML data.

Tree-based mining algorithms.
Han et al. propose FP-Growth for mining frequent item-

sets without generating candidate itemsets [6]. FP-Growth
requires two database scans for constructing its FP-Tree.
Cheung and Zaiane extend FP-Tree by proposing a novel
data structure called CATS Tree [3]. As FP-Tree, CATS
tree allows frequent pattern mining without generation of
candidate itemsets. It allows mining with a single pass over
the database as well as efficient insertion or deletion of trans-
actions at any time.

To the best of our knowledge, our algorithm is the first
work proposed to mine frequent itemsets and association
rules from incremental XML-formatted logged events, us-
ing XML technologies (e.g., XPath and XQuery). Table
1 shows differences between FXT versus tree-based tech-
niques (i.e., FP-Growth and CATS) and XQuery-based im-

plementation techniques (i.e., Apriori implementation). Al-
though Apriori-implementation mines association rules from
XML data using XQuery [9], it is designed to static trans-
actions of XML data. Mining association rules with dif-
ferent minimum support by Apriori algorithm requires re-
generating the largest itemsets from scratch. Compared to
our algorithm, Apriori-implementation provides less perfor-
mance particularly for large databases of transactions. De-
spite CATS [3] is not proposed for mining XML data, it
is based on constructing an incremental frequency tree like
our algorithm. Rather than CATS algorithm mines frequent
patterns with a complicated algorithm named FELINE, it
does not support mining association rules from CATS tree
directly due to the absence of total size of transactions.

FXT

FP-

Growth
CATS

Apriori-

imp.

Data context
static X X
incremental X X

Data format
raw data X X

XML data X X

Items coverage
all items X X

only frequent X X

Tree structure tree-based X X X

Passing database
single-pass X X

two or more pass X X

Transactions size included in tree X

Ordering tree

pre-ordering X
ordering path items

w.r.t support
X X X

sorting children X X

sweeping items X

Implementation-

based

programming

language
 X X

XML technologies X X

Table 1: FXT versus related works

3. LOGGING EVENTS
There are several software platforms that log a large amount

of events incrementally every day, into simple text or XML
format. Logged events are essential to understand and trace
the activities of such platforms. For instance, we are moti-
vated to mine logged events from XML-based data integra-
tion platforms [8]. It worth to be noted that these platforms
are developed, managed and maintained using XML tech-
nologies. Data integration is the process of extracting data
from heterogeneous and distributed sources, transforming
them into a unified format, and loading them into a repos-
itory (namely a warehouse), see Figure 1. Discovering in-
teresting knowledge from logged events can be employed to
self-maintain and configure the workflow behavior of these
systems, how to achieve this issue is out scope of this paper.
Actually, logged events include much descriptive informa-

tion about each activity (e.g., identification, occurring time,
source, description, category, etc.). The more logging infor-
mation, the more interesting knowledge can be discovered.
In order to apply our algorithm for mining frequent events
and association rules, we need to pre-process logged events
and organize them into transactions as illustrated in the fol-
lowing sample.

Integration

Services Warehouse
Flow Flow

Sources Integration System

Monitoring

A
d
m

in
-

is
tr

a
ti
o
n

D
a
ta

 t
ie

r

Active Rule

Engine Metadata

Events

Log
Event

Log

Rule

Base

Mining

Events

Figure 1: Data integration system

<transaction id="1" time="2011-04-10 09:16:00">

<item>A</item> <item>B</item> <item>C</item> <item>D</item>

</transaction>

<transaction id="2" time="2011-04-10 09:16:20">

<item>C</item> <item>E</item>

</transaction>

<transaction id="3" time="2011-04-10 09:16:40">

<item>B</item> <item>C</item>

</transaction>

<transaction id="4" time="2011-04-10 09:17:00">

<item>C</item> <item>D</item> <item>E</item>

</transaction>

<transaction id="5" time="2011-04-10 09:17:20">

<item>B</item> <item>C</item> <item>D</item>

</transaction>

<transaction id="6" time="2011-04-10 09:17:40">

<item>A</item> <item>C</item> <item>E</item>

</transaction>

Each transaction has identification, its occurring time,
and a set of items which represent platform events. The
set of events is assumed to be logged in a window-size of
time (time + window). The corresponding format of logged
transactions can be obtained directly from their origin plat-
forms, or can be transformed using the XSLT language to
a format that can be processed by our algorithm in a pre-
processing step. The most important thing to our algorithm
is to define the listing of items of each transaction, which
should be sorted alphabetically for performance purposes.

