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1 INTRODUCTION 

The current highly competitive context imposes 
even more rapid and low cost development phases, 
for the creation of even more efficient systems. 
Therefore, the designers’ challenge is to master 
complexity in a restrained time, while validating 
performances. The performances validation process 
is very important for safety-relevant applications or 
critical systems. Thus, elaborated analysis tech-
niques have to be used to assess those requirements. 
These are dealing with state reachability proving, 
dysfunctional behavior simulation and indicators 
quantification. Moreover it has been proven that it 
was cost-effective to detect potential failures as soon 
as possible, since it permits to avoid reengineering 
costs. 
 

The System Engineering (SE) process deployed 
for the design of such systems have to organize all 
the tasks to be performed from the definition of the 
functional architecture to implement, to the valida-
tion of the dependability and safety. Currently, nu-
merous standards and specific engineering metho-
dology have been proposed to tackle this issue (e.g. 
IEC 61508 and its derivative). Nevertheless the dif-
ficulty that remains for developers is to optimize the 
integration of safety and reliability analysis in those 

processes to minimize the time consumed by those 
activities. 

 
To lessen the time needed to conduct jointly the 

SE and Dependability processes, it is necessary to 
identify and model the activities that compose them 
to plan their interactions and to pilot the whole. In 
this article, we adopt the definition of “process” de-
scribed by the INCOSE Handbook (INCOSE 2004): 
“a process is a set of interrelated or interacting activ-
ities which transforms inputs into outputs”. A 
process doesn’t define how activities transform the 
inputs but what is exchanged along those activities. 

 
Efficiently conducting the SE and dependability 

processes is a topical subject in current research 
projects. In fact, the introduction of new standards 
for critical and safety relevant systems imposes on 
systems manufacturers to master a new kind of En-
gineering process including safety management as-
pects. The aim of projects as CESAR (David & 
Shawky 2010) and SASHA (Langheim et al. 2010) 
is to find an efficient manner to follow the safety li-
fecycle described in the standards and to furnish the 
adapted tool supports and the tool interactions to 
implement them. In those projects, specific 
processes are studied and we can note that most of 
engineering domains (nay each manufacturer) are 
using their specific processes, lifecycles and depen-
dability analysis baselines. Therefore we propose in 
this article a generic approach to help in merging 
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and supporting SE and dependability processes. This 
work will be illustrated by a two levels example ex-
tracted from the case study of the LEA project. A 
first part (section 2), illustrating processes manage-
ment at a project level showing the fusion of both 
SE and Dependability studies activities. And the 
second part (section 3), showing the product level 
application of the defined processes. This example 
will also underline the central role of repositories 
making the junction between the interleaved activi-
ties at the project level and the coherence and tra-
ceability of the produced data at a product level.   

 
One of our current project is the LEA project 

started in 2003 by MBDA-France and ONERA to 
address the key issue of the aeropropulsive balance 
of a dual-mode ramjet powered vehicle in the range 
Mach 4 to 8 (Falempin & Serre 2009). A develop-
ment methodology has been defined for such type of 
vehicle, together with the numerical and experimen-
tal tools enhancement to enable predicting the flight 
performances with suitable accuracy. This metho-
dology is now being applied to minimal size expe-
rimental vehicle, called LEA, which has passed the 
preliminary design review in 2006, and the critical 
design review in 2009. Finally, several flight tests 
will be performed at the end of the program to vali-
date the quality of performance prediction. Four 
flights are planned, and will be performed between 
2013 and 2014, operated from Russian test range 
and using Russian hardware for initial acceleration. 
Our team is charged of specifying, designing, testing 
and validating the embedded system, which must 
control the flight from the launching of the craft to 
the final crash. Moreover, the embedded system 
must control the dual-mode ramjet carburetion 
process and some safety functionalities, like the au-
to-testing function for automating GO/NoGO deci-
sion before launch or the detection of separation 
from booster and the ignition order. The LEA 
project gives us an experimental platform to adapt 
our work to embedded system. 

