
HAL Id: hal-00630982
https://hal.science/hal-00630982

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An asymptotically optimal gradient algorithm for
quadratic optimization with low computational cost

Anatoly A. Zhigljavsky, Luc Pronzato, Elena Bukina

To cite this version:
Anatoly A. Zhigljavsky, Luc Pronzato, Elena Bukina. An asymptotically optimal gradient algorithm
for quadratic optimization with low computational cost. Optimization Letters, 2013, 7 (6), pp.1047-
1059. �10.1007/s11590-012-0491-7�. �hal-00630982�

https://hal.science/hal-00630982
https://hal.archives-ouvertes.fr

Submitted manuscript No.
(will be inserted by the editor)

An asymptotically optimal gradient algorithm for

quadratic optimization with low computational cost

Anatoly Zhigljavsky · Luc Pronzato · Elena Bukina

October 11, 2011

Abstract We consider gradient algorithms for minimizing a quadratic function in R
n with

large n. We suggest a particular sequence of step-lengthes and demonstrate that the resulting
gradient algorithm has a convergence rate comparable with that of Conjugate Gradients and
other methods based on the use of Krylov spaces. When the problem is large and sparse, the
proposed algorithm can be more efficient than the Conjugate Gradient algorithm in terms of
computational cost, as k iterations of the proposed algorithm only require the computation of
O(log k) inner products.

Keywords Quadratic optimization · gradient algorithms · conjugate gradient · arcsine
distribution · Fibonacci numbers · estimation of leading eigenvalues

1 Introduction

Consider the problem of minimizing a quadratic function f(·) defined on R
n by

f(x) = 1
2 (Ax, x) − (x, b) , (1)

where (·, ·) denotes the inner product. We assume that A is a symmetric positive-definite matrix.
Let m = λ1 ≤ . . . ≤ λn = M be the eigenvalues of A (with 0 < m < M <∞) and {q1, . . . , qn}
be the set of corresponding orthonormal eigenvectors. We do not assume that any information
is available about the eigenvalues λi and eigenvectors qi, i = 1, . . . , n and suppose that the
condition number ρ = M/m may be large.

The work of E. Bukina was partially supported by the EU through a Marie-Curie Fellowship (EST-SIGNAL
program: http://est-signal.i3s.unice.fr) under the contract Nb. MEST-CT-2005-021175. Part of this work was
accomplished while the first two authors were invited at the Isaac Newton Institute for Mathematical Sciences,
Cambridge, UK; the support of the INI and of CNRS is gratefully acknowledged.

A. Zhigljavsky
School of Mathematics, Cardiff University, Cardiff, CF24 4YH, UK. E-mail: ZhigljavskyAA@cardiff.ac.uk

L. Pronzato · E. Bukina
Laboratoire I3S, CNRS - UNS, 2000 route des Lucioles – B.P. 121, F-06903 Sophia Antipolis, France.
E-mail: pronzato@i3s.unice.fr E-mail: bukina@i3s.unice.fr

2 A. Zhigljavsky, L. Pronzato and E. Bukina

Consider a general gradient algorithm with iterations of the form xk+1 = xk − γkgk, (k =
0, 1, . . .), where x0 ∈ R

n is a starting point, γk > 0, the step-size at iteration k, is determined
by some rule and gk = ∇f(xk) = Axk − b is the gradient of the objective function f(·) at point
xk. These iterations can be rewritten in terms of the gradients as

gk+1 = gk − γkAgk . (2)

It is sometimes convenient to rewrite the basic iteration (2) as gk = Pk(A)g0 , where Pk denotes
the polynomial Pk(λ) = (I − γ0λ)(I − γ1λ) . . . (I − γk−1λ).

We are interested in situations where the dimension n can be very large; it could even be
infinite, with A a self-adjoint operator in a Hilbert space, but we shall restrict the presentation to
the finite dimensional situation. We assume that n is much larger than the number of iterations
k∗ needed to achieve the precision required; formally, k∗ = o(n) with k∗ → ∞ in asymptotic
considerations.

We shall define the rate of convergence at iteration j by rj = (gj+1, gj+1)/(gj, gj). The rate

of convergence of the algorithm (2) after k iterations is then Rk =
∏k−1

j=0 rj = (gk, gk)/(g0, g0)

and the asymptotic rate can naturally be defined as R = limk→∞ R
1/k
k , if the limit exists.

It is easy to see that R does not depend on g0 as long as αi 6= 0 for all i. Other rates of
convergence, which are asymptotically equivalent to rk, could be considered as well, see Th.6
in [7]. In particular, the rate r′k = (f(xk+1)− f(x∗))/(f(xk)− f(x∗)) is of great interest in
optimization theory.

