
HAL Id: hal-00630987
https://hal.science/hal-00630987v1

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability analysis activities merged with system
engineering, a real case study feedback

Robin Cressent, Pierre David, Vincent Idasiak, Frédéric Kratz

To cite this version:
Robin Cressent, Pierre David, Vincent Idasiak, Frédéric Kratz. Dependability analysis activities
merged with system engineering, a real case study feedback. ESREL 2011, Sep 2011, Troyes, France.
�hal-00630987�

https://hal.science/hal-00630987v1
https://hal.archives-ouvertes.fr

1 INTRODUCTION

The current highly competitive context imposes
even more rapid and low cost development phases,
for the creation of even more efficient systems.
Therefore, the designers’ challenge is to master
complexity in a restrained time, while validating
performances. The performances validation process
is very important for safety-relevant applications or
critical systems. Thus, elaborated analysis tech-
niques have to be used to assess those requirements.
These are dealing with state reachability proving,
dysfunctional behavior simulation and indicators
quantification. Moreover it has been proven that it
was cost-effective to detect potential failures as soon
as possible, since it permits to avoid reengineering
costs.

The System Engineering (SE) process deployed
for the design of such systems have to organize all
the tasks to be performed from the definition of the
functional architecture to implement, to the valida-
tion of the dependability and safety. Currently, nu-
merous standards and specific engineering metho-
dology have been proposed to tackle this issue (e.g.
IEC 61508 and its derivative). Nevertheless the dif-
ficulty that remains for developers is to optimize the
integration of safety and reliability analysis in those

processes to minimize the time consumed by those
activities.

To lessen the time needed to conduct jointly the

SE and Dependability processes, it is necessary to
identify and model the activities that compose them
to plan their interactions and to pilot the whole. In
this article, we adopt the definition of “process” de-
scribed by the INCOSE Handbook (INCOSE 2004):
“a process is a set of interrelated or interacting activ-
ities which transforms inputs into outputs”. A
process doesn’t define how activities transform the
inputs but what is exchanged along those activities.

Efficiently conducting the SE and dependability

processes is a topical subject in current research
projects. In fact, the introduction of new standards
for critical and safety relevant systems imposes on
systems manufacturers to master a new kind of En-
gineering process including safety management as-
pects. The aim of projects as CESAR (David &
Shawky 2010) and SASHA (Langheim et al. 2010)
is to find an efficient manner to follow the safety li-
fecycle described in the standards and to furnish the
adapted tool supports and the tool interactions to
implement them. In those projects, specific
processes are studied and we can note that most of
engineering domains (nay each manufacturer) are
using their specific processes, lifecycles and depen-
dability analysis baselines. Therefore we propose in
this article a generic approach to help in merging

Dependability analysis activities merged with system engineering, a real
case study feedback

R. CRESSENT
PRISME / ENSI de Bourges, Bourges, France

P. DAVID
Grenoble-INP / CNRS G-SCOP UMR5272, Grenoble, France

V. IDASIAK & F. KRATZ
PRISME / ENSI de Bourges, Bourges, France

ABSTRACT: This article largely illustrates the deployment of safety and dependability analysis of a critical
aircraft system within a Model-Based System Engineering context. The level of analysis provided here is two-
fold. A first part of the study examines the process level integration between the traditional System Engineer-
ing activities and the safety and reliability assessment operations. Models of engineering activities are given
and merged to produce a guideline for the project development and highlight the knowledge management.
The second level of this study exemplifies the application of the preceding principles on the product devel-
opment through the feedback and experience learnt on a ramjet powered vehicle embedded system. This ex-
tended instance shows the diverse knowledge materials created throughout the project as well as their imbri-
cations and logical chaining. We mention also how the produced results help in piloting the advances and the
validation needs (especially for real time constraints evaluation).

and supporting SE and dependability processes. This
work will be illustrated by a two levels example ex-
tracted from the case study of the LEA project. A
first part (section 2), illustrating processes manage-
ment at a project level showing the fusion of both
SE and Dependability studies activities. And the
second part (section 3), showing the product level
application of the defined processes. This example
will also underline the central role of repositories
making the junction between the interleaved activi-
ties at the project level and the coherence and tra-
ceability of the produced data at a product level.

