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Abstract

Sensitivity analysis aims at exploring which of a number of variables have
an impact on a certain response. Not only are the individual variables of
interest but also whether they interact or not. By analogy with the total
sensitivity index, used to detect the most influential variables, a screening of
interactions can be done efficiently with the so-called total interaction index
(TII), defined as the superset importance of a pair of variables. Our aim is to
investigate the TII, with a focus on statistical inference. At the theoretical
level, we derive its connection to total and closed sensitivity indices. We
present several estimation methods and prove the asymptotical efficiency of
the Liu and Owen estimator. We also address the question of estimating the
full set of TIIs, with a given budget of function evaluations. We observe that
with the pick-and-freeze method the full set of TIIs can be estimated at a
linear cost with respect to the problem dimension. The different estimators
are then compared empirically. Finally, an application is given aiming at
discovering a block-additive structure of a function, where no prior knowledge
either about the interaction structure or about the blocks is available.
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1. Introduction

Global sensitivity analysis has broad applications in screening, interpre-
tation and reliability analysis [1, 2]. A well-established method is the esti-
mation of Sobol indices which quantify the influence of variables, or groups
of variables, on the variability of an output. First-order Sobol indices and
closed Sobol indices quantify the single influence of variables or groups of
variables [3]. Homma and Saltelli [4] introduced the total sensitivity index
which measures the influence of a variable jointly with all its interactions. If
the total sensitivity index of a variable is zero, this variable can be removed
because neither the variable nor its interactions — at any order — have an
influence. Thus the total sensitivity index can be used to detect the essential
variables, a procedure often called screening.

While screening is a first-order analysis, looking at single variables, we
now consider its extension to second-order analysis, by looking at pairs of
variables. By analogy with the total sensitivity index, we consider the so-
called total interaction index (TII), that measures the influence of a pair of
variables together with all its interactions. The TII is a particular case of
superset importance, a sensitivity index investigated in Hooker [5] and Liu
and Owen [6]. If the TII of a pair of variable {Xi, Xj} is zero, then there
is no interaction term containing simultaneously Xi and Xj, which leads to
the elimination of the pair {Xi, Xj} from the list of possible interactions. By
analogy with screening, this can be viewed as interaction screening. More
precisely this is second-order interaction screening, since we consider pairs of
variables.

The main benefit of TII is to discover groups of variables that do not
interact with each other, without knowing in advance the number of groups,
nor their size. To illustrate this, let us consider a short example. Consider
the following function , supposed to be unknown, which we want to analyze
based on a limited number of evaluations:

f(X1, . . . , X6) = cos([1, X1, X5, X3] β) + sin([1, X4, X2, X6] γ),

with Xk
i.i.d.∼ U [−1, 1], k = 1, . . . , 6, β = [−0.8,−1.1, 1.1, 1]′ and γ =

[−0.5, 0.9, 1,−1.1]. If we estimate the common first-order and total sensi-
tivity indices (Figure 1, left), we detect that all variables are active, on their
own as well as by interactions, but not which variables are involved in the
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interactions and by what amount. Now we estimate the TII for each combi-
nation of two variables. A convenient way to present the TII is by a graph,
where the thickness of the vertex circle represents the first-order index, and
the thickness of the edge between two vertices the TII of the two variables.
Now the interaction structure, here a partition into two groups, is clearly
visible (Figure 1, right).

This interaction structure corresponds to an additive structure of the
analyzed function. This can be advantageously exploited for metamodelling
(see [7]), and for optimization: The 6-dimensional optimization problem of
minimizing f simplifies into two 3-dimensional ones.
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Figure 1: Sensitivity analysis of the example experiment. First-order and total Sobol
indices (left), total interaction indices (right).

The aim of our paper is to investigate the TII, with a focus on statistical
inference. Our main result is the asymptotical efficiency [8] of the estimator
proposed by Liu and Owen [6]. The article is structured as follows. Section
2 presents theoretical results concerning the TII. Several estimation methods
are deduced (Section 3), and asymptotical properties of the method by Liu
and Owen are proved in Section 4. The question of estimating all the TIIs
with a given budget of function evaluations is studied in Section 5. Finally the
TII is used to recover the block-additive decomposition of a 12-dimensional
function. Throughout the paper a capital letter like Xi indicates a single
random variable where a lower case letter like xi indicates a realization of
the variable, e.g. a Monte Carlo random sample of the distribution of Xi. A
bold letter like X indicates a vector of variables.
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2. Theoretical aspects

2.1. A quick overview of FANOVA decomposition and Sobol indices

Assume a set of independent random variables X = {X1, . . . , Xd}, and
let ν denote the probability measure of X = (X1, ..., Xd). Then for any
function f ∈ L2(ν), the functional ANOVA decomposition provides a unique
decomposition into additive terms

f(X) = µ0 +
d∑

i=1

µi(Xi) +
∑
i<j

µi,j(Xi, Xj) + · · ·+ µ1,...,d(X1, . . . , Xd). (1)