The method of Steepest-Descent (SD) chooses γk in (2) that minimizes r′k; direct calculation
gives γk = γSD

k = (gk, gk)/(Agk, gk). The method of Minimum Residues [5] (shortly, MR)
chooses γk that minimizes rk, which gives γk = γMR

k = (Agk, gk)/(A2gk, gk). Both methods only
look one-step forward. The method of Conjugate Gradients (CG in what follows) minimizes

R′
k =

∏k−1
j=0 r′j with respect to the sequence γ0, γ1, . . . , γk−1 and the method of Conjugate

Residuals [3, p.547] (CR) does the same with Rk; we shall denote RCR
k = minγ0,...,γk−1

Rk. The
construction of CG and CR does not require the direct minimization of R′

k or Rk with respect
to the step-sizes γj , but an implementation of the Gram-Schmidt orthogonalization process
leads to the construction of the optimal polynomial Pk(λ) which minimizes either R′

k or Rk. In
this paper, we shall focus on the rate Rk and our competitor will therefore be CR.

Using the expression (5) below for the rate Rk, we have Rk ≤ maxλ∈[m,M] P
2
k (λ), where

Pk(λ) is a polynomial of degree k satisfying Pk(0) = 1. The right-hand side of the last inequality
is minimized for Pk = P ∗

k , where

P ∗
k (λ) = ck Tk

(
2λ− (M + m)

M −m

)
, ck = T−1

k

(
ρ + 1

ρ− 1

)
(3)

and Tk(·) is the k-th Chebyshev polynomial of the first kind: Tk(t) = cos[k arccos(t)]. Hence,
the rate RCR

k of the CR algorithm satisfies RCR
k ≤ R∗

k, where

R∗
k = c2

k =
1

4

(
Rk/2

∞ + R−k/2
∞

)−2

and R∞ = lim
k→∞

(R∗
k)1/k =

(√
ρ− 1
√

ρ + 1

)2

. (4)

There are no iterative methods of the form (2) that achieve smaller values of the rate Rk than
RCR

k , the rate of CR within k iterations. Therefore, our competition with CR cannot be in terms
of Rk only and, in addition to the rate of convergence, we shall consider the complexity of the

Fast gradient algorithm with low computational cost 3

methods, which will be measured by the number of inner products computed after k iterations.
The purpose of the paper is to present a method that requires less computations than CR and at
the same time achieves asymptotically the same rate as the worst-case convergence rate of CR
when stopped at some iteration k < n (when n is large, the asymptotic regime may be reached
well before n iterations). As will be seen in (19), for any k > 1 the proposed method requires
no more than C log k + 4 computations of inner products (C ≃ 8.31) in k iterations which, for
large k, is much smaller than the 2k computations of inner products required by CR and CG.
This makes our method competitive when the matrix A in (1) is sparse and inner products
yield the main contribution to the computational cost. For instance, in parallel computing the
computation of inner products requires a global communication between processors, the price
of which increases as the number of processors grows, whereas matrix by vector multiplications
only require local communication between neighboring processors, see [12, Sect. 4.4].

The paper is organized as follows. In Sect. 2 we introduce some mathematical formalism and
formulate several auxiliary statements needed to explain the construction and properties of the
proposed method. In Sect. 2 we also explains how maxx0,A(Rk)1/k can be made arbitrary close
to its lower bound by using step-sizes γk that are suitably distributed. In Sect. 3 we construct
an auxiliary sequence {zj} which is one of the main ingredients for the construction of the main
algorithm in Sect. 4. In Sect. 3 and 4 we also explain the algorithm and validate its properties.
Numerical examples are discussed in Sect. 5

2 Preliminary results

Decompose the initial vector g0 in the basis of eigenvectors {q1, . . . , qn}: g0 =
∑n

i=1 αiqi .
Then for all k ≥ 1 we have the decompositions gk =

∑n
i=1αiPk(λi)qi . The squared L2-norm

of g0 is ‖g0‖2 = (g0, g0) =
∑n

i=1 α2
i and the squared L2-norm of gk is ‖gk‖2 = (gk, gk) =∑n

i=1 α2
i P

2
k (λi) . Using these representations we can write the rate Rk as

Rk =
(gk, gk)

(g0, g0)
=

[
n∑

i=1

α2
i P

2
k (λi)

]
/

n∑

i=1

α2
i =

n∑

i=1

p
(0)
i P 2

k (λi) , (5)

where p
(0)
i = α2

i

/ n∑
j=1

α2
j ≥ 0 and

∑n
i=1 p

(0)
i = 1. Without loss of generality all α2

i can be

assumed to be strictly positive. Indeed, if αi = 0 for some i then the matrix A =
∑n

j=1 λjqjq
T
j

can be replaced with Ã =
∑

j 6=i λjqjq
T
j . The equality αi = 0 would mean that the projection

of λi x0 (and therefore of all λi xk, k ≥ 0) to the vector qi is equal to (b, qi), the projection of b
to qi.