One of our current project is the LEA project

started in 2003 by MBDA-France and ONERA to
address the key issue of the aeropropulsive balance
of a dual-mode ramjet powered vehicle in the range
Mach 4 to 8 (Falempin & Serre 2009). A develop-
ment methodology has been defined for such type of
vehicle, together with the numerical and experimen-
tal tools enhancement to enable predicting the flight
performances with suitable accuracy. This metho-
dology is now being applied to minimal size expe-
rimental vehicle, called LEA, which has passed the
preliminary design review in 2006, and the critical
design review in 2009. Finally, several flight tests
will be performed at the end of the program to vali-
date the quality of performance prediction. Four
flights are planned, and will be performed between
2013 and 2014, operated from Russian test range
and using Russian hardware for initial acceleration.
Our team is charged of specifying, designing, testing
and validating the embedded system, which must
control the flight from the launching of the craft to
the final crash. Moreover, the embedded system
must control the dual-mode ramjet carburetion
process and some safety functionalities, like the au-
to-testing function for automating GO/NoGO deci-
sion before launch or the detection of separation
from booster and the ignition order. The LEA
project gives us an experimental platform to adapt
our work to embedded system.

2 PROJECT LEVEL

At the project manager's level, merging SE and De-
pendability processes begins with the identification
of each activity performed through those processes.
This leads the project manager to plan SE and de-
pendability activities together showing the need for
tools to fill the gap between them.

2.1 Modeling SE and Dependability processes

In order to underline the crucial points of processes
merging, we model the activities which compose
them by using UML activity diagrams. We provide a
generic model of purely SE so that each of our in-

dustrial partners can duplicate this model into their
own industrial SE processes. We thus specified the
SE process provided on Figure 1. In this UML mod-
el, SE activities are modeled as activities and the da-
ta generated are modeled using Data Store Nodes. In
this article, Data Store Nodes represent a certain
view or information available in a model. They
match the UML 2 (OMG 2009) definition: “A data
store node is a central buffer node for non-transient
information”.

Figure 1 represents the model of specification and

design SE activities:
� Define the system’s objectives.
� Establish the functions of the system.
� Specify the required performances (require-

ments and constraints).
� Determine the physical and logical architecture.

Those activities will product knowledge easily

modeled by using SysML. As said before, the pieces
of knowledge are represented by Data Store Nodes.
The generic version of this model didn’t imple-
mented flow control nor feedback and transfer of da-
ta between activities as those are tied to the industri-
al background.

Figure 1: System Engineering process

Each activity can be iteratively conducted until a

satisfying level of detail or quality, have been
reached. For each iteration, former data contained in
data stores nodes is replaced by updated data.

We then modeled the dependability activities in

their process and determined its needs in terms of
knowledge management. We present on Figure 2 an
example of dependability analysis subprocess: per-
forming an FMEA. The data stores nodes in this di-

System Engineering

Req. / Con.

Functions

Feedback

Specify the
required

performances

Functions

Needs

Feedback

Establish the
functions of the

system

Architecture

Req. / Con.

Feedback

Determine the
physical and

logical
architecture

Needs

Feedback

Define the
system's

objectives

«Data Store»
Needs Definition

Use Case Diagram

«Data Store»
Functional Analysis
Activity Diagram,

Sequence Diagram

«Data Store»
Requirements and Constraints

Requirement Diagram,
Parametric Diagram

«Data Store»
System Architecture

BDD and IBD

SE

System Engineering

Req. / Con.

Functions

Feedback

Specify the
required

performances

Functions

Needs

Feedback

Establish the
functions of the

system

Architecture

Req. / Con.

Feedback

Determine the
physical and

logical
architecture

Needs

Feedback

Define the
system's

objectives

System Engineering

Req. / Con.

Functions

Feedback

Specify the
required

performances
Req. / Con.

Functions

Feedback

Functions

Needs

Feedback

Establish the
functions of the

system
Functions

Needs

Feedback

Architecture

Req. / Con.

Feedback

Determine the
physical and

logical
architecture

Architecture

Req. / Con.

