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Abstract

We consider the problem of investigating the interaction structure of a multi-
variate function, possibly containing high order interactions, through variance-
based indices. By analogy with the total index, used to detect the most in-
fluential variables, a screening of interactions can be done efficiently with the
so-called total interaction index (TII), defined as the superset importance of
a pair of variables. It examines the interaction structure much faster and
more thorough then current methods which face the curse of dimensionality.
Our aim is to investigate the TII. At the theoretical level, it is connected
to total and closed indices, and it is shown that the TII is obtained by av-
eraging the second order interaction of a 2-dimensional function obtained
by fixing the original one. We then present several estimation methods and
prove the asymptotical efficiency of an estimator from Liu and Owen (2006).
Its superiority is also confirmed empirically. Finally, an application is given
to recover a block-additive structure of a function, without knowledge about
the interaction orders nor about the blocks.
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1. Introduction

Global sensitivity analysis has broad applications for screening, interpre-
tation and reliability analysis [1, 2]. A common method is the estimation
of sensitivity indices which quantify the importance of an input, or a group
of variables, for the behavior of an output variable. First-order indices and
closed indices are used to quantify the influence of variables or groups of
variables [3]. Homma and Saltelli [4] introduced total indices which quantify
the influence of a variable and its interactions and can be used for variable
screening: If the total index of a variable is zero, this variable can be re-
moved because neither the variable nor its interactions (at any order) have
an influence.

Though the total index of a variable gives information on the interactions
it is involved with, the index does not say which of the other variables be-
long to these interactions and in what scale they do. In practice, less effort
is done to investigate this interaction structure. For instance, the detection
of active interactions - or interaction screening - is often limited to second
order ones. One technical reason is that the interactions of higher orders are
defined by recursion, depending on the smaller orders ones. Their compu-
tation then faces the curse of dimensionality [5]. It is also often advocated
that the assumption ’second-order interactions only’ is reasonable. However,
the investigation of complex phenomena is spreading, and it is desirable to
deal with the situation where this assumption is not, or partially, valid.

Among the advantages of screening interactions is the possibility to vi-
sualize them with a graph and to recover block-additive structures from it,
as pointed out by Hooker [6], or Muehlenstaedt et al. [7] in the context of
computer experiments. This is especially useful for optimization (since it sep-
arates into lower dimensional problems) as well as in metamodelling (since
the kernel structure can be chosen accordingly).

By analogy with the total index, used to detect the most influential vari-
ables, interaction screening can be done with the so-called total interaction
index (TII), defined as the superset importance (Liu and Owen [8]) of a pair
of variables. The TII of a pair of variables {Xi, Xj} is thus defined as the
variance of an output explained by the two variables Xi and Xj simultane-
ously. In the usual case of independent inputs, it corresponds to the sum
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of their (unnormalized) second order interactions and all higher interactions
containing both Xi and Xj. If the index is zero, there are no interactions at
any order between Xi and Xj, and the pair {Xi, Xj} can be removed from
the list of interactions, in a similar way as one can remove a variable if the
total index is zero. Remark, however, that removing an interaction does not
remove the individual variables.

Once defined, it is worth noting that the TII can be computed in an ac-
ceptable numerical cost comparable to the costs for pure second order indices,
and thus does not face the curse of dimensionality. Our aim is to investi-
gate the total interaction index. At theoretical level, the TII is connected
to the total indices of a pair of variables, which is the portion of variance
explained by at least one variable in a pair. This induces an immediate con-
nection to closed effects of groups of variables as well. Furthermore, we show
that the TII is obtained by integrating out the second order interaction of
a 2-dimensional function obtained by fixing the original one. The estimator
proposed by Liu and Owen [8] can be interpreted this way. This property
also links TII to the indices introduced in Muehlenstaedt et al. [7]. From
that study, we compare several estimation procedures, some of them relying
on the new developments of FAST (Cukier et al. [9]) and RBD-FAST (Mara
[10]) techniques. The main result is that the estimator proposed by Liu and
Owen is asymptotically normal and efficient. An empirical comparison of
the estimation methods confirms its superiority, assuming an equal number
of functions evaluations.