The projection of the vector gk on the eigenvector qi is (gk, qi) = αiPk(λi). We define

p
(k)
i = (gk, qi)

2/(gk, gk) = α2
i P

2
k (λi)/

∑n
j=1 α2

jP
2
k (λj) and interpret this as a point mass at λi.

Then, the measure νk defined by its masses νk(λi) = p
(k)
i at λ = λi (i = 1, . . . , n) characterizes

the normalized gradient gk/‖gk‖.
For any real α, define µ

(k)
α as the α-th moment of the probability measure νk: µ

(k)
α =∑n

i=1 λα
i p

(k)
i = (Aαgk, gk)/(gk, gk) . Using the main iteration (2), we obtain the following up-

4 A. Zhigljavsky, L. Pronzato and E. Bukina

dating formula for the measure νk+1:

p
(k+1)
i = νk+1(λi) =

α2
i P

2
k+1(λi)

(gk+1, gk+1)
=

α2
i (1− γkλi)

2P 2
k (λi)

(gk+1, gk+1)
=

(1− γkλi)
2p

(k)
i

rk
, (6)

where

rk =
(gk+1, gk+1)

(gk, gk)
=

(gk, gk)− 2γk(Agk, gk) + γ2
k(A2gk, gk)

(gk, gk)
= 1− 2γkµ

(k)
1 + γ2

kµ
(k)
2 . (7)

The following two results will be useful for the construction of the main algorithm and for
evaluating its performance.

Proposition 1 (Monotonicity) The condition rk < 1 is equivalent to

βk > µ
(k)
2 /(2µ

(k)
1) . (8)

Proof Follows from (7) and βk = 1/γk. ⊓⊔
Proposition 2 (Moment inequalities) Let ν be any probability measure on [m, M] and de-

note by µα the α-th moment of ν: µα = µα(ν) =
∫ M

m
tα ν(dt). Then

m ≤ µ1 ≤
µ2

µ1
≤ µ3

µ2
≤ µ4

µ3
≤ · · · ≤M . (9)

Proof The Cauchy-Schwarz inequality implies µα+2µα ≥ (µα+1)
2 for any α. Moreover, for all

t ∈ [m, M] we have t(M − t) ≥ 0 so that
∫ M

m
tα(M − t) ν(dt) = Mµα − µα+1 ≥ 0; that is,

µα+1/µα ≤M . Similarly, m ≤ µα+1/µα. This implies (9). ⊓⊔
For any choice of the step-size sequence {γk} in (2) the rate Rk satisfies maxx0,A Rk ≥ R∗

k

for k < n, with (R∗
k)1/k decreasing to R∞ as k → ∞, see (4). Our objective is to construct

simple gradient algorithms such that R
1/k
k gets close to the bound R∞. If the values m and

M were known, the results of [9] show that this can easily be achieved using some predefined
sequences of step-sizes γk, without any need for computation of inner products. For example,
one can use βj = 1/γj as the roots of the polynomials (3), but the degree of the polynomial
must then be pre-specified (and be equal to the number of iterations to be performed); the
ordering of the roots is important too.

One of the main points in our argumentation uses the fact that by a suitable choice of
the coefficients γ0, γ1, . . . we can easily force the asymptotic relation νk(λ) → 0 as k → ∞ for
all λ ∈ (m, M). That is, for large k we can force the projections of the normalized gradient
gk/‖gk‖ to all eigenvectors except for q1 and qn to be negligible. This happens, for example,
if the sequence {βk} is concentrated in an interval [m′, M ′] with m < m′ < M ′ < M and the
values of {βk} are well-spread over [m′, M ′]. More precisely, the following result is a particular
case of Theorem 1 in [9].

Proposition 3 (Convergence to the set of measures supported at two points) As-
sume that βk ∈ [m′, M ′] with m < m′ ≤ M ′ < M for all k and that the sequence {βk}
has an asymptotic distribution function F (t) such that

∫
log(t − λ)2 dF (t) < max{

∫
log(M −

t)2 dF (t),
∫

log(t −m)2 dF (t)} for all λ ∈ (m, M). Then the algorithm (2) associated with the
sequence {βk} is such that lim

k→∞
νk(λi) = 0 for all i = 2, . . . , n− 1.

Fast gradient algorithm with low computational cost 5

The following statement is a simple consequence of Proposition 3.