2 PROJECT LEVEL 

At the project manager's level, merging SE and De-
pendability processes begins with the identification 
of each activity performed through those processes. 
This leads the project manager to plan SE and de-
pendability activities together showing the need for 
tools to fill the gap between them.  

2.1 Modeling SE and Dependability processes 

In order to underline the crucial points of processes 
merging, we model the activities which compose 
them by using UML activity diagrams. We provide a 
generic model of purely SE so that each of our in-

dustrial partners can duplicate this model into their 
own industrial SE processes. We thus specified the 
SE process provided on Figure 1. In this UML mod-
el, SE activities are modeled as activities and the da-
ta generated are modeled using Data Store Nodes. In 
this article, Data Store Nodes represent a certain 
view or information available in a model. They 
match the UML 2 (OMG 2009) definition: “A data 
store node is a central buffer node for non-transient 
information”. 

 
Figure 1 represents the model of specification and 

design SE activities:  
� Define the system’s objectives. 
� Establish the functions of the system. 
� Specify the required performances (require-

ments and constraints). 
� Determine the physical and logical architecture. 
 
Those activities will product knowledge easily 

modeled by using SysML. As said before, the pieces 
of knowledge are represented by Data Store Nodes. 
The generic version of this model didn’t imple-
mented flow control nor feedback and transfer of da-
ta between activities as those are tied to the industri-
al background.  

Figure 1: System Engineering process 
 
Each activity can be iteratively conducted until a 

satisfying level of detail or quality, have been 
reached. For each iteration, former data contained in 
data stores nodes is replaced by updated data. 

 
We then modeled the dependability activities in 

their process and determined its needs in terms of 
knowledge management. We present on Figure 2 an 
example of dependability analysis subprocess: per-
forming an FMEA. The data stores nodes in this di-
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agram represent the pieces of information needed to 
initiate those activities. We can observe links be-
tween the needed knowledge in this FMEA process 
and the knowledge produced by the SE process. The 
data stores nodes “Functional Analysis” and “Archi-
tecture Design Choices” are for example linked to 
the data store nodes “Functional Analysis” and 
“System Architecture” described in the SE process 
model. We can also observe that some data store 
nodes such as “Feedback Database” and “Expert’s 
Knowledge” can’t be linked to pieces of information 
produced by the SE process. It reveals one of the is-
sues that our methodology tries to address: the dis-
persion of valuable knowledge in the global process.  

 
The “Functional Analysis”, needed in the FMEA 

process is an output of the SE process, stored in se-
quence diagrams and activity diagrams. In the same 
way, the “Architecture Design Choices” can be pre-
sented in block definition diagrams and internal 
block diagrams produced during the SE process. 
Furthermore, requirements and constraints will be 
useful to the expert to evaluate the gravity of the 
failure modes described in the FMEA. Those obser-
vations forms the first issue addressed by our me-
thodology: Connecting the SE and dependability 
processes and supporting an automatic transfer of 
the shared information. 

Figure 2: FMEA process 

2.2 Our solution : the MéDISIS  Framework 

Our methodology called MéDISIS (Fig. 3) is cen-
tered on a Dysfunctional Behavior Database (DBD) 
which stores dependability feedback and offers a set 
of translation processes from a main system model 

in SysML to different specific modeling languages 
to perform dependability studies. (David et al. 2010) 
(Cressent et al.2011). 

 
MéDISIS offers tools to help managing data and 

knowledge through the whole project, including 
their creation, expression, analysis, perenniality and 
re-use. Those tools and resources form a coherent 
framework and aim at reaching the following objec-
tives: 

1- Easy the knowledge transfer between teams 
and among the various engineering levels. 

2- Speed up the dependability analysis. 
3- Organize the common use of information using 

models. 
4- Permit the re-use of knowledge between 

projects (i.e. easy the use of feedback information). 
5- Identify the needs, plan, and store the results of 

the project’s activities through all the life cycle. 
6- Increase the coherence and the quality of the 

dependability analysis. 