The terms represent first-order effects (µi(Xi)), second-order interactions
(µi,j(Xi, Xj)) and all higher-order combinations of input variables. [9] show
that the decomposition is unique if all terms on the right hand side of (1)
have zero mean

E(µI(XI)) = 0, I ⊆ {1, . . . , d) , (2)

and the conditional expectations fulfill

E(µi,i′(XiXi′) | Xi) = E(µi,i′(XiXi′) | X ′i) = E(µi,i′,i′′(XiXi′Xi′′) | XiXi′)

= E(µ1,...,n(X1 . . . Xn) | X1 . . . Xn−1) = · · · = 0, (3)

which implies the orthogonality of all terms in (1).
Generally, due to the independence in X in our framework, the conditional
expectation of a functional reduces to

E(h(Xj, Xk) | Xj = xj) =

∫
h(xj, xk) dνk(xk).

The decomposition can be obtained by recursive integration

µ0 = E(f(X)),

µi(Xi) = E(f(X)|Xi)− µ0,

µi,j(Xi, Xj) = E(f(X)|Xi, Xj)− µi(Xi)− µj(Xj)− µ0,

and more generally

µI(XI) = E(f(X)|XI)−
∑
I′(I

µI′(XI′). (4)
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By computing the variance of (1), a variance decomposition is obtained
where each part quantifies the impact of the input variables on the response.

D = var(f(X)) =
d∑

i=1

var(µi(Xi)) +
∑
i<j

var(µi,j(Xi, Xj))

+ · · ·+ var(µ1,...,d(X1, . . . , Xd)).

The individual variances are widely used to define indices which quantify
the influence of input variables and their interactions. Divided by the overall
variance D they are known as Sobol indices [3]:

SI =
var(µI(XI))

D
=
DI

D
. (5)

In this paper we follow [5] and [6] and work with the unnormalized ver-
sions of the indices since the estimation of the overall variance is equal for all
methods that we will consider. There are several extensions to the indices
given in (5). The unnormalized total sensitivity index DT

I [4] of a group of
input variable XI , I ⊆ {1, . . . , d}, describes the total contribution of the
variables including all interactions of any order and is defined by the sum of
all partial variances containing at least one of the variables:

DT
I =

∑
J∩I 6=∅

DJ . (6)

Another way to describe the influence of a group of variables is the un-
normalized closed sensitivity index DC

I , see e.g. [3]. In contrast to total
sensitivity indices, interactions with variables not in XI are not included
here, but all effects caused by subsets of it. It is equal to the so-called
variance of the conditional expectation (VCE).

DC
I = var (E[f(X)|XI ]) =

∑
J⊆I

DJ . (7)

A way to calculate the closed sensitivity index, sometimes called pick-
and-freeze formula, is given by Sobol [3]:

DC
I = E[f(XI ,X−I)f(XI ,Z−I)]− µ2

0 (8)
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where −I denotes the relative complement of I with respect to {1, . . . , d},
Z−I is an independent copy of X−I , and µ0 = E(f(X)).

In Owen [10] two further ways to the closed sensitivity index are suggested
called ”‘Correlation 1”’ and ”‘Correlation 2”’. They avoid the subtraction of
µ2

0, and the corresponding Monte Carlo estimation attains a greater accuracy
for small values of the closed sensitivity indices. Up to two independent copies
of X−I are used, denoted by Y−I and Z−I :

DC
I = E(f(X) (f(XI ,Y −I)− f(Y ))) (9)

= E ((f(X)− f(ZI ,X−I)) (f(XI ,Y −I)− f(Y ))) . (10)

Finally, we obtain from (6) and (7) the well-known relation (see e.g. [11]):

D = DC
−I +DT

I (11)

and in particular, with the formula of total variance,

var(U) = E(var(U | V )) + var(E(U | V )),

one can deduce that the total sensitivity index relatively to I is equal to the
expectation of the conditional variance (ECV) relatively to the complemen-
tary subset −I:

DT
I = E (var[f(X)|X−I ]) . (12)

2.2. Total interaction indices

Next we aim at an index which measures the portion of variance of an
output explained by two input variables simultaneously, which we call total
interaction index (TII). It is equal to the second-order version of the more
general superset importance, which was introduced by Liu and Owen [6] for
uniform distributions (Υ2

u) as a measure of importance of interactions and
their supersets. It was also investigated in the data-mining framework by
Hooker [5] (σ2

u). It is defined for any subset u ⊆ {1, . . . , d} as

Υ2
u = σ2

u =
∑
I⊇u

DI .

