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Abstract We consider functions of high complexity that cannot be reduced to main effects

and second order interactions. In this context, identifying groups of variables that have no

interaction together can be done with the total interaction index, which quantifies the to-

tal contribution brought by a couple of variables. The aim of the paper is to investigate

these indices. At the theoretical level, we show connections with total indices and closed

indices, and prove that the total interaction index can be computed by integrating the second

interaction of a 2-dimensional function obtained by cutting the original one. Then, we fo-

cus on computational issues and compare three different methods on several analytical test

functions. The superiority of the so-called fixing method is demonstrated to estimate total

interaction indices of low value.

1 Introduction

Let f (x1, . . . ,xd), f ∈ L2(∆ ,µ) be a highly complex, real-valued function over ∆ ⊂Rd . Our

aim is to reduce the complexity of f by decomposition to study the structure of the function

with regard to sensitivity analysis, optimization, metamodel improvement or graph vizuali-

sation.

The usual approach to screen a function is to analyse the variance of f (X) where X is

a random vector with distribution ν . Sobol indices for the influence of the input variables

on the response variance are calculated and only variables with noticable influence are kept.

Sometimes also indices for the influence of interactions between two variables are calculated
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and again only important interactions are retained. Indices for higher interactions however

cannot be estimated for computational and cost reasons and so important information is of-

ten lost. One way to consider higher interactions is to use so-called total indices of main

effects, i. e. indices that contain the influence of an effect including all its interactions. By

this, higher order interactions cannot be missed but only main effects can be treated.

We want to go one step further and consider indices that we propose to call total interac-

tion indices which originate from Muehlenstaedt et al (2011). Here second order interactions

and their higher interactions are considered and thus a deeper insight in the structure of a

function can be obtained. In particular, the detection of inactive total interactions can by

applied to identify groups of input variables that have no interaction together, which often

happens, even for complex phenomena. This allows to recover the structure of a function

that is decomposed as a sum of lower-dimensional terms. The paper is structured as follows.

Section 2 presents the main theoretical results concerning total interaction indices, after giv-

ing a quick overview of FANOVA decomposition and Sobol indices. Then in section 3, three

estimation methods are deduced, and compared empirically. Finally in section 4, the total

interaction indices are used to recover the block-additive decomposition of a 6-dimensional

function as a sum of two 3-dimensional ones.

2 Theoretical aspects

2.1 A quick overview of FANOVA decomposition and Sobol Indices

Assume that the input factors X1, . . . ,Xd are independent random variables, and denote ν

the probability measure of X = (X1, ...,Xd). Then for any function f ∈ L2(ν), the functional

ANOVA decomposition provides a unique decomposition of the function into additive terms

f (X) = µ0 +
d

∑
i=1

µi(Xi)+∑
i< j

µi j(Xi,X j)+ · · ·+µ1,...,d(X1, . . . ,Xd).

The terms represent main effects (µi(Xi)), second-order interactions (µi j(Xi,X j)) and all

higher combinations of input variables. For uniqueness two conditions have to hold (Efron

and Stein, 1981):

E(µI(XI)) = 0, I ⊆ {1, . . . ,d) (1)

and

E(µii′(XiXi′) | Xi) = E(µii′i′′(XiXi′Xi′′) | XiXi′) = · · ·= 0. (2)

From (1) and (2) it follows that

E(µI(XI)µI′(XI′)) = 0, I 6= I′. (3)

The decomposition can be obtained by recursive integration:

µ0 = E( f (X)),

µi(Xi) = E( f (X)|Xi)−µ0,

µi j(Xi,X j) = E( f (X)|Xi,X j)−µi(Xi)−µ j(X j)−µ0
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and more generally:

µI(XI) = E( f (X)|XI)− ∑
I′(I

µI′(XI′). (4)

By computing the variance, an ANOVA-like variance decomposition is obtained where

each part quantifies the impact of the input variables on the response.

D = var( f (X)) = var(µ0)+
d

∑
i=1

var(µi(Xi))+∑
i< j

var(µi j(Xi,X j))

+ · · ·+var(µ1,...,d(X1, . . . ,Xd))

Those variances are widely used as indices for the influence of input variables and their

interactions (Sobol indices). In this paper we only look at the variances and ignore the usual

normalizing by the overall variance (D) for the sake of simplicity.

