
HAL Id: hal-00631186
https://hal.science/hal-00631186

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploitation of Built in test for diagnosis by using
Dynamic Fault Trees: Implementation in Matlab

Simulink
E. Gascard, Zineb Simeu-Abazi

To cite this version:
E. Gascard, Zineb Simeu-Abazi. Exploitation of Built in test for diagnosis by using Dynamic Fault
Trees: Implementation in Matlab Simulink. ESREL 2011, Sep 2011, TROYES, France. pp.436-444.
�hal-00631186�

https://hal.science/hal-00631186
https://hal.archives-ouvertes.fr


Exploitation of Built in test for diagnosis by using DynamicFault Trees:
Implementation in Matlab Simulink

Eric Gascard
TIMA laboratory (CNRS - Grenoble INP - UJF), Grenoble, FRANCE

Zineb Simeu-Abazi
G-SCOP laboratory (CNRS - Grenoble INP - UJF), Grenoble, FRANCE

Joseph Younes
Polytech’Grenoble, Université Joseph Fourier, Grenoble, FRANCE

ABSTRACT: This paper presents the purpose of Dynamic Fault Tree (DFT) in Matlab Simulink in order to
diagnose discrete event systems. The aim is to filter false alarms in automated systems that feature dependencies.
Traditional Fault Tree is a tool used for system diagnostics, but it is limited because it uses traditional logic gates
(OR, AND) which do not take into consideration the time and the dependencies of automated systems. As a
result, new gates have been created to make it possible to consider dynamic aspects of automata. They are called
temporal and dynamic logic gates. Consequently a research work has been done upstream to describe all the
functioning cases of each gate and to represent them into digital timing diagram. Then, in order to provide an
easy way to built DFT and analyze automated system faults, traditional, temporal and dynamic gates have been
programmed using the StateFlow library of Matlab Simulink and added to a new toolbox created especially in
Simulink for the construction and the simulation of DFT.

1 INTRODUCTION

Moderns systems or equipments are composed of
hundreds of circuit boards, most of them integrate
Build-In Test (BIT) facilities (Gao & Suryavanshi
2002). BIT technology allows the system function-
ality to be verified automatically and simplify the
test equipment, improve efficiency, reduce costs of
preventative maintenance. It is used widely in areas
like aerospace for maintenance and flight operations.
BIT indications, named alarms, are recorded during
the mission and presented to maintenance personnel
when the aircraft is on the ground for detection and
isolation of failures. The diagnosis of these alarms
is costly: requiring replacement of the failed compo-
nents, re-qualification, maintenance man-hours, and
aircraft downtime. Moreover, some of these alarms
can be false alarms (Rosenthal & Wadell 1990, West-
ervelt 2004) and the localization of the system failures
can be ambiguous which gives an additional delay of
the maintenance actions and leads to useless mainte-
nance actions such as false disassembling, or needs a
long procedure of test to isolate the failure.

To establish a diagnostic, the maintenance teams
exploit some correlations between different alarms

expressed as specific rules. These rules aim at solv-
ing the problems above: the filtering of false alarms
and the reduction in the size of the failure ambiguity
group to more precisely locate the faulty equipment.
However, these rules are static and do not integrate
the dynamics of the failure and its implications on the
time relationship between recorded alarms. So, there
is a need for a modelization of dynamic rules and their
simulation. Simeu-Abazi et al. tackle this problem in
Simeu-Abazi et al. (2011) and Lefebvre (2009), they
propose to model dynamic rules as temporal and dy-
namic fault trees.