The TII now is the special case for subsets of size two.
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Definition 1. With the notation and assumptions of Section 2.1, the total
interaction index Di,j of two variables Xi and Xj is defined by

Di,j := var

 ∑
I ⊇{i,j}

µI(XI)

 =
∑

I ⊇{i,j}

DI . (13)

The index can be interpreted analogously to DT
i , the total sensitivity index

of a single variable. Both give the total contribution of the subject – the
single variable or the pair of variables – to the output variance including all
higher interactions.

It is not difficult to see that the TII is connected to total sensitivity
indices, as well as to closed sensitivity indices:

Proposition 1. The following relations hold:

Di,j = DT
i +DT

j −DT
i,j, (14)

Di,j = D +DC
−{i,j} −DC

−i −DC
−j. (15)

Proof. (15) is deduced from (14) using (11). For (14), the proof comes from
the identity: ∑

I ⊇{i} or I ⊇{j}

DI =
∑
I ⊇{i}

DI +
∑
I ⊇{j}

DI −
∑

I ⊇{i,j}

DI .

As the TII is equal to the superset importance of a pair of indices, another
way of computation is given by

Proposition 2. (Liu and Owen [6])

Di,j =
1

4
E
[
f(Xi, Xj,X−{i,j})− f(Xi, Zj,X−{i,j})

−f(Zi, Xj,X−{i,j}) + f(Zi, Zj,X−{i,j})
]2

(16)

where Zi (resp. Zj) is an independent copy of Xi (resp. Xj).
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Proof. In addition to the proof given by Liu and Owen [6], we can give a
direct proof connecting (16) to (15). Indeed, when expanding (16), of the 10
resulting terms the 4 squared terms are simply equal to E(f(X)2) = D+µ2

0.
The 6 double products gather two by two, and can be computed using (8):

• E[f(Zi, Xj,X−{i,j})f(Zi, Zj,X−{i,j})]
= E[f(Xi, Xj,X−{i,j})f(Xi, Zj,X−{i,j})] = DC

−j + µ2
0

• E[f(Xi, Zj,X−{i,j})f(Zi, Zj,X−{i,j})]
= E[f(Xi, Xj,X−{i,j})f(Zi, Xj,X−{i,j})] = DC

−i + µ2
0

• E[f(Zi, Xj,X−{i,j})f(Xi, Zj,X−{i,j})]
= E[f(Xi, Xj,X−{i,j})f(Zi, Zj,X−{i,j})] = DC

−{i,j} + µ2
0

Finally, combining all the terms gives (15).

Furthermore, note that Liu and Owen’s formula (16) can be viewed as the
integration of the second-order interaction index of a 2-dimensional function,
obtained by fixing all variables except Xi, Xj. This result, proved below,
gives an alternative way to compute the TII, used in [7] and investigated
further in Section 3.

Proposition 3. (Fixing method). For any x−{i,j}, define ffixed as the 2-
dimensional function ffixed : (xi, xj) → f(x) obtained from f by fixing all
variables except xi and xj. Let D

i,j|X−{i,j}
denote the second-order inter-

action index of ffixed(Xi, Xj), which depends on the fixed variables X−{i,j}.
Then the TII of Xi and Xj is obtained by integrating D

i,j|X−{i,j}
with respect

to X−{i,j}:

Di,j = E
(
D

i,j|X−{i,j}

)
. (17)

Proof. Since the function ffixed is 2-dimensional, it has only one interaction,
which is a second-order one, and coincides with its TII. Hence, this interaction
can be computed by applying (16) to ffixed:

D
i,j|X−{i,j}

=
1

4
E [ffixed(Xi, Xj)− ffixed(Xi, Zj)− ffixed(Zi, Xj)

+ffixed(Zi, Zj)]
2 .
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Now one can rewrite the right hand side by using conditional expectations :

D
i,j|X−{i,j}

=
1

4
E
[[
f(Xi, Xj,X−{i,j})− f(Xi, Zj,X−{i,j})

−f(Zi, Xj,X−{i,j}) + f(Zi, Zj,X−{i,j})
]2 |X−{i,j}

]
. (18)

Taking the expectation gives the result.

3. Estimation methods

In this section, we treat different estimation methods for the computation
of the TII. The theoretical expressions (14), (15), and (16) suggest different
specific estimation methods. The first two ones rely respectively on RBD-
FAST and pick-and-freeze estimation methods. First the underlying FAST
method is quickly reviewed. Then these methods are presented together with
some remarks on their properties.