Proposition 4 (Attraction to one-point measures) Under the conditions of Proposition 3,
the sequence of measures νk attracts to the set of two-point measures supported on {m, M}. If,
moreover, the asymptotic distribution of the sequence {βk} is biased towards m (respectively M),
then the sequence {νk} tends to the one-point measure concentrated at M (respectively m). This
happens in particular when the sequence {βk} is generated by pairs as in Proposition 4 with
β2j+1 = M ′ + m′ − β2j for all j ≥ j0, m′ = m + εm, M ′ = M − εM and εm 6= εM .

Once the attraction of the sequence {νk} to the set of measures supported at the two-point
set {m, M} is obtained, it is enough to consider the rate of convergence rk obtained for the
two-point measures and the following is true, see [9, Th. 2].

Proposition 5 (Asymptotic rate) Assume that the conditions of Proposition 3 are satisfied
and the values βk = 1/γk are generated by symmetric pairs for large k; that is, β2j+1 = M +
m− β2j for all j ≥ j0. Then the asymptotic rate R is R = exp{2

∫
[log (t−m)− log t] dF (t)} .

If the limiting distribution function F (·) has the arcsine density on [m′, M ′]

p(t) =
1

π
√

(t−m′)(M ′ − t)
, m′ ≤ t ≤M ′ , (10)

with m′ = m + ε and M ′ = M − ε for some small ε ≥ 0, then, as shown in [9], the asymptotic

rate of convergence is Rε = R∞

(
1 + 4

√
ε(M −m)

)
+ O(ε), ε→ 0.

Numerical results in [9] confirm the observation that if the asymptotic distribution of the
sequence {βk} is close to the distribution with the arcsine density on [m, M], then the asymptotic
rate of the algorithm (2) is close to R∞. Furthermore, we observed that for the Barzilai–
Borwein (BB) [1] as well as many other gradient algorithms we have investigated (see, e.g., [4]),

when the rate R
1/k
k approached R∞ then the distribution of the sequence {βk} was close to

the distribution with the arcsine density on [m, M]. This phenomena can be related the fact
that, roughly speaking, for large k the roots of all orthogonal polynomials behave similarly. In
particular, if a probability measure ν0 has a density p0(·) with respect to the Lebesgue measure
on [m, M], with p0(t) > 0 except for a set of zero Lebesgue measure, then the roots of the
orthogonal polynomials P ∗

k with respect to ν0 are distributed asymptotically according to the
arcsine density on [m, M], see [2, Th. XIII]. As any efficient gradient algorithm should not
deviate much from the behaviour of the optimal algorithm (which locates βk at the roots of
the optimal polynomials orthogonal with respect to ν0), the asymptotic distribution of {βk} for
this algorithm should be close to the arcsine distribution on [m, M].

3 Numerical sequence for generating step-sizes

The method presented below generates step-sizes γk such that the inverse sequence {βk} =
{1/γk} has the arcsine distribution on a given interval [m′, M ′], where m′ and M ′ can be
chosen as m′ = m + ε and M ′ = M − ε, with small ε ≥ 0. In practice m and M are unknown
and we shall use estimates m′ = m̂k and M ′ = M̂k of m and M , with m < m̂k < M̂k < M .

6 A. Zhigljavsky, L. Pronzato and E. Bukina

We shall initiate the algorithm (2) by using two iterations of MR, that is with β0 = µ
(0)
2 /µ

(0)
1

and β1 = µ
(1)
2 /µ

(1)
1 ; this provides us with m̂2 = min{β0, β1} and M̂2 = max{β0, β1}, the initial

estimates of m and M .
The following iterations will use the sequence {zj} in [0, 1] introduced below: to compute

βk we rescale the values of zj to [m′, M ′] through

βk = m′ + (M ′ −m′)zj , for k = 2, 3, . . . and some j = j(k) . (11)

Note that if m′ and M ′ are fixed, {zj} has the asymptotic density

q(z) = 1/
[
π
√

z(1− z)
]
, 0 ≤ z ≤ 1, (12)

j ≤ k and j/k→ 1 as k →∞, then the sequence {βk} constructed by (11) has the asymptotic
density (10).

A discussion concerning the choice of {zj} with density (12) is contained in [9]. We have
experimented with a number of sequences and provide below one of the best if not the best.

The sequence {zj}. For all j ≥ 0, we define vj = {ϕ(j + 1)}, where ϕ = (
√

5 + 1)/2 ≃
1.61803 . . . and {a} denotes the fractional part of a. For j = 0, 1, . . ., set

zj =(1+cos(πuj))/2, where u2j =min{vj , 1−vj}, u2j+1 =max{vj , 1−vj} . (13)

All three sequences above, {vj}, {uj} and {zj}, belong to [0, 1]. The asymptotic distribution
of {vj} and {uj} is uniform and the asymptotic distribution of {zj} has the arcsine density (12).
The sequence {vj} consists of the fractional parts of multiples of the golden ratio ϕ, the sequence
{uj} is a symmetrized version of {vj} while the sequence {zj} has the required arcsine density
in [0, 1] and is obtained from {uj} by a suitable transformation.

