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Abstract—When a robot is brought into a new environment, it
has a very limited knowledge of what surrounds it and what it can
do. One way to build up that knowledge is through exploration
but it is a slow process. Programming by demonstration is an
efficient way to learn new things from interaction. A robot can
imitate gestures it was shown through passive manipulation.
Depending on the representation of the task, the robot may also
be able to plan its actions and even adapt its representation when
further interactions change its knowledge about the task to be
done. In this paper we present a bio-inspired neural network used
in a robot to learn arm gestures demonstrated through passive
manipulation. It also allows the robot to plan arm movements
according to activated goals. The model is applied to learning a
pick-and-place task. The robot learns how to pick up objects
at a specific location and drop them in two different boxes
depending on their color. As our system is continuously learning,
the behavior of the robot can always be adapted by the human
interacting with it. This ability is demonstrated by teaching the
robot to switch the goals for both types of objects.

I. INTRODUCTION

Autonomous robots that start with no knowledge about the

world and have to learn everything should not only depend

on the unguided exploration of their possibilities for their

development. They also should be able to learn from human

caregivers or other robots by imitating them [1] or interacting

with them. A simple visuo-motor associative learning and a

motor controller can provide the basis for letting low level im-

mediate imitation emerge as a result of simple mechanisms [2].

In a first phase, the system learns the body configuration as

visuo-motor associations. Due to an ambiguity of perception

caused by limited visual capabilities, the robot can confuse the

hand of the human teacher with its own. The controller, follow-

ing the homeostatic principle, tries to maintain an equilibrium

between the visual and motor information according to the

body learning. To do so, it moves the robot hand at the motor

position that corresponds to the believed visual position of the

robot hand. The robot consequently reproduces the observed

gestures of the human. With almost the same mechanisms and

the same controller, the robot can also learn by observation

how to reproduce a demonstrated task encoded as a sequence

of visual positions [3]. Visual demonstration cannot always be

enough to teach what is expected from the learner. During their

first years, infants are also taught by “embodying” them i.e. by

using passive manipulation. This process enables caregivers to

guide the infant’s perception and attention so that the infant

quickly learns what is taught [4].

Programming by demonstration [5] provides robots with

the ability to learn how to perform a task as a result of

a demonstration provided by a human teacher. This demon-

stration can be done through passive manipulation. Dynamic

Motion Primitives (DMP) [6] is a framework for learning to

perform demonstrated tasks. With little demonstration data

from a human demonstrator, the system can determine through

regression the adequate parameters for mixing the DMP to

generate the correct movement. In [7], the learning system

uses a statistical model based on Gaussian Mixture that is

adapted to fit the data from training demonstrations using

passive manipulation. Gaussian Mixture Regression can then

provide a probabilistic estimation of the current state of the

robot and of the adequate motor command. These systems

have proved to be efficient for performing different tasks. They

also enable generalization to different initial conditions and

different goal positions.

One of the main issues is how to encode and represent the

knowledge acquired through demonstration. The chosen model

should enable the robot to continuously learn and integrate

new knowledge into the representation of the task. Besides,

this model should provide the basis for future action planning.

Models with both learning by demonstration and planning have

been developed in different works [8] [9] as programming by

demonstration can speed up the learning of the knowledge

needed for planning. In [10], path planning and Gaussian

processes have been combined to use planning capabilities

and obstacle avoidance while the robot is reproducing a

demonstrated grasp-and-pour task.

In sec. II, an existing bio-inspired model for planning in

mobile robot navigation task is used to learn the movements

of a robotic arm. The neural network is adapted to work with

proprioceptive states. A visual categorization system for goals

corresponding to different types of object is implemented.

Associations between object goals and proprioceptive state

transitions are learned and adapted thanks to reinforcement

learning. This system was implemented on a real robot to carry

out an experiment of pick-and-place with objects, sorting them

depending on their colors (sec. III). Initially, the robot learns

the actions to be done after one demonstration for each type of

object. As it is continuously learning, new demonstrations are



integrated in the model and can be used to adapt the behavior

of the robot to match new conditions in the task i.e. a switch

of the target boxes for each type of object (sec. IV).