DI = var(µI(XI)). (5)

There are several extensions to the standard Sobol indices in (5). The total effect index

DT
i (Saltelli et al, 2000) of a single input variable Xi describes the total contribution of the

variable including all interactions and is defined by the sum of all indices containing i:

DT
i = ∑

J⊇{i}

DJ .

It is straightforward to extend this index to groups of variables XI , for any I ⊆{1, . . . ,d},

by the sum of all indices containing at least one of the variables:

DT
I = ∑

J
J∩I 6= /0

DJ . (6)

Another way to describe the influence of a group of variables is the closed index DC
I

(see e.g. Mara, 2009). In contrast to total indices, interactions with variables not in XI are

not included here, but all effects caused by subsets of it. It is equal to the so-called variance

of the conditional expectation (VCE) and for main effects it matches with the standard Sobol

index.

DC
I = var(E[ f (X)|XI ]) = ∑

J⊆I

DJ . (7)

If we define by −I the complementary subset to I (−I = {1, . . . ,d}\I), we obtain from

(6) and (7) the well-known relation (see e.g. Mara, 2009):

D = DC
−I +DT

I (8)

and in particular, with the formula of total variance, one can deduce that the total index

relatively to I is equal to the expectation of the conditional variance (ECV) relatively to the

complementary subset −I:

DT
I = E(var[ f (X)|X−I ]) . (9)
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2.2 Total interaction indices

The total interaction indices measure the portion of variance of an output explained by two

input variables simultaneously.

Definition. With the notations and assumptions of section 2.1, the total interaction index

Di j of two variables Xi and X j is defined by:

Di j := var

(

∑
I⊇{i, j}

µI(XI)

)
= ∑

I⊇{i, j}

DI (10)

It is not difficult to see that the total interaction is connected to total indices, as well as

closed indices:

Proposition 1. The following relations hold:

Di j = DT
i +DT

j −DT
i, j (11)

Di j = D+DC
−{i, j}−DC

−i −DC
− j (12)

Proof (12) is deduced from (11) using (8). For (11), the results come from the identity:

∑
I⊇{i}or I⊇{ j}

DI = ∑
I⊇{i}

DI + ∑
I⊇{ j}

DI − ∑
I⊇{i, j}

DI �

The following proposition shows that it is also possible to compute the total interaction

indices by integration of second order interactions index of 2-dimensional functions:

Proposition 2. For any x−{i, j}, define ffixed as the 2-dimensional function (xi,x j) → f (x)
obtained from f by fixing all variables except xi and x j. Let Di, j|x−{i, j}

denote the second

order interaction index of ffixed(Xi,X j), which depends on the fixed variables x−{i, j}. Then

the total interaction index of Xi and X j is obtained by integrating Di, j|x−{i, j}
with respect to

x−{i, j}:

Di j = E
(

Di, j|X−{i, j}

)
. (13)

Remark. Proposition 2 shows the equality between the sensitivity index defined in Muehlen-

staedt et al (2011) and the total interaction index (10)
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Proof A direct connection of E
(

Di, j|X−{i, j}

)
with the definition (10) of total interaction

indices can be obtained by considering the FANOVA decomposition of ffixed. This way is

detailed in the appendix. However, a simpler approach is to connect the three terms com-

posing the second order interaction of ffixed to the total indices of f (X). Denote respectively

by D|x−{i, j}
, Di|x−{i, j}

and D j|x−{i, j}
the variance and the main effects of ffixed. Since ffixed is

2-dimensional, there is a unique (second order) interaction, given by:

Di, j|X−{i, j}
= D|X−{i, j}

−Di|X−{i, j}
−D j|X−{i, j}

(14)

and thus:

E
(

Di, j|X−{i, j}

)
= E

(
D|X−{i, j}

)
−E

(
Di|X−{i, j}

)
−E

(
D j|X−{i, j}

)
(15)

Consider each term separately:

– The variance of ffixed, first, is given by:

D|X−{i, j}
= var

[
f (X)|X−{i, j}

]

which implies with (9) that:

E
(

D|X−{i, j}

)
= E

(
var
[

f (X)|X−{i, j}

])
= DT

i, j

– For the main effect of ffixed explained by Xi, using (7) or directly the FANOVA decom-

position in (4) the index is equal to:

Di|X−{i, j}
= var

[
E [ ffixed(Xi,X j)|Xi]

∣∣X−{i, j}

]

= var
[
E [ f (X)|X− j]

∣∣X−{i, j}

]

Now use the total variance formula, conditional to X−{i, j}:

Di|X−{i, j}
= var

[
f (X)|X−{i, j}

]
−E

[
var [ f (X)|X− j]

∣∣X−{i, j}

]

Thus, by integrating w.r. to X−{i, j}, and using (9) again, we get:

E
(

Di|X−{i, j}

)
= E

(
var
[

f (X)|X−{i, j}

])
−E(var [ f (X)|X− j])

= DT
i, j −DT

j

– Similarly, we have: E
(

D j|X−{i, j}

)
= DT

i, j −DT
i

Finally, from (15) and (11), we obtain:

E
(

Di, j|X−{i, j}

)
= DT

i, j − (DT
i, j −DT

i )− (DT
i, j −DT

j )

= DT
i +DT

j −DT
i, j =Di j. �

3 Estimation methods

In this section, we treat different estimation methods for the computation of total inter-

action indices. The theoretical expressions (11), (12), (13) suggest three different specific

estimation methods, relying respectively on RBD-FAST, Sobol, and FAST estimation meth-

ods. Following the method presentations and some remarks on their properties, an empirical

comparison of the three estimators is conducted in the end of the section. First the underlying

FAST method is quickly reviewed.
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3.1 Review of FAST

The Fourier amplitude sensitivity test (FAST) by Cukier et al (1978) is a very efficient

method to estimate first order Sobol indices. The sample points of X are chosen so that the

indices can be interpreted as amplitudes obtained by Fourier analysis of the function. More

precisely the design of N points is such that

x
(k)
i := Gi(sin(ωisk)), i = 1, . . . ,d, k = 1, . . . ,N, sk =

2π(k−1)

N

with Gi functions to ensure that the sample points follow the distribution of X . The set

of integer frequencies {ωi, . . . ,ωd} associated to the input variables is chosen as ”free of

interferences” as possible; free of interferences up to the order M means that ∑
p
i=1 aiωi 6= 0

for ∑
p
i=1 |ai| ≤ M+1 (Tissot and Prieur, +2011). In practice, M = 4 or 6.

The Fourier coefficients for each variable can then be numerically estimated by

Aω =
1

N

N

∑
j=1

f (x(s j))cos(ωs j),

Bω =
1

N

N

∑
j=1

f (x(s j))sin(ωs j).

and the main effects’ indices can be estimated by the sum of the corresponding amplitudes

up to the order M:

D̂i = 2
M

∑
p=1

(A2
pωi

+B2
pωi

)

An estimate of the overall variance is given by the sum of all amplitudes:

D̂ = 2

N/2

∑
n=1

(A2
n +B2

n) (16)

3.2 The three estimators

3.2.1 Estimation with RBD-FAST, via total indices

The computation of a total index of groups of variables is possible with an RBD-FAST

method. RBD-FAST is a group of modifications of classical FAST that use random permu-

tation of design points to avoid interferences (Mara, 2009). To compute the RBD-FAST esti-

mator of the total index of a group of variables D̂T
I simple frequencies like w= {1, . . . ,d} are

assigned to the variables. Then N = 2(Md +L) design points are generated over a periodic

curve where M denotes the fix inference factor (usually 4 or 6) and L(> 100) a selectable

integer number regulating the sample size. The values of the factors in I are then randomly

permuted (either different per factor or the same) and the model is evaluated at the points.