The fault tree (FT) method is a technique used
to analyze system failures at the level of design.
The method consists of a top-down analysis which
starts from prospected failures (top events) and looks
for its possible causes (basic events). From the con-
structed fault tree, both quantitative and qualitative
safety and reliability analysis can be performed. One
of the main assumption in fault tree analysis is that
basic events must be assumed to be statistically in-
dependent and are considered as non-repairable. FT
describes the interaction of basic events by means
of Boolean gates, so that the combination of events
is relevant, not their sequence. To take into account



sequential relationships among events and statisti-
cal dependencies, Dugan et al. propose in (Dugan
et al. 1990, Dugan et al. 1992) the dynamic fault
tree model based on the traditional static fault tree
modeling framework (Vesely, Goldberg, Roberts, &
Haasl 1981). The DFT methodology is presented in
(Vesely, Stamatelatos, Dugan, Fragola, Minarick, &
Railsback 2002). Dynamic fault trees use four addi-
tional kinds of gates as modeling elements: Sequence
Enforcing (SEQ), Functional Dependency (FDEP),
Priority-AND (PAND) and Cold, Warm and Hot
Spare (CSP,WSP and HSP).

There exists some extension of the DFT by adding
simple temporal gates to capture temporal depen-
dence between events and faults, this extension is
called Temporal Fault Tree (TFT) (Palshikar 2002).

The work of Simeu-Abazi et al. consists to apply
the formalism of dynamic fault tree for filtering the
faults, and do not deal with the qualitative and quanti-
tative analysis of DFT and TFT. Indeed, different di-
agnosis rules are defined for each functioning mode
and these rules are translated using DFT for the alarm
filtering. Their aim is to propose a new simulation
scheme of DFT and TFT by giving a High Level
Petri Net representation of existing dynamic gates.
The authors propose a new class of temporal gates
called PANDW, DUR and COUNT. These new gates
are as well modeled using High Level Petri Nets. To
take into account false alarms, the assumption of non-
repairable events is giving up.

Several authors propose different tools to model be-
havior of dynamic gates, for example the specifica-
tion language Z (Coppit, Sullivan, & Dugan 2000),
timed automata (Santiago Barragan, Roth, & Faure
2006), Stochastic Petri nets (Bobbio & Raiteri 2004)
or Bayesian networks (Boudali & Dugan 2005) with
the objective of quantitative and qualitative analy-
sis. Our objective is not to analyze the performance
model, but to implement diagnosis rules by using dy-
namic gates. This paper is a continuation of Simeu-
Abazi et al. work by proposing a toolbox in Mat-
lab/Simulink/Stateflow which allow to build and sim-
ulate temporal and dynamic fault trees in Matlab
Simulink. The paper is organized into three main
parts. The first one presents our formalization of the
temporal and dynamic fault tree gates, then the sec-
ond one explain the principle used to program theses
gates and their inclusion into a new toolbox, and the
last one shows an example of application on alarm fil-
tering in Matlab Simulink.

2 FORMALIZATION OF TEMPORAL AND
DYNAMIC FAULT TREE GATES WITH
REPAIRABLE EVENTS

An important problem in understanding temporal and
dynamic fault tree is the informal nature of their nota-
tion. There is a need for formalization of the seman-
tics of the DFT and TFT notation. In this section, we

first define their semantics in term of traces that sat-
isfy their behavior. Secondly, we build for each con-
sidered gate a Moore automaton that fulfills its se-
mantics. These Moore automata provide an easy way
to implement these gates by using the Stateflow li-
brary of Matlab Simulink.

Consider a finite set of failure eventsF =
{x1, . . . , xn} having values in the Boolean domainB.
The occurrence of failure is represented as 1 and its
nonoccurence as 0. A traceω over F is defined as
a sequence of valuation of all the failure events ofF .
We assume that failure events are repairable (take into
account of false alarms) and time is discrete. Time
consists of a sequence of time tick numbered starting
from 0. A consequence of this interpretation is that,
a trace overn failure events is a function fromN to
B

n. The occurrence of a failure eventxi in a traceω
at timet is denoted byωt ⊢ xi.

The rest of this section is organized as follows:
firstly we define the semantics of the classical DFT
gates: PAND, SEQ and FDEP. We do not take into ac-
count the Spares gates: we are interested in alarm fil-
tering, this task is made off-line, so the SPARE gates
do not have utilities. Secondly, we define the seman-
tics of temporal gates which integrate time relation-
ship between events.