The reasons behind the proposed choice of the sequence {zj} are the following:

– simplicity of construction and analysis;
– required asymptotic distribution (with empirical distribution converging fast to the limiting

distribution — a consequence of the good uniformity of {vj});
– symmetry z2j+1 = 1− z2j and z2j > 1

2 for all j.

A benefit of using symmetric points is that by choosing the largest zj (and therefore the
largest βk) first in each symmetric pair one makes the behavior of the proposed algorithm more

monotonic. Indeed, βk ≥ (M + m)/2 implies βk > M/2 ≥ µ
(k)
2 /(2µ

(k)
1), see (9), and therefore

rk < 1, see (8). Moreover, (6) indicates that when βk = 1/γk is large, the measure νk+1 allocates

more weight than νk to small eigenvalues λi, so that µ
(k+1)
2 /(2µ

(k+1)
1) tends to be small and

the next iteration is likely to be monotonic too according to (8).
For the sequence z0, z1, z2, . . . constructed above we define the sequences of record moments

Lmin = {Lmin(j)}∞j=0 and Lmax = {Lmax(j)}∞j=0 as follows: Lmin(0) = Lmax(0) = 0 and Lmin(j+
1) = min{k > Lmin(j) : zk < zLmin(j)}, Lmax(j +1) = min{k > Lmax(j) : zk > zLmax(j)} for
j ≥ 0. These two sequences of record moments are Lmin = {0, 1, 3, 5, 9, 15, . . .} and Lmax =
{0, 2, 4, 8, 14, . . .} with Lmin(j+1) = Lmax(j)+1 for j = 0, 1, . . .

The following statement expresses the sequences Lmin and Lmax in terms of the Fibonacci
numbers. Recall the sequence of Fibonacci numbers {FN}∞N=1 = {1, 1, 2, 3, 5, 8, 13, 21, 34 . . .}
and the exact formula FN = (ϕN − ϕ̂N)/

√
5, where ϕ is the golden ratio and ϕ̂ = −1/ϕ.

Fast gradient algorithm with low computational cost 7

Proposition 6 We have Lmax(j) = 2(Fj+2 − 1) for j = 0, 1, . . . and Lmin(j) = 2Fj+1 − 1 for
j = 1, 2, . . . with Lmin(0) = 0, where Fi is the i-th Fibonacci number.

Proof The statement is a direct consequence of the following two classical results of the theory
of Diophantine approximations: (i) for the sequence {kα} with any irrational α, the successive
minimal and maximal values occur when k = q in the denominator of a convergent p/q for α in
the standard continued fraction expansion of α, see [11]; (ii) the convergents of α = ϕ − 1 are
Fj/Fj+1 for j > 1. ⊓⊔

Proposition 7 Let {zj} be the sequence constructed in (13) and δj be the number of upper
record moments appearing among z0, z1, . . . , zj; that is,

δj = {number of i ≥ 0 s.t. Lmax(i) ≤ j} =1 + max{i ≥ 0 : s.t. Lmax(i) ≤ j}. (14)

Then for all j > 1 we have the inequality δj < c log j and the asymptotic relation δj =
c log j + O(1) as j →∞, where c = 1/ log(ϕ) ≃ 2.078.

Proof We have Lmax(i) = 2(Fi+2 − 1) for i = 0, 1, . . . This gives for all j > 1:

δj − 1 = max{i : 2(Fi+2 − 1) ≤ j} = max{i : Fi+2 ≤ j/2 + 1}
= max{i : ϕi+2 − ϕ̂i+2 ≤

√
5(j/2 + 1)} = max{i : ϕi ≤

√
5(j/2 + 1)/ϕ2 + ϕ̂i+4}

< max{i : ϕi ≤
√

5j/(2ϕ2) + 1} = max{i : i ≤ log
(√

5j/(2ϕ2) + 1
)

/ logϕ}

≤ log
(√

5j/(2ϕ2) + 1
)

/ log ϕ =
[
log j + log

(√
5/(2ϕ2) + 1/j

)]
/ logϕ

< log j/ log ϕ = c log j .