Feedback

Needs

Feedback

Define the
system's

objectives

Needs

Feedback

«Data Store»
Needs Definition

Use Case Diagram

«Data Store»
Functional Analysis
Activity Diagram,

Sequence Diagram

«Data Store»
Requirements and Constraints

Requirement Diagram,
Parametric Diagram

«Data Store»
System Architecture

BDD and IBD

agram represent the pieces of information needed to
initiate those activities. We can observe links be-
tween the needed knowledge in this FMEA process
and the knowledge produced by the SE process. The
data stores nodes “Functional Analysis” and “Archi-
tecture Design Choices” are for example linked to
the data store nodes “Functional Analysis” and
“System Architecture” described in the SE process
model. We can also observe that some data store
nodes such as “Feedback Database” and “Expert’s
Knowledge” can’t be linked to pieces of information
produced by the SE process. It reveals one of the is-
sues that our methodology tries to address: the dis-
persion of valuable knowledge in the global process.

The “Functional Analysis”, needed in the FMEA

process is an output of the SE process, stored in se-
quence diagrams and activity diagrams. In the same
way, the “Architecture Design Choices” can be pre-
sented in block definition diagrams and internal
block diagrams produced during the SE process.
Furthermore, requirements and constraints will be
useful to the expert to evaluate the gravity of the
failure modes described in the FMEA. Those obser-
vations forms the first issue addressed by our me-
thodology: Connecting the SE and dependability
processes and supporting an automatic transfer of
the shared information.

Figure 2: FMEA process

2.2 Our solution : the MéDISIS Framework

Our methodology called MéDISIS (Fig. 3) is cen-
tered on a Dysfunctional Behavior Database (DBD)
which stores dependability feedback and offers a set
of translation processes from a main system model

in SysML to different specific modeling languages
to perform dependability studies. (David et al. 2010)
(Cressent et al.2011).

MéDISIS offers tools to help managing data and

knowledge through the whole project, including
their creation, expression, analysis, perenniality and
re-use. Those tools and resources form a coherent
framework and aim at reaching the following objec-
tives:

1- Easy the knowledge transfer between teams
and among the various engineering levels.

2- Speed up the dependability analysis.
3- Organize the common use of information using

models.
4- Permit the re-use of knowledge between

projects (i.e. easy the use of feedback information).
5- Identify the needs, plan, and store the results of

the project’s activities through all the life cycle.
6- Increase the coherence and the quality of the

dependability analysis.

Figure 3: The MéDISIS framework and its processes

Natively, using SysML as the central model lan-

guage benefits the objectives 1 and 3. Indeed,
SysML permits multi-view modeling which address
the expectations of every actors of the system de-
sign. The other benefit brought by SysML is the
possibility to model requirements which create a
support to their traceability through the model and
project evolutions and address the objective 5.

As described before, MéDISIS is centered on a

database destined to assure the perenniality of the in-
formation. This DBD contributes to address the 1rst
objective. It permits to manage knowledge, brought
by each specific expert during dependability analy-
sis, in a single organized structure. The DBD meta-
model lies on SysML meta-classes and is partially
translated into other language through certain

FMEA

ListFunctions

List the system's
functions

Feedback

Liste

FM

List Failure Modes

List

Architecture

List the system's
components

FM

EK

Effects Causes

Determine
Causes and

Effects

FM

Effects

EK

Causes

Evaluate Failure
Modes' criticity

«Data Store»
Feedback
Database

«Data Store»
Functional
Analysis

«Data Store»
Architecture

Design Choices

«Data Store»
Expert's

knowledge

FMEA FMEA

ListFunctions

List the system's
functions

Feedback

Liste

FM

List Failure Modes

List

Architecture

List the system's
components

FM

EK

Effects Causes

Determine
Causes and

Effects

FM

Effects

EK

Causes

Evaluate Failure
Modes' criticity

FMEA

ListFunctions

List the system's
functions

ListFunctions

Feedback

Liste

FM

List Failure Modes

Feedback

Liste

FM

List

Architecture

List the system's
components List

Architecture

FM

EK

Effects Causes

Determine
Causes and

Effects
FM

EK

Effects Causes
FM

Effects

EK

Causes

Evaluate Failure
Modes' criticity

FM

Effects

EK

Causes

«Data Store»
Feedback
Database

«Data Store»
Functional
Analysis

«Data Store»
Architecture

Design Choices

«Data Store»
Expert's

knowledge

Figure 4: MéDISIS activities for FMEA generation

MéDISIS processes. The multi-view and multi-
language aspects of this database address the objec-
tives 2 and 4 since it permits to access quickly de-
pendability information, to be used or to be stored.
Finally, the DBD enhances the coherence between
dependability analyses thanks to its structured meta-
model which link together functional information,
domain specific knowledge, and dependability re-
sults, addressing by the way the objective

Beside the DBD, MéDISIS is composed by a set

of translation processes offering a way to transform
a SysML model into other ones using specific lan-
guages. Those processes are automatable, proof of
their coherence, their fast execution and of the tra-
ceability of the data treated, created and re-used.
Those processes address the objectives 1, 2 and 6.
Every one of them aims at generating partial models
in the target language, to be completed by dependa-
bility experts. They fulfill the need of our industrial
partners that use various tools and formalisms along
their projects, manipulated by different experts in
their own domain.