Throughout the paper a capital letter like Xi indicates a single random
variable where a lower case letter like xi indicates a realisation of the variable,
e.g. a Monte Carlo random sample of the distribution of Xi. A bold letter like
X indicates a vector of variables. The paper is structured as follows. Section
2 presents the main theoretical results concerning the TII, after giving a quick
overview of FANOVA decomposition and Sobol indices. Then in Section 3,
several estimation methods are deduced, and compared empirically in Section
4. The asymptotical properties of the Liu and Owen estimator are proved
in section 5. In Section 6 the index introduced in Muehlenstaedt et al. [7] is
examined and compared empirically. Finally in Section 7, the TII are used
to recover the block-additive decomposition of a 6-dimensional function as a
sum of two 3-dimensional ones.
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2. Theoretical aspects

2.1. A quick overview of FANOVA decomposition and Sobol Indices

Assume that the input factors X1, . . . , Xd are independent random vari-
ables, and let ν denote the probability measure of X = (X1, ..., Xd). Then
for any function f ∈ L2(ν), the functional ANOVA decomposition provides
a unique decomposition into additive terms

f(X) = µ0 +
d∑

i=1

µi(Xi) +
∑
i<j

µij(Xi, Xj) + · · ·+ µ1,...,d(X1, . . . , Xd).

The terms represent main effects (µi(Xi)), second-order interactions (µij(Xi, Xj))
and all higher combinations of input variables. For uniqueness of the decom-
position two conditions have to hold [11]:

E(µI(XI)) = 0, I ⊆ {1, . . . , d) (1)

and
E(µii′(XiXi′) | Xi) = E(µii′i′′(XiXi′Xi′′) | XiXi′) = · · · = 0. (2)

From (1) and (2) it follows that

E(µI(XI)µI′(XI′)) = 0, I 6= I ′. (3)

The decomposition can be obtained by recursive integration:

µ0 = E(f(X)),

µi(Xi) = E(f(X)|Xi)− µ0,

µij(Xi, Xj) = E(f(X)|Xi, Xj)− µi(Xi)− µj(Xj)− µ0

and more generally

µI(XI) = E(f(X)|XI)−
∑
I′(I

µI′(XI′). (4)

By computing the variance, an ANOVA-like variance decomposition is
obtained where each part quantifies the impact of the input variables on the
response.
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D = var(f(X)) = var(µ0) +
d∑

i=1

var(µi(Xi)) +
∑
i<j

var(µij(Xi, Xj))

+ · · ·+ var(µ1,...,d(X1, . . . , Xd)).

Those variances are widely used as indices for the influence of input vari-
ables and their interactions (Sobol indices). In this paper we only look at
the variances and ignore the usual normalizing by the overall variance (D)
for the sake of simplicity.

DI = var(µI(XI)). (5)

There are several extensions to the standard Sobol indices as given in (5).
The total effect index DT

i [2] of a single input variable Xi describes the total
contribution of the variable including all interactions and is defined by the
sum of all indices containing i:

DT
i =

∑
J ⊇{i}

DJ .

It is straightforward to extend this index to groups of variables XI , for
any I ⊆ {1, . . . , d}, by the sum of all indices containing at least one of the
variables:

DT
I =

∑
J

J∩I 6=∅

DJ . (6)

Another way to describe the influence of a group of variables is the closed
index DC

I , see e.g. [10]. In contrast to total indices, interactions with vari-
ables not in XI are not included here, but all effects caused by subsets of
it. It is equal to the so-called variance of the conditional expectation (VCE)
and for main effects it matches with the standard Sobol index.

DC
I = var (E[f(X)|XI ]) =

∑
J⊆I

DJ . (7)

A way to compute the closed index was given by Sobol [3]:

DC
I = E[f(XI , X−I)f(XI , Z−I)]− µ2

0. (8)
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where −I denotes the complementary subset to I (−I = {1, . . . , d} \I), Z−I
is an independent copy of X−I , and µ0 = E(f(X)).

Finally, we obtain from (6) and (7) the well-known relation (see e.g. [10]):

D = DC
−I +DT

I (9)

and in particular, with the formula of total variance, one can deduce that
the total index relatively to I is equal to the expectation of the conditional
variance (ECV) relatively to the complementary subset −I:

DT
I = E (var[f(X)|X−I ]) . (10)

2.2. Total interaction indices

Next we aim at an index which measures the portion of variance of an
output explained by two input variables simultaneously, which we then call
total interaction index.

Definition 1. With the notations and assumptions of section 2.1, the total
interaction index Dij of two variables Xi and Xj is defined by:

Dij := var

 ∑
I ⊇{i,j}

µI(XI)

 =
∑

I ⊇{i,j}

DI . (11)

The index equals the superset importance, introduced by Liu and Owen [8],
for the pair of indices (Xi, Xj), which aims to give a measure of importance
of interactions and their supersets.

It is not difficult to see that the TII is connected to total indices, as well as
closed indices:

Proposition 1. The following relations hold:

Dij = DT
i +DT

j −DT
i,j (12)

Dij = D +DC
−{i,j} −DC

−i −DC
−j (13)
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Proof. (13) is deduced from (12) using (9). For (12), the results come from
the identity: ∑

I ⊇{i} or I ⊇{j}

DI =
∑
I ⊇{i}

DI +
∑
I ⊇{j}

DI −
∑

I ⊇{i,j}

DI .

