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Abstract. We construct holomorphic maps f with a Siegel disk whose boundary is not locally
connected (and is an indecomposable continuum), yet compactly contained in the domain of
definition of the map. Our examples are injective and defined on a subset of C.

1. Introduction

In [Han82], Handel constructed a C∞ area preserving diffeomorphism of the
plane that has a minimal set that is a pseudo circle (see section 3.5 for a defini-
tion of pseudo circles). In [Her86], Herman adapted the construction to produce
a C∞ diffeomorphism of the sphere that is conjugated to a rotation in the two
complementary components of an invariant pseudo circle, and holomorphic in
one of them. In the same spirit, in [PM97] Pérez Marco was able, using tube-log
Riemann surfaces, to construct examples of injective holomorphic maps defined
in a subset U of C that have a Siegel disk compactly contained in U whose
boundary is a C∞ Jordan curve, which came as a surprise. Again the method
is versatile and Kingshook Biswas used Pérez-Marco’s construction to produce
a set of interesting examples: [Bis05,Bis08]. Here we add an ingredient to this
construction and get:

Theorem 1. There exists a holomorphic map f defined in a simply connected
open subset U of C containing the origin, fixing 0 and having at 0 a Siegel disk
∆ that is compactly contained in U and whose boundary is a pseudo circle.

As Herman remarked, the construction is very flexible. The reader will find
in the conclusion section more properties that these maps can be given. There,
we also suggest possible other consequences of the method.

Remark 1. We ignore if the maps can be chosen entire (or entire meromorphic).
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1.1. The new ingredient

Compared to the previous constructions of Siegel disks and hedgehogs, the main
new idea is to make use of Runge’s theorem. Runge’s theorem has been applied
in a variety of situations to construct unexpected examples. We will make use
of the following version:

Theorem (Runge, simply connected case). For all holomorphic map f defined
in a simply connected open set U ⊂ C, there exists a sequence of polynomials
that tends to f locally uniformly on U .1

It is easy to see that f can be approximated (in the sense above) by polyno-
mials if and only if it can be approximated by entire maps. In our application,
the fact that the approximating sequence consists in polynomials is not so im-
portant. We will only need entire maps.

1.2. Aknowledgements

The author would like to thank Kingshook Biswas with whom he had very use-
ful discussions, Pérez-Marco for inventing his methods and explaining them to
me, Yohann Genzmer for submitting me me a stimulating math problem for
which I found a complicated solution using iterated exponentials, Julien Du-
val for explaining me a simple solution to Genzmer’s problem using Runge’s
theorem, thus bringing back this theorem to my memory and showing me its
usefulness. The author would also like to thank the referee for useful comments.

2. Terminology

Saying that two holomorphic maps commute can mean different things. To be
rigorous, we will say that “f and g commute, domain included”, if the domain
of definition of f ◦ g equals that of g ◦ f and if they take the same values on
it. This is what f ◦ g = g ◦ f is supposed to mean. Similarly we will say that
“f ◦ g = h ◦ i, domain included” if the domain of definition of f ◦ g equals
that of h ◦ i and if they take the same values on it. We will say that “f and
g commute on U” if U is included in the domain of f ◦ g and in the domain
of g ◦ f and if both compositions take the same value on U . There is another
natural notion that we will not use: “f and g commute, wherever defined”, if
f ◦ g(z) = g ◦ f(z) for all z for which both hand sides are defined.

We will denote the domain of definition of a map f by dom(f).

1 a.k.a. “on every compact subset” of U
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3. The construction

3.1. Working in the universal cover of C∗

The map f will be the limit of a sequence of compositions fn = gn ◦ · · · ◦ g1

of maps gi fixing the origin. However we prefer to work at the level of lifted
coordinates: let

E(z) = exp(2iπz).

The map E is a universal cover from C to C∗, with deck transformations (Z,+)
and induces an isomorphism between the cylinder C/Z and C∗. This map can
be used to extend the Riemann surface C/Z at its upper end (we will not use
the lower end in this article): denote +i∞ the added point, corresponding to
0 ∈ C ⊂ C∗.