II. ADAPTATION OF A BIO-INSPIRED COGNITIVE MAP

MODEL TO ARM CONTROL

We previously developed a bio-inspired model of the hip-

pocampus and prefrontal cortex [11]. In our model, spatial

states would be encoded in the entorhinal cortex and the

hippocampus would learn to associate successive states, thus

creating transitions cells. The prefrontal cortex would use

information about these transitions to create a cognitive map

and use it to plan actions toward the fulfillment of specific

goals. This model was later used on a real robot navigating

in an indoor environment [12]. The aim of this paper is to

reuse the principles of the model, result of a long series of

experiments with mobile robots, and adapt them for planning

in the proprioceptive space of a robotic arm. In addition, we

take full advantage of the possible interactions between human

and robot to speed up the learning process and allow for easy

adaptation of the conditions of a pick-and-place task. As there

are no separate phases of learning and reproduction, the system

can adapt at any time. The model is shown in Fig. 1.

According to our model, some brain structures could be

involved in both navigation and arm control. The categoriza-

tion of states would involve different areas in navigation (the

entorhinal cortex with place cells) and in arm control (motor

cortex for proprioceptive states). However, in both cases the

hippocampus would be used to detect new events as changes

in the encoded states. The prefrontal cortex would also play

a role in planning strategies. The cerebellum, more involved

in ballistic control of the movement and prediction of motor

consequences, is not considered here.

The hippocampal part of the model focuses on generating at-

tractors that correspond to transitions between learned proprio-

ceptive states. When the robotic arm moves, its proprioception

(joint angles, gripper IR and force sensor values) is categorized

into distinct states. Each state is associated to a prototypical

joint/gripper configuration. The categorization of the states is

based on a recruitment of new states depending on a vigilance

threshold. This algorithm takes inspiration from the Adaptive

Resonance Theory [13]. The states are encoded on the weights

of the input links of recruited neurons. The computation of the

activity (1) and learning (2) for those neurons is given by the

following equations:

Ai = 1 −
1

N

∑

j

| wij − ej | (1)

∆wkj = ej · H(
∑

j

H(λ− | Θi − θi |)) (2)

where N is the dimension of the input layer, Ai is the activity of the

ith neuron of the output layer and wkj is the weight of the connection

between an output neuron k that has not been recruited yet and the

jth neuron of the input layer. H is the Heavyside function.

The activity of a neuron is similar to a measure of similarity

with the encoded proprioceptive configuration. The most acti-

vated neuron is considered as the current state of the system.

The recruitment of a new neuron depends on the difference

between each current joint value θi and the corresponding

joint value Θi of the best recognized configuration. If this

difference is below a given vigilance threshold λ, it triggers

the recruitment of a new neuron i.e. the encoding of a new

state. The choice of the vigilance threshold λ determines the

granularity of the states in the proprioceptive space.

The possible transitions between states are learned when

the arm moves from one state to the next. This is done in an

associative memory that receives information about the newly

entered state and the last state. The transition activity is then

transmitted to the cognitive map where a graph of the different

transitions is created. The cognitive map encodes information

about all possible paths by linking subsequent transitions.

In the original navigation architecture [12], the robot could

find resources in its environment. To each type of resource

corresponds a drive that represents the motivation of the robot

to look for that kind of reward. From an animal’s perspective

the reward could be food and the drive hunger, for instance.

Upon detection of a resource the current transition in the

cognitive map is associated to the relevant drive. Here the

robot possesses two different contextual goals associated to

two types of objects (red or green). The focal vision of the

robotic system categorizes the scene using color detection. It

can differentiate between two types of objects: a red can and

a green can. When a red object is presented to the visual

system, the corresponding goal will be activated and stay

active until another object is presented. If the new object is

green, the first goal will be inhibited and the second goal will

stay active. The visual system can also recognize when a large

amount of white is present in the visual field. This is a way

to use visual interaction to give rewards to the system and

use reinforcement learning to associate goals with transitions.