Currently, MéDISIS counts 4 processes that

translate SysML models into target languages. The
benefits that bring SysML are described in (Cressent

et al. 2010). The creation of the DBD and its meta-
model, the FMEA generation process and the Altari-
ca DF translation process were described in (David
et al. 2010).and (Cressent et al. 2010), described the
SysML to AADL translation process and the process
to Simulink.

We can observe in Figure 4 the result of the

FMEA generation process at a project level. It builds
the desired bridge between SE and dependability ac-
tivities and exemplifies the merging process we were
able to perform by analyzing the separated activity
diagrams (Fig. 1 & 2). Each MéDISIS process can
be modeled in the same way. Ultimately, it furnishes
to the project manager a method to plan the design
process taking into account both the SE and the de-
pendability aspects of the project. This plan is then
followed creating a workflow at the product level
that will benefit from the MéDISIS tools.

3 PRODUCT LEVEL FEEDBACK

In this section, we present our feedback on the LEA
project supported by the MéDISIS framework, at the
product level. The first process we used were the
FMEA generation, during an early dependability and

System Engineering MéDISIS Dependability

Req. / Con.
Specify the

required
performances

Functions
Establish the

functions of the
system

Architecture
Determine the
physical and

logical
architecture

Needs
Define the
system's

objectives

«Data Store»
Needs Definition

Use Case Diagram

«Data Store»
Functional Analysis

Activity Diagram,
Sequence Diagram

«Data Store»
Requirements and

Constraints Requirement
Diagram, Parametric

Diagram

«Data Store»
System Architecture

BDD and IBD

Architecture

Entities List

Functions
Relations

Analyse
functions and
components

Entities List

FM list

system FM
Determine

failure modes

Relations FM

Causes
Determine potential

internal causes

Relations FM

Loc./Sys. effects
Determine potentials

local and system
effects

FM

Requirements Constraints

Req./Con. effects
Determine potential effects

on requirements and
constraints

FMEA

FM

DBD update

«Data Store»
Dysfunctionnal Behavior Database

Causes Req./Con. effects Loc./Sys. effects

Partial-FMEAGenerate partial-FMEA

Partial-FMEA

FMEA

REX
Complete partial-FMEA

«Data Store»
Expert's

knowledge

MéDISIS

System Engineering MéDISIS Dependability

Req. / Con.
Specify the

required
performances

Functions
Establish the

functions of the
system

Architecture
Determine the
physical and

logical
architecture

Needs
Define the
system's

objectives

«Data Store»
Needs Definition

Use Case Diagram

«Data Store»
Functional Analysis

Activity Diagram,
Sequence Diagram

«Data Store»
Requirements and

Constraints Requirement
Diagram, Parametric

Diagram

«Data Store»
System Architecture

BDD and IBD

Architecture

Entities List

Functions
Relations

Analyse
functions and
components

Entities List

FM list

system FM
Determine

failure modes

Relations FM

Causes
Determine potential

internal causes

Relations FM

Loc./Sys. effects
Determine potentials

local and system
effects

FM

Requirements Constraints

Req./Con. effects
Determine potential effects

on requirements and
constraints

FMEA

FM

DBD update

«Data Store»
Dysfunctionnal Behavior Database

Causes Req./Con. effects Loc./Sys. effects

Partial-FMEAGenerate partial-FMEA

Partial-FMEA

FMEA

REX
Complete partial-FMEA

«Data Store»
Expert's

knowledge

System Engineering

Req. / Con.
Specify the

required
performances

Req. / Con.