Figure 3: The MéDISIS framework and its processes 
 
Natively, using SysML as the central model lan-

guage benefits the objectives 1 and 3. Indeed, 
SysML permits multi-view modeling which address 
the expectations of every actors of the system de-
sign. The other benefit brought by SysML is the 
possibility to model requirements which create a 
support to their traceability through the model and 
project evolutions and address the objective 5. 

 
As described before, MéDISIS is centered on a 

database destined to assure the perenniality of the in-
formation. This DBD contributes to address the 1rst 
objective. It permits to manage knowledge, brought 
by each specific expert during dependability analy-
sis, in a single organized structure. The DBD meta-
model lies on SysML meta-classes and is partially 
translated into other language through certain   
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Figure 4: MéDISIS activities for FMEA generation 
 

MéDISIS processes. The multi-view and multi-
language aspects of this database address the objec-
tives 2 and 4 since it permits to access quickly de-
pendability information, to be used or to be stored. 
Finally, the DBD enhances the coherence between 
dependability analyses thanks to its structured meta-
model which link together functional information, 
domain specific knowledge, and dependability re-
sults, addressing by the way the objective  

 
Beside the DBD, MéDISIS is composed by a set 

of translation processes offering a way to transform 
a SysML model into other ones using specific lan-
guages. Those processes are automatable, proof of 
their coherence, their fast execution and of the tra-
ceability of the data treated, created and re-used. 
Those processes address the objectives 1, 2 and 6. 
Every one of them aims at generating partial models 
in the target language, to be completed by dependa-
bility experts. They fulfill the need of our industrial 
partners that use various tools and formalisms along 
their projects, manipulated by different experts in 
their own domain. 

 
Currently, MéDISIS counts 4 processes that 

translate SysML models into target languages. The 
benefits that bring SysML are described in (Cressent 

et al. 2010). The creation of the DBD and its meta-
model, the FMEA generation process and the Altari-
ca DF translation process were described in (David 
et al. 2010).and (Cressent et al. 2010), described the 
SysML to AADL translation process and the process 
to Simulink. 

 
We can observe in Figure 4 the result of the 

FMEA generation process at a project level. It builds 
the desired bridge between SE and dependability ac-
tivities and exemplifies the merging process we were 
able to perform by analyzing the separated activity 
diagrams (Fig. 1 & 2). Each MéDISIS process can 
be modeled in the same way. Ultimately, it furnishes 
to the project manager a method to plan the design 
process taking into account both the SE and the de-
pendability aspects of the project. This plan is then 
followed creating a workflow at the product level 
that will benefit from the MéDISIS tools. 

3 PRODUCT LEVEL FEEDBACK 

In this section, we present our feedback on the LEA 
project supported by the MéDISIS framework, at the 
product level. The first process we used were the 
FMEA generation, during an early dependability and 
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safety analysis. Then we employed the AADL 
process to help choosing the best architecture of the 
system. The FMEA process is then re-applied to de-
tail the study, taking into account the architecture 
and the components, to precise the dependability 
analysis. Before the design phase, we translate the 
system model in Simulink (Cressent et al. 2011). 
The resulting model allows us to simulate the system 
to get information about error propagation early in 
the design process by performing fault injection. We 
focus our thoughts on an internal communication 
function between the flight controller and the acqui-
sition module. 

3.1 LEA overview and feedback 

During the flight, LEA will be carried by a plane, 
dropped and then propelled by a booster before be-
ing able to fly autonomously. Numerous functions 
must be guaranteed, such as the auto-test, detection 
of the drop, the gas regulation, detection of the end 
of mission and emission of the data. The benefits of 
bringing SE and reliability closer were already wit-
nessed during the early design phases of the product. 
The workflow followed by our team from the speci-
fication to the preliminary design is summered and 
the benefits are highlighted in the rest of the article. 