When experimenters present a white object, they reward the

current behavior of the robot and associate it with the active

contextual goal. The learning of the association between goals

and transitions is given by the following equation:

dWij

dt
= r(t).xdrive

j (t).(α.(1 − Wij(t)).x
trans
j (t) − γ) (3)

where α is a learning rate, γ a decay rate and r(t) is the reward

signal (0 or 1).

In this experiment we use a simple visual categorization

system. We assume that the categorization of objects into goals

and reward has already been learned. However, more natural

and plausible approaches could be taken in the future. The

reward signal can be linked to social cues. Zukowgoldring

and Arbib [4] stress the importance of some key words like

“look” or “now, you do it” combined with gestures that are

used by caregivers to raise the attention of their infants. Also,

a robot head that can display and recognize facial expressions

could be added to the robotic setup of this experiment to make

the interaction between human and robots easier. With such as
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Fig. 1. General architecture for state categorization, transition learning, goal categorization, planning and action selection with the robotic arm with emphasis
on the synaptic learning used in this paper.

system, the human could directly give reinforcing or punishing

signals through interaction, by displaying positive or negative

emotions. This kind of interaction has already successfully

been used for the social referencing of objects with good

performances [14]. The facial expression and direction of gaze

of the teacher can also provide the necessary cues for guiding

the attention of the visual system to interesting objects [15]

and help categorize them. The robot would then be able to

learn from interaction with a human partner which objects

are interesting and which different types of object should be

categorized into different goals.

When a goal is active, its activity will be propagated in

the map with weights w < 1. As a result, transition neurons

in the cognitive map have an activity proportional to their

distance (in terms of number of transitions) to the goal. Since

a max operator on the input is used in the computation

of the activity of each neuron, the map gives the shortest

path to the strongest or closest goal. In any given state, the

hippocampal system predicts all possible transitions from the

current position. The activity in the cognitive map is used to

bias the selection of a particular transition. The transition that

has the highest potential, ie. that corresponds to the shortest

path to get the reward, is selected. During the learning process,

the system creates proprioceptive states and memorizes the

joint/gripper configuration associated to each state. When a

transition between states is performed and learned, the position

associated to the second state is associated to the transition.

As a result, when the competition between transition occurs

and a particular transition is selected, the motor configuration

of the target state is given as the target position to the motor

control system.

The motor control architecture (Fig. 2) receives the action

from the cognitive map. If the arm is being manipulated by

the human (by holding the wrist) this action is inhibited.

Otherwise the action is transmitted to a force controller which

computes the motor command of the robot by comparing

the current and target configurations. When the arm is not

being manipulated and the cognitive map transmits no action,

a memory stores the value of the last action (or proprioceptive

configuration if the arm was manipulated) to maintain the

arm at that position. While the motor system receives no

commands, a stress level increases until it finally reaches a

sufficient value to inhibit the memory. A low-priority reactive

behavior will then generate an attractor to a given rest position.

III. INTERACTIVE LEARNING OF A PICK-AND-PLACE

TASK

The presented model was implemented with a 6DOF Katana

robotic arm. At first, the robot has no knowledge about its

environment. The task to is a pick-and-place task (see Fig. 3

for the robotic setup and Fig. 4 for the different learning and
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Fig. 2. Detailed architecture for motor control.



Fig. 3. Pick-and-place task learned and adapted through passive manip-
ulation. Example of demonstration for the red-can-in-box-2 condition and
reproduction by the robot. The camera looks at the pick-up place to recognize
the type of object by color detection (red or green).

reproduction phases). An object (a colored can) is present in

the reaching space of the robot at a given location (i.e. the

pick-up place). The robot must grasp the can and drop it into

one of two boxes, also at static positions in reaching space.