Functions
Establish the

functions of the
system

Functions

Architecture
Determine the
physical and

logical
architecture

Architecture

Needs
Define the
system's

objectives
Needs

«Data Store»
Needs Definition

Use Case Diagram

«Data Store»
Functional Analysis

Activity Diagram,
Sequence Diagram

«Data Store»
Requirements and

Constraints Requirement
Diagram, Parametric

Diagram

«Data Store»
System Architecture

BDD and IBD

MéDISIS

Architecture

Entities List

Functions
Relations

Analyse
functions and
components

Architecture

Entities List

Functions
Relations

Entities List

FM list

system FM
Determine

failure modes

Entities List

FM list

system FM

Relations FM

Causes
Determine potential

internal causes

Relations FM

Causes

Relations FM

Loc./Sys. effects
Determine potentials

local and system
effects

Relations FM

Loc./Sys. effects

FM

Requirements Constraints

Req./Con. effects
Determine potential effects

on requirements and
constraints

FM

Requirements Constraints

Req./Con. effects

FMEA

FM

DBD update
FMEA

FM

«Data Store»
Dysfunctionnal Behavior Database

Causes Req./Con. effects Loc./Sys. effects

Partial-FMEAGenerate partial-FMEA

Causes Req./Con. effects Loc./Sys. effects

Partial-FMEA

Dependability

Partial-FMEA

FMEA

REX
Complete partial-FMEA

Partial-FMEA

FMEA

REX

«Data Store»
Expert's

knowledge

safety analysis. Then we employed the AADL
process to help choosing the best architecture of the
system. The FMEA process is then re-applied to de-
tail the study, taking into account the architecture
and the components, to precise the dependability
analysis. Before the design phase, we translate the
system model in Simulink (Cressent et al. 2011).
The resulting model allows us to simulate the system
to get information about error propagation early in
the design process by performing fault injection. We
focus our thoughts on an internal communication
function between the flight controller and the acqui-
sition module.

3.1 LEA overview and feedback

During the flight, LEA will be carried by a plane,
dropped and then propelled by a booster before be-
ing able to fly autonomously. Numerous functions
must be guaranteed, such as the auto-test, detection
of the drop, the gas regulation, detection of the end
of mission and emission of the data. The benefits of
bringing SE and reliability closer were already wit-
nessed during the early design phases of the product.
The workflow followed by our team from the speci-
fication to the preliminary design is summered and
the benefits are highlighted in the rest of the article.

3.1.1 Getting valuable knowledge from the technic-
al specification of the project

Figure 5: Internal bloc diagram of the LEA vehicle

This step is one of the classic step of any SE process
(Figure 4). It is supported by the SysML tool: Re-
quirements formulation (Requirement Diagram pro-
duced by the activity “Specify the required perfor-
mances”), Needs classification (Use Case Diagram

produced by the activity “Define the system’s objec-
tives”), synthesis of the technical specification per
each use case (Sequence Diagram produced by the
activity “Establish the function of the system”). The
environmental and technological constraints are
qualified using parametric diagrams produced by the
activity “Specify the required performances”. Final-
ly, the organic description of the system is realized
(BDD and IBD) by the activity “Determine the
physical and logical architecture” and then the allo-
cation of the requirements is performed in each view
of the system. For example, Figure 5 details the ar-
chitecture of the LEA vehicle. It presents its major
components (e.g. Flight Controller, Coder, Inertial
Measurement Unit, …) and their connections. This
example highlights the flows exchanged by the
components by using SysML item flows (e.g. Call-
Data, ImuData, PropOrders, …).

3.1.2 System analysis.
The benefit of using SysML during this stage is the
ability to inter-connect the analysis and the different
entities described in each view through parametric
diagrams. The information and knowledge of our
system are synchronized bringing more coherence in
the model.

3.1.3 Risk analysis.
This stage starts with the generation of the partial-
FMEA (Fig. 6). The excerpt of FMEA presented in
Figure 6 utilizes the notation of the SysML model
and has specific writing rules peculiar to the MéDI-
SIS generation process. For example, requirements
names are given in brackets in the “Requirement ef-
fects” column. The “Causes” column shows the
flows incoming to the component, the flow port spe-
cifications that describe this flow and eventually the
constraints blocks attributed to theses parameters.
Since our DBD concerning the technological parts of
the vehicle is new, generic failure modes are gener-
ally used. Along the progresses of the analysis, the
results are introduced in the DBD, increasing the
number of failures modes recorded within. Then, at
each evolution of the system model, a new partial-
FMEA is generated. Finally, a list of the critical
threats is created, identifying the severe risks and the
components, functions and requirements threatened.
The number and the nature of the requirements
threatened counts in evaluating the criticality of a
failure mode.