3.1.1 Getting valuable knowledge from the technic-
al specification of the project 

Figure 5: Internal bloc diagram of the LEA vehicle 
 
This step is one of the classic step of any SE process 
(Figure 4). It is supported by the SysML tool: Re-
quirements formulation (Requirement Diagram pro-
duced by the activity “Specify the required perfor-
mances”), Needs classification (Use Case Diagram 

produced by the activity “Define the system’s objec-
tives”), synthesis of the technical specification per 
each use case (Sequence Diagram produced by the 
activity “Establish the function of the system”). The 
environmental and technological constraints are 
qualified using parametric diagrams produced by the 
activity “Specify the required performances”. Final-
ly, the organic description of the system is realized 
(BDD and IBD) by the activity “Determine the 
physical and logical architecture” and then the allo-
cation of the requirements is performed in each view 
of the system. For example, Figure 5 details the ar-
chitecture of the LEA vehicle. It presents its major 
components (e.g. Flight Controller, Coder, Inertial 
Measurement Unit, …) and their connections. This 
example highlights the flows exchanged by the 
components by using SysML item flows (e.g. Call-
Data, ImuData, PropOrders, …).  

3.1.2 System analysis.  
The benefit of using SysML during this stage is the 
ability to inter-connect the analysis and the different 
entities described in each view through parametric 
diagrams. The information and knowledge of our 
system are synchronized bringing more coherence in 
the model.  

3.1.3 Risk analysis.  
This stage starts with the generation of the partial-
FMEA (Fig. 6). The excerpt of FMEA presented in 
Figure 6 utilizes the notation of the SysML model 
and has specific writing rules peculiar to the MéDI-
SIS generation process. For example, requirements 
names are given in brackets in the “Requirement ef-
fects” column. The “Causes” column shows the 
flows incoming to the component, the flow port spe-
cifications that describe this flow and eventually the 
constraints blocks attributed to theses parameters. 
Since our DBD concerning the technological parts of 
the vehicle is new, generic failure modes are gener-
ally used. Along the progresses of the analysis, the 
results are introduced in the DBD, increasing the 
number of failures modes recorded within. Then, at 
each evolution of the system model, a new partial-
FMEA is generated. Finally, a list of the critical 
threats is created, identifying the severe risks and the 
components, functions and requirements threatened. 
The number and the nature of the requirements 
threatened counts in evaluating the criticality of a 
failure mode.  

 
In our latest project, during this phase, some sub-

systems, such as the inertial measurement unit, were 
identified as critical. The placement of the inertial 
measurement unit in the functional chain of the sys-
tem plays a great role in the dependability of the 
mission. By following some rules and using SysML 
artifacts (parametric diagram, rationales,…), it is 
possible to gather and classify the parameters that  
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influence reliability, such as the product’s life cycle, 
the mission profile, the use conditions or over-
stresses. All this information can be stored in the 
system model and in the DBD. The main advantage 
of the DBD update is that the collected information 
becomes available to automatically refine the 
FMEA. Furthermore, since the DBD is modeled 
with SysML, we can apply on it other MéDISIS 
translation processes. This enables us to use the 
FMEA results into other languages, for instance it 
permits to realize failure mode injection in a Simu-
link model. 

3.1.4  System analysis  
The integration of the risk analysis results conducts 
to reinforce and modify the requirements and con-
straints applied to the system. These are related to 
the identified failure modes. This results in modify-
ing the requirement diagrams of our system, and 
modeling new constraints using parametric dia-
grams. 

 
By taking into account the new requirements, 

constraints and the rationales applied to some sub-
systems, various slightly different architectures are 
conceivable. The criterions to be analyzed are func-
tional, economic, safety related and temporal. At this 
stage, we deal with the functional criterions (Cres-
sent et al. 2011). 

 
The estimation of these criterions may cause new 

analyses needs. For the functional placement of the 
inertial measurement unit, it appears that the 
processing time is important. SysML does not per-
mit to model efficiently those aspects. So, we need 
to resort to a more detailed formalism to deal with 
the modeling of temporal, architectural and depen-
dability aspects. The example is continued in the fol-
lowing section. 