2.1 Dynamic gates

2.1.1 Definition and representation of PAND gate
The priority-AND gate was introduced by Fussell
et al. (1976). From (Dugan, Bavuso, & Boyd 1990),
the PAND gate is equivalent to an AND gate, with
the added condition that the failure events must occur
in a specific order. The output is true if both input
events occur and the left input occurs before the right
input. In other words, if any failure events has not
occurred or if the right input occurs before the left
one, the output does not occur.

Let a and b denote the left and right input
events of the PAND gate. The output of the PAND
gate for a traceω involvinga andb at timet is defined
as follows:
ωt ⊢ PAND(a, b) ⇐⇒ ∃k1 < k2 < t ·




ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2] · (ω

j ⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k2 . . . t] · (ωj ⊢ a∧ ωj ⊢ b)





Figure 1 below shows the behavior of the PAND
gate.

A Moore automaton can represent this behavior of
PAND gate as shown in Figure 2. The output of the
gate is associated with the states of the automaton.
This output is ”emitted” by the automaton when it is
in the state. Transitions are labeled with the value of
the inputs (concatenation of inputs a and b). If the



PAND

0

1

0

1

0

1
a

b

c

c

a b

k1 k2 t

Figure 1: Chronogram of the PAND gate

eventb appears before or in the same time than the
eventa, states3 becomes active and the outputc of
the gate is0. If the eventa appears before the event
b, states1 becomes active, then if the eventb appears
and the eventa is still present, states2 becomes ac-
tive and the outputc of the gate is1. When the input
eventsa andb are not present in the same time, the
automaton is ”reset” in order to detect the newa and
b events and so on until the end of the simulation. Re-
set appears in the presence of false alarms.

01
11

00

00

11
10
01

11

10

00

10

00

11

0101
10

s3/0

s1/0

s0/0

s2/1

Figure 2: Moore automaton of the PAND gate

The PAND gate can be used in a Dynamic Fault
Tree that implements a rule for filtering false alarms
or a rule for improving the diagnostic of a system.

2.1.2 Definition and representation of SEQ gate
As defined in (Dugan, Bavuso, & Boyd 1992, Coppit,
Sullivan, & Dugan 2000), the sequence enforcing
gate asserts that inputs events can occur only in a
given order. The input events are constrained to occur
in the left-to-right order in which they appear under
the gate. This means that the left-most event must
occur before the event on its immediate right, which
must occur before the event on its immediate right
and so forth. The output of the gate is true as long
as the sequence of input events is respected. We
consider only SEQ gate with two inputs, SEQ gate
with more inputs can be defined as a composition
of SEQ gates with two inputs:SEQ(x1, x2, x3) ≡
SEQ(SEQ(x1, x2), SEQ(x2, x3)). The SEQ gate
will be used only in a Dynamic Fault Tree that
implements a rule for filtering false alarms.

The output of the SEQ gate for a traceω in-
volving a and b at time t could be defined by six
different scenarios as follows:

ωt ⊢ SEQ(a, b)
①

⇐⇒

∃k1 < t ·

(

ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . t] · (ωj ⊢ a∧ ωj 6⊢ b)

)

0

1

0

1

0

1
a

b

c

c

ba

SEQ

k1 t

Figure 3: Chronogram of the SEQ gate - case①

ωt ⊢ SEQ(a, b)
②

⇐⇒ ∃k1 < k2 < t ·




ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2[·(ω

j ⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k2 . . . t] · (ωj ⊢ a∧ ωj ⊢ b)





0

1

0

1

0

1
a

b

c

k1 k2 t

Figure 4: Chronogram of the SEQ gate - case②

ωt ⊢ SEQ(a, b)
③

⇐⇒ ∃k1 < k2 < k3 < t ·










ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2[·(ω

j ⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k2 . . . k3[·(ω

j ⊢ a∧ ωj ⊢ b)
∧ ∀j ∈]k3 . . . t] · (ωj ⊢ a)
∧ ωk3 6⊢ b











0

1

0

1

0

1
a

b

c

k1 k2 k3 t

Figure 5: Chronogram of the SEQ gate - case③



ωt ⊢ SEQ(a, b)
④

⇐⇒ ∃k1 < k2 < k3 < t ·










ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2[·(ω

j ⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k2 . . . k3[·(ω

j ⊢ a∧ ωj ⊢ b)
∧ ∀j ∈]k3 . . . t] · (ωj ⊢ b)
∧ ωk3 6⊢ a











0

1

0

1

0

1
a

b

c

k1 k2 k3 t

Figure 6: Chronogram of the SEQ gate - case④

ωt ⊢ SEQ(a, b)
⑤

⇐⇒ ∃k1 < k2 < t ·






ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2[·(ω

j ⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k2 . . . t] · (ωj ⊢ b)
∧ ωk2 6⊢ a