In our latest project, during this phase, some sub-

systems, such as the inertial measurement unit, were
identified as critical. The placement of the inertial
measurement unit in the functional chain of the sys-
tem plays a great role in the dependability of the
mission. By following some rules and using SysML
artifacts (parametric diagram, rationales,…), it is
possible to gather and classify the parameters that

ibd [block] LEA

cdr : Coder

fc : Flight
Controller

sens : Sensor

tmIf : TM
Interface

tlm :
Telemetry

imu : Inertial
Measurement

Unit

gasAlm :
GasAlim

RS422-FuncDataRS422-FuncData

IRIG1IRIG1 IRIG2IRIG2

callData

Data

callData

Data

DataSensorDataSensor

ImuDataImuData

PropOrdersPropOrders

Eth-CallCdrStatus

Eth-CdrStatus

Eth-DataFunc

Eth-CallDataFunc

Eth-CallCdrStatus

Eth-CdrStatus

Eth-DataFunc

Eth-CallDataFunc

influence reliability, such as the product’s life cycle,
the mission profile, the use conditions or over-
stresses. All this information can be stored in the
system model and in the DBD. The main advantage
of the DBD update is that the collected information
becomes available to automatically refine the
FMEA. Furthermore, since the DBD is modeled
with SysML, we can apply on it other MéDISIS
translation processes. This enables us to use the
FMEA results into other languages, for instance it
permits to realize failure mode injection in a Simu-
link model.

3.1.4 System analysis
The integration of the risk analysis results conducts
to reinforce and modify the requirements and con-
straints applied to the system. These are related to
the identified failure modes. This results in modify-
ing the requirement diagrams of our system, and
modeling new constraints using parametric dia-
grams.

By taking into account the new requirements,

constraints and the rationales applied to some sub-
systems, various slightly different architectures are
conceivable. The criterions to be analyzed are func-
tional, economic, safety related and temporal. At this
stage, we deal with the functional criterions (Cres-
sent et al. 2011).

The estimation of these criterions may cause new

analyses needs. For the functional placement of the
inertial measurement unit, it appears that the
processing time is important. SysML does not per-
mit to model efficiently those aspects. So, we need
to resort to a more detailed formalism to deal with
the modeling of temporal, architectural and depen-
dability aspects. The example is continued in the fol-
lowing section.

3.1.5 Specific technical analysis.
As described previously, certain results brought by
the FMEA need to be further analyzed thanks to
more specialized formalisms, for instance in the
domain of timing constraints. The MéDISIS frame-
work contains a process to generate an AADL model
(Cressent et al. 2010). AADL combined with the
scheduling tool: Cheddar (Singhoff 2007) permits to
find specific temporal constraints stored back in the
system model using parametric diagram (Fig. 7).
The parametric diagram in Figure 7 presents the re-

lations between components time parameters (e.g.
Tad, T_sampl, T_DR_co,…). Theses parameters are
bond through constraints properties that defines the
physics of their relations (e.g. Formula : Control Da-
ta Age). Then, we apply this translation process to
each conceivable architecture. It permits to compare
the temporal constraints of each architecture and to
have a criterion to compare them and decide which
one is the most appropriate for the needs of the mis-
sion. The main objective of this step was to qualify
the temporal constraints (Fig. 7). In fact, the quanti-
fication won’t be possible until the detailed design
stages of the product.

In fact, the placement of the subsystems we de-

scribed earlier impacts the age of the functional data
used to regulate the gas in the engine. For some ar-
chitecture, physical or logical redundancies bring
multiplicative factors on processing times. We had
to estimate and judge whether performance or de-
pendability must be favored. When the choice is
done, the system model is updated, the requirements
are detailed with timing information and the new
timing constraints are modeled with parametric dia-
grams. And this knowledge generated by the AADL
study permits to refine some failure mode effect,
such as a partial loss of connection between subsys-
tems.

Figure 7: Parametric diagram describing the formula of the age
of the functional data.