As the TII is equal to the superset importance of a pair of indices, another
way of computation is given by:

Proposition 2. (Liu and Owen [8])

Dij =
1

4
E
[
f(Xi, Xj, X−{i,j})− f(Xi, Zj, X−{i,j})

−f(Zi, Xj, X−{i,j}) + f(Zi, Zj, X−{i,j})
]2
. (14)

where Zi (resp. Zj) is an independent copy of Xi (resp. Xj).

Proof. In addition to the proof given by Liu and Owen [8], we can give a
direct proof connecting (14) to (13). Indeed, when expanding (14), of the 10
resulting terms the 4 squared terms are simply equal to E(f(X)2) = D+µ2

0.
The 6 double products gather two by two, and can be computed using (8):

• E[f(Zi, Xj, X−{i,j})f(Zi, Zj, X−{i,j})]
= E[f(Xi, Xj, X−{i,j})f(Xi, Zj, X−{i,j})] = DC

−j + µ2
0

• E[f(Xi, Zj, X−{i,j})f(Zi, Zj, X−{i,j})]
= E[f(Xi, Xj, X−{i,j})f(Zi, Xj, X−{i,j})] = DC

−i + µ2
0

• E[f(Zi, Xj, X−{i,j})f(Xi, Zj, X−{i,j})]
= E[f(Xi, Xj, X−{i,j})f(Zi, Zj, X−{i,j})] = DC

−i,j + µ2
0

Finally, combining all the terms gives (13).

Furthermore, it is interesting to remark that Liu and Owen’s formula (14)
can be viewed as the integration of the second order interaction index of a
2-dimensional function, obtained by fixing all variables except Xi, Xj. This
result, proved below, gives an alternative way to compute the TII, used in
[7] and investigated further in Section 6.
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Proposition 3. (Fixing method). For any x−{i,j}, define ffixed as the 2-
dimensional function ffixed : (xi, xj) → f(x) obtained from f by fixing all
variables except xi and xj. Let Di,j|X−{i,j} denote the second order inter-
action index of ffixed(Xi, Xj), which depends on the fixed variables X−{i,j}.
Then the TII of Xi and Xj is obtained by integrating Di,j|X−{i,j} with respect
to X−{i,j}:

Dij = E
(
Di,j|X−{i,j}

)
. (15)

Proof. Since the function ffixed is 2-dimensional, it has only one interaction,
which is a second order one, and coincides with its TII. Hence, this interaction
can be computed by applying (14) to ffixed:

Di,j|X−{i,j} =
1

4
E [ffixed(Xi, Xj)− ffixed(Xi, Zj)− ffixed(Zi, Xj) + ffixed(Zi, Zj)]

2

Now one can rewrite the right hand side by using conditional expectations :

Di,j|X−{i,j} =
1

4
E
[[
f(Xi, Xj, X−{i,j})− f(Xi, Zj, X−{i,j})

−f(Zi, Xj, X−{i,j}) + f(Zi, Zj, X−{i,j})
]2 |X−{i,j}] . (16)

Taking the expectation gives the result.

3. Estimation methods

In this section, we treat different estimation methods for the computation
of the TII. The theoretical expressions (12), (13), and (14) suggest different
specific estimation methods. The first two ones rely respectively on RBD-
FAST and Sobol estimation methods. First the underlying FAST method
is quickly reviewed. Then these methods are presented together with some
remarks on their properties.

3.1. Review of FAST

The Fourier amplitude sensitivity test (FAST) by [9] is a very efficient
method to estimate first order Sobol indices. Sample points of X are chosen
such that the indices can be interpreted as amplitudes obtained by Fourier
analysis of the function. More precisely the design of N points is such that

x
(k)
i := Gi(sin(ωisk)), i = 1, . . . , d, k = 1, . . . , N, sk =

2π(k − 1)

N
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with Gi functions to ensure that the sample points follow the distribution
of X. The set of integer frequencies {ω1, . . . , ωd} associated to the input
variables is chosen as ”free of interferences” as possible; free of interferences
up to the order M means that

∑p
i=1 aiωi 6= 0 for

∑p
i=1 |ai| ≤ M + 1 [12]. In

practice, M = 4 or M = 6.
The Fourier coefficients for each variable can then be numerically esti-

mated by

Âω =
1

N

N∑
j=1

f(x(sj)) cos(ωsj),

B̂ω =
1

N

N∑
j=1

f(x(sj)) sin(ωsj),

and the main effects’ indices can be estimated by the sum of the correspond-
ing amplitudes up to the order M :

D̂i = 2
M∑
p=1

(Â2
pωi

+ B̂2
pωi

).