0

1

0

1

0

1
a

b

c

k1 k2 t

Figure 7: Chronogram of the SEQ gate - case⑤

ωt ⊢ SEQ(a, b)
⑥

⇐⇒ ∃k1 < k2 < k3 < t ·






ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2[·(ω

j ⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k2 . . . k3[·(ω

j 6⊢ a∧ ωj 6⊢ b)
∧ ∀j ∈]k3 . . . t] · (ωj ⊢ b)







0

1

0

1

0

1
a

b

c

k1 k2 k3 t

Figure 8: Chronogram of the SEQ gate - case⑥

A Moore automaton can represent the behavior of
all these cases as shown in Figure 9.

00

10

11

00

10

11
01

0010

11
01

01

11

00

00

01

10

01
11

10

00

00

10

11 01

01 10 11

s1/0

s0/0

s2/1 s3/0

s4/1 s6/1

s5/1

Figure 9: Moore automaton of the SEQ gate

2.1.3 Definition and representation of FDEP gate
Vesely et al. (2002) defines the functional dependency
gate as follows: Suppose that a system is configured
such that the occurrence of some event (trigger event)
causes other dependent components to become inac-
cessible or unusable. A FDEP gate can be used to ex-
plicitly reflect a such dependence. An FDEP gate has
a single trigger input and one or more dependent ba-
sic events. The dependent basic events are function-
ally dependent on the trigger event. When the trigger
event occurs, the dependent basic events are forced to
occur (fail). We consider only FDEP gate with one de-
pendent basic event (see Figure 10), FDEP gate with
more dependent basic events can be define as several
FDEP gates: all these gates will share the same trigger
event, and each gate will take as basic event one of the
dependent basic events. The output of the FDEP gate
reflects the status of the trigger event.

The output of the FDEP gate for a traceω involving
the trigger evente and the dependent eventa at timet
is defined as follows:ωt ⊢ FDEP (e, a) ⇐⇒ ωt ⊢ e

This gate will be used only in a Dynamic Fault
Tree that implements a rule for filtering false alarms.
Suppose we want to model a filtering rule involving
some basic eventa anda is an operand of an FDEP
gate with a trigger evente. The expression of the
filtering rule will not involve a as operand but the
Boolean expressionOR(FDEP (e, a), a) which ex-
presses the real status ofa due to its functional de-
pendency. A Moore automaton can represent this be-
havior as shown in Figure 10.

0
1

FDEP

ae

c

s1/1s0/0

Figure 10: Moore automaton of the FDEP gate. Transitions are
labeled with trigger event.



2.2 Temporal gates

In our application the event corresponds to the occur-
rence of a failure message. These failure messages
may be steady or intermittent. It is then necessary
to define a temporal window to take into account the
time of occurrence of each event, the delay between
the occurrence of each event, the event duration or the
number of times that the same event is detected. Thus,
new gates for temporal fault tree called ”PANDW”,
”DUR” and ”COUNT” are proposed in (Lefebvre,
Simeu-Abazi, Derain, & Glade 2007, Lefebvre 2009).
In this section, we do not treat the COUNT gate due
to a lack of place.

2.2.1 Definition and representation of PANDW gate
This gate has the same functioning principle than a
normal PAND gate but introduce a time dependency
between failures in order to do the diagnostic. Two
cases can be represented:

• The PANDW> gate is specified to ”fail” if its
inputs fail in left to right order and if the time
between the failure ofa and the failure ofb is
greater thanT units of time.

• The PANDW< gate is specified to ”fail” if its
inputs fail in left to right order and if the time
between the failure ofa and the failure ofb is
less thanT units of time.