3.1. Review of FAST

The Fourier amplitude sensitivity test (FAST) by [12] is a quick method
for estimating first-order indices. Sample points of X are chosen such that
the indices can be interpreted as amplitudes obtained by Fourier analysis of
the function. More precisely the design of N points is such that

xi(sk) := Gi(sin(ωisk)), i = 1, . . . , d, k = 1, . . . , N, sk =
2π(k − 1)

N
,

with Gi functions to ensure that the sample points follow the distribution
of X. The set of integer frequencies {ω1, . . . , ωd} associated with the input
variables is chosen as ”free of interferences” as possible; free of interferences
up to the order M means that

∑p
i=1 aiωi 6= 0 for

∑p
i=1 |ai| ≤ M + 1 [13]. In

practice, M = 4 or M = 6. The Fourier coefficients for each variable can
then be numerically estimated by

Âω =
1

N

N∑
j=1

f(x(sj)) cos(ωsj),

B̂ω =
1

N

N∑
j=1

f(x(sj)) sin(ωsj),

9



and the first-order indices can be estimated by the sum of the corresponding
amplitudes up to the order M :

D̂i = 2
M∑
p=1

(Â2
pωi

+ B̂2
pωi

).

An estimate of the overall variance is given by the sum of all amplitudes

D̂ = 2

N/2∑
n=1

(Â2
n + B̂2

n). (19)

3.2. Estimation with RBD-FAST, via total sensitivity indices

The computation of a total sensitivity index of groups of variables is
possible with an RBD-FAST method. RBD-FAST is a group of modifications
of classical FAST which use random permutations of design points to avoid
interferences [14, 11]. To compute the RBD-FAST estimator of the total

sensitivity index of a group of variables D̂T
I , simple frequencies like ω =

{1, . . . , d} are assigned to the variables. Then N = 2(Md+L) design points
are generated over a periodic curve where M denotes the fix inference factor
(usually 4 or 6) and L(> 100) is a selectable integer number regulating the
sample size. The values of the factors in I are then randomly permuted
(either differently per factor or identically) and the model is evaluated at the
points. The total sensitivity index is estimated by

D̂T
I =

N

L

N/2∑
p=dM+1

(Â2
p + B̂2

p).

The estimator corresponding to (14) is then given by

D̂i,j = D̂T
i + D̂T

j − D̂T
i,j. (20)

3.3. Estimation with pick-and-freeze method, via closed sensitivity indices

It is also possible to compute closed sensitivity indices with an RBD-
FAST method, which is called hybrid version in Mara [11]. But, as in classical
FAST, frequencies that are free of interferences are needed. Here to apply
(15), the estimation of the closed index DC

−i is necessary which requires a
number of d−1 free of interference frequencies. Those frequencies are not easy
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to find, especially for high dimensions. Therefore Monte Carlo integration
is considered. Since the required closed indices, DC

−i and DC
i,j are expected

to be large, the pick-and-freeze method (8) is more suitable here than the
expression in (9). To obtain the closed sensitivity index of a group of variables
XI a large number (npf) of random numbers from the distribution of X is
sampled and another npf random numbers are sampled for the remaining
variables X−I . Denote by x∗k = (x∗kI , x

∗k
−I) and z∗k−I these two samples for

k = 1, . . . , npf. The closed sensitivity index of XI is then estimated by the
sample version of (8):

D̂C
I =

1

npf

npf∑
k=1

f(x∗kI ,x
∗k
−I)f(x∗kI , z

∗k
−I)− µ̂2

0, (21)

with

µ̂0 =

npf∑
k=1

f(x∗kI ,x
∗k
−I).

Consequently, with (15), the corresponding estimator for the TII is given
by

D̂i,j = D̂ + D̂C
−{i,j} − D̂C

−i − D̂C
−j, (22)

where D̂ is the estimation of the variance calculated by the sample variance
of (x∗kI ,x

∗k
−I). One may remark that the additional sampling required in

the pick-and-freeze method is quite economic here, since we only need the 2
additional samples z∗i , z

∗
j in Equation (21) for the computation of D̂C

−{i,j}, D̂
C
−i

and D̂C
−j.

3.4. Method by Liu and Owen

Liu and Owen suggest the estimation by Monte Carlo integration of the
integral in Proposition 3, similar to the closed sensitivity index estimation
in (21). Denote by xk and zk, k = 1, . . . , nLO, two independent samples of
length nLO drawn from ν. Then the TII is estimated by

D̂i,j =
1

4
× 1

nLO

nLO∑
k=1

[
f(xki , x

k
j ,x

k
−{i,j})− f(xki , z

k
j ,x

k
−{i,j})

−f(zki , x
k
j ,x

k
−{i,j}) + f(zki , z

k
j ,x

k
−{i,j})

]2
. (23)
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3.5. Positivity and bias of the estimators

With the indices being theoretically non-negative, the estimates should
also be non-negative. This holds in any case for the estimator by the method
by Liu and Owen (23), which is a sum of squares.

The three estimation methods differ in terms of bias.

The pick-and-freeze method estimator (22) is unbiased since only direct
Monte Carlo integrals (mean estimators) are used as estimators for the con-
ditional expectations.