4. FREQUENCY XML-BASED TREE (FXT)

4.1 FXT Structure
In order to mine frequent itemsets or association rules,

the frequency of events (or items) needs to be calculated.
Hence, we propose a novel tree structure that contains fre-
quency of all logged items, named Frequency XML-based
Tree (FXT). The FXT nodes, except root node, consist of
two entries: item name and counter, where item name reg-
isters which item this node represents (e.g., Ii), and counter
registers the number of transactions represented by the por-
tion of the path reaching this node (e.g., Ni or Nm|...|i).
As illustrated in figure 2, the FXT is composed of three
main levels of nodes. Firstly, the Root node refers to the
FXT root node. It represents the total number of logged
transactions (Ntrans). Secondly, the Breadth nodes refers
to all root’s children nodes. It represents the count of each

item appeared in any logged transaction. Thirdly, the Depth
nodes refers to all root’s grandchildren nodes. It represents
a relative or conditional count of a specific item given other
related items. The depth nodes are represented as set of
paths, each path corresponds specific transactions itemsets.
In figure 2, the dashed line annotated by double slashes “//”
means that there is zero or more in-between nodes in a spe-
cific depth path.

root N
trans

I
a

N
a

I
i

N
i

I
z

N
z

I
i

N
i
|…|

a
I
z

N
z
|…|

a

I
z

N
z
|..|

i
|..|

a

I
m

N
m

|…|
i

I
z

N
z
|…|

i

I
z

N
z
|..|

m
|..|

i

Root node

Breadth
nodes

Depth
nodes

// //// //

////

/ /
/

Figure 2: FXT structure

It worth to be noted that the FXT can handle both sorted
and unsorted items of upcoming transactions, but we ob-
served that handling sorted items results in more compact
FXT structure and eases mining frequent itemsets and asso-
ciation rules from the FXT. Thus, letters (a, i, m, and z) of
items refer to their ordering. In addition, although FXT is
designed to manage XML-formatted data, the same concept
can be applied to raw data. Finally, there are some facts
can be deduced from the FXT structure:

• Ntrans = Total(trans) refers to the total number of
transactions;

• Ntrans ≥ Nk, where Nk can be count of any item k;

• Nk ≥ Nv|...|k, where Nv|...|k is a conditional count of
Iv given Ik and in-between items.

4.2 FXT Management
The first phase of our algorithm is to construct the FXT,

by handling each logged transaction individually.

4.2.1 Insertion of transactions

Logged transactions are inserted into the FXT upon ar-
rival. Our algorithm follows four steps for each logged trans-
action on constructing the FXT as presented by algorithm
1.

Step 1 (incrementing root counter, Ntrans).
This root counter represents the total number of logged

transactions, which can be used to calculate item support.

Step 2 (incrementing breadth).
For each item of the transaction, our algorithm increments

the item counter if it exists as one of root children (breadth
nodes), otherwise the algorithm creates the item as new
root child and initializes its counter at 1. Any item sup-
port can be easily calculated later via dividing item counter
by Ntrans, see algorithm 2.