The output of thePANDW> gate with time
dependencyT for a traceω involving a andb at time
t is defined as follows:

ωt ⊢ PANDW>(T,a, b) ⇐⇒ ∃k1 < k2 < t ·






ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2] · (ω

j ⊢ a∧ ωj 6⊢ b)
∧ k2 − k1 ≥ T
∧ ∀j ∈]k2 . . . t] · (ωj ⊢ a∧ ωj ⊢ b)







A Moore automaton can represent this behav-
ior as shown in Figure 11. Transitions are labeled
with the value of the inputs. Some transitions use
temporal conditions (”after” and ”before”) to deter-
mine the activation of transitions and duration of state
activation.

The output of thePANDW< gate with time
dependencyT for a traceω involving a andb at time
t is defined as follows:

ωt ⊢ PANDW<(T,a, b) ⇐⇒ ∃k1 < k2 < t ·






ωk1 6⊢ a∧ ωk1 6⊢ b
∧ ∀j ∈]k1 . . . k2] · (ω

j ⊢ a∧ ωj 6⊢ b)
∧ k2 − k1 ≤ T
∧ ∀j ∈]k2 . . . t] · (ωj ⊢ a∧ ωj ⊢ b)







A Moore automaton can represent this behav-
ior as shown in Figure 12.

>

b

PANDW

a

c

T

01
11

00

00

11
10
01

11

10

00

10

00

11 after(T)

01
10 11 before(T)

01

s2/0

s0/0 s1/0

s3/1

Figure 11: Moore automaton of thePANDW> gate

<

b

PANDW

a

c

T

01
11

00

00

11
10
01

11

10

00

10

00

11 before(T)

01
10 11 after(T)

01

s2/0

s0/0 s1/0

s3/1

Figure 12: Moore automaton of thePANDW< gate

2.2.2 Definition and representation of DUR gate
The events are not necessarily persistent ones; it was
thus necessary to define additional gates in order to
take into account the transient or intermittent failure
events. The duration gate compares the duration time
of the failure to a thresholdT , if it is greater or lower
than the specified timeT , then the transition is valid.
Two cases can be represented:

• TheDUR> gate is specified to ”fail” if its input
is considered as failed during a time greater than
T units of time.

• TheDUR< gate is specified to ”fail” if its input
is considered as failed during a time less thanT
units of time.

The output of theDUR> gate with time depen-
dencyT for a traceω involving a at timet could be
defined by two different scenarios as follows:

ωt ⊢ DUR>(T,a)
①

⇐⇒

∃k1 < k2 < t ·







ωk1 6⊢ a
∧ ∀j ∈]k1 . . . k2] · (ω

j ⊢ a)
∧ k2 − k1 = T
∧ ∀j ∈]k2 . . . t] · (ωj ⊢ a)







ωt ⊢ DUR>(T,a)
②

⇐⇒

∃k1 < k2 < t ·







ωk1 6⊢ a
∧ ∀j ∈]k1 . . . k2] · (ω

j ⊢ a)
∧ k2 − k1 ≥ T
∧ ∀j ∈]k2 . . . t] · (ωj 6⊢ a)









0

1

0

1
a

c

k1 k2 t

T

Figure 13: Chronogram of theDUR> gate - case①

0

1

0

1
a

c

k1 k2 t

T

Figure 14: Chronogram of theDUR> gate - case②

A Moore automaton can represent this behavior as
shown in Figure 15.

> DUR

c

T
a

0 after(T)

1

1 after(T)

0

1

0 before(T)

1 before(T) 1

0

1

0

0

s4/1

s0/0

s2/1

s1/0

s3/0

Figure 15: Moore automaton of theDUR> gate

The output of theDUR< gate with time depen-
dencyT for a traceω involving a at timet could be
defined as follows:
ωt ⊢ DUR<(T,a) ⇐⇒

∃k1 < k2 < t ·







ωk1 6⊢ a
∧ ∀j ∈]k1 . . . k2] · (ω

j ⊢ a)
∧ k2 − k1 ≤ T
∧ ∀j ∈]k2 . . . t] · (ωj 6⊢ a)







0

1

0

1
a

c

k1 k2

<= T

t

Figure 16: Chronogram of theDUR< gate

A Moore automaton can represent this behavior as
shown in Figure 17.