3.1.5 Specific technical analysis. 
As described previously, certain results brought by 
the FMEA need to be further analyzed thanks to 
more specialized formalisms, for instance  in the 
domain of timing constraints. The MéDISIS frame-
work contains a process to generate an AADL model 
(Cressent et al. 2010). AADL combined with the 
scheduling tool: Cheddar (Singhoff 2007) permits to 
find specific temporal constraints stored back in the 
system model using parametric diagram (Fig. 7). 
The parametric diagram in Figure 7 presents the re-

lations between components time parameters (e.g. 
Tad, T_sampl, T_DR_co,…). Theses parameters are 
bond through constraints properties that defines the 
physics of their relations (e.g. Formula : Control Da-
ta Age). Then, we apply this translation process to 
each conceivable architecture. It permits to compare 
the temporal constraints of each architecture and to 
have a criterion to compare them and decide which 
one is the most appropriate for the needs of the mis-
sion. The main objective of this step was to qualify 
the temporal constraints (Fig. 7). In fact, the quanti-
fication won’t be possible until the detailed design 
stages of the product. 

 
In fact, the placement of the subsystems we de-

scribed earlier impacts the age of the functional data 
used to regulate the gas in the engine. For some ar-
chitecture, physical or logical redundancies bring 
multiplicative factors on processing times. We had 
to estimate and judge whether performance or de-
pendability must be favored. When the choice is 
done, the system model is updated, the requirements 
are detailed with timing information and the new 
timing constraints are modeled with parametric dia-
grams. And this knowledge generated by the AADL 
study permits to refine some failure mode effect, 
such as a partial loss of connection between subsys-
tems.  

Figure 7: Parametric diagram describing the formula of the age 
of the functional data. 

3.1.6 Failure mode injection and test cases 
After another phase of FMEA updating, which con-
sists in taking into account the new qualification of 
the effects studied with the AADL model. The level 
of detail (i.e. of the system’s functioning) allows us 
to classify again the failure modes with respect to 
the risk they represent for the system mission. For 

Name Failure 
Mode Causes Local Effects Requirements Effects System Effects 

Flight con-
troller 

Scheduling 
Failure 

Ethernet flow[Env. 
Constraint : vibration] 
> [Port Specification] 

Propulsion orders [GasAlim] / 
Functionnal Outputs[Coder] 
/ ConstraintBlock[Data Age] 

[Timing requirements] 
Real-time constraints not 
fulfilled 

Loss of data / Risk of engine 
failure 
 

  Internal Overstress Propulsion orders [GasAlim] / 
Functionnal Outputs[Coder] 
/ ConstraintBlock[Data Age] 

[Timing requirements] 
Real-time constraints not 
fulfilled 

Loss of data 
 

Figure 6 : Excerpt of LEA FMEA 

par [block] Data Age

T_DR_co :
Time

T_EFD_co :
Time

T_EFD_fc :
Time

T_sampl :
Time

Tad :
Time

Formula : Control Data Age

constraints
{Tad = T_sampl + T_DR_co + T_EFD_co + T_EFD_fc}

Tad

T_sampl T_DR_co T_EFD_co T_EFD_fc

Tad

T_sampl T_DR_co T_EFD_co T_EFD_fc

Comparison : Scheduling constraint

constraints
{Tad < Tref}

TadTad



the most critical ones, it is necessary to deepen the 
study. We want to quantify the constraints modeled 
with parametric. Thereby, the management of the 
tests is supported by the parametric diagrams. We 
use fault injection in a Simulink model to understand 
the dynamic behavior of our system in case of fail-
ure.  

 
Indeed, the similarities between SysML and Si-

mulink described in (Cressent et al. 2010) and 
(Snyder et al. 2010) permitted to define the MéDI-
SIS bridge to the detailed design phases of the prod-
uct. At this stage, we inject failure modes into our 
model to simulate its behavior and validate the de-
sign choices. Furthermore, tests cases defined using 
sequence diagrams (Fig. 8) and parametric diagrams 
(Fig. 7) are introduced as well. Since sequence dia-
grams permits to define the exchanges of messages 
between components in the functional system model 
of the LEA vehicle, it also allows describing non 
functional exchanges such as test case exchanges. 
Sequence diagrams will help defining the test proce-
dure when the parametric diagrams will help defin-
ing the success criteria. Figure 9 shows an example 
of Simulink block success criterion implementing 
the formula presented in figure 7 that is used to vali-
date the system design model. The Simulink design 
model of the system is then simulated to give us pre-
cious information about his behavior in failure con-
ditions. It is then updated taking into account the 
performances of the system and the effects of failure 
modes. 