The total index is estimated by

D̂T
I =

N

L

N/2

∑
p=dM+1

(A2
p +B2

p)

The estimator corresponding to (11) is then given by:

D̂i j = D̂T
i + D̂T

j − D̂T
{i, j} (17)
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3.2.2 Estimation with Sobol method, via closed indices

It is also possible to compute closed indices with an RBD-FAST method, which is called

hybrid version in Mara (2009). But, as in classical FAST, frequencies that are free of inter-

ferences are needed. Here to apply (12), the estimation of the closed index DC
−i is necessary

which requires a number of d − 1 free of interference frequencies. Those frequencies are,

especially for high dimensions, not easy to find. Therefore another way to obtain closed

indices, Monte Carlo integration (Sobol, 1993), is considered. To obtain the closed index

of a group of variables XI a large number (nSobol) of random numbers from the distribution

of X has to be sampled and another nSobol random numbers are sampled for the remaining

variables X−I . Denote by x∗k = (x∗k
I ,x∗k

−I) and z∗k
−I these two samples for k = 1, . . . ,nSobol.

The closed index of XI is then estimated by

D̂C
I =

1

nSobol

nSobol

∑
k=1

f (x∗k
I ,x∗k

−I) f (x∗k
I ,z∗k

−I)− µ̂2
0 (18)

with

µ̂0 =
nSobol

∑
k=1

f (x∗k
I ,x∗k

−I).

Consequently, with (12), the corresponding estimator for the total interaction index is

given by:

D̂i j = D̂+ D̂C
−{i, j}− D̂C

−i − D̂C
− j (19)

where D̂ is the estimation of the variance calculated by the sample variance of (x∗k
I ,x∗k

−I). One

may remark that the additional sampling required in the Sobol method is quite economic

here, since the complementary subsets −{i, j}, −{i} and −{ j} have a very small size.

3.2.3 Estimation by integrating second order interactions (fixing method)

Following proposition 2, the total interaction index can be computed according to the fol-

lowing scheme:

For k = 1, . . . ,nMC, do:

1. Simulate X∗k
−{i, j} from the distribution of X−{i, j},

2. Fix all variables out of {Xi,X j} to X∗k
−{i, j}, and create the corresponding 2-dimensional

function ffixed,

3. Compute the second order interaction index of ffixed, denoted D̂k
i, j|X−{i, j}

, by removing

the main effects indices to the overall variance as in (14).

Finally, compute the estimator:

D̂i j =
1

nMC

nMC

∑
k=1

D̂k
i, j|X−{i, j}

(20)

This estimation method seems to be greedy, due to the additional loop to simulate

X−{i, j}. On the other hand, only 2-dimensional functions are considered, which allows uti-

lizing efficient techniques to compute the interaction index in step 3. For that purpose, we

suggest the FAST method, since the computation is both quick, and returns a positive value

provided that the frequency parameters are free of interferences and that the number of

FAST evaluations, denoted nFAST, is large enough, as we see in the next section.
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3.3 Some properties of the three estimators

3.3.1 Positivity

There is no reason why the three estimators (17), (19), (20) should return a positive num-

ber. Nevertheless, there is a sufficient condition for the estimator (20) [fixing method]. This

comes from the following proposition:

Proposition 3. Let f be a 2-dimensional function, and consider its second order interaction

D12 = D−D1 −D2. Denote D̂12 = D̂− D̂1 − D̂2 its FAST estimate, with the notations of

section 3.1. Assume that:

(i) ω1 and ω2 are free of interference up to order 2M,

(ii) N ≥ 2M×max(ω1,ω2)
Then D̂12 ≥ 0.

Proof Denote the sets Wωi,M = {pωi, p = 1, . . . ,M} for i = 1,2, and WN = {1, . . . ,N/2}.

We have:

D̂12/2 = ∑
n∈WN

(A2
n +B2

n)− ∑
n∈Wω1 ,M

(A2
n +B2

n)− ∑
n∈Wω2 ,M

(A2
n +B2

n)

Now, the condition (i) ensures that Wω1,M ∩Wω2,M = /0, while (ii) implies that Wωi,M ⊆WN ,

for i = 1,2. Hence,

D̂12/2 = ∑
n∈WN−(Wω1 ,M

∪Wω2 ,M
)

(A2
n +B2

n)≥ 0 �

Corollary. It is a direct consequence of proposition 3 that if (i) and (ii) are satisfied, then

(20) returns positive values.