< DUR

c

T
a

0

1

0 after(T)

1

0 before(T)0

0
1

1

s2/0

s0/0 s1/0

s3/1

Figure 17: Moore automaton of theDUR< gate

3 CREATION OF A DFT AND TFT LIBRARY IN
THE SIMULINK BROWSER

Each logic gate correspond to a Subsystem block
which contains some blocks in order to treat the in-
puts signals that must be square waves in order to rep-
resent as real as possible the functioning of a discrete
event system, some blocks to make it possible to de-
fine the parameters of the gate and the Chart block
of the gate automaton. These Subsystem blocks had
been masked with different icons in order to differ-
entiate the logic gates and to assign to each one of
them its standard symbol. Furthermore, specific pa-
rameters had been configured for some of the gates
such as the DURATION gate, the PANDW gate and
the COUNTER gate. The Figure 18 below shows the
masked subsystem of the DURATION gate.

Figure 18: Masked subsystem of the DURATION gate

Then, in order to make it possible to use these gates
anytime in Matlab, they have been added in a new
Simulink library especially created for the construc-
tion of DFT. The Figure 19 shows what the DFT li-
brary looks like in Simulink.

4 APPLICATION OF THE DFT AND TFT
TOOLBOX ON ALARM FILTERING

To illustrate the use of the new Matlab Simulink DFT
and TFT toolbox, the application example proposed
by Lefebvre (2009) to diagnose a system by filtering
alarms is taken as model. It is composed of inputs
events A, B, C, D, E, F and will be faulty if one of
the three following cases occurs:

• The events B and C occur, but the event C has
to occur at least 5 seconds after the event B, and



(a) The DFT parent library

(b) The ANSI DFT sub library

Figure 19: DFT library and sub libraries in the Simulink browser

the event A does not have to appear before the
occurrence of the events B and C.

• The event D occurs during at least 4 seconds.

• The events E and F are simultaneously present
but the event E occurs at least 2 times.

The top event of the dynamic and temporal fault
tree represents the output of anOR logic gate, then,
the inputs of thisOR gate correspond to the three fail-
ure cases possible:

• The first failure case can be translated by a
PANDW> gate that connects the events B and
C and by aSEQ gate that connects the output of
thePANDW> gate and the event A.

• The second failure case can be translated by a
DUR> gate for the event D.

• The third failure case can be translated by a
COUNTER> gate for the event E and an
AND gate that connects the output of the
COUNTER> gate and the event F.

The dynamic and temporal fault tree that makes
it possible to filter the alarm corresponding to the

events A, B, C, D, E and F is visible in the Figure 21.

In order to evaluate the good functioning of
the system, a test event vector is taken as example,
see Figure 20. All the alarm signals are generated in
a Signal Builder block connected to the inputs of the
DFT and TFT gates.

Figure 20: Digital Timing Diagram of the events

After the simulation of the Simulink model, the
Scope block shows that:

• The output of thePANDW> gate which is the
first input of theSEQ gate is not generated. As a
result, the output of theSEQ gate (Failure Case
1 signal) is never generated which means that all
the alarms of the first failure case have been fil-
tered.

• The output of theDUR> gate (Failure Case
2 signal) is generated at T = 27 seconds be-
cause the event D occurred during 4 seconds.
The alarm of the second failure case is not fil-
tered.

• The output of the AND gate (Failure Case 3 sig-
nal) is not generated because the event F is never
present. Regarding the COUNTER> gate, its
output is generated because the event E occurred
exactly two times. All the alarms of the third fail-
ure case have been filtered.

• As a result the output of the tree (Alarm Filtering
signal) is generated at the moment of the second
failure case, consequently, the system is faulty.