In the method by Liu and Owen (23) the estimator is unbiased, too,
because of the direct Monte Carlo integration. This is especially remarkable
in combination with positivity. In particular, it implies that when the true
value is zero, the estimator is identically to zero as well, which holds indeed:

Proposition 4. If Di,j = 0, then the estimator is equal to zero: D̂i,j ≡ 0.

Proof. Let us consider the FANOVA decomposition of f (Section 2.1). If
Di,j = 0, then all the terms containing both xi and xj vanish. So the decom-
position reduces to

f(x) =
∑

i/∈I,j /∈I

µI(xi,x−{i,j}) +
∑

i∈I,j /∈I

µI(xi,x−{i,j}) +
∑

i/∈I,j∈I

µI(xj,x−{i,j})

:= a0(x−{i,j}) + ai(xi,x−{i,j}) + aj(xj,x−{i,j}).

Then the four terms in squared brackets in formula (23) add up to zero:

f(xki , x
k
j ,x

k
−{i,j})− f(xki , z

k
j ,x

k
−{i,j})− f(zki , x

k
j ,x

k
−{i,j}) + f(zki , z

k
j ,x

k
−{i,j})

= ai(x
k
i ,x

k
−{i,j})− ai(xki ,xk

−{i,j})− ai(zki ,xk
−{i,j}) + ai(z

k
i ,x

k
−{i,j})

+ aj(x
k
j ,x

k
−{i,j})− aj(zkj ,xk

−{i,j})− aj(xkj ,xk
−{i,j}) + aj(z

k
j ,x

k
−{i,j}) = 0

Tissot and Prieur [13] also mention a bias for RBD-FAST estimators
caused by a random noise in the signal coming from the sampled variables.
This bias might be even enhanced here through the use of a combination of
RBD-FAST estimators.
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Remark 1. Fixing method using 2-dimensional functions. Proposition 3 sho-
wed that the TII can be computed by averaging the second-order interaction
of 2-dimensional functions. As second-order interactions depend only on the
overall variance and the first-order effects, for which accurate estimators are
known, this suggests to estimate the TII based on them. More precisely, one
can use the following scheme, proposed in [7], which is a sample version of
the TII expression given in Proposition 3.

Let us consider a couple of integers (i, j), with i < j. For k = 1, . . . , nMC,
do:

1. Simulate xk−{i,j} from the distribution of X−{i,j}, that is take a single
sample of all variables except Xi and Xj,

2. Create the 2-dimensional function ffixed by fixing f on xk−{i,j}:

ffixed(Xi, Xj) = f(xk1, . . . , Xi, . . . , Xj, . . . , x
k
d),

3. Compute the second-order interaction index of ffixed, denoted D̂k

i,j|X−{i,j}
,

by removing the first-order indices from the overall variance.

Finally, compute the estimator

D̂i,j =
1

nMC

nMC∑
k=1

D̂k

i,j|X−{i,j}
. (24)

For step 3, the FAST method can be used, since the computation is both
quick, and returns a positive value provided that the frequency parameters
are free of interferences and that the number of FAST evaluations, denoted
nFAST, is large enough. In various analytical simulations the method showed
to be less accurate than the method by Liu and Owen and thus is not inves-
tigated further in this paper.

4. Asymptotic properties of the Liu and Owen estimator

In this section we consider the notion of asymptotical efficiency of van der
Vaart [8, Chapter 25], and we show that the Liu and Owen estimator (23)
is asymptotically efficient to estimate a single total interaction index.
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Recalling equation (23) we define the estimator for a pair of input variables
{Xi, Xj}:

Tn =
1

n

n∑
k=1

(
∆k

i,j

)2

4

with

∆k
i,j := f(Xk

i , X
k
j ,X

k
−{i,j})− f(Xk

i , Z
k
j ,X

k
−{i,j})− f(Zk

i , X
k
j ,X

k
−{i,j})

+ f(Zk
i , Z

k
j ,X

k
−{i,j}).

In what follows we assume that X and Z are independent random vectors
with probability measure ν and that the (∆k

i,j)
2 are square integrable.

Proposition 5. Tn is consistent for Di,j

Tn
a.s.−→

n→∞
Di,j

and asymptotically normally distributed

√
n (Tn −Di,j)

d−→
n→∞

N
(

0,
var[(∆1

i,j)
2]

16

)
.

Proof. The results are a direct application of the law of large numbers and
the central limit theorem, applied to the variables (∆k

i,j)
2.

Proposition 6. Tn is an asymptotically efficient estimator for Di,j.

Proof. Denote X k = (Xk
j , Z

k
j ,X

k
−{i,j}), Zk = Xk

i , Z ′k = Zk
i and let g be the

function defined over Rd × R by:

g(a, b) = f(b, a1, a3, . . . , ad)− f(b, a2, a3, . . . , ad)

Then we have
∆k

i,j = g(X k,Zk)− g(X k,Z
′

k).