3.1.6 Failure mode injection and test cases
After another phase of FMEA updating, which con-
sists in taking into account the new qualification of
the effects studied with the AADL model. The level
of detail (i.e. of the system’s functioning) allows us
to classify again the failure modes with respect to
the risk they represent for the system mission. For

Name Failure
Mode Causes Local Effects Requirements Effects System Effects

Flight con-
troller

Scheduling
Failure

Ethernet flow[Env.
Constraint : vibration]
> [Port Specification]

Propulsion orders [GasAlim] /
Functionnal Outputs[Coder]
/ ConstraintBlock[Data Age]

[Timing requirements]
Real-time constraints not
fulfilled

Loss of data / Risk of engine
failure

 Internal Overstress Propulsion orders [GasAlim] /
Functionnal Outputs[Coder]
/ ConstraintBlock[Data Age]

[Timing requirements]
Real-time constraints not
fulfilled

Loss of data

Figure 6 : Excerpt of LEA FMEA

par [block] Data Age

T_DR_co :
Time

T_EFD_co :
Time

T_EFD_fc :
Time

T_sampl :
Time

Tad :
Time

Formula : Control Data Age

constraints
{Tad = T_sampl + T_DR_co + T_EFD_co + T_EFD_fc}

Tad

T_sampl T_DR_co T_EFD_co T_EFD_fc

Tad

T_sampl T_DR_co T_EFD_co T_EFD_fc

Comparison : Scheduling constraint

constraints
{Tad < Tref}

TadTad

the most critical ones, it is necessary to deepen the
study. We want to quantify the constraints modeled
with parametric. Thereby, the management of the
tests is supported by the parametric diagrams. We
use fault injection in a Simulink model to understand
the dynamic behavior of our system in case of fail-
ure.

Indeed, the similarities between SysML and Si-

mulink described in (Cressent et al. 2010) and
(Snyder et al. 2010) permitted to define the MéDI-
SIS bridge to the detailed design phases of the prod-
uct. At this stage, we inject failure modes into our
model to simulate its behavior and validate the de-
sign choices. Furthermore, tests cases defined using
sequence diagrams (Fig. 8) and parametric diagrams
(Fig. 7) are introduced as well. Since sequence dia-
grams permits to define the exchanges of messages
between components in the functional system model
of the LEA vehicle, it also allows describing non
functional exchanges such as test case exchanges.
Sequence diagrams will help defining the test proce-
dure when the parametric diagrams will help defin-
ing the success criteria. Figure 9 shows an example
of Simulink block success criterion implementing
the formula presented in figure 7 that is used to vali-
date the system design model. The Simulink design
model of the system is then simulated to give us pre-
cious information about his behavior in failure con-
ditions. It is then updated taking into account the
performances of the system and the effects of failure
modes.

Figure 8: Sequence diagram describing the Ethernet connection
between the flight controller and the data acquisition unit.

For our example, we injected a failure mode
jamming the data exchanges between subsystems.
The parameters of bloc simulating the failure were
determined by the FMEA which linked this failure
mode to temperature and vibrations overstresses.
Results of the simulation were compared to the pa-
rametric diagrams modeling the temporal constraints
of the communication between those subsystems
which can jeopardize the emission of flight data to
the ground. Since the main objective of the LEA
project is collecting flight data, those failure mode
were considered critical. The final results of this
fault injection phase were described in detail in
(Cressent et al. 2011).

Figure 9: Simulink block defined from the parametric diagram
(Fig. 7) used as success criterion for the LEA design model

4 CONCLUSION AND PROSPECTS

Since nowadays systems are complex and multi-
technologic, it is tedious to master their design and
optimization within a clear and effective Engineer-
ing process. We consider that adopting a model
based approach is the best way to handle the com-
plexity issues, the exchange of model information
and parameters and the communication amongst sys-
tem level description (e.g. from domain-specific
tools to a system level view). We are building the
MéDISIS framework in order to help systems engi-
neers deploying a model-based approach for safety
critical complex systems.

