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Abstract

We consider the problem of investigating the interaction structure of a mul-
tivariate function, possibly containing high order interactions. By analogy
with the total index, used to detect the most influential variables, interaction
screening can be done with the so-called total interaction index (TII), defined
as the superset importance (Liu and Owen [1]) of a pair of variables. One
motivation is that block-additive structures can be recovered from the graph
of active total interaction indices. Our aim is to investigate the total inter-
action index. At the theoretical level, it is connected to (usual) total indices
and closed indices, and we also show that the TII is obtained by averaging
the second order interaction of a 2-dimensional function obtained by fixing
the original one. Then estimation is considered, and we prove the asymp-
totical efficiency of Liu and Owen’s estimate. Its superiority is confirmed
empirically, compared to other recent methods using FAST and RBD-FAST
techniques. Finally, an application is given to recover a block-additive struc-
ture of a function, without knowledge about the interaction orders nor about
the blocks.
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1. Introduction

Global sensitivity analysis has broad applications for screening, interpre-
tation and reliability analysis [2]. A common method is the estimation of
sensitivity indices which quantify the importance of an input, or a group
of variables, for the behavior of an output variable. First-order indices and
closed indices are then used to quantify the influence of variables or groups of
variables [3]. Homma and Saltelli [4] introduced total indices which quantify
the influence of a variable and its interactions and can be used for variable
screening: If the total index of a variable is zero, this variable can be re-
moved because neither the variable nor its interactions (at any order) have
an influence.

In practice, less effort is done to investigate the interaction structure. For
instance, the detection of active interactions - or interaction screening - is
often limited to second order ones. One technical reason is that the inter-
actions of higher orders are defined by recursion, depending on the smaller
orders ones. Their computation then faces the curse of dimensionality [5]. It
is also often advocated that the assumption ’second-order interactions only’
is reasonable. However, the investigation of complex phenomena is spread-
ing, and it is desirable to deal with the situation where this assumption is
not, or partially, valid.

Among the advantages of screening interactions, is the possibility to vi-
sualize them with a graph and to recover block-additive structures from it,
as pointed out by Hooker [6], or Muehlenstaedt et al. [7] in the context of
computer experiments. This is especially useful for optimization (since it sep-
arates into lower dimensional problems) as well as in metamodelling (since
the kernel structure can be chosen accordingly).

By analogy with the total index, used to detect the most influential vari-
ables, interaction screening can be done with the so-called total interaction
index (TII), defined as the superset importance (Liu and Owen [1]) of a pair
of variables. The TII of a pair of variables {Xi, Xj} is thus defined as the
variance of an output explained by the two variables Xi and Xj simultane-
ously. In the usual case of independent inputs, it corresponds to the sum
of their (unnormalized) second order interactions and all higher interactions
containing both Xi and Xj. If the index is zero, there are no interactions at
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any order between Xi and Xj, and the pair {Xi, Xj} can be removed from
the list of interactions, in a similar way as one can remove a variable if the
total index is zero. Remark, however, that removing an interaction does not
remove the individuals variables in the pair.

Once defined, it is worth noting that the TII can be computed in an ac-
ceptable numerical cost, that is proportional to the square of the problem
dimension, and thus does not face the curse of dimensionality. Our aim is
to investigate the total interaction index. At theoretical level, the TII is
connected to the total indices of a pair of variables, which is the portion of
variance explained by at least one variable in a pair. This induces an imme-
diate connection to closed effects of groups of variables as well. Furthermore,
we show that the TII is obtained by integrating out the second order in-
teraction of a 2-dimensional function obtained by fixing the original one.
The estimator proposed by Liu and Owen [1] can be interpreted this way.
This property also makes the link between TII and the indices introduced
in Muehlenstaedt et al. [7]. From that study, we compare several estimation
procedures, some of them relying on the new developments of FAST (Cukier
et al. [8]) and RBD-FAST (Mara [9]) techniques. The main result is that the
estimator proposed by Liu and Owen is asymptotically normal and efficient.
An empirical comparison of the estimation methods confirms its superiority,
assuming a same number of functions evaluations.

The paper is structured as follows. Section 2 presents the main theoretical
results concerning total interaction indices, after giving a quick overview
of FANOVA decomposition and Sobol indices. Then in Section 3, several
estimation methods are deduced, and compared empirically in Section 4.
The asymptotical properties of the Liu and Owen estimator are proved in
section 5. Finally in Section 6, the total interaction indices are used to recover
the block-additive decomposition of a 6-dimensional function as a sum of two
3-dimensional ones.