Therefore

Tn =
1

n

n∑
k=1

Φ2(g(X k,Zk), g(X k,Z
′

k)),

14



and
Di,j = E(Φ2(g(X 1,Z1), g(X 1,Z

′

1))),

where Φ2 is the 2-dimensional function of R2:

Φ2(u, v) =
(u− v)2

4
.

Remark that Zk and Z ′k are independent copies of each other, both indepen-
dent of X k, and that Φ2 is a symmetric function. The result then follows
from Lemma 2.6 in Janon et al. [15], with the following change of notation

i← k, X ← X , Z ← Z, Z ′ ← Z ′ , f ← g.

We conclude this section by remarking that the two last propositions
extend to the general superset importance, including the case of the total
sensitivity index of one variable.

Proposition 7. Let ΥI =
∑

J⊇I DJ be the superset importance for a set I.
Define

TI,n =
1

n

n∑
k=1

(∆k
I )2

2|I|
,

with ∆k
I =

∑
J⊆I(−1)|I−J |f(Zk

J ,X
k
−J).

Then TI,n is asymptotically normal and asymptotically efficient for ΥI .

Proof. Note that TI,n is the sample version of the formula (10) given by
Liu and Owen [6] for ΥI (with suitable change of notations). The proof of
asymptotical normality is thus a direct consequence of central limit theo-
rem. For asymptotical efficiency, the proof relies on similar arguments than
Proposition 6:

• When I = {i} is a single variable, we have:

∆k
I = f(Zk

i ,X
k
−i)− f(Xk

i ,X
k
−i),

which is of the form g(X k,Zk) − g(X k,Z
′

k) with Zk = Zk
i , Z ′k = Xk

i ,
X k = Xk

−i, and g(a, b) = f(b,a).

15



• When |I| ≥ 2, let choose i ∈ I. Then, by splitting the subsets of I into
two parts, depending whether they contain {i}, we have:

∆k
I =

∑
J⊆I−{i}

(−1)|I−J |f(Zk
J ,X

k
−J)

+
∑

J⊆I−{i}

(−1)|I−(J∪{i})|f(Zk
J∪{i},X

k
−(J∪{i}))

=
∑

J⊆I−{i}

(−1)|I−J |f(Zk
J , X

k
i ,X

k
−(J∪{i}))

−
∑

J⊆I−{i}

(−1)|I−J |f(Zk
J , Z

k
i ,X

k
−(J∪{i})),

which is also of the form g(X k,Zk)− g(X k,Z
′

k) with Zk = Xk
i , Z ′k =

Zk
i , X k = (Xk

I−{i},Z
k
I−{i},X

k
−I), and a suitable g, since the second

term in the difference is obtained from the first one by exchanging Xk
i

and Zk
i .

The results then derives by applying Lemma 2.6 in Janon et al. [15] to the

symmetric function Φ2(u, v) = (u−v)2

2|I|
, remarking that Zk and Z ′k are inde-

pendent copies of each other, both independent of X k.

5. Estimating the full set of TIIs and application

5.1. Estimating the full set of TIIs

In the previous section, we proved the asymptotical efficiency of the Liu
and Owen estimator to estimate a single TII. However, in practice one often
needs to estimate the full set of d(d−1)

2
TIIs corresponding to all pairs of d

influential variables. In that case, the strategies that reuse computations are
helpful, as shown by Saltelli [16] about closed and total sensitivity indices.
Such a strategy is possible for the TIIs with the pick-and-freeze method (22):

Proposition 8. Given two samples of size n drawn independently from the
distribution of (X1, . . . , Xd), it is possible to compute at the cost of n(d+ 1)
function evaluations one estimate by the pick-and-freeze method for all

(
d
2

)
TIIs. Furthermore:
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• The same function evaluations can be used to give an estimate of the
full set of total sensitivity indices.

• With an extra cost of n function evaluations, one can obtain in addition
an estimate of the full set of first-order sensitivity indices.

Proof. From Equation (15), one needs to estimate µ0 and all the DC
−i and

DC
−{i,j} for 1 ≤ i < j ≤ d. Now choose the pick-and-freeze method for

estimation, and denote by f the function to evaluate and x∗k, z∗k the two
samples (1 ≤ k ≤ n). Then from Equation (8), all the DC

−i can be estimated
by computing f(x∗k) and the f(z∗ki ,x

∗k
−i), 1 ≤ i ≤ d. These n(d+1) numbers

are enough to give an estimate of µ0, but also of all the DC
−{i,j}, as remarked

by Saltelli [16]. This is because one can exchange Xi and Zi independently
of the other variables in Equation (8):

DC
−{i,j} + µ2

0 = E[f(Xi, Xj,X−{i,j})f(Zi, Zj,X−{i,j})]

= E[f(Zi, Xj,X−{i,j})f(Xi, Zj,X−{i,j})]

The total sensitivity indices are obtained at the same time, thanks to Equa-
tions (11) and (5). The last part of the proposition is a direct consequence
of Saltelli [16], Theorem 1, and Equations (11) and (15).