Currently, MéDISIS is applied in the LEA

project, from the project activities planning to the
product design phase. Through all the steps per-
formed until now, MéDISIS brought fluency be-
tween activities and opened new ways of integrating
dependability studies to the system engineering
process. At the project level, the possibilities offered
by the MéDISIS framework allow to plan SE activi-
ties and dependability activities at the same level.
Indeed, MéDISIS offers bridges to cross the gap that
usually separates them. At the product level, through
specification and design phases, the MéDISIS

:Sensor
«part»

:Coder
«part»

:Flight Controller
«part»

par

sensor_value {T_sampl}

Eth frame def
{T_EFD_fc}

call data

Eth frame def {T_EFD_co}

par

sensor_value {T_sampl}{T_sampl}

Eth frame def
{T_EFD_fc}

call data

Eth frame def

Eth frame def
{T_EFD_fc}

call data

{T_EFD_fc}

Eth frame def {T_EFD_co}

Data retrieval {T_DR_co}

Eth frame def

{T_DR_co}

{T_EFD_co}

{Tad}

data

{T_EFD_co}

{Tad}

Eth frame def
{T_EFD_fc}

storage

{T_EFD_fc}

{T_C_fc}{T_C_fc}

OSD transmission Eth

processes enable and ease the connection between
tools (e.g. SysML, FMEA, Simulink, …). Further-
more, MéDISIS increases the consistency of the sys-
tem model and dependability analyses by synchro-
nizing the information from any language into the
system model and the DBD.

One of the remaining issues that we need to ad-

dress is the definition of the different levels of our
DBD. The information contained in the DBD, as we
foresee it currently, belongs to three different levels:
the Company DBD (common to every project), the
Project DBD (completed through the project
progresses) and the Product DBD (containing all in-
formation peculiar to the product and exclusively the
product). The process to handle the storage of in-
formation, from one level to another, needs to be de-
fined in details and the benefits of each level should
be identified.

We also want to address the issue of the man-

agement of granularity during the different project
phases. The levels of detail necessary to describe the
architecture of the system and suitable to describe
the dynamics of the system are hard to define. Fur-
thermore, this point is likely to impact the SE
process of the whole project, the way dependability
analyses are performed, and the bridges between SE
and dependability.

Finally, addressing the before-mentioned issues

should lead us to address the challenges that
represent the use of Components Off The Shelf
(COTS) in a complex system with high dependabili-
ty requirements.

5 REFERENCES

Cressent, R., David, P., Idasiak, V. & Kratz, F. 2010. Increas-
ing Reliability of Embedded Systems in a SysML Centered
MBSE Process: Application to the LEA Project. 1st M-BED
workshop, during DATE 2010, Dresden, Germany, 12
March 2010.

Cressent, R., Idasiak, V. & Kratz, F. 2011. Mastering safety
and reliability in a Model Based process. Proceedings of
the 57th Annual Reliability and Maintainability Symposium,
RAMS2011, Orlando, Florida, USA, 24-27 January 2011.

David, P., Idasiak, V. & Kratz, F. 2010. Reliability study of
complex physical systems using SysML. Journal of Relia-
bility Engineering and System Safety, Volume 95, Issue 4,
April 2010, Pages 431-450.

David, P. & Shawky, M. 2010. Supporting ISO 26262 with
SysML, Benefits and Limits. Proceedings of ESREL 2010,
Rhodes, Grèce, 2010.

Falempin, F. & Serre, L. 2009. French Flight Testing Program
LEA Status in 2009. 16th AIAA/DLR/DGLR International
Space Planes and Hypersonic Systems and Technologies
Conference, Bremen, Germany, 19-22 October 2009

International Electrotechnical Commission. 1998-2005. IEC
61508. Functional Safety of Electrical /Electronic
/Programmable Electronic Safety-Related Systems. Parts 1
to 7.

INCOSE, 2004. Systems Engineering Handbook. International
Council on Systems Engineering. Version 3, 2004.

Langheim, J., Guegan, B., Maillet-Contoz, L., Maaziz, K.,
Zeppa, G., Philippot, F., Boutin, S., Aboutaleb, H. & David
P. 2010. System architecture, tools and modelling for safety
critical automotive applications – the R&D project SASHA.
ERTS2 2010, Embedded Real Time Software & Systems,
Toulouse, 19-21 May 2010.

Object Management Group, 2009. Unified Modeling Lan-
guage. OMG Specification – UML 2.2 Superstructure &
UML 2.2 Infrastructure, 2 February 2009.

Object Management Group, 2010. Systems Modeling Lan-
guage V1.2, June 2010.

Singhoff, F. 2007. The Cheddar AADL Property sets (Release
2.x). LISyC technical report, February 2007

Snyder, R., Bocktaels, D. & Feigentaels, X. 2010. Validation
fonctionnelle à l'aide d'une transformation
SysML/Simulink”, Neptune days N°7, Toulouse, FRANCE,
18 may 2010, pages 49-53