An estimate of the overall variance is given by the sum of all amplitudes

D̂ = 2

N/2∑
n=1

(Â2
n + B̂2

n). (17)

3.2. The three estimators

3.2.1. Estimation with RBD-FAST, via total indices

The computation of a total index of groups of variables is possible with
an RBD-FAST method. RBD-FAST is a group of modifications of classical
FAST which use random permutations of design points to avoid interferences
[10]. To compute the RBD-FAST estimator of the total index of a group

of variables D̂T
I simple frequencies like ω = {1, . . . , d} are assigned to the

variables. Then N = 2(Md+ L) design points are generated over a periodic
curve where M denotes the fix inference factor (usually 4 or 6) and L(> 100)
is a selectable integer number regulating the sample size. The values of the
factors in I are then randomly permuted (either differently per factor or
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identically) and the model is evaluated at the points. The total index is
estimated by

D̂T
I =

N

L

N/2∑
p=dM+1

(Â2
p + B̂2

p).

The estimator corresponding to (12) is then given by:

D̂ij = D̂T
i + D̂T

j − D̂T
{i,j}. (18)

3.2.2. Estimation with Sobol method, via closed indices

It is also possible to compute closed indices with an RBD-FAST method,
which is called hybrid version in Mara [10]. But, as in classical FAST, fre-
quencies that are free of interferences are needed. Here to apply (13), the
estimation of the closed index DC

−i is necessary which requires a number of
d − 1 free of interference frequencies. Those frequencies are, especially for
high dimensions, not easy to find. Therefore an alternative way to get closed
indices, Monte Carlo integration [3], is considered. To obtain the closed in-
dex of a group of variables XI a large number (nSobol) of random numbers
from the distribution of X is sampled and another nSobol random numbers
are sampled for the remaining variables X−I . Denote by x∗k = (x∗kI , x

∗k
−I) and

z∗k−I these two samples for k = 1, . . . , nSobol. The closed index of XI is then
estimated by the sample version of (8):

D̂C
I =

1

nSobol

nSobol∑
k=1

f(x∗kI , x
∗k
−I)f(x∗kI , z

∗k
−I)− µ̂2

0 (19)

with

µ̂0 =

nSobol∑
k=1

f(x∗kI , x
∗k
−I).

Consequently, with (13), the corresponding estimator for the TII is given
by

D̂ij = D̂ + D̂C
−{i,j} − D̂C

−i − D̂C
−j, (20)

where D̂ is the estimation of the variance calculated by the sample variance
of (x∗kI , x

∗k
−I). One may remark that the additional sampling required in the

Sobol method is quite economic here, since we only need the 2 additional
samples z∗i , z

∗
j in Equation (19) for the computation of D̂C

−{i,j}, D̂
C
−i and D̂C

−j.
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3.2.3. Fixing method by Liu and Owen

Liu and Owen suggest the estimation by Monte Carlo integration of the
integral in proposition 3, similar to the closed index estimation in (19). De-
note by xk and zk, k = 1, . . . , nLO two independent samples of length nLO

drawn from ν. Then the TII is estimated by

D̂ij =
1

4
× 1

nLO

nLO∑
k=1

[
f(xki , x

k
j , x

k
−{i,j})− f(xki , z

k
j , x

k
−{i,j})

−f(zki , x
k
j , x

k
−{i,j}) + f(zki , z

k
j , x

k
−{i,j})

]2
. (21)

3.3. Some properties of the three estimators

3.3.1. Positivity

With the indices being theoretically non-negative, also the estimates
should be non-negative. This applies in any case for the estimator by the
fixing method by Liu and Owen (21), which is a sum of squares.

3.3.2. Bias

The three estimation methods differ in terms of bias.

Sobol method (20). The Sobol method estimator is unbiased since only di-
rect Monte Carlo integrals (mean estimators) are used as estimators for the
conditional expectations.

Fixing method by Liu and Owen (21). Here too the estimator is unbiased
because of the direct Monte Carlo integration. This is especially remarkable
in combination with the positivity. In particular, it implies that when the
true value is zero, the estimator is identically zero, which is indeed true:

Property. If Di,j = 0, then the Liu and Owen estimator is identically equal

to zero: D̂i,j ≡ 0.