Remark In practice, one can use for instance ω1 = 11,ω2 = 35 (Mara, 2009), that are free

of interferences up to 2M for the usual orders M = 4,6; Then the minimal value of N is

2×6×max{11,35}= 420.

3.3.2 Bias

The three estimation methods differ in terms of bias.

Sobol method (19) The Sobol method estimator is unbiased since only direct Monte Carlo

integrals (mean estimators) are used as estimators for the conditional expectations.

Fixing method (20) There are several sources of bias for the FAST estimator of main indices

given by Tissot and Prieur (+2011): Interference, aliasing and truncation. However, (i) and

(ii) in proposition 3 are stronger than the conditions given by Tissot and Prieur (+2011)

to limit the bias due to interferences and aliasing. Furthermore, the bias due to truncation

vanishes when nFAST tends to infinity. For that reason one can expect (20) to be only slightly

biased.
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RBD-FAST (17) Tissot and Prieur (+2011) also mention a bias for RBD-FAST estimators

caused by a random noise in the signal coming from the sampled variables. This bias might

be even enhanced here through the use of a combination of RBD-FAST estimators.

3.4 Comparison

RBD-FAST N = 2(Md +L)×
((

d
2

)
+d
)

Sobol method N = nSobol ×
((

d
2

)
+d +1

)

Fixing method N =
(

d
2

)
×nMC ×nFAST

Table 1 Number of functions evaluations for the three estimators (17), (19) and (20).

The performance of the three estimators shall be studied empirically here. The param-

eters for each method are chosen in order to match the number of function evaluations N,

since this is supposed to be the most time-consuming part, especially for functions with high

complexity. We report to table 1 for the relation between parameter settings and N within

each of the three methods. For the Sobol method the first factor in the MC integration (18) is

evaluated only once for all index calculations to keep N low. The addition of 1 in the formula

is due to that fact (where d is due to the first and
(

d
2

)
to the second order indices). When we

fix M (e.g. M = 6) then for RBD-FAST N is determined only by L and for Sobol method only

by nSobol . For the fixing method the number of function evaluation depends on the product

of nMC and nFAST . Setting ω1 = 11 and ω2 = 35, we chose nFAST = 500, which satisfies the

condition of proposition 3 and seems sufficient to give reliable estimates, so that only nMC

has to be adapted.

The g-function of Sobol is chosen as analytical test function for its high recognition and

flexible interaction structure. It is defined by

g(X1, . . . ,Xd) =
d

∏
k=1

|4Xk −2|+ak

1+ak

, ak ≥ 0, Xk
i.i.d.
∼ U [0,1], k = 1, . . . ,d

We consider a number of d = 6 independent uniformly distributed variables and choose

a = (0,0,0,0.4,0.4,5)′ to have a structure with high interactions. This is demonstrated by

the fact that, analytically, the overall variance with D = 3.27522 is much greater then the

sum of first and second-order indices with 2.06419 (Sobol, 2003). For the number of func-

tion evaluations we choose 5000 evaluations for each of the 15 indices (in total: N = 75000)

and thus set the parameters L = 1750, nSobol = 3409 and nMC = 10. We estimate each index

100 times for all three methods. The results can be seen in figure 1. As expected in section

3.3.1, negative results can be observed by RBD-FAST and the Sobol method. Because there

is no negative variance, negative values should be treated as zero. The RBD-FAST estimates

show the smallest variance of the three methods but are severely biased. One reason for this

might be the bias for RBD-FAST methods described in section 3.3.2. The estimates by Sobol

method and fixing method however appear almost unbiased but with higher variance, a con-

sequence of crude Monte Carlo integration which is partly applied in the fixing method and

completely in the Sobol method. That explains the better performance of the fixing method.

Especially for the nearly inactive combinations with variable 6 the variance is very small,
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an important property for the task of detecting inactive interactions.
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Fig. 1 Estimates of the total interaction indices of the g-function (d=6) of the three estimators (17), (19) and

(20), N = 75000

To get an impression of the influence of the number of evaluations, N, we repeat the

example study with the eight times higher value of N = 600000. Results can be seen in

figure 2. As expected the variances of all three estimates are much reduced, most clearly for

the Sobol method which also has almost no negative values any more. But its variance is still

not smaller then the variance of the fixing method. The bias situation as well as the fact that

the fixing method stands out at detecting inactive interactions remains the same.