As j → ∞, this gives the asymptotic equation (in x) for δj : 2ϕx+2 =
√

5j, implying δj =
c log j + O(1) as j →∞. ⊓⊔

4 The algorithm

Since we assume that the smallest and largest eigenvalues λ1 = m and λn = M of the matrix A
are unknown, these values have to be estimated. Our estimators will be based on the inequalities
(9) and we shall use

m̂k+1 = min{µ(i)
1 , i ∈ Im

k } and M̂k+1 = max{µ(i)
α+1/µ(i)

α , i ∈ IM
k } (15)

where in the algorithm below α = 3 and Im
k , IM

k are subsets of {0, 1, . . . , k} which will be
determined by the algorithm. The case α = 0 in (15) has been considered in [9]. The resulting
algorithms are efficient but not efficient enough to compete with CR and CG. The value α = 3
in (15) leads to much better estimates of M and hence to much more cost-efficient algorithms
which use very thin sets Im

k and IM
k and as a consequence few inner products to compute. Notice

that from Proposition 2 we have m ≤ m̂k and M̂k ≤M for all k, as required by Proposition 3.
Using good estimators of M is important for the following reason. Generating the βk = 1/γk

by pairs and using the largest first in each pair favors the estimation of m against that of M .
Indeed, the measure νk attracts to the set of two-point measures supported at {m, M}. For a

8 A. Zhigljavsky, L. Pronzato and E. Bukina

measure ν2i in this set, two iterations of (6) with β2i+1 = M + m − β2i give ν2i+2 = ν2i and

thus µ
(2i+2)
α = µ

(2i)
α for all α. This means that asymptotically the estimation of m and M can

only be improved for even values of j only, where j is the index of the sequence {zj}. Using the

largest β first in a pair yields β2i > (M +m)/2 resulting in a small µ
(2i+1)
1 that may improve the

current estimation of m when β2i is close to M . In view of Proposition 4, this better estimation

of m than M results in the concentration of νk at M . Since in this case the ratio µ
(k)
2 /(2µ

(k)
1)

becomes close to M/2 when M/m is large, the monotonicity condition (8) would be violated
frequently. In the algorithm proposed below we avoid this by using a good estimator of M .

Monotonicity can be imposed by forcing the measures νk to be concentrated more at m

rather than at M when needed. Indeed, the condition (8) is always satisfied when µ
(k)
2 /(2µ

(k)
1)

is close to m/2 since βk is larger than m̂k > m. This movement of the masses is achieved by
using a step with large βk when νk−1 is close to the delta measure at M . In practice, we simply

use βk = M̂k when we observe M̂k > M̂k−1.

The calculation of µ
(k)
1 needed for the computation of m̂k+1 does not require the calculation

of Agk at step k. Indeed, allowing a delay of one step in the estimation of m, (2) gives Agk =
βk(gk − gk+1), so that

µ
(k)
1 =

(Agk, gk)

(gk, gk)
= βk

[
1− (gk, gk+1)

(gk, gk)

]
. (16)

Allowing a delay of two iterations, we get A2gk−1 = βk−1βk(gk+1 − gk) + β2
k−1(gk−1 − gk) and

Agk−1 = βk−1(gk−1 − gk) when using (2). This gives

µ
(k−1)
4

µ
(k−1)
3

=
(A2gk−1, A

2gk−1)

(A2gk−1, Agk−1)
= βk−1 + βk

(βk(gk+1 − gk) + βk−1(gk−1 − gk), gk+1 − gk)

(βk(gk+1 − gk) + βk−1(gk−1 − gk), gk−1 − gk)
. (17)

This avoids the use of additional matrix-vector multiplications while computing the estimates
of m and M . The calculations of inner products required for the update of the estimators of m
and M can be done in parallel. Moreover, these estimators need to be updated at iteration k
only when the value z used at previous iteration was larger than the maximum over all previous
zi. The updating rule is

m̂k+1 = min{m̂k, µ
(k)
1 } and M̂k+1 = max{M̂k, µ

(k−1)
4 /µ

(k−1)
3 } (18)

where µ
(k)
1 and µ

(k−1)
4 /µ

(k−1)
3 are computed by (16) and (17) respectively.

We are now ready to formulate the main algorithm; its MATLAB implementation is avail-
able at http://www.i3s.unice.fr/~pronzato/Matlab/goldenArcsineQ.m

Algorithm.

Stage I (initialization).
I.1 Choose x0.
I.2 Choose ǫ > 0 used in the stopping rule.
I.2 For k = 0, 1 set xk+1 = xk−γkgk and gk+1 = Axk+1−b, where γk = (Agk, gk)/(Agk, Agk).

I.3 Compute m̂2 = min{1/γ0, 1/γ1} and M̂2 = max{1/γ0, 1/γ1}.
I.4 Set j0 = −1, j1 = 1.
I.5 Set k = 2 and j = 0.

Fast gradient algorithm with low computational cost 9

Stage II (iterations).

II.1 If j − 1 = j1 and M̂k > M̂k−1 then set βk = M̂k.