2. Theoretical aspects

2.1. A quick overview of FANOVA decomposition and Sobol Indices

Assume that the input factors X1, . . . , Xd are independent random vari-
ables, and let ν denote the probability measure of X = (X1, ..., Xd). Then
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for any function f ∈ L2(ν), the functional ANOVA decomposition provides
a unique decomposition into additive terms

f(X) = µ0 +
d∑

i=1

µi(Xi) +
∑
i<j

µij(Xi, Xj) + · · ·+ µ1,...,d(X1, . . . , Xd).

The terms represent main effects (µi(Xi)), second-order interactions (µij(Xi, Xj))
and all higher combinations of input variables. For uniqueness two conditions
have to hold [11]:

E(µI(XI)) = 0, I ⊆ {1, . . . , d) (1)

and
E(µii′(XiXi′) | Xi) = E(µii′i′′(XiXi′Xi′′) | XiXi′) = · · · = 0. (2)

From (1) and (2) it follows that

E(µI(XI)µI′(XI′)) = 0, I 6= I ′. (3)

The decomposition can be obtained by recursive integration:

µ0 = E(f(X)),

µi(Xi) = E(f(X)|Xi)− µ0,

µij(Xi, Xj) = E(f(X)|Xi, Xj)− µi(Xi)− µj(Xj)− µ0

and more generally

µI(XI) = E(f(X)|XI)−
∑
I′(I

µI′(XI′). (4)

By computing the variance, an ANOVA-like variance decomposition is
obtained where each part quantifies the impact of the input variables on the
response.

D = var(f(X)) = var(µ0) +
d∑

i=1

var(µi(Xi)) +
∑
i<j

var(µij(Xi, Xj))

+ · · ·+ var(µ1,...,d(X1, . . . , Xd)).

Those variances are widely used as indices for the influence of input vari-
ables and their interactions (Sobol indices). In this paper we only look at
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the variances and ignore the usual normalizing by the overall variance (D)
for the sake of simplicity.

DI = var(µI(XI)). (5)

There are several extensions to the standard Sobol indices as given in (5).
The total effect index DT

i [2] of a single input variable Xi describes the total
contribution of the variable including all interactions and is defined by the
sum of all indices containing i:

DT
i =

∑
J ⊇{i}

DJ .

It is straightforward to extend this index to groups of variables XI , for
any I ⊆ {1, . . . , d}, by the sum of all indices containing at least one of the
variables:

DT
I =

∑
J

J∩I 6=∅

DJ . (6)

Another way to describe the influence of a group of variables is the closed
index DC

I , see e.g. [9]. In contrast to total indices, interactions with variables
not in XI are not included here, but all effects caused by subsets of it. It is
equal to the so-called variance of the conditional expectation (VCE) and for
main effects it matches with the standard Sobol index.

DC
I = var (E[f(X)|XI ]) =

∑
J⊆I

DJ . (7)

If we define by −I the complementary subset to I (−I = {1, . . . , d} \I),
we obtain from (6) and (7) the well-known relation (see e.g. [9]):

D = DC
−I +DT

I (8)

and in particular, with the formula of total variance, one can deduce that
the total index relatively to I is equal to the expectation of the conditional
variance (ECV) relatively to the complementary subset −I:

DT
I = E (var[f(X)|X−I ]) . (9)
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2.2. Total interaction indices

Next we aim at an index which measures the portion of variance of an
output explained by two input variables simultaneously, which we then call
total interaction index.

Definition 1. With the notations and assumptions of section 2.1, the total
interaction index Dij of two variables Xi and Xj is defined by:

Dij := var

 ∑
I ⊇{i,j}

µI(XI)

 =
∑

I ⊇{i,j}

DI . (10)

The index equals the superset importance, introduced by Liu and Owen [1],
for the pair of indices (Xi, Xj), which aims to give a measure of importance
of interactions and their supersets.

It is not difficult to see that the total interaction index is connected to total
indices, as well as closed indices:

Proposition 1. The following relations hold:

Dij = DT
i +DT

j −DT
i,j (11)

Dij = D +DC
−{i,j} −DC

−i −DC
−j (12)

Proof. (12) is deduced from (11) using (8). For (11), the results come from
the identity: ∑

I ⊇{i} or I ⊇{j}

DI =
∑
I ⊇{i}

DI +
∑
I ⊇{j}

DI −
∑

I ⊇{i,j}

DI .