Figure 8: Sequence diagram describing the Ethernet connection 
between the flight controller and the data acquisition unit. 

 

For our example, we injected a failure mode 
jamming the data exchanges between subsystems. 
The parameters of bloc simulating the failure were 
determined by the FMEA which linked this failure 
mode to temperature and vibrations overstresses. 
Results of the simulation were compared to the pa-
rametric diagrams modeling the temporal constraints 
of the communication between those subsystems 
which can jeopardize the emission of flight data to 
the ground. Since the main objective of the LEA 
project is collecting flight data, those failure mode 
were considered critical. The final results of this 
fault injection phase were described in detail in 
(Cressent et al. 2011). 

Figure 9: Simulink block defined from the parametric diagram 
(Fig. 7) used as success criterion for the LEA design model 

4 CONCLUSION AND PROSPECTS 

Since nowadays systems are complex and multi-
technologic, it is tedious to master their design and 
optimization within a clear and effective Engineer-
ing process. We consider that adopting a model 
based approach is the best way to handle the com-
plexity issues, the exchange of model information 
and parameters and the communication amongst sys-
tem level description (e.g. from domain-specific 
tools to a system level view). We are building the 
MéDISIS framework in order to help systems engi-
neers deploying a model-based approach for safety 
critical complex systems. 

 
Currently, MéDISIS is applied in the LEA 

project, from the project activities planning to the 
product design phase. Through all the steps per-
formed until now, MéDISIS brought fluency be-
tween activities and opened new ways of integrating 
dependability studies to the system engineering 
process. At the project level, the possibilities offered 
by the MéDISIS framework allow to plan SE activi-
ties and dependability activities at the same level. 
Indeed, MéDISIS offers bridges to cross the gap that 
usually separates them. At the product level, through 
specification and design phases, the MéDISIS 

:Sensor
«part»

:Coder
«part»

:Flight Controller
«part»

par

sensor_value {T_sampl}

Eth frame def
{T_EFD_fc}

call data

Eth frame def {T_EFD_co}

par

sensor_value {T_sampl}{T_sampl}

Eth frame def
{T_EFD_fc}

call data

Eth frame def

Eth frame def
{T_EFD_fc}

call data

{T_EFD_fc}

Eth frame def {T_EFD_co}

Data retrieval {T_DR_co}

Eth frame def

{T_DR_co}

{T_EFD_co}

{Tad}

data

{T_EFD_co}

{Tad}

Eth frame def
{T_EFD_fc}

storage

{T_EFD_fc}

{T_C_fc}{T_C_fc}

OSD transmission Eth



processes enable and ease the connection between 
tools (e.g. SysML, FMEA, Simulink, …). Further-
more, MéDISIS increases the consistency of the sys-
tem model and dependability analyses by synchro-
nizing the information from any language into the 
system model and the DBD. 

 
One of the remaining issues that we need to ad-

dress is the definition of the different levels of our 
DBD. The information contained in the DBD, as we 
foresee it currently, belongs to three different levels: 
the Company DBD (common to every project), the 
Project DBD (completed through the project 
progresses) and the Product DBD (containing all in-
formation peculiar to the product and exclusively the 
product). The process to handle the storage of in-
formation, from one level to another, needs to be de-
fined in details and the benefits of each level should 
be identified. 

 
We also want to address the issue of the man-

agement of granularity during the different project 
phases. The levels of detail necessary to describe the 
architecture of the system and suitable to describe 
the dynamics of the system are hard to define. Fur-
thermore, this point is likely to impact the SE 
process of the whole project, the way dependability 
analyses are performed, and the bridges between SE 
and dependability.  

 
Finally, addressing the before-mentioned issues 

should lead us to address the challenges that 
represent the use of Components Off The Shelf 
(COTS) in a complex system with high dependabili-
ty requirements. 
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