Otherwise set βk = m̂k + (M̂k − m̂k)zj and j ← j + 1.
II.2 Set xk+1 = xk − (1/βk)gk and gk+1 = Axk+1 − b.

II.3 If j = j0 + j1 + 2 then compute m̂k+1 and M̂k+1 using formula (18), check the stopping

rule (gk, gk) ≤ ǫ and set j0 ← j1, j1 ← j − 1. Otherwise set m̂k+1 = m̂k, M̂k+1 = M̂k.
II.4 Set k ← k + 1 and return to Step II.1.

Note an alternative way of writing the condition j=j0+j1+2 in Step II.3 of the algorithm:
j−2 ∈ Lmax where Lmax = {2Fi+2 − 2 : i = 0, 1, . . .} = {0, 2, 4, 8, 14, . . .}.

The algorithm uses the common stopping rule (gk, gk) < ǫ for some given ǫ. The values of
(gk, gk) are available at the iterations k such that j − 2 ∈ Lmax. At these iterations, we can
check the stopping rule directly. In addition, as we have an (updated) under-estimate for ρ and
hence and under-estimate of R∞ given by (4), we can estimate the number of iterations still
remaining to achieve the required precision.

The proposed algorithm only requires one matrix-vector multiplication per iteration (used
to calculate the gradient gk = Axk − b), like other gradient methods, and Krylov-space based
algorithms, like CR and CG. When A is sparse, the computation of inner products also con-
tributes significantly to the total computational cost. When using parallel computing, it may
even yield the main contribution to the computational cost, see [12, Sect. 4.4].

The standard formulation of CG (and also CR) requires the computation of two inner
products per iteration. In some sophisticated versions of CG, these two inner products can be
computed in parallel, at the possible cost of a slight increase of storage and maybe reduced
numerical stability, see for instance [6,10].

The following theorem establishes the upper bound and the asymptotical expression for the
total number of inner products computed by the proposed algorithm.

Proposition 8 Let Nk be the total number of inner products computed within k + 1 steps of
the proposed algorithm. Then for all k > 0 we have

Nk < 4 + 4 log k/ log(ϕ) ∼= 4 + 8.31 logk and Nk = 4 log k/ log(ϕ) + O(1) as k →∞. (19)

Proof The proposed algorithm requires the computation of four inner products in the initial
two iterations and four inner products each time the estimates m̂k and M̂k are updated. This
is done when j − 2 ∈ Lmax. Therefore, the total number of inner products computed within
k + 1 steps of the proposed algorithm is equal to Nk = 4 + 4δj where j = j(k) is defined by
the algorithm and δj is defined in (14). Proposition 7 implies that j(k) < k, δj < log j/ log(ϕ)
for all j > 1 and δj = log j/ log(ϕ) + O(1) as j →∞. This and the fact k/j(k)→ 1 as k →∞
imply (19). ⊓⊔

5 Numerical performance and comparison with other methods

In order to illustrate the efficiency of the proposed algorithm we consider two test problems.
In both problems, we set m = 1, M = 1000, n = 1000, b = Ac with c uniformly distributed on
the unit sphere. Notice that any increase of n would make the situation more favorable to the
algorithm we propose relative to CR and CG. Indeed, for given m and M , the behaviors of CR

10 A. Zhigljavsky, L. Pronzato and E. Bukina

and CG depend on the particular values taken by the eigenvalues of A (and generally the rates
of CR and CG deteriorate when n increases) whereas the proposed algorithm behaves similarly
whatever the dimension n and the spectrum of A.

In Problem 1, x0 is uniformly distributed on the unit sphere and the n normalized eigenvalues
are distributed according to the Marchenko-Pastur density pc(x) =

√
(b− x)(x− a)/(2πxc2),

a = (1 − c)2 < x < b = (1 + c)2, where we chose a ‘neutral’ value c = 1/2. These random
eigenvalues are then scaled from the interval [a, b] = [1/4, 9/4] back to [m, M] = [1, 1000].
The Marchenko-Pastur density describes the asymptotic behavior of eigenvalues of suitably
randomized large positive definite matrices. Problem 2 corresponds to the worst-case situation

for n− 1 steps of CR: the eigenvalues of the matrix A are λi = M+m
2 + M−m

2 cos
(

πi
n−1

)
for i =

1, . . . , n and the initial point x0 is such that the α2
i in the decomposition g0 =

∑
i αiqi are

proportional to α2
1 = 1/2λ1, α2

n = 1/2λn and α2
j = 1/λj for j = 2, . . . , n− 1, see [8] for details.

In Fig. 1 and 2 for typical runs of SD, CR and the proposed algorithm (abbreviated as
‘Alg’) we plot the evolution of the decimal logarithm of the L2-norm ‖gk‖ =

√
(gk, gk) of the

gradients.