The following proposition shows that it is also possible to compute the
total interaction indices by integration of second order interactions index of
2-dimensional functions (fixing method):

Proposition 2. For any x−{i,j}, define ffixed as the 2-dimensional function
(xi, xj)→ f(x) obtained from f by fixing all variables except xi and xj. Let
Di,j|x−{i,j} denote the second order interaction index of ffixed(Xi, Xj), which
depends on the fixed variables x−{i,j}. Then the total interaction index of Xi

and Xj is obtained by integrating Di,j|x−{i,j} with respect to x−{i,j}:

Dij = E
(
Di,j|X−{i,j}

)
. (13)
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Proof. A direct connection of E
(
Di,j|X−{i,j}

)
to the definition (10) of total

interaction indices can be obtained by considering the FANOVA decomposi-
tion of ffixed. This approach is detailed in the appendix. However, a simpler
approach is to connect the three terms composing the second order interac-
tion of ffixed to the total indices of f(X). Denote respectively by D|x−{i,j} ,
Di|x−{i,j} and Dj|x−{i,j} the variance and the main effects of ffixed. Since ffixed

is 2-dimensional, there is a unique (second order) interaction, given by

Di,j|X−{i,j} = D|X−{i,j} −Di|X−{i,j} −Dj|X−{i,j} (14)

and thus

E
(
Di,j|X−{i,j}

)
= E

(
D|X−{i,j}

)
− E

(
Di|X−{i,j}

)
− E

(
Dj|X−{i,j}

)
. (15)

Consider each term separately:

• The variance of ffixed, first, is given by

D|X−{i,j} = var
[
f(X)|X−{i,j}

]
which implies with (9) that

E
(
D|X−{i,j}

)
= E

(
var
[
f(X)|X−{i,j}

])
= DT

i,j.

• For the main effect of ffixed explained by Xi, using (7) or directly the
FANOVA decomposition in (4) the index is equal to:

Di|X−{i,j} = var
[
E [ffixed(Xi, Xj)|Xi]

∣∣X−{i,j}]
= var

[
E [f(X)|X−j]

∣∣X−{i,j}] .
Now use the total variance formula, conditional to X−{i,j}:

Di|X−{i,j} = var
[
f(X)|X−{i,j}

]
− E

[
var [f(X)|X−j]

∣∣X−{i,j}]
Thus, by integrating w.r. to X−{i,j}, and using (9) again, we get

E
(
Di|X−{i,j}

)
= E

(
var
[
f(X)|X−{i,j}

])
− E (var [f(X)|X−j])

= DT
i,j −DT

j .
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• Similarly, we have

E
(
Dj|X−{i,j}

)
= DT

i,j −DT
i .

Finally, from (15) and (11), we obtain:

E
(
Di,j|X−{i,j}

)
= DT

i,j − (DT
i,j −DT

i )− (DT
i,j −DT

j )

= DT
i +DT

j −DT
i,j = Dij.

Remark. Proposition 2 shows the equality between the sensitivity index de-
fined in [7] and the total interaction index (10).

As the total interaction index is equal to the superset importance of a
pair of indices, another way of computation is given by:

Proposition 3. (Liu and Owen [1])

Dij =
1

4

∫ [
∆i,j(zi,j, xi,j, x−{i,j})

]2
dνi,j(zi,j)dν(x)

=
1

4
E
[
∆i,j(Zi,j, Xi,j, X−{i,j})

2
]

(16)

with ∆i,j(zi,j, xi,j, x−{i,j})) =

f(xi, xj, x−{i,j})− f(xi, zj, x−{i,j})− f(zi, xj, x−{i,j}) + f(zi, zj, x−{i,j})

and where Zi (resp. Zj) is an independent copy of Xi (resp. Xj).

Remark. The formula in Proposition 3 can itself be interpreted as a fixing
method, in the sense of Proposition 2. Indeed, when fixing X−{i,j}, the
second-order interaction of the 2-dimensional fixed function is equal to its
total interaction index, and thus given by Proposition 3 as:

Di,j|X−{i,j} =
1

4
E [ffixed(Xi, Xj)− ffixed(Xi, Zj)− ffixed(Zi, Xj) + ffixed(Zi, Zj)]

2

=
1

4
E
[
(∆i,j(Zi,j, Xi,j, X−{i,j}))

2|X−{i,j}
]

Taking the expectation gives the result.
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3. Estimation methods

In this section, we treat different estimation methods for the computation
of total interaction indices. The theoretical expressions (11), (12), (13) and
(16) suggest different specific estimation methods. The first three ones rely
respectively on RBD-FAST, Sobol, and FAST estimation methods. First
the underlying FAST method is quickly reviewed. Then these methods are
presented together with some remarks on their properties.