Let Tv denote the translation by v: A holomorphic map F that commutes
with T1, domain included, and such that

F (z) = z + t+ o(1)

for some t ∈ R as Im (z) tends2 to +∞, “projects” to a holomorphic map f
with an erasable singularity at the origin, i.e. there exists f holomorphic defined
on {0} ∪ E(domain of f), with E ◦ F = f ◦ E, f(0) = 0, f ′(0) = e2πit 6= 0,
and f(z) = 0 =⇒ z = 0.

Conversely, a holomorphic map f defined in an open subset O of C contain-
ing the origin, with f(0) = 0, f ′(0) 6= 0, and f(z) = 0 =⇒ z = 0, will have
a (non unique) lift F : E−1(O)→ C that commutes with T1, domain included,
with E ◦ F = f ◦ E and F (z)− z has a limit when Im (z)→ +∞.

3.2. Presentation of the actors

Recall that Tv denotes the translation by v:

Tv(z) = z + v.

Let
Hh =

{
z ∈ C

∣∣ Im (z) > h
}
, H = H0

that we will call upper half planes. Let 1 be the constant vector field in C of
expression 1(z) = 1.

Assume that maps Rk are given for k = 1, . . . , n, satisfying the following
conditions:

– Rk is entire

2 The filter understood by “Im (z) −→ +∞” is the one generated by all the half planes Hh

for h ∈ R. We also imply that the domain of F contains such a half-plane.
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– there exists qk ∈ N∗ such thatRk ◦ T1 = Tqk ◦ Rk
– Rk(z) is injective on some upper half-plane. Given the above condition, it is

equivalent to “Rk(z) = qkz + c+ o(1) as Im (z) −→ +∞”
– ∀z ∈ C,R′k(z) 6= 0

We call these maps renormalizations. They will be inductively defined later in
this article.

Let

– Xn = R∗1 · · ·R∗n1, i.e. the pull back of the vector field 1 by the composition
Rn ◦ · · · ◦ R1

– Gn, the time 1 of the flow of the vector field Xn

– Fn = Gn ◦ · · · ◦G1

Then Xn is a non-vanishing entire vector field. The maps Gn and Fn are holo-
morphic but not necessarily defined on all of C.

These objects “project” to C/Z in the following sense:

– T ∗1Xn = Xn, i.e. Xn is T1-invariant
– Gn and Fn commute with T1, domain included
– recall thatRn ◦ T1 = Tqn ◦ Rn

In particular, they can be thought of objects living on C/Z.
Also, they are defined in a neighborhood3 of +i∞, and we have the follow-

ing expansions as Im (z) −→ +∞:

– Rn(z) = qnz + c+ o(1)

– Xn(z) =
1

q1 . . . qn
+ o(1)

– Gn(z) = z +
1

q1 . . . qn
+ o(1)

– Fn(z) = z +
n∑
k=1

1

q1 . . . qk
+ o(1)

Since each Gn, and thus Fn commute with T1, domains included, the map
Fn projects by E to a map fn, i.e. there exists a holomorphic map fn : {0} ∪
E(dom(Fn)) → C such that E ◦ Fn = fn ◦ E, domain included, and fn fixes
the origin.

Let Dom be the set of points that have a neighborhood on which all Fn are
defined and converge uniformly. It is an open set. It might be empty. Let F be
the map defined on Dom as the limit of the Fn. Then F is holomorphic and
commutes with T1. The following lemma is elementary so we will not explain
its proof: it is stated for reference.

3 i.e. on a set containing a half plane Hh for some h that may depend on n
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Lemma 1. Assume that Dom contains an upper half plane. Define dom =
E(Dom) ∪ {0}. Then dom is an open subset of C and fn converges locally
uniformly on dom to a holomorphic map f defined on dom and satisfying
f ◦ E = E ◦ F , domain included.