Proof. Let us consider the FANOVA decomposition of f (Section 2.1). If
Di,j = 0, then all the terms containing both xi and xj vanish. So the decom-
position reduces to:

f(x) =
∑

i/∈I,j /∈I

µI(xi, x−{i,j}) +
∑

i∈I,j /∈I

µI(xi, x−{i,j}) +
∑

i/∈I,j∈I

µI(xj, x−{i,j})

:= a0(x−{i,j}) + ai(xi, x−{i,j}) + aj(xj, x−{i,j}).
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Then the four terms in squared braced in formula (21) add up to zero:

f(xki , x
k
j , x

k
−{i,j})− f(xki , z

k
j , x

k
−{i,j})− f(zki , x

k
j , x

k
−{i,j}) + f(zki , z

k
j , x

k
−{i,j})

= ai(x
k
i , x

k
−{i,j})− ai(xki , xk−{i,j})− ai(zki , xk−{i,j}) + ai(z

k
i , x

k
−{i,j})

+ aj(x
k
j , x

k
−{i,j})− aj(zkj , xk−{i,j})− aj(xkj , xk−{i,j}) + aj(z

k
j , x

k
−{i,j}) = 0

RBD-FAST (18). [12] also mention a bias for RBD-FAST estimators caused
by a random noise in the signal coming from the sampled variables. This bias
might be even enhanced here through the use of a combination of RBD-FAST
estimators.

4. Numerical Tests

The performance of the estimators shall be studied empirically here. The
parameters for each method are chosen in order to match the number of
function evaluations N , since this is supposed to be the most time-consuming
part, especially for functions with high complexity. We refer to table 1 for the
relation between parameter settings and N within each of the three methods.
For the Sobol method the first factor in the MC integration (19) is evaluated
only once for all index calculations to keep N low. The +1 in the formula
is due to that fact (where d is due to the first and

(
d
2

)
to the second order

indices). When we fix M (e.g. M = 6) then for RBD-FAST N is determined
only by L and for Sobol method only by nSobol. The fixing method by Liu and
Owen needs four function evaluations according to the four terms in the sum
for each index for each Monte Carlo sample.

method number of function evaluations

RBD-FAST N = 2(Md+ L)×
((

d
2

)
+ d
)

Sobol method N =
((

d
2

)
+ d+ 1

)
× nSobol

Fixing method by Liu and Owen N = 4×
(
d
2

)
× nLO

Table 1: Number of function evaluations for the three estimators (18), (20) and (22).
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4.1. Test functions

In order to study the estimators’ performances in different situations we
consider three functions with different interaction structures. The first func-
tion (function 1 ) is defined by

g(X1, X2, X3, X4) = sin(X1+X2)+0.4 cos(X3+X4), Xk
i.i.d.∼ U [−1, 1], k = 1, 2, 3, 4.

Its interactions are visibly not higher than second order, a common situation.
As a contrast, the extreme case of a pure third order interaction is applied
in function 2 :

g(X1, X2, X3) = X1X2X3, Xk
i.i.d.∼ U [−1, 1], k = 1, 2, 3.

As a mixed case the popular g-function [13] is chosen. It is defined by

g(X1, . . . , Xd) =
d∏

k=1

|4Xk − 2|+ ak
1 + ak

, ak ≥ 0, Xk
i.i.d.∼ U [0, 1], k = 1, . . . , d.

We choose d = 6 and a = (0, 0, 0, 0.4, 0.4, 5)′ to create a function that con-
tains high interactions. This is demonstrated by the fact that, analytically,
the overall variance with D = 3.27522 is much greater than the sum of first
and second-order indices with 2.06419. For the number of function evalua-
tions we choose around 5 000 evaluations per index (in total: N =

(
d
2

)
×5 000)

and thus set the parameters L, nSobol, and nLO according to table 1. We esti-
mate each index 100 times for all three methods. Calculations are conducted
using the R package fanovaGraph (see section Acknowledgements and sup-
plementary material). The results can be seen in figure 1.

4.2. Discussion

As expected in section 3.3.1, negative results can be observed by RBD-
FAST and the Sobol method, but not by the Liu and Owen method. Negative
estimates should be treated as zero in applications.
The RBD-FAST estimates show a small variance and seem to be unbiased
for function 1. But with the presence of higher order interactions in function
2 and g-function, estimates are severely biased. One reason for this might
be the bias for RBD-FAST methods described in section 3.3.2.
The estimates by Sobol method on the other hand appear to be unbiased,
but with a larger variance, resulting from the underlying crude Monte Carlo
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Figure 1: Estimates of the TII by the three estimators (18), (20), and (21) for test functions
1 (top left), 2 (top right) and g-function (bottom).

integration.
The fixing method by Liu and Owen performs well in terms of bias as ex-
pected in 3.3.2. Its variance is very low for function 1, higher for function 2
and varies for the g-function. We observe that the variance is higher when
the pair of variables in question {Xi, Xj} is part of interactions of a higher
order than second order. The reason for this lies in the variance of the es-
timates D̂k

i,j|X−{i,j} in the fixing method (15). For second order interactions

those estimates do not depend on the fixed values X−{i,j} and thus vary only
slightly, while for higher interactions the estimates should differ with the fixed
variables included in the interaction. While this means that the accuracy of
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the fixing method by Liu and Owen strongly depends on the interaction sit-
uation, it is still clearly the best of the estimation methods. The variances
are always smaller than for the Sobol method and much less biased than for
RBD-FAST method. Moreover the methods’ estimates have the desirable
property of having a very low variance for total interaction indices that are
close to zero (they are even exactly zero for inactive indices as mentioned in
section 3.3.2). That means that the fixing method by Liu and Owen enables
a precise detection of inactive interactions, an important task for interaction
screening.