4 Example of application

In many phenomena, it is not rare, even for complex ones, that some groups of input vari-

ables have a separate influence on the output. In that case, the function of interest is de-

composed as a sum of lower dimensional terms. In this section, we illustrate how the total

interaction indices can be used to recover such decomposition. For instance, let us consider

the function:

f (X1, . . . ,X6) = cos([1,X1,X5,X3]β )+ sin([1,X4,X2,X6]γ)

with Xk
i.i.d.
∼ U [−1,1], k = 1, . . . ,6, β = [−0.8,−1.1,1.1,1]′ and γ = [−0.5,0.9,1,−1.1].

Our aim is to recover the decomposition of f into additive parts. First we estimate standard

and total indices of the main effects by FAST (section 3.1). The results, divided by the over-

all variance for comparison purpose, can be seen in table 4. The values for total indices all

are very high, so no factor can be removed. The large difference between standard and total

indices indicates a strong interaction structure in the function, but the nature of the structure
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Fig. 2 Estimates of the total interaction indices of the g-function (d=6) of the three estimators (17), (19) and

(20), N = 600000

cannot be read from it.

i 1 2 3 4 5 6

D̂i/D 0.11639 0.14049 0.09037 0.11290 0.10862 0.19457

D̂T
i /D 0.2326 0.20942 0.20770 0.17768 0.23113 0.25874

Table 2 Standard and total indices for the main effects of the application function

Therefore, in the next step, we want to estimate total interaction indices. On the basis of

the results of section 3.4 we chose the fixing method for estimation. Results, again divided

by the overall variance, are given in table 3.

i 1 1 1 1 1 2 2

j 2 3 4 5 6 3 4

D̂i j/D 0.00010 0.07257 0.00095 0.07876 0.00129 0.00126 0.04609

i 2 2 3 3 3 4 4 5

j 5 6 4 5 6 5 6 6

D̂i j/D 0.00119 0.05509 0.00159 0.06399 0.00151 0.00153 0.04241 0.00164

Table 3 Estimates of total interaction indices for function a with nFAST=500 and nMC = 50

A nice way to visualize the estimated interaction structure is the so called FANOVA

graph (Muehlenstaedt et al, 2011). In the graph, each vertex represent one input factor and
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an edge between two vertices indicates the presence of second or higher order interactions

between the factors. The left side of figure 3 shows the FANOVA graph for the application

function. The thickness of the edges is proportional to the total interaction indices and in

addition the thickness of the circles around vertices indicates the standard indices of main

effects. The strong connection between factors 1, 3 and 5 is clearly visible as well as the

slightly weaker connection between factors 2,4 and 6. All other values are very low and their

analytical counterparts actually are zero. So by thresholding those indices by a reasonable

value, e.g. δ = 0.01 an even clearer image of the interaction structure (right side of figure 3)

can be visualized and we obtain a decomposition into two additive parts. For more details

and examples see Muehlenstaedt et al (2011).

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 3 FANOVA-graph for function a. Left: without thresholding, right: with thresholding at 0.02. The thick-

ness of the circles around the vertices represents main effects, the thickness of the edges represents total

interaction effects.

5 Conclusion

In this article total interaction indices were introduced and considered for the decomposition

of functions with high order interactions. These indices quantify the contribution of second

order interactions of variables and thus indicate decomposition cuts at inactive interactions.

Exploiting theoretical connections between different kinds of indices, three methods to es-

timate total interaction indices were developed, using crude Monte Carlo integrals, RBD-

FAST and integrals over the indices of 2-dimensional functions respectively. In empirical

comparisons, for the same number of functions evaluations, the last one performed best

in terms of bias and variance, especially for inactive interactions whereas the RBD-FAST

method revealed a strong bias. Finally we illustrated how the detection of inactive total in-

teractions can be used to recover the decomposition of a complex function by identifying

the groups of input variables that have a separate influence on it. Here the indices were also

used to graphically visualize the interaction structure of the function.