Step 3 (incrementing depth).
The algorithm increments the transaction path if it ex-

ists, otherwise creates it. While creating the path, item by

Algorithm 1: FXT construction

Input: Set of transactions (S)
Output: FXT document
begin

foreach T ∈ S do
idx = 0
(: step1: increment root counter :)
root/@counter++
increment-or-create-breadth(T)
increment-or-create-depth(T)
update-other-paths(T, idx)

end

end

Algorithm 2: Incrementing breadth

Procedure: increment-or-create-breadth(T)
Input: Transaction(T)
begin

foreach item ∈ T do
if item ∈ root/∗ then

item/@counter++
else

(: create new item as root child, initialize its
counter at 1 :)
insert root/item (: item as root child :)
item/@counter=1

end

end

end

item, respecting the transaction items ordering, the algo-
rithm takes into account the previous occurrence of relative
transaction items. This is reflected when initiating counter
of the path items. The FXT path may not correspond only
the same transaction that occurred once or several times,
but also correspond many transactions that satisfy the same
beginning portion of the path. This step is presented by al-
gorithm 3.

Step 4 (updating other paths).
This step is required to ensure the correctness of counting

of one given itemset across different FXT paths. For each
transaction, some paths can be generated from transaction
items that differ from the path built in step 3, called other
paths. The algorithm checks only other paths existing in the
FXT to be updated. In case if they do not already exist, the
algorithm does not create them for compactness purpose, see
algorithm 4.

4.2.2 Example

Figure 3(a-f) shows the four steps to construct the FXT
by inserting transactions given in section 3. Because steps
1 and 2 are always applied directly for all transactions, we
focus on how steps 3 and 4 are applied.

In figure 3(a) and figure 3(b), step 3 creates the paths
“root/A/B/C/D” and “root/C/E”, respectively. Step 4 is
not evaluated, because there are no other paths available.
In figure 3(c), in order to initialize counter of item “C” ac-
cording to step 3, the algorithm detects item “C” as child
of item “B” in the path “root/A/B/C/D”. Thus, counter of
item “C” in the existing path is incremented to become an
initialization value of item “C” in the new path “root/B/C”.
In figure 3(d), step 3 initializes counter of item “D” at 2, be-

Algorithm 3: Incrementing depth

Procedure: increment-or-create-depth(T)
Input: Transaction(T)
begin

path = root
preItemPaths = 0
for idx = 0 to length(T)-1 do

path ← path / item[idx] (:where item is T
member:)
nexIdx ← idx+1
nextItem ← item[nexIdx] (:next item in T:)
(: paths that have the item anywhere:)
preItemPaths ← preItemPaths // item[idx]
(:if inserted item is child of its previous item path:)
if nextItem ∈ path/* then

nextItem/@counter++
(: if next item is descendant of its previous
items :)

else if nextItem ∈ root//preItemPaths//* then
insert path/nextItem
(: max preItem counter is incremented as
initialization counter :)
nextItem/@counter ←
Max(root//preItemPaths//nextItem/@counter)+1

else
insert path/nextItem
nextItem/@counter=1

end

end

end

Algorithm 4: Updating other paths

Procedure: update-other-paths(T, idx)
Input: Transaction(T), index of breadth item (idx)
begin

path = root
for idx to length(T)-1 do

path ← path / item[idx] (: where item is T
member :)
(: skip 1st-then-2nd item sequence to generate other
possible paths :)
if idx = 0 then

nexIdx = 2
else

nexIdx = idx+1
end
for nexIdx to length(T) do

leafItem ← item[nexIdx]
(:if leaf item is descendant of its previous items:)
if leafItem ∈ path/* then

leafItem/@counter++
end

end

(: repeat starting with next item of T as parent
of the path :)
update-other-paths(T, nexIdx)

end

end

cause item“D”already exists as child of item“C” in the path
“root/A/B/C/D”. But, step 4 detects other path“root/C/E”
in the FXT, thus the counter of item “E” is incremented. In
figure 3(e), step 3 initializes the counter of item“D”at 2, be-
cause item “D” already exists as grandchild or child of items
“B”and“C”, respectively in the path“root/A/B/C/D”. More-
over, step 4 detects portion of other path “root/C/D” in
the FXT, thus counter of item “D” is incremented. In fig-

ure 3(f), step 3 initializes the counter of item “C” at 2, be-
cause item “C” already exists as grandchild of item “A” in
the path “root/A/B/C/D”. Also, step 4 detects other path
“root/C/E” in the FXT, thus counter of item “E” is incre-
mented. Finally, the constructed FXT is as follows.