5. Asymptotic properties of Liu and Owen’s estimator

The previous section suggests that at least among the three estimation
methods, the fixing method by Liu and Owen is the most efficient. In fact one
can show asymptotical efficiency in the notion of Van der Vaart [14, Chapter
25] for this estimator.
Recalling equation (21) we define the estimator for a pair of input variable
(Xi, Xj):

Tn =
1

n

n∑
k=1

(
∆k

i,j

)2

4

with

∆k
i,j := f(Xk

i , X
k
j , X

k
−{i,j})−f(Xk

i , Z
k
j , X

k
−{i,j})−f(Zk

i , X
k
j , X

k
−{i,j})+f(Zk

i , Z
k
j , X

k
−{i,j}).

In the following we assume that X and Z are independent random vectors
with probability measure ν and that the (∆k

i,j)
2 are square integrable.

Proposition 4. Tn is consistent for Di,j

Tn
a.s.−→

n→∞
Di,j

and asymptotically normally distributed

√
n (Tn −Di,j)

d−→
n→∞

N
(

0,
var[(∆1

i,j)
2]

16

)
Proof. The results are a direct application of the law of large numbers and
the central limit theorem, applied to the variables (∆k

i,j)
2.
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Proposition 5. Tn is an asymptotically efficient estimator for Di,j.

Proof. Denote Xk = (Xk
j , Z

k
j , X

k
−{i,j}), Zk = Xk

i , Z ′k = Zk
i and let g be the

function defined over Rd × R by:

g(a, b) = f(b, a1, a3, . . . , ad)− f(b, a2, a3, . . . , ad)

Then we have
∆k

i,j = g(Xk,Zk)− g(Xk,Z
′

k).

Therefore

Tn =
1

n

n∑
k=1

Φ2(g(Xk,Zk), g(Xk,Z
′

k))

and
Di,j = E(Φ2(g(X1,Z1), g(X1,Z

′

1)))

where Φ2 is the 2-dimensional function of R2:

Φ2(u, v) =
(u− v)2

4

Remark that Zk and Z ′k are independent copies of each other, both indepen-
dent of Xk, and that Φ2 is a symmetric function. The result then follows
from Lemma 2.6 in Janon et al. [15], with the following change of notation

i← k, X ← X , Z ← Z, Z ′ ← Z ′ , f ← g.

We conclude this section by remarking that the two last propositions
extend to the general superset importance, including the case of the total
effect of one variable.

Proposition 6. Let ΥI =
∑

J⊇I DJ be the superset importance for a set I.
Define

TI,n =
1

n

n∑
k=1

(∆k
I )2

2|I|

with ∆k
I =

∑
J⊆I(−1)|I−J |f(Zk

J , X
k
−J).

Then TI,n is asymptotically normal and asymptotically efficient for ΥI .
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Proof. Note that TI,n is the sample version of the formula (10) given by
Liu and Owen [8] for ΥI (with suitable change of notations). The proof of
asymptotical normality is thus a direct consequence of central limit theo-
rem. For asymptotical efficiency, the proof relies on similar arguments than
Proposition 5:

• When I = {i} is a single variable, we have:

∆k
I = f(Zk

i , X
k
−i)− f(Xk

i , X
k
−i),

which is of the form g(Xk,Zk) − g(Xk,Z
′

k) with Zk = Zk
i , Z ′k = Xk

i ,
Xk = Xk

−i, and g(a, b) = f(b, a).

• When |I| ≥ 2, let choose i ∈ I. Then, by splitting the subsets of I into
two parts, depending whether they contain {i}, we have:

∆k
I =

∑
J⊆I−{i}

(−1)|I−J |f(Zk
J , X

k
−J) +

∑
J⊆I−{i}

(−1)|I−(J∪{i})|f(Zk
J∪{i}, X

k
−(J∪{i}))

=
∑

J⊆I−{i}

(−1)|I−J |f(Zk
J , X

k
i , X

k
−(J∪{i}))−

∑
J⊆I−{i}

(−1)|I−J |f(Zk
J , Z

k
i , X

k
−(J∪{i}))

which is also of the form g(Xk,Zk)−g(Xk,Z
′

k) with Zk = Xk
i , Z ′k = Zk

i ,
Xk = (Xk

I−{i}, Z
k
I−{i}, X

k
−I), and a suitable g, since the second term in

the difference is obtained from the first one by exchanging Xk
i and Zk

i .