5 CONCLUSION

Programming the logic gates that take into consider-
ation the dynamic aspects of automata has been very
interesting because it makes it possible to build and
simulate temporal and dynamic fault trees in Matlab
Simulink in order to improve the diagnostics of dis-
crete event systems. Moreover, the results obtained
are very encouraging because they confirm the fact
that DFT and TFT makes it possible to improve a di-
agnostic by filtering false alarms which cannot always
be filtered by static fault trees.

Consequently, this method using DFT and TFT in



Figure 21: Dynamic and Temporal Fault Tree of the system

Figure 22: Results of the DFT simulation

Malab Simulink can be used for example in the aero-
nautic field to filter false alarms recorded by an air-
craft during a flight. The first application of this ap-
proach lead to reduce at least 50 percent the number of
false and then the cost of maintenance. Furthermore,
some improvements to make the user task easier are
possible. The first one is the conception of a program
that will automatically format alarm data in the excel
data file Data.xls to make it possible to easily generate
the logic gate inputs. Another one would be to create
a program that will automatically generate a Matlab
Simulink DFT from a text file according to certain
syntax rules.

REFERENCES

Bobbio, A. & D. Raiteri (2004). Parametric fault trees with dy-
namic gates and repair boxes. InProceedings of the Annual
Reliability and Maintainability Symposium, RAMS’04.

Boudali, H. & J. Dugan (2005). A discrete-time bayesian net-
work reliability modeling and analysis framework.Reliabil-

ity Engineering & System Safety 87(3), 337–49.
Coppit, D., K. Sullivan, & J. Dugan (2000). Formal semanticsof

models for computational engineering: a case study on dy-
namic fault trees. InProceedings of the 11th International
Symposium on Software Reliability Engineering, ISSRE ’00.

Dugan, J., S. Bavuso, & M. Boyd (1990). Fault trees and se-
quence dependencies. InProceedings of the Annual Reliabil-
ity and Maintainability Symposium, RAMS’90.

Dugan, J. B., S. J. Bavuso, & M. A. Boyd (1992). Dynamic fault
tree models for fault tolerant computer systems.IEEE Trans.
Reliability 41(3), 363–377.

Fussell, J., E. Aber, & R. Rahl (1976). On the quantitative anal-
ysis of priority-and failure logic.IEEE Transactions on Reli-
ability 25(5), 324–326.

Gao, R. & A. Suryavanshi (2002). Diagnosis from within the
system [built-in test].Instrumentation Measurement Maga-
zine, IEEE 5(3), 43–47.

Lefebvre, A. (2009).Contributionà l’amélioration de la testa-
bilit é et du diagnostic de systèmes complexes : Application
aux syst̀emes avioniques. Ph. D. thesis, University Joseph
Fourier - Grenoble (FRANCE).

Lefebvre, A., Z. Simeu-Abazi, J.-P. Derain, & M. Glade (2007).
Diagnostic of the avionic equipment based on dynamic fault
tree. InInternational Conference on Cost Effective Automa-
tion in Networked Product Development and Manufacturing.

Palshikar, G. K. (2002). Temporal fault trees.Information &
Software Technology 44(3), 137–150.

Rosenthal, D. & B. Wadell (1990). Predicting and eliminat-
ing built-in test false alarms.Reliability, IEEE Transactions
on 39(4), 500–505.

Santiago Barragan, I., M. Roth, & J.-M. Faure (2006). Obtaining
temporal and timed properties of logic controllers from fault
tree analysis. InProceedings of the 12th IFAC Symposium
on Information Control Problems in Manufacturing, INCOM
2006.

Simeu-Abazi, Z., A. Lefebvre, & J.-P. Derain (2011). A method-
ology of alarm filtering using dynamic fault tree.Reliability
Engineering and System Safety 96(2), 257–266.

Vesely, W., F. Goldberg, N. Roberts, & D. Haasl (1981).Fault
Tree Handbook. U.S. Nuclear Regulatory Commission.

Vesely, W. E., M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick,
& J. Railsback (2002).Fault Tree Handbook with Aerospace
Applications. NASA Office of Safety and Mission Assur-
ance.

Westervelt, K. (2004). Root cause analysis of bit false alarms. In
IEEE Aerospace Conference, Volume 6, pp. 3782–3790.