Remark 2. Such strategy does not seem possible for the Liu and Owen es-
timator that requires in addition the evaluation of the

(
d
2

)
f(zi, zj,x−i,j

(k)),

for a total cost of n
((

d
2

)
+ d+ 1

)
.

The performance of the estimators presented in Section 3 is now studied
in analytical simulations. We consider a global budget of function evaluations
N , granted to estimate all the TII. The parameters for each method are cho-
sen in order to matchN , since this is supposed to be the most time-consuming
part, especially for functions with high complexity. Table 1 summarizes the
relation between parameter settings and N . For RBD-FAST, when M is
fixed (e.g. M = 6) then N is determined only by L.

5.1.1. Test functions

In order to study the estimators’ performances in different situations we
consider three functions with different interaction structures. The first func-
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Estimation method Number of function evaluations

RBD-FAST N =
((

d
2

)
+ d
)
× 2(Md+ L)

Pick-and-freeze N = (d+ 1)× npf

Liu and Owen N = (
(
d
2

)
+ d+ 1)× nLO

Table 1: Number of function evaluations for the three estimators (20), (22) and (24).

tion function 1 is defined by

g(X1, X2, X3, X4) = sin(X1 +X2) + 0.4 cos(X3 +X4),

Xk
i.i.d.∼ U [−1, 1], k = 1, 2, 3, 4.

Its interactions are visibly not higher than second-order, a common situation.
As a contrast, the extreme case of a single third-order interaction is applied
in function 2 :

g(X1, X2, X3) = X1X2X3, Xk
i.i.d.∼ U [−1, 1], k = 1, 2, 3.

As a mixed case the popular g-function [17] is chosen. It is defined by

g(X1, . . . , Xd) =
d∏

k=1

|4Xk − 2|+ ak
1 + ak

, ak ≥ 0,

Xk
i.i.d.∼ U [0, 1], k = 1, . . . , d.

We choose d = 6 and a = (0, 0, 0, 0.4, 0.4, 5)′ to create a function that con-
tains high interactions. This is demonstrated by the fact that, analytically,
the overall variance with D = 3.27522 is much greater than the sum of first
and second-order indices equal to 2.06419. For the number of function evalu-
ations we choose around 5 000 evaluations per index (in total N =

(
d
2

)
×5 000)

and thus set the parameters L, npf, and nLO according to Table 1. We esti-
mate each index 100 times for all three methods. Calculations are conducted
using the R package fanovaGraph (see section Acknowledgements and sup-
plementary material). The results can be seen in Figure 2.

5.1.2. Discussion

As expected in Section 3.5, negative results are observed for RBD-FAST
and the pick-and-freeze method, but not for the method by Liu and Owen.
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Figure 2: Estimates of the TII by the three estimators (20), (22), and (23) for test functions
1 (top left), 2 (top right) and g-function (bottom).

The RBD-FAST estimates show a small variance and seem to be unbiased
for function 1. But with the presence of higher-order interactions in function
2 and g-function, estimates are severely biased. One reason for this might
be the bias for RBD-FAST methods described in Section 3.5.
The estimates by pick-and-freeze method on the other hand appear to be
unbiased, but with a larger variance, resulting from the underlying crude
Monte Carlo integration.
The method by Liu and Owen performs well in terms of bias as expected
from Section 3.5. Its variance is very low for function 1, higher for function
2 and varies for the g-function. We observe that the variance is higher
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when the pair of variables in question {Xi, Xj} is part of interactions of
a higher order than second-order. The reason for this lies in the variance
of the estimates D̂k

i,j|X−{i,j}
in the fixing method (17). For second-order

interactions those estimates do not depend on the fixed values X−{i,j} and
thus vary only slightly, while for higher interactions the estimates should
differ with the fixed variables included in the interaction. While this means
that the accuracy of the method by Liu and Owen strongly depends on the
interaction situation, it is still here the best of the estimation methods. This
is especially remarkable as the number of Monte Carlo samples nLO is much
lower than for the pick-and-freeze method, e.g. in dimension 6 it is more than
3 times lower. Moreover the methods’ estimates have the desirable property
of having a very low variance for total interaction indices that are close to zero
(they are even exactly zero for inactive indices as mentioned in Section 3.5).
That means that the method by Liu and Owen enables a precise detection of
inactive interactions, an important task for interaction screening.
Finally notice that the pick-and-freeze method may take advantage of the
recycling strategy when the number of influential variables d is larger: Its
global computational cost is only linear with respect to d.