The results then derives by applying Lemma 2.6 in Janon et al. [15] to the

symmetric function Φ2(u, v) = (u−v)2

2|I|
, remarking that Zk and Z ′k are inde-

pendent copies of each other, both independent of Xk.

6. Estimation with 2-dimensional functions

6.1. Fixing method using FAST

Proposition 3 showed that the TII is computed by averaging the second
order interaction of 2-dimensional functions. As second order interactions
depend only on the overall variance and main effects, for which accurate es-
timators are known, this suggests to estimate the TII based on them. More
precisely, one can use the following scheme, proposed in [7], which is a sample
version of the TII expression given in Proposition 3.

Let us consider a couple of integers (i, j), with i < j. For k = 1, . . . , nMC,
do:
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1. Simulate xk−{i,j} from the distribution of X−{i,j}, that is take a single
sample of all variables except Xi and Xj,

2. Create the 2-dimensional function ffixed by fixing f on xk−{i,j}:

ffixed(Xi, Xj) = f(xk1, . . . , Xi, . . . , Xj, . . . , x
k
d),

3. Compute the second order interaction index of ffixed, denoted D̂k
i,j|X−{i,j} ,

by removing the main effects indices from the overall variance.

Finally, compute the estimator

D̂ij =
1

nMC

nMC∑
k=1

D̂k
i,j|X−{i,j} . (22)

This estimation method seems to be greedy, due to the additional loop to
simulate x−{i,j}. On the other hand, only 2-dimensional functions are consid-
ered, utilizing efficient techniques to compute the interaction index in step 3.
For that purpose, the FAST method is used, since the computation is both
quick, and returns a positive value provided that the frequency parameters
are free of interferences and that the number of FAST evaluations, denoted
nFAST, is large enough, as we see in the next section.

6.2. Comparison to fixing method of Liu and Owen

For a closer examination of the estimator, we compare it to the estimator
of Liu and Owen, as it is a fixing method itself and proved to be the best
estimator.

In terms of positivity, where the Liu and Owen estimator always is posi-
tive, there is a sufficient condition, for the estimator of the fixing method using
FAST to be positive, too, which results from the following proposition:

Proposition 7. Let f be a 2-dimensional function, and consider its second
order interaction D12 = D−D1−D2. Denote D̂12 = D̂− D̂1− D̂2 its FAST
estimate, with the notations of section 3.1. Assume that:
(i) ω1 and ω2 are free of interference up to order 2M ,
(ii) N ≥ 2M ×max(ω1, ω2).

Then D̂12 ≥ 0.
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Proof. Denote the sets Wωi,M = {pωi, p = 1, . . . ,M} for i = 1, 2, and WN =
{1, . . . , N/2}. We have

D̂12

2
=
∑

n∈WN

(Â2
n + B̂2

n)−
∑

n∈Wω1,M

(Â2
n + B̂2

n)−
∑

n∈Wω2,M

(Â2
n + B̂2

n).

Now, the condition (i) ensures that Wω1,M ∩Wω2,M = ∅, while (ii) implies
that Wωi,M ⊆ WN , for i = 1, 2. Hence,

D̂12

2
=

∑
n∈WN−(Wω1,M

∪Wω2,M
)

(Â2
n + B̂2

n) ≥ 0.

Corollary. It is a direct consequence of proposition 4 that if (i) and (ii) are
satisfied, then (22) returns positive values.

Remark. In practice, one can use for instance ω1 = 11, ω2 = 35 [10], which
are free of interferences up to 2M for the usual orders M = 4, 6; Then the
minimal value of N is 2× 6×max{11, 35} = 420.

Unless the Liu and Owen method, the method using FAST can be bi-
ased, since there are several sources of bias in the FAST estimator of main
indices, explained by [12]: Interference, aliasing and truncation. However,
(i) and (ii) in proposition 4 are stronger than the conditions given by [12] to
limit the bias due to interferences and aliasing. Furthermore, the bias due
to truncation vanishes when nFAST tends to infinity. For that reason one can
expect (22) to be only slightly biased.

In Figure 2 the two estimators are compared empirically on the test func-
tions used in section 4. The slight bias as well as the positivity can be
noticed for the method using FAST, and in almost all cases the variance is
much higher.