3.1. Review of FAST
The Fourier amplitude sensitivity test (FAST) by [8] is a very efficient

method to estimate first order Sobol indices. Sample points of X are chosen
such that the indices can be interpreted as amplitudes obtained by Fourier
analysis of the function. More precisely the design of N points is such that

x
(k)
i := Gi(sin(ωisk)), i = 1, . . . , d, k = 1, . . . , N, sk =

2π(k − 1)

N
with Gi functions to ensure that the sample points follow the distribution
of X. The set of integer frequencies {ωi, . . . , ωd} associated to the input
variables is chosen as ”free of interferences” as possible; free of interferences
up to the order M means that

∑p
i=1 aiωi 6= 0 for

∑p
i=1 |ai| ≤ M + 1 [12]. In

practice, M = 4 or 6.
The Fourier coefficients for each variable can then be numerically esti-

mated by

Aω =
1

N

N∑
j=1

f(x(sj)) cos(ωsj),

Bω =
1

N

N∑
j=1

f(x(sj)) sin(ωsj),

and the main effects’ indices can be estimated by the sum of the correspond-
ing amplitudes up to the order M :

D̂i = 2
M∑
p=1

(A2
pωi

+B2
pωi

).

An estimate of the overall variance is given by the sum of all amplitudes

D̂ = 2

N/2∑
n=1

(A2
n +B2

n). (17)
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3.2. The four estimators

3.2.1. Estimation with RBD-FAST, via total indices

The computation of a total index of groups of variables is possible with
an RBD-FAST method. RBD-FAST is a group of modifications of classical
FAST which use random permutations of design points to avoid interferences
[9]. To compute the RBD-FAST estimator of the total index of a group

of variables D̂T
I simple frequencies like ω = {1, . . . , d} are assigned to the

variables. Then N = 2(Md+ L) design points are generated over a periodic
curve where M denotes the fix inference factor (usually 4 or 6) and L(> 100)
is a selectable integer number regulating the sample size. The values of the
factors in I are then randomly permuted (either differently per factor or
identically) and the model is evaluated at the points. The total index is
estimated by

D̂T
I =

N

L

N/2∑
p=dM+1

(A2
p +B2

p).

The estimator corresponding to (11) is then given by:

D̂ij = D̂T
i + D̂T

j − D̂T
{i,j}. (18)

3.2.2. Estimation with Sobol method, via closed indices

It is also possible to compute closed indices with an RBD-FAST method,
which is called hybrid version in Mara [9]. But, as in classical FAST, fre-
quencies that are free of interferences are needed. Here to apply (12), the
estimation of the closed index DC

−i is necessary which requires a number of
d − 1 free of interference frequencies. Those frequencies are, especially for
high dimensions, not easy to find. Therefore an alternative way to get closed
indices, Monte Carlo integration [3], is considered. To obtain the closed in-
dex of a group of variables XI a large number (nSobol) of random numbers
from the distribution of X is sampled and another nSobol random numbers
are sampled for the remaining variables X−I . Denote by x∗k = (x∗kI , x

∗k
−I) and

z∗k−I these two samples for k = 1, . . . , nSobol. The closed index of XI is then
estimated by

D̂C
I =

1

nSobol

nSobol∑
k=1

f(x∗kI , x
∗k
−I)f(x∗kI , z

∗k
−I)− µ̂2

0 (19)
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with

µ̂0 =

nSobol∑
k=1

f(x∗kI , x
∗k
−I).

Consequently, with (12), the corresponding estimator for the total inter-
action index is given by

D̂ij = D̂ + D̂C
−{i,j} − D̂C

−i − D̂C
−j, (20)

where D̂ is the estimation of the variance calculated by the sample variance
of (x∗kI , x

∗k
−I). One may remark that the additional sampling required in

the Sobol method is quite economic here, since the complementary subsets
−{i, j}, −{i} and −{j} have a very small size.

3.2.3. Fixing method using FAST

Following proposition 2, the total interaction index can be computed
according to the following scheme:
For k = 1, . . . , nMC, do:

1. Simulate X∗k−{i,j} from the distribution of X−{i,j},

2. Fix all variables except for {Xi, Xj} to X∗k−{i,j}, and create the corre-
sponding 2-dimensional function ffixed,

3. Compute the second order interaction index of ffixed, denoted D̂k
i,j|X−{i,j} ,

by removing the main effects indices from the overall variance as in (14).