A monocular camera is used as the visual system of the robot

and is focused on the pick-up place. We assume that the visual

attention of the robot is always directed toward that place.

At the beginning, the reactive behavior maintains the arm in

rest position. The human teacher demonstrates how to grasp

an object through passive manipulation of the arm. The first

object is a red can. During the movement, proprioceptive

states are recruited to encode the trajectory according to the

process described in sec. II. The succession of states leads to

transitions and the cognitive map being learned. After the arm

has been manipulated by the human and brought to the object,

the infrared sensors on the gripper detect the presence of an

object in its range, triggering a grasping reflex. Force sensors

on the gripper detect when an object is hold and determine

the state of the gripper as opened or closed on an object.

The arm is then manipulated again and brought above one of

the drop boxes, learning the trajectory between the pick-up

place and the drop box as shown by the human. A button

located on the gripper commands the opening of the gripper.

The button is used to simulate the interacting human forcing

the opening of the gripper of the robot (which cannot be done

due to mechanical limitations).

Once the object has been dropped into the box, a positive

reinforcement is given by simply presenting a white sheet of

paper in front of the camera. So when the robot releases the

can, the goal associated to the dropped can (red or green)

is linked to the current transition (i.e. changing the state of

the gripper from closed to open when above this box). The

robot then waits until the teacher demonstrates how to move

from the box to its initial position or until the stress level

activates the movement to the rest position. Once the loop is

connected, the robot can plan the sequence of transitions to

move to the position where it previously grasped the object.

The robot starts reproducing the task without the help of a
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Fig. 4. Trajectory of the arm end effector in the 3D Cartesian space. The
experiment can be explained as different phases, each one corresponding to a
row. The first phase is the learning of the pick-and-place task for the red can
and the green can. The black thick line corresponds to the trajectory during
passive manipulation of the arm. The second phase is the validation of the
reproduction of the task after learning. The third phase is the adaptation of the
learning to new conditions: the reversal of the boxes for red and green can.
The movement of the arm is corrected using passive manipulation to show the
expected gestures. The learning of the new conditions needs several reinforced
corrections to be learned. The last row shows the adapted reproduction after
relearning.

human. Since one of the goals (depending on the color of the

last seen object) is always active, the robot will constantly try

to reach that goal and thereof to drop objects at the learned

places (i.e. into on of the boxes).

From its starting position, the cognitive map gives the

shortest path in terms of states in order to reach the motivated

transition (dropping the object into the correct box). The first

step is to go to the pick-up place. If an object is detected, it is

grasped and the arm proceeds to the next phase, otherwise the

robot waits for an object to be presented. Here we present the

red can again and let the robot reproduce what it has just been

taught. The arm reaches the position above the box where it

opens its gripper and goes back to the pick-up location where a

new can has been placed. The action is rewarded by the human

for another two reproductions, reinforcing this behavior. When

the behavior has been sufficiently reinforced for the red can,



the same learning process is used for the green can. The human

first demonstrates how to drop the object in the second box

and then lets the robot do the task, reinforcing this behavior

for the next 2 reproductions. The robot is then given a series of

red and green cans to verify that it correctly learned to place

them in different boxes.

IV. CONTINUOUS LEARNING AND ADAPTATION TO NEW

CONDITIONS

The robot successfully learned to reproduce the task. The

system is still learning and can be adapted thanks to new

interactions. For that we place a red can which the robot picks,

but when it moves to drop it in the first box, the human teacher

grabs the arm and moves it to the second box. When the object

has been dropped into the new box, the behavior is rewarded.