Further research will address the bias in the RBD-FAST method. The general idea is to

apply the technique presented by Tissot and Prieur (+2011) to remove the bias in RBD-FAST
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methods. Another main direction is the identification of the threshold cut below which esti-

mates of total interaction indices are assumed to be close enough to zero. Several techniques,

such as tests of significance and decision plots, may be considered.
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Appendix - A direct proof of proposition 2.

Another proof of proposition 2 can be obtained by looking at the FANOVA decomposition

of ffixed.

Lemma The decomposition below, obtained by gathering terms in the FANOVA decompo-

sition of f (X):

ffixed(Xi,X j) = ∑
I⊆−{i, j}

µI(xI)+ ∑
I⊆−{i, j}

µ{i}∪I(Xi,xI)

+ ∑
I⊆−{i, j}

µ{ j}∪I(X j,xI)+ ∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,xI) (21)

is the FANOVA decomposition of ffixed(Xi,X j).

The proof of the lemma is reported below. In particular, the second order interaction is

given by the last term. Hence, we have by definition:

Di, j|x−{i, j}
= var

(

∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,xI)

)

= var

[

∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,XI)

∣∣∣∣∣X−{i, j} = x−{i, j}

]

And, by integrating with respect to x−{i, j}:

E
(

Di, j|X−{i, j}

)
= E

(
var

[

∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,XI)

∣∣∣∣∣X−{i, j}

])

Now, one can apply the total variance formula,

E
(

Di, j|X−{i, j}

)
= var

(

∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,XI)

)

−var

[
E

(

∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,XI)

∣∣∣∣∣X−{i, j}

)]
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and remark that, using (2), E
(
µ{i, j}∪I(Xi,X j,XI)

∣∣X−{i, j}

)
= 0, for any i, j /∈ I. Finally:

E
(

Di, j|X−{i, j}

)
= var

(

∑
I⊆−{i, j}

µ{i, j}∪I(Xi,X j,XI)

)

= ∑
I⊆−{i, j}

D{i, j}∪I = ∑
I⊇{i, j}

DI =Di j. �

Proof of the lemma For the sake of simplicity, we denote by µ∗
0 , µ∗

i , µ∗
j and µ∗

i j the four

summands, so that (21) is rewritten as:

ffixed(Xi,X j) = µ∗
0 (x−{i, j})+µ∗

i (Xi,x−{i, j})+µ∗
j (X j,x−{i, j})

+µ∗
i j(Xi,X j,x−{i, j})

By uniqueness, it is sufficient to prove that these four terms satisfy the conditions (1) and

(2).

– For condition (1), let us show for instance that µ∗
i (Xi,x−{i, j}) is centered. We have:

E(µ∗
i (Xi,x−{i, j})) = ∑

I⊆−{i, j}

E
(
µ{i}∪I(Xi,XI)

∣∣X−{i, j} = x−{i, j}

)

As X1, . . . ,Xd are independent, the conditioning term can be reduced to XI and thus,

applying (2) for the FANOVA of f (X), we obtain:

E(µ∗
i (Xi,x−{i, j})) = ∑

I⊆−{i, j}

E
(
µ{i}∪I(Xi,XI) | XI = xI

)
= 0

The same ideas apply for µ∗
j (X j,x−{i, j}) and µ∗

i j(Xi,X j,x−{i, j}).
– For condition (2), it remains to show that E(µ∗

i j(Xi,X j,x−{i, j}) |Xi)=E(µ∗
i j(Xi,X j,x−{i, j}) |

X j) = 0. For the first one, for instance, we have:

E(µ∗
i j(Xi,X j,x−{i, j})

∣∣Xi)

= ∑
I⊆−{i, j}

E
(
µ{i, j}∪I(Xi,X j,XI) | Xi,X−{i, j} = x−{i, j}

)

= ∑
I⊆−{i, j}

E
(
µ{i, j}∪I(Xi,X j,XI) | Xi,XI = xI

)

which is null by application of (2) for the FANOVA of f (X). This concludes the proof.

�
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