Finally, compute the estimator

D̂ij =
1

nMC

nMC∑
k=1

D̂k
i,j|X−{i,j} . (21)

This estimation method seems to be greedy, due to the additional loop to
simulate X−{i,j}. On the other hand, only 2-dimensional functions are con-
sidered, utilizing efficient techniques to compute the interaction index in step
3. For that purpose, we suggest the FAST method, since the computation
is both quick, and returns a positive value provided that the frequency pa-
rameters are free of interferences and that the number of FAST evaluations,
denoted nFAST, is large enough, as we see in the next section.
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3.2.4. Fixing method by Liu and Owen

Liu and Owen suggest the estimation by Monte Carlo integration of the
integral in proposition 3, similar to the closed index estimation in (19). De-
note by xk and zk, k = 1, . . . , nLO two independent samples of length nLO

drawn from ν. Then the total interaction index is estimated by

D̂ij =
1

4
× 1

nLO

nLO∑
k=1

[
f(xki , x

k
j , x

k
−{i,j})− f(xki , z

k
j , x

k
−{i,j})

−f(zki , x
k
j , x

k
−{i,j}) + f(zki , z

k
j , x

k
−{i,j})

]2
. (22)

3.3. Some properties of the four estimators

3.3.1. Positivity

With the indices being theoretically non-negative, also the estimates
should be non-negative. This applies in any case for the estimator by the
fixing method by Liu and Owen (22), which is a sum of squares. For the es-
timator by the fixing method using FAST (21) there is a sufficient condition,
which results from the following proposition:

Proposition 4. Let f be a 2-dimensional function, and consider its second
order interaction D12 = D−D1−D2. Denote D̂12 = D̂− D̂1− D̂2 its FAST
estimate, with the notations of section 3.1. Assume that:
(i) ω1 and ω2 are free of interference up to order 2M ,
(ii) N ≥ 2M ×max(ω1, ω2).

Then D̂12 ≥ 0.

Proof. Denote the sets Wωi,M = {pωi, p = 1, . . . ,M} for i = 1, 2, and WN =
{1, . . . , N/2}. We have

D̂12/2 =
∑

n∈WN

(A2
n +B2

n)−
∑

n∈Wω1,M

(A2
n +B2

n)−
∑

n∈Wω2,M

(A2
n +B2

n).

Now, the condition (i) ensures that Wω1,M ∩Wω2,M = ∅, while (ii) implies
that Wωi,M ⊆ WN , for i = 1, 2. Hence,

D̂12/2 =
∑

n∈WN−(Wω1,M
∪Wω2,M

)

(A2
n +B2

n) ≥ 0.
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Corollary. It is a direct consequence of proposition 4 that if (i) and (ii) are
satisfied, then (21) returns positive values.

Remark. In practice, one can use for instance ω1 = 11, ω2 = 35 [9], which
are free of interferences up to 2M for the usual orders M = 4, 6; Then the
minimal value of N is 2× 6×max{11, 35} = 420.

3.3.2. Bias

The three estimation methods differ in terms of bias.

Sobol method (20). The Sobol method estimator is unbiased since only di-
rect Monte Carlo integrals (mean estimators) are used as estimators for the
conditional expectations.

Fixing method by Liu and Owen (22). Here too the estimator is unbiased
because of the direct Monte Carlo integration. This is especially remarkable
in combination with the positivity. Note that the estimator of an inactive
total interaction is identically equal to zero (due to the differences in the
squared term).

Fixing method using FAST (21). There are several sources of bias for the
FAST estimator of main indices given by [12]: Interference, aliasing and trun-
cation. However, (i) and (ii) in proposition 4 are stronger than the conditions
given by [12] to limit the bias due to interferences and aliasing. Furthermore,
the bias due to truncation vanishes when nFAST tends to infinity. For that
reason one can expect (21) to be only slightly biased.

RBD-FAST (18). [12] also mention a bias for RBD-FAST estimators caused
by a random noise in the signal coming from the sampled variables. This bias
might be even enhanced here through the use of a combination of RBD-FAST
estimators.