<? xml version="1.0" >

<root counter = "6">

<B counter = "1">

<C counter = "1">

<D counter = "1"/>

</C>

<C counter = "2">

<E counter = "1"/>

</C>

<B counter = "3">

<C counter = "3">

<D counter = "2"/>

</C>

<C counter = "6">

<E counter = "3"/>

<D counter = "3">

<E counter = "1"/>

</D>

</C>

<D counter = "3"/>

<E counter = "3"/>

</root>

5. MINING FREQUENT ITEMSETS AND AS-

SOCIATION RULES USING XQUERY
The main objective of constructing the FXT is to mine fre-

quent itemsets and association rules easily using the XQuery
language. Frequent itemsets are queried by traversing the
FXT from breadth nodes to specific nodes (portion of paths),
or to leaf nodes (complete paths). Frequent itemsets are
filtered using a statistical measure called support. Support
measures the proportion of transactions that contains a spe-
cific item (or itemset). A frequent itemset is an itemset
whose support is greater than some user-specified minimum
support. Frequent itemsets satisfy the Apriori property,
which states that if a given portion of path does not satisfy
minimum support, then neither will any of its descendants
[1]. Examples for retrieving the support of items and itemset
from the FXT follow.

Support(A) = root/A/@counter
root/counter

Support(B,C,D) = root/B/C/D/@counter
root/counter

Example: The following example introduces the function
for generating frequent itemsets from the FXT that con-
structed in main example (section 4.2.2).

declare variable $input := doc("tree.xml")/root;
declare variable $rootCounter := $input/@counter;

declare function local:getFrequentItemsets($parent as xs:string,
$element as element(*, xs:untyped), $minSupport as xs:decimal) {

let $path := concat($parent,’/’,name($element))
where $element/@counter div $rootCounter>=$minSupport

return
(<frequent path="{$path}" count="{$element/@counter}"
support="{$element/@counter div $rootCounter}"/>,

for $child in $element/*

(a) After inserting T1 (A B C D)

(b) After inserting T2 (C E)

(c) After inserting T3 (B C)

(d) After inserting T4 (C D E)

(e) After inserting T5 (B C D)

(f) After inserting T6 (A C E)

Figure 3: Constructing the FXT document.

return
local:getFrequentItemsets ($path, $child, $minSupport)) };

(: call the function :)
for $child in $input/*
return
local:getFrequentItemsets("", $child, 0.25)

The result of calling previous function to get frequent
itemsets with min support=0.25 is as follows.

<frequent path="/A" count="3" support="0.375"/>
<frequent path="/A/B" count="2" support="0.25"/>
<frequent path="/A/B/D" count="2" support="0.25"/>
<frequent path="/A/C" count="2" support="0.25"/>
<frequent path="/B" count="4" support="0.5"/>
<frequent path="/B/C" count="3" support="0.375"/>
<frequent path="/B/C/D" count="2" support="0.25"/>
<frequent path="/C" count="6" support="0.75"/>
<frequent path="/C/E" count="3" support="0.375"/>
<frequent path="/C/D" count="3" support="0.375"/>
<frequent path="/D" count="4" support="0.5"/>
<frequent path="/E" count="4" support="0.5"/>

Association rules have been first introduced in the context
of retail transaction databases [1]. An association rule is an
implication of the form X⇒Y, where the rule body X and
head Y are subsets of the set I of items (I =i1, i2, ..., in)
within a set of transactions D and X ∩ Y = Φ. A rule
X ⇒ Y states that the transactions T that contain the items
in X are likely to also contain the items in Y. Association
rules are characterized by two measures: the support, which
measures the proportion of transactions in D that contain
both items X and Y ; and the confidence, which measures
the proportion of transactions in D containing items X that
also contain items Y. Confidence(X ⇒ Y) can be expressed
as the conditional probability p(Y |X). Thus, we define:

Support(X ⇒ Y) = count(X∪Y)
Ntrans

= root/X/Y/@counter
root/counter

(1)

Confidence(X ⇒ Y) = support(X⇒Y)
support(X)

= count(X∪Y)
count(X)

= root/X/Y/@counter
root/X/@counter

(2)

Example: The following example introduces the XQuery
function for generating a set of association rules from the
FXT constructed in main example (section 4.2.2).

declare function local:generateRules($parent as xs:string,
$x as element (*, xs:untyped), $min_sup as xs:decimal,
$min_conf as xs:decimal) {

let $path_x := concat($parent,’/’,name($x))
return
(for $y in $x/*
let $y_given_x := name($y)
let $support_xy := $y/@counter div $rootCounter
let $support_x := $x/@counter div $rootCounter
let $confidence := $support_xy div $support_x
where $support_xy >= $min_sup and $confidence >= $min_conf

return
(<rule body="{$path_x}" head="{$y_given_x}"

support="{$support_xy}" confidence="{$confidence}"/>,
local:generateRules($path_x, $y,$min_sup, $min_conf))) };

(: call the function :)
for $child in $input/*
return
local:generateRules("", $child, 0.25, 0.5)

The result of calling previous function to get association
rules with min support=0.25 and min confidence=0.5 is as
follows.

<rule body="/A" head="B" support="0.25" confidence="0.666"/>
<rule body="/A/B" head="D" support="0.25" confidence="1"/>
<rule body="/A" head="C" support="0.25" confidence="0.666"/>
<rule body="/B" head="C" support="0.375" confidence="0.75"/>
<rule body="/B/C" head="D" support="0.25" confidence="0.666"/>
<rule body="/C" head="E" support="0.375" confidence="0.5"/>
<rule body="/C" head="D" support="0.375" confidence="0.5"/>

Note that, it is possible to apply other XQuery functions
to discover some statistics or mine more association rules.
For instance, to query the reverse rule(Y ⇒ X), a function
is firstly required to sort the rule body and the rule head
alphabetically in order to calculate the support(Y ⇒ X),
whereas
count(Y ∪ X) = count(X ∪ Y) = root/x/y/@counter.

But, when calculating the confidence(Y ⇒ X), the rule
body does not change in the denominator, i.e., support(Y),
see equation (2).

6. PERFORMANCE STUDY
We have implemented the FXT construction algorithm us-

ing some Java libraries for manipulating XML data structure
(i.e., JDom, SAXPath, and Jaxen). Mining frequent item-
sets and association rules are performed using the XQuery
language. We experimented with different synthetic datasets,
starting from 10 transactions to 100K of transactions. The
average lengths of transactions are 15 items per transaction.
All experiments are performed on a 2.80 GHz PC with 3 GB
RAM, running on Windows 7, with minimum Java heap size
128 MB and maximum Java heap size 512 MB.
We study the impact of constructing the FXT on the ma-

chine resources. Figure 4(a) plots CPU time for new trans-
action insertion given different FXT sizes. It can be easily
observed that the CPU runs fast for inserting new trans-
action even though FXT has large size (e.g., it takes 5ms
to insert new transaction into a 100K FXT size). Likewise,
figure 4(b) plots memory usage, it can be observed that our
algorithm consumes a small size of memory for new trans-
action insertion with different FXT sizes. Figure 4(c) plots
disk storage of the FXT document against different sizes of
transactions. As shown in the figure, although the increas-
ing relationship, the required storage remains small. Due
to the FXT compact structure, the repeated or similar in-
sertions of transaction need to only update item counters
without consuming further storage space.
Since we are interested in mining XML data using XML

technologies, to the best of our knowledge there is only
one most related work (i.e., implementation of Apriori al-
gorithm using XQuery [9]). The Apriori algorithm always
deals with static database of transactions. Figure 5 shows
the performance comparison between our algorithm and the
XQuery-based implementation of Apriori, for mining asso-
ciation rules from XML using XQuery. It shows that our
algorithm is always providing better performance than Apri-
ori, specifically for larger amount of transactions (see figure
5(a)), and also for different values of minimum support (see
figure 5(b)). Apriori generates frequent itemsets and asso-
ciation rules each time from scratch, while our algorithm
construct the FXT incrementally. Then frequent itemsets
and association rules can be queried directly at any time
from the FXT.Moreover, FXT is very compressed if com-
pared with transactions document of Apriori algorithm.
Finally, we conclude that our algorithm is very efficient to