Due to the learning equation (3) the action of dropping the

object in the new box is associated to the goal for red objects

and the association between this goal and the old box is

decaying a little. The stability of a behavior depends on the

number of given rewards. The initial behavior was reinforced

three times. After the rewarding of the first demonstration of

the new behavior, the transitions leading to the new box are

still less activated in the cognitive map than the transitions

associated to the initial box. With another demonstration and

reward, the goal/transition association begins to take prece-

dence with a short lead. The robot is able to autonomously

reproduce the correct behavior. A last reward when it has

managed to correctly perform the task increases the lead of

the new behavior (Fig. 5). After this learning the robotic arm

places both types of objects in the second box. Finally, the

procedure is repeated for the green objects and the robot is

taught to place them in the first box. As a consequence, the
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sorting of the objects in the two boxes is reversed compared

to what was initially learned. The system benefits from the

generalization properties of the planning architecture. During

the adaptation to changing conditions in the task, only the

part of the movement to the box was shown. After dropping

the can, the robot was able to recognize its configuration and

determine the path back to the pick-up place using what was

previously learned for other conditions.

Figure 6 shows the position of the learned states in the

workspace and the transitions learned between states at the end

of the task. Interestingly, more states were recruited near the

pick-up place than for the movement between the boxes. The

3D Cartesian space representation is not the space in which

the states are encoded. Close positions in the Cartesian space

can be distant in the multi-dimensional joint space of the arm.

Besides, during the demonstration of the grasping, the different

proximo-distal articulations were manipulated to reach the

object with accuracy and with the correct orientation for the

gripper. During the demonstration of the simplified left/right

and up/down movements to the boxes, only the proximal joints

were manipulated as there were no particular movements to

be shown for the other joints. As a result, the recruitment

process depending on each joint variation from the recognized

prototypical joint/gripper configuration (sec. II) explains the

different densities of states.

Figure 7 shows the most active state of the system when the

end effector is at a given 3D position during reproduction. The

color of the point on the trajectory corresponds to the color of

the most active learned state. A state can be recognized before

the arm end effector is at the learned position for the states.

The system consequently anticipates the next move without

finishing the current command to reach the center of the states,

which leads to small shortcuts being taken in the reproduced

trajectories as opposed to what was learned. The effect is more
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important when there are few states like in the middle of the

trajectory from the pick-up place to the boxes. Figure 6 gives

an example of the propagation of the activity for the different

transitions in the cognitive map when one of the goals is active.

V. CONCLUSION

In this paper, we presented a bio-inspired model that enables

a robot to build a representation of a task demonstrated

through passive manipulation. This representation is based

on proprioceptive states that are recruited and constitute the

motor primitives of the system. It can be used by the system

to plan its actions depending on visually categorized goals.

Our system can continuously develop its model of the task

through several interactions with humans. It was tested with a

real robot on a changing pick-and-place task.

In this work, we described only one cognitive map built

through interaction rather than exploration of the state space.

Planning with large DOF systems can quickly lead to di-

mensionality problems that can be addressed by the use of

hierarchical maps [16]. We consider the integration of different

layers in our cognitive map model. One cognitive map would

still be mostly acquired by interacting with humans, whereas

another could be completed by exploring the environment

(by babbling). This level of representation would be more

extensive and only called upon in cases when the robot cannot

infer what to do from what it was interactively taught. Future

work will also be dedicated to the integration of different

control systems for the imitation of observed actions and the

imitation of actions experimented through “embodying”. This

raises a major action selection issue as the different systems

might give different motor commands in parallel.

Finally, an interesting addition to the system would be for

the robot to indicate to the human that it does not know what

to do. Several works [17] [18] have stressed the importance

of the behavior of the robot in the way the interacting human

will teach it. The stress value of the motor control system

only increases when the planning system cannot propose any

action, it is thus a way to detect that the current knowledge is

too limited to perform the task. The signal is used to trigger a

return to the rest position but could also activate a visual cue

indicating to the human the need for assistance. Signaling to

the human that the robot needs help, e.g. by directing its gaze

toward the caregiver, would lead to another interaction with the

aim of addressing the current situation. If the human accepts

to help the robot and demonstrates a solution, new information

can be integrated in the representation of the task.
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