In simulation studies performed in higher dimensions, however, we did
not observe a general superiority of the pick-and-freeze method. This may
be due to the fact that after [6] “it is numerically better to average squared
differences than to take a difference of large squared quantities”. Here the
pick-and-freeze method is indeed taking a linear combination of 4 potentially
large squared quantities (15).

5.2. Example of application

In many phenomena it is not rare, that some groups of input variables
have a separate influence on the output. In that case, the function of interest
is decomposed as a sum of lower dimensional terms. In this section, we illus-
trate how the TII can be used to recover such decomposition. For instance,
let us consider a function:

f(X1, . . . , X12) =
1

10
(1.3X1 + 0.7X2)(0.7X3 + 1.2X1)

+
1

2
sin(10(1.3X2 + 0.8X4 + 1.2X5 + 1.4X6))

+
2.1X7 + 1.3X8 + 0.8X9

5|X7|+ 1
+

1

100
(X10 +X11 +X12) ,
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with Xk
i.i.d.∼ U [−π, π], k = 1, . . . , 12. It consists of three larger addi-

tive terms, two of them intersect in X2, and three nearly inactive variables
X10, X11, X12. Our aim is to recover the decomposition of f into the additive
parts. First we estimate the first-order and total sensitivity indices by FAST
(section 3.1). The results, normalized by the overall variance for comparison
purpose, can be seen in Figure 3 on the left. The values for total sensitiv-
ity indices are all very high, so that no variable can be removed. The large
differences between standard and total sensitivity indices indicate a strong
interaction structure in the function, but the nature of the structure cannot
be read from it.

Therefore, in the next step, we estimate total interaction indices. We
choose the method by Liu and Owen for estimation, but the pick-and-freeze
method is another reasonable choice, giving similar results. A nice way to vi-
sualize the estimated interaction structure is the so called FANOVA graph [7].
In the graph, each vertex represents one input variable and an edge between
two vertices indicates the presence of second or higher-order interactions be-
tween the variables. Figure 3 on the right shows the FANOVA graph for
the application example. The thickness of the edges is proportional to the
TII and in addition the thickness of the circles around vertices indicates the
first-order indices. The three additive parts are clearly visible, as well as the
intersection in X2. The nearly inactive variables can be detected as single
thin vertices.

6. Conclusion

We considered the problem of analyzing the interaction structure of a
multivariate function, possibly containing high-order interactions. For this
purpose, we investigated the total interaction index (TII), defined as the su-
perset importance of a pair of variables. The TII generalizes variable screen-
ing, usually conducted with the total sensitivity index, to interactions, and
can be used to discover additive structures.

First, we gave several theoretical expressions of the TII, including con-
nections to total and closed sensitivity indices, and an interpretation as an
average of the second-order interaction of a 2-dimensional function obtained
by fixing the original one (“fixing method”). The Liu and Owen’s [6] formula
can be viewed this way.

Then we focused on statistical inference, and considered three estimators
deduced from the aforementioned expressions: RBD-FAST, pick-and-freeze
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Figure 3: On the left: First-order indices (white) and total sensitivity indices (gray)
of the application example, estimated by FAST. On the right: FANOVA-graph for the
application example. The thickness of the circles around the vertices represents first-order
indices, the thickness of the edges represents total interaction effects.

method and the method by Liu and Owen. We proved that the latter has
good properties to estimate a single TII: It is both unbiased and positive,
and asymptotically efficient. Its asymptotical normality was also derived.

Furthermore, we addressed the question of estimating the full set of TIIs
with a given budget of function evaluations. In this case, the pick-and-
freeze method can give estimates at a linear cost with respect to the problem
dimension, while quadratic for the others. However, this is balanced by the
lesser accurate estimate, built as a difference of 4 potentially large squared
quantities. We investigated the question in an empirical study, showing in
particular some results in dimensions up to 6. We observed that the RBD-
FAST estimator could not be trusted, revealing an unpredictable strong bias
with some functions. The method by Liu and Owen gave the best results,
even in 6 dimensions taking around three times less function evaluations
per index than the pick-and-freeze method for the same number of overall
evaluations. In larger dimensions, our experience is that the method by Liu
and Owen is still a good competitor.

Finally, we illustrated how the detection of inactive total interactions can
be used to recover the decomposition of a complex function by identifying
the groups of input variables that have a separate influence on it, without
any prior knowledge about the groups. Here the indices were also used to
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graphically visualize the interaction structure of the function.

Supplementary material

The estimation methods as well as FANOVA graphs have been imple-
mented in the R package fanovaGraph (version 1.4), published on the official
R website (CRAN). We thank T. Muehlenstaedt for a useful first version of
the code, and U. Ligges and O. Mersmann for their relevant advice about
programming.
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