The set of domains containing an upper half plane and on which Rn is a
bijection to an upper half plane or to C, is non-empty and has a greatest element
Vn for inclusion. Let U0 = C and for n ≥ 1 let Un be the set of points z ∈ V1

such that for all k < n,Rk◦· · ·◦R1(z) ∈ Vk+1. Then (Un)n∈N forms a decreas-
ing sequence for inclusion, of T1-invariant simply connected open subsets Un
of C containing upper half planes, on whichRn ◦ · · · ◦R1 is an isomorphism to
an upper half plane or to C and on whichRk ◦ · · ·◦R1 is injective for all k ≤ n.
Let Ũn = E(Un) ∪ {0}. It is a connected and simply connected open subset of
C. Note that each fn is conjugated to a rotation in a neighborhood of the origin.
Indeed, let θn =

∑n
k=1 1/(q1 · · · qk). The map z 7→ 1

qn
Rn ◦ · · · ◦ R1(z) is a

conjugacy from Fn on Un to Tθn on an upper half plane or on C, and commutes
with T1 on Un, domain included. Therefore it projects by E to a conjugacy on
Ũn to the rotation of angle 2πθn on a disk or on C.

We will use the following lemma, applied to well chosen subsets D̃n of Ũn:

Lemma 2. Assume fn is a sequence of holomorphic maps defined on open sub-
sets of C containing the origin. Assume fn fixes 0 and that f ′n(0) = ei2πθn

with θn ∈ R and θn −→ θ ∈ R as n → +∞. Assume D̃n is a sequence of
simply connected open subsets of the domain of fn and containing 0, such that
fn is analytically conjugated on D̃n to the rotation of angle 2πθn on a disk or
on C. Assume that there exists a limit D̃ to the sequence D̃n in the sense of
Caratheodory. Then fn tends on D̃ locally uniformly to a map f that is analyti-
cally conjugated on D̃ to the rotation of angle θ on a disk or on C.

Proof. Let Rα(z) = ei2παz. The conjugacy φn on D̃n can always be chosen so
that φ′n(0) = 1. Then a theorem of Caratheodory says that φn converges locally
uniformly on D̃ to the unique conformal map φ from D̃ to a disk or C such that
φ(0) = 0 and φ′(0) = 1. The reciprocal φ−1

n is locally uniformly convergent to
φ−1. From fn = φ−1

n ◦Rθn ◦φn we deduce that fn tends to φ−1 ◦Rθ ◦φ locally
uniformly.

Depending on authors, the definition of Siegel disks mays differ slightly. For
us, it is the maximal domain of conjugacy to an irrational rotation. In the lemma
above, if θ is irrational, then D̃ is an invariant subset of the Siegel disk of f :
could the Siegel disk of f be bigger? It necessarily requires the boundary of
D̃ to be an analytic Jordan curve4, compactly contained in dom . In fact it is
equivalent. So if we get a boundary that is not a Jordan curve or not an analytic

4 this claim uses the fact that θ is irrational
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one, then we know that D̃ equals the Siegel disk of f . (This implies that Ũn has
the same Caratheodory limit as D̃n.)

How to build examples with D̃ ⊂⊂ dom? First we will ensure that Dom

contains H−h for some h > 0. Second we will ensure that D̃ is contained in H.

3.3. Ensuring convergence on big domains

Here we give a slightly informal description, and a rigorous lemma that will be
used in the more formal construction described in section 3.6.

It will be handy to use a notation for the set of maps satisfying the conditions
we required on Rn in the previous section. So let H1 denote the set of maps R
such that:

– R is entire
– R ◦ T1 = T1 ◦ R
– R(z) is injective on some upper half-plane
– ∀z ∈ C,R′(z) 6= 0

So that Rk ∈ qkH1, i.e. Rk is the product of a member of H1 with the scalar
qk.