(a) (b) (c)

Figure 4: Machine resources for inserting new transaction to FXT

(a) (b)

Figure 5: Performance comparison between FXT and Apriori algorithm

consume resources. It can also mine frequent itemsets and
association rules against different support and confidence
values, without reconstructing its FXT from scratch that
results in a better performance. Additionally, FXT perfor-
mance is better than XQuery-based Apriori implementation.

7. CONCLUSIONS
In this paper, we propose an incremental approach for

mining association rules from XML logged events. Our ap-
proach applies an incrementing breath-then-depth algorithm,
for constructing a novel frequency XML-based tree struc-
ture. The algorithm composes of four steps for inserting
transaction into the tree. The constructed tree can be di-
rectly queried using XQuery language for retrieving frequent
itemsets and association rules, without applying complex
data mining techniques. Our algorithm handles incremen-
tal logged events. Thus, it is featured with a single-pass of
dataset, incremental processing of transaction, compressed
structure of the tree, fast for inserting new transactions, fast
for querying frequent itemsets or association rules, and effi-
cient to limited resources. These features are validated by
implementing the algorithm and experimenting its perfor-
mance.

In future, we aim at mining association rules from logged
events taking into account their real-time of logging, and dis-
covering the relationships among events against their logged
real-time. Moreover, we intend to apply our algorithm for
mining XML events that logged from our data integration
platform [8]. This algorithm can be used to discover in-

teresting knowledge, in order to maintain, automate, and
re-activate the workflow behavior of the ETL tasks.

8. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Very Large DataBase, VLDB, pages
487–499, 1994.

[2] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and
P. L. Lanzi. A tool for extracting XML association
rules. Proceedings of 14th IEEE International
Conference on Tools with Artificial Intelligence,
ICTAI, pages 57–64, 2002.

[3] W. Cheung and O. R. Zaiane. Incremental mining of
frequent patterns without candidate generation or
support constraint. 7th International of Database
Engineering and Applications Symposium, IDEAS,
pages 111–116, 2003.

[4] L. Feng and T. Dillon. Mining interesting
XML-enabled association rules with templates.
Springer, 2004.

[5] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy.
Mining data streams: A review. ACM SIGMOD
Record, 34(2):18–26, 2005.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. ACM SIGMOD Record,
29(2):1–12, 2000.

[7] N. Jiang and L. Gruenwald. Research issues in data
stream association rule mining. ACM SIGMOD
Record, 35(1):14–19, 2006.

[8] R. Salem, O. Boussaid, and J. Darmont. Conceptual
workflow for complex data integration using AXML. In
International Conference on Machine and Web
Intelligence (ICMWI 10), October 2010.

[9] J. W. W. Wan and G. Dobbie. Mining association
rules from XML data using XQuery. In Proc.
Australasian Workshop on Data Mining and Web
Intelligence, DMWI, pages 169–174, 2004.

[10] X. Wang and C. Cao. Mining association rules from
complex and irregular XML documents using XSLT and
XQuery. International Conference on Advanced
Language Processing and Web Information
Technology, ALPIT, pages 314–319, 2008.

[11] J. Zhang, H. Liu, T. W. Ling, R. M. Bruckner, and
A. M. Tjoa. A framework for efficent association rule
mining in xml data. Journal of Database Management
(JDM), 17(3):19–40, 2006.

[12] Q. Zhao, L. C. 0002, S. S. Bhowmick, and S. K.
Madria. XML structural delta mining: Issues and
challenges. Data Knowl. Eng, 59(3):627–651, 2006.