4. Comparisons

The performance of the estimators shall be studied empirically here. The
parameters for each method are chosen in order to match the number of
function evaluations N , since this is supposed to be the most time-consuming
part, especially for functions with high complexity. We refer to table 1 for the
relation between parameter settings and N within each of the four methods.
For the Sobol method the first factor in the MC integration (19) is evaluated
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only once for all index calculations to keep N low. The +1 in the formula
is due to that fact (where d is due to the first and

(
d
2

)
to the second order

indices). When we fix M (e.g. M = 6) then for RBD-FAST N is determined
only by L and for Sobol method only by nSobol. For the fixing method using
FAST the number of function evaluation depends on the product of nMC and
nFAST . Setting ω1 = 11 and ω2 = 35, we chose nFAST = 500, which satisfies
the condition of proposition 4 and seems sufficient to give reliable estimates,
so that only nMC has to be adapted. The fixing method by Liu and Owen
needs four function evaluations according the four terms in the sum for each
for each index for each Monte Carlo sample.

method number of function evaluations

RBD-FAST N = 2(Md+ L)×
((

d
2

)
+ d
)

Sobol method N =
((

d
2

)
+ d+ 1

)
× nSobol

Fixing method using FAST N =
(
d
2

)
× nMC × nFAST

Fixing method by Liu and Owen N = 4×
(
d
2

)
× nLO

Table 1: Number of function evaluations for the three estimators (18), (20) and (21).

4.1. Test functions

In order to study the estimators’ performances in different situations we
consider three functions with different interaction structures. The first func-
tion (function 1 ) is defined by

g(X1, X2, X3, X4) = sin(X1+X2)+0.4 cos(X3+X4), Xk
i.i.d.∼ U [−1, 1], k = 1, 2, 3, 4.

Its interactions are visibly not higher than second order, a common situation.
As a contrast, the extreme case of a pure third order interaction is applied
in function 2 :

g(X1, X2, X3) = X1X2X3, Xk
i.i.d.∼ U [−1, 1], k = 1, 2, 3.

As a mixed case the popular g-function [13] is chosen. It is defined by

g(X1, . . . , Xd) =
d∏

k=1

|4Xk − 2|+ ak
1 + ak

, ak ≥ 0, Xk
i.i.d.∼ U [0, 1], k = 1, . . . , d.

We choose d = 6 and a = (0, 0, 0, 0.4, 0.4, 5)′ to have a function that contains
high interactions. This is demonstrated by the fact that, analytically, the
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overall variance with D = 3.27522 is much greater than the sum of first and
second-order indices with 2.06419. For the number of function evaluations
we choose around 5 000 evaluations per index (in total: N =

(
d
2

)
× 5 000)

and thus set the parameters L, nSobol, nMC and nLO according to table 1.
We estimate each index 100 times for all three methods. Calculations are
conducted using the R package fanovaGraph (see section Acknowledgements
and supplementary material). The results can be seen in figure 1.
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Figure 1: Estimates of the total interaction indices by the four estimators (18), (20), (21)
and (22) for test functions 1 (top left), 2 (top right) and g-function (bottom).
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4.2. Discussion

As expected in section 3.3.1, negative results can be observed by RBD-
FAST and the Sobol method, but not by the two fixing methods. Negative
estimates should be treated as zero in applications.
The RBD-FAST estimates show a small variance and seem to be unbiased
for function 1. But with the presence of higher order indices in function 2
and g-function, estimates are severely biased. One reason for this might be
the bias for RBD-FAST methods described in section 3.3.2.
The estimates by Sobol method on the other hand appear to be unbiased,
but with a larger variance, resulting from the underlying crude Monte Carlo
integration.
The two fixing methods both perform well in terms of bias, where the esti-
mates by Liu and Owen seem throughout unbiased and the estimates using
FAST only slightly biased, as expected in 3.3.2. In terms of variance the
Liu and Owen estimates outperform the FAST method clearly. The general
behaviour of the variance is similar for both estimates. It is very low for the
function 1, higher for function 2 and varies for the g-function. We observe
that the variance is higher when the pair of variables in question {Xi, Xj} is
part of interactions of a higher order than second order. The reason for this
lies in the variance of the estimates D̂k

i,j|X−{i,j} in the fixing method (13). For

second order interactions those estimates do not depend on the fixed values
X−{i,j} and thus vary only slightly, while for higher interactions the estimates
should differ with the fixed variables included in the interaction. While this
means that the accuracy of the fixing methods depends strongly on the in-
teraction situation, they seem to be still the best of the estimation methods.
The variances are always smaller than for the Sobol method and much less
biased than for RBD-FAST method. Moreover the fixing methods’ estimates
have the desirable property of having a very low variance for total interaction
indices that are close to zero (in the case of Liu and Owen’s estimate they
are even zero for inactive indices as mentioned in section 3.3.2). That means
that the fixing methods enable a precise detection of inactive interactions, an
important task for interaction screening.