(a)
0 100 200 300 400 500

−10

−8

−6

−4

−2

0

2

k

lo
g 1

0
||g

k
|| 2

CR
Alg
SD

(b)
0 100 200 300 400 500

−10

−8

−6

−4

−2

0

2

k

lo
g 1

0
||g

k
|| 2

CR
Alg
SD

Fig. 1 log10 ‖gk‖ against the number of iterations k for Problem 1 (left) and Problem 2 (right).

CR is optimal in terms of the rate of convergence Rk after k iterations, the proposed algo-
rithm cannot therefore do better with respect to this criterion. It indeed does worse, see Fig. 1.
Nevertheless, although the proposed algorithm requires more iterations than CR to obtain a
similar value of ‖gk‖, it is very competitive in terms of the computational cost. To illustrate
this, consider again Problem 1 as in Fig. 1a. Fig. 2a shows log10 ‖gk‖ against the number of
iterations where inner products are computed (possibly in parallel). Fig. 2b shows log10 ‖gk‖
against the total number of inner products calculated. For CR, the plot on Fig. 2a exactly
matches that on Fig. 1a as we assumed that the computations of inner products are parallelized
at each iteration; the decrease of log10 ‖gk‖ for CR is two times slower on Fig. 2b than on
Fig. 1a since CR uses two inner products per iteration.

Note that in the run of 500 iterations of the proposed algorithm, the estimators for m and
M were updated 12 times (in addition to the computation of the estimators at Stage I) and

3 (resp. 5) iterations with βk = M̂k were used for the Problem 1 (resp. Problem 2). The total
number of inner products computed was 52 = 4 + 4 · 12.

Fast gradient algorithm with low computational cost 11

(a) 0 50 100 150 200 250

−10

−8

−6

−4

−2

0

2

lo
g 1

0
||g

k
|| 2

CR
SD
Alg

(b) 0 100 200 300 400 500

−10

−8

−6

−4

−2

0

2

lo
g 1

0
||g

k
|| 2

CR
SD
Alg

Fig. 2 Problem 1: log10 ‖gk‖ against the number of iterations where inner products need to be computed (left)
and the total number of inner products (right).

Conclusion

We proposed a gradient algorithm for optimizing a quadratic function 1
2 (Ax, x)− (b, x), where

A is a symmetric positive-definite matrix of size n×n. We have demonstrated that if n is large
and the distribution of the eigenvalues of the matrix A is dense on the spectrum, then the
convergence rate of the algorithms we propose is not much worse than the rate achieved by
the Conjugate-Gradient algorithm, although the iterations are simpler. For sparse matrices, the
proposed algorithm can significantly outperform the Conjugate-Gradient algorithm in terms of
computational cost: only O(log k) inner products need to be computed in k iterations.

References

1. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
2. Erdös, P., Turan, P.: On interpolation. III. Interpolation theory of polynomials. Ann. Math. 41(3), 510–553

(1940)
3. Golub, G., Loan, C.V.: Matrix Computations, third edn. Johns Hopkins University Press (1996)
4. Haycroft, R., Pronzato, L., Wynn, H., Zhigljavsky, A.: Studying convergence of gradient algorithms via

optimal experimental design theory. In: Optimal design and related areas in optimization and statistics, pp.
13 – 37. Springer (2009)

5. Krasnosel’skii, M.A., G.Krein, S.: An iteration process with minimal residues. Mat. Sb. 31(4), 315–334
(1952)

6. Meurant, G.: The block preconditioned conjugate gradient method on vector computers. BIT 24, 623–633
(1984)

7. Pronzato, L., Wynn, H., Zhigljavsky, A.: Asymptotic behaviour of a family of gradient algorithms in R
d

and Hilbert spaces. Math. Program. A107(3), 409–438 (2006)
8. Pronzato, L., Wynn, H.P., Zhigljavsky, A.: A dynamical-system analysis of the optimum s-gradient algo-

rithm. In: Optimal design and related areas in optimization and statistics, pp. 39–80. Springer (2009)
9. Pronzato, L., Zhigljavsky, A.: Gradient algorithms for quadratic optimization with fast convergence rates.

Comput Optim Appl (to appear) (2011). DOI http://dx.doi.org/10.1007/s10589-010-9319-5
10. Saad, Y.: Practical use of polynomial preconditionings for the conjugate gradient method. SIAM J. Sci.

Stat. Comp. 6(4), 865–881 (1985)
11. Slater, B.: Gaps and steps for the sequence nθ mod 1. Math.Proc.Camb.Phil.Soc. 63, 1115–1123 (1967)
12. van der Vorst, H.A.: Iterative methods for large linear systems. Tech. rep., Math.Inst. Utrecht Univ. (2002)