7. Example of application

In many phenomena, it is not rare, even for complex ones, that some
groups of input variables have a separate influence on the output. In that
case, the function of interest is decomposed as a sum of lower dimensional
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Figure 2: Estimates of the TII by the fixing method of Liu and Owen and the fixing
method using FAST for test functions 1 (top left), 2 (top right) and g-function (bottom).

terms. In this section, we illustrate how the TII can be used to recover such
decomposition. For instance, let us consider a function, called function a
from now on:

f(X1, . . . , X6) = cos([1, X1, X5, X3] β) + sin([1, X4, X2, X6] γ)

with Xk
i.i.d.∼ U [−1, 1], k = 1, . . . , 6, β = [−0.8,−1.1, 1.1, 1]′ and γ =

[−0.5, 0.9, 1,−1.1]. Our aim is to recover the decomposition of f into ad-
ditive parts. First we estimate standard and total indices of the main effects
by FAST (section 3.1). The results, divided by the overall variance for com-
parison purpose, can be seen in table 7. The values for total indices are all
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very high, so no factor can be removed. The large difference between stan-
dard and total indices indicates a strong interaction structure in the function,
but the nature of the structure cannot be read from it.

i 1 2 3 4 5 6

D̂i/D 0.11639 0.14049 0.09037 0.11290 0.10862 0.19457

D̂T
i /D 0.2326 0.20942 0.20770 0.17768 0.23113 0.25874

Table 2: Standard and total indices for the main effects of function a, estimated by FAST.

Therefore, in the next step, we estimate total interaction indices. On the
basis of the results of section 4 we chose the method of Liu and Owen for
estimation. Results, again divided by the overall variance, are given in table
3.

i 1 1 1 1 1 2 2
j 2 3 4 5 6 3 4

D̂ij/D 0.00000 0.06489 0.00000 0.07757 0.00000 0.00000 0.04130
i 2 2 3 3 3 4 4 5
j 5 6 4 5 6 5 6 6

D̂ij/D 0.00000 0.05076 0.00000 0.06793 0.00000 0.00000 0.04382 0.00000

Table 3: TII estimates for function a computed by the method of Liu and Owen with
10 000 function evaluations.

A nice way to visualize the estimated interaction structure is the so called
FANOVA graph [7]. In the graph, each vertex represents one input factor
and an edge between two vertices indicates the presence of second or higher
order interactions between the factors. Figure 3 shows the FANOVA graph
for function a. The thickness of the edges is proportional to the TII and in
addition the thickness of the circles around vertices indicates the standard
indices of main effects. The strong connection between factors 1, 3 and 5 is
clearly visible as well as the slightly weaker connection between factors 2,4
and 6. We obtain a decomposition into two additive parts.

8. Conclusion

We considered the problem of analyzing the interaction structure of a
multivariate function, possibly containing high order interactions. For that

21



1

2

3

4

5

6

Figure 3: FANOVA-graph for function a. The thickness of the circles around the vertices
represents main effects, the thickness of the edges represents total interaction effects.

purpose, we investigated the total interaction index (TII), defined as the su-
perset importance of a pair of variables. The TII generalizes variable screen-
ing, usually done with the total index, to interactions.

At theoretical level, we gave several expressions of the TII, including
connections to total and closed effects, and an interpretation as an average
of the second-order interaction of a 2-dimensional function obtained by fixing
the original one (“fixing method”).

Then estimation is considered, and we prove the asymptotical efficiency
of Liu and Owen’s estimate. Its superiority is confirmed in empirical com-
parisons to several other estimation methods. These methods are related
to the estimation of closed indices (Sobol method), total indices (RBD-FAST
method), and fixing method where the indices of the fixed 2-dimensional func-
tions are computed by a FAST technique (fixing-FAST ). The fixing-FAST
technique shares the same nice behaviour as Liu and Owen’s for estimating
inactive total interactions or second order ones, but its variance is higher.
The RBD-FAST method could not be trusted, revealing an unpredictable
strong bias with some functions, while the Sobol method gave unbiased but
less accurate (and sometimes negative) results.

Finally we illustrated how the detection of inactive total interactions can
be used to recover the decomposition of a complex function by identifying
the groups of input variables that have a separate influence on it. Here the
indices were also used to graphically visualize the interaction structure of the
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function.
Among directions for further research, the accuracy of the Liu and Owen

estimator could be improved by doing quasi Monte Carlo sampling instead
of crude Monte Carlo. Secondly, for real case studies, as interactions may
be close to zero but not exactly equal to zero, there is a need to identify
a threshold cut below which estimates of the TII are assumed to be close
enough to zero. Several techniques, such as tests of significance and decision
plots, may be considered.

Supplementary material

The estimation methods as well as FANOVA graphs have been imple-
mented in the R package fanovaGraph (version 1.1), published on the official
R website (CRAN). We thank T. Muehlenstaedt for a useful first version of
the code, and U. Ligges and O. Mersmann for their relevant advice about
programming.
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