5. Asymptotic properties of Liu and Owen’s estimator

The previous section suggests that at least among the four estimation
methods, the fixing method by Liu and Owen is the most efficient. In fact
one can show asymptotical efficiency for this estimator.
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Recalling equation (22) we define the estimator for a pair of input variable
(Xi, Xj):

Tn =
1

n

n∑
k=1

(
∆k

i,j

)2

4

with

∆k
i,j := f(Xk

i , X
k
j , X

k
−{i,j})−f(Xk

i , Z
k
j , X

k
−{i,j})−f(Zk

i , X
k
j , X

k
−{i,j})+f(Zk

i , Z
k
j , X

k
−{i,j}).

In the following we assume that X and Z are independent random vectors
with probability measure ν and that the (∆k

i,j)
2 are square integrable.

Proposition 5. Tn is consistent for Di,j

Tn
a.s.−→

n→∞
Di,j

and asymptotically normally distributed

√
n (Tn −Di,j)

d−→
n→∞

N
(

0,
var[(∆1

i,j)
2]

16

)
Proof. The results are a direct application of the law of large numbers and
the central limit theorem, applied to the variables (∆k

i,j)
2.

Proposition 6. Tn is an asymptotically efficient estimator for Di,j.

Proof. Denote Xk = (Xk
j , Z

k
jX

k
{−i,j}), Zk = Xk

i , Z ′k = Zk
i and let g be the

function defined over Rd × R by:

g(a, b) = f(b, a1, a3, . . . , ad)− f(b, a2, a3, . . . , ad))

Then we have
∆k

i,j = g(Xk,Zk)− g(Xk,Z
′

k).

Therefore

Tn =
1

n

n∑
k=1

Φ2(g(Xk,Zk)− g(Xk,Z
′

k))

and
Di,j = E(Φ2(g(X1,Z1)− g(X1,Z

′

1)))

17



where Φ2 is the 2-dimensional function of R2:

Φ2(u, v) =
(u− v)2

4

Remark that Zk and Z ′k are independent copies of each other and that Φ2

is a symmetric function. The result then follows from Lemma 2.6 in Janon
et al. [10], with the following change of notation

i← k, X ← X , Z ← Z, Z ′ ← Z ′ , f ← g.

6. Example of application

In many phenomena, it is not rare, even for complex ones, that some
groups of input variables have a separate influence on the output. In that
case, the function of interest is decomposed as a sum of lower dimensional
terms. In this section, we illustrate how the total interaction indices can be
used to recover such decomposition. For instance, let us consider a function,
called function a from now on:

f(X1, . . . , X6) = cos([1, X1, X5, X3] β) + sin([1, X4, X2, X6] γ)

with Xk
i.i.d.∼ U [−1, 1], k = 1, . . . , 6, β = [−0.8,−1.1, 1.1, 1]′ and γ =

[−0.5, 0.9, 1,−1.1]. Our aim is to recover the decomposition of f into ad-
ditive parts. First we estimate standard and total indices of the main effects
by FAST (section 3.1). The results, divided by the overall variance for com-
parison purpose, can be seen in table 6. The values for total indices are all
very high, so no factor can be removed. The large difference between stan-
dard and total indices indicates a strong interaction structure in the function,
but the nature of the structure cannot be read from it.

Therefore, in the next step, we estimate total interaction indices. On the
basis of the results of section 4 we chose the fixing method for estimation.
Results, again divided by the overall variance, are given in table 3.

A nice way to visualize the estimated interaction structure is the so called
FANOVA graph [7]. In the graph, each vertex represents one input factor and
an edge between two vertices indicates the presence of second or higher order
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i 1 2 3 4 5 6

D̂i/D 0.11639 0.14049 0.09037 0.11290 0.10862 0.19457

D̂T
i /D 0.2326 0.20942 0.20770 0.17768 0.23113 0.25874

Table 2: Standard and total indices for the main effects of function a

i 1 1 1 1 1 2 2
j 2 3 4 5 6 3 4

D̂ij/D 0.00000 0.06489 0.00000 0.07757 0.00000 0.00000 0.04130
i 2 2 3 3 3 4 4 5
j 5 6 4 5 6 5 6 6

D̂ij/D 0.00000 0.05076 0.00000 0.06793 0.00000 0.00000 0.04382 0.00000

Table 3: Estimates of total interaction indices for function a with nFAST=500 and
nMC = 50

interactions between the factors. Figure 2 shows the FANOVA graph for
function a. The thickness of the edges is proportional to the total interaction
indices and in addition the thickness of the circles around vertices indicates
the standard indices of main effects. The strong connection between factors
1, 3 and 5 is clearly visible as well as the slightly weaker connection between
factors 2,4 and 6. We obtain a decomposition into two additive parts.