For this, we will inductively define the maps Rn using the following (ele-
mentary) lemma:

Lemma 3. Fix n ∈ N. Assume we are given Rk ∈ qkH1 for k = 1, . . . , n − 1
and some Bn ∈ H1. Let Rn = qBn for some q ∈ N∗. The corresponding map
fn depends on q but fn−1 does not. Then, as q −→ +∞, fn tends to fn−1 in the
following sense: every compact subset K of dom(fn−1) is eventually contained
in dom(fn) and fn −→ fn−1 uniformly on K. Note however, that the domain
Un defined in section 3.2 is independent of q.

Proof. Indeed, R∗n1 = (qBn)∗1 = 1
qB
∗
n1. So Xn is the product of the scalar

1
q with an entire vector field that does not depend on q. The map Gn is the time
1/q of the flow of the latter vector field. The rest follows easily.

Fix some number h > 0. We will inductively define the sequenceRn by first
choosing B1, then q1, then B2, then q2, etc. . . We will be careful to choose qk
big enough so that the domain of definition of fn contains the upper half plane
H−h− 1

n
and |fn−1− fn| < 1/2n on H−h. This is always possible by the lemma

above. We can also choose qn to ensure that the sum θ is convergent5 and has
an irrational value: a sufficient condition for this is that qn tends to +∞. Then
the half plane H−h is contained in the domain of definition Dom of F .

5 It already follows from the convergence of fn, though.
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It shall be stressed out that in the construction, the sequence (Bn) will not
be fixed independently of the sequence (qn): the choice of Bn+1 will depend on
the choice of all the previous objects B1, q1, B2, q2, . . . Bn, qn.

3.4. Ensuring compactly contained bad boundaries

As in the previous section we give here a slightly informal description, and a
rigorous lemma that will be used in the more formal construction described in
section 3.6.

The following claim is where we use Runge’s theorem:

Lemma 4. Assume φ is a conformal bijection from H/Z to a domainW ⊂ C/Z
that extends to a conformal bijection fixing the upper end. Then there exists a
sequence of holomorphic maps ψn : C/Z→ C/Z such that:

– ψ′n does not vanish,
– ψn(z)− z has a limit when Im (z) tends to +∞,
– as n tends to +∞, ψn tends uniformly to φ−1 on every compact subset of W

and in a neighborhood of the upper end of C/Z.

Proof. Conjugate the situation by E: let W̃ = E(W ) ∩ {0} and Ψ : W̃ → D
be the conjugate of φ−1, extended by setting Ψ(0) = 0, where D denotes the
unit disk. It is a conformal isomorphism. It can therefore be written as Ψ(z) =

zev(z) for some holomorphic map v : W̃ → C. As a conformal isomorphism
its derivative does not vanish, hence 1 + zv′(z) 6= 0. Thus there exists a map
u : W̃ → C such that 1 + zv′(z) = eu(z). Since eu(0) = 1, we can choose
u such that u(0) = 0. So u(z) = zw(z) for some holomorphic w : W̃ → C.
Now apply Runge’s theorem: there exists a sequence of entire maps wn (even
polynomials) that converge locally uniformly to w on W̃ . There exists an entire
map vn (unique) taking the same value as v at the origin and such that 1 +
zv′n = ezwn . Indeed (ezwn − 1)/z has a removable singularity at the origin, so
it extends to an entire map, of which vn is just the appropriate primitive. The
maps ψn(z) = z + vn(ez) satisfy the required conditions.

Now we describe informally how we can use this lemma to choose the func-
tionsBn to get interesting examples. A more formal, but more specific, descrip-
tion is done in section 3.6.

Let D0 = H/Z. Let W1 be any open simply connected strict subset of
H/Z ∪ {+i∞} containing the upper end +i∞. Let φ be any conformal map
from H/Z∪{+i∞} toW1 that fixes the upper end. Let ε > 0 and let the Jordan
curve J1 be the image by φ of the Jordan curve of equation “Im (z) = ε” in
H/Z. If the boundary of W1 is a convoluted Jordan curve (or something more
complicated than a Jordan curve) and ε is small then J1 will also be convoluted.
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Apply lemma 4 toW = W1−{+i∞}. By the uniform convergence of ψn to
φ−1 on compact subsets of W and on a neighborhood of the upper end of C/Z,
there is for n big enough a branch φn of ψ−1

n defined for Im (z) > ε/2 and
mapping the upper end to itself. For n big, the Jordan curve J ′1 = φn(R + iε),
image by φn of the Jordan curve of equation “Im (z) = ε” in H/Z, will be close
to J1 so it will also be convoluted.