7. Conclusion

We considered the problem of analyzing the interaction structure of a
multivariate function, possibly containing high order interactions. For that
purpose, we investigated the total interaction index (TII), defined as the
superset importance of a pair of variables. The total interaction index gen-
eralizes variable screening, usually done with the total index, to interactions.

At theoretical level, we gave several expressions of the TII, including
connections to total and closed effects, and an interpretation as an average
of the second-order interaction of a 2-dimensional function obtained by fixing
the original one (“fixing method”).

Then estimation is considered, and we prove the asymptotical efficiency
of Liu and Owen’s estimate. Its superiority is confirmed in empirical com-
parisons to several other estimation methods. These methods are related
to the estimation of closed indices (Sobol method), total indices (RBD-FAST
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Figure 2: FANOVA-graph for function a. The thickness of the circles around the vertices
represents main effects, the thickness of the edges represents total interaction effects.

method), and fixing method where the indices of the fixed 2-dimensional func-
tions are computed by a FAST technique (fixing-FAST ). The fixing-FAST
technique shares the same nice behaviour as Liu and Owen’s for estimating
inactive total interactions or second order ones, but its variance is higher.
The RBD-FAST method could not be trusted, revealing an unpredictable
strong bias with some functions, while the Sobol method gave unbiased but
less accurate (and sometimes negative) results.

Finally we illustrated how the detection of inactive total interactions can
be used to recover the decomposition of a complex function by identifying
the groups of input variables that have a separate influence on it. Here the
indices were also used to graphically visualize the interaction structure of the
function.

Among directions for further research, the accuracy of the Liu and Owen
estimator could be improved by doing quasi Monte Carlo sampling instead
of crude Monte Carlo. Secondly, for real case studies, as interactions may
be close to zero but not exactly equal to zero, there is a need to identify a
threshold cut below which estimates of total interaction indices are assumed
to be close enough to zero. Several techniques, such as tests of significance
and decision plots, may be considered.
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Supplementary material

The estimation methods as well as FANOVA graphs have been imple-
mented in the R package fanovaGraph (version 1.1), published on the official
R website (CRAN). We thank T. Muehlenstaedt for a useful first version of
the code, and U. Ligges and O. Mersmann for their relevant advice about
programming.
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Appendix A. Direct proof of proposition 2

The decomposition below, obtained by gathering terms in the FANOVA
decomposition of f(X),

ffixed(Xi, Xj) =
∑

I⊆−{i,j}

µI(xI) +
∑

I⊆−{i,j}

µ{i}∪I(Xi, xI)

+
∑

I⊆−{i,j}

µ{j}∪I(Xj, xI) +
∑

I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, xI) (A.1)

is the FANOVA decomposition of ffixed(Xi, Xj). This can be easily shown
through conditions (1) and (2). In particular, the second order interaction is
given by the last term. Hence, we have by definition:

Di,j|x−{i,j} = var

 ∑
I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, xI)


= var

 ∑
I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, XI)

∣∣∣∣∣X−{i,j} = x−{i,j}


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And, by integrating with respect to x−{i,j}:

E
(
Di,j|X−{i,j}

)
= E

var

 ∑
I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, XI)

∣∣∣∣∣X−{i,j}


Now, one can apply the total variance formula,

E
(
Di,j|X−{i,j}

)
= var

 ∑
I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, XI)


− var

E

 ∑
I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, XI)

∣∣∣∣∣X−{i,j}


and remark that, using (2), E
(
µ{i,j}∪I(Xi, Xj, XI)

∣∣X−{i,j}) = 0, for any i, j /∈
I. Finally:

E
(
Di,j|X−{i,j}

)
= var

 ∑
I⊆−{i,j}

µ{i,j}∪I(Xi, Xj, XI)


=

∑
I⊆−{i,j}

D{i,j}∪I =
∑

I ⊇{i,j}

DI = Dij.

�
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