So we will choose B1 = ψn(z) − iε for some big value of n. Then we will
chose q1 as in section 3.4. Let D1 be the domain bounded by J ′1 and containing
the upper end. Among the integral lines of the vector field X1, there are the
images of the horizontals by φn, which loop. This includes J ′1 and also a set of
curves foliating the domain D1. The map F1 = G1, seen as acting on C/Z, is
conjugate to a finite order6 rotation on D1. The renormalization R1 induces a
conjugacy of the restriction of F1 toD1 to the translation T1 on the half cylinder
H/q1Z.

The next step in the construction consists in choosing a new simply con-
nected domain W2, contained in D1, containing the upper end, whose boundary
is even more convoluted, yet invariant by F1, and very close to J ′1. By the conju-
gacyR1 on D1 it amounts to choosing a domain in H/q1Z ∪ {+i∞} that is in-
variant by T1, i.e. to choosing a simply connected domainW ′2 in H/Z∪{+i∞}
(by applying the cover z+q1Z ∈ H/q1Z 7→ z+Z ∈ H/Z), and whose boundary
is very close to R.

Let φ : H/Z∪ {+i∞} →W ′2 be a conformal map fixing the upper end. We
choose a new value of ε, which gives a new Jordan curve J2 = D1∩R−1

1 (φ(R+
iε)) close to the boundary of W2. We apply lemma 4 again and get a new se-
quence of entire maps ψn tending to φ−1 on W ′2. We set B2 = ψn(z) − iε for
n big enough so that the curve J ′2 = D1 ∩R−1

1 (φn(R + iε)) is close to J2. We
choose q2 as in section 3.4. The domain D2 bounded by J ′2 is then invariant by
G1 and by the flow of the vector field X2. The maps G1 and G2, will be thus
conjugated by R2 ◦ R1 on D2 to the translations by respectively q2 and 1 on
H/q1q2Z.

And so on. . . We get a decreasing sequence of domainsDn ⊂ H/Z on which
Rn ◦ · · · ◦R1 is a conformal bijection to H/(q1 · · · qn)Z and conjugating all the
maps Gk, for k ≤ n, to integer translations, and thus the map Fn too. Their
boundaries form a sequence of Jordan curves extremely convoluted and close
to each other. The construction has enough flexibility to allow for D =

⋂
nDn

to have a non locally connected boundary, as we will prove in the following
sections (basically by the same method as Handel in [Han82]).

6 Recall that these maps are not entire. Some iterate will be the identity on the component of
the domain for the iterate that contains D1.
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3.5. Pseudo circles

Pseudo circles are amazing topological objects. The interested7 reader may look
at [Bin51] (Example 2 p.48), [Fea70], [Rog70], [KG09]. It was chosen by Han-
del in [Han82] as a good example of extreme pathology that a minimal set can
have even for an area preserving smooth diffeomorphism of the sphere. Her-
man did the same choice in [Her86] for his construction. So we will continue
this tradition.

For our purpose, it will be enough to know the following:

– A pseudo circle is compact, connected, separates the plane into two compo-
nents, but it is not locally connected thus it is not a Jordan curve.

– It is equal to the boundary of both components (in particular it has empty
interior).

– Any set K obtained by the following procedure is a pseudo circle.

PROCEDURE: A circular chain in a topological space X is a sequence e =
(ei) of open subsets ofX , called links, indexed by Z/mZ for somem ≥ 4, such
that ei ∩ ej 6= ∅ if and only if i, j are adjacent or equal.8 For each n ≥ 1, let
Qn be a circular chain in the plane9 such that:

– the diameters of the links of Qn are finite for all n and their supremum for a
given n tends to 0 as n→ +∞

– Qn+1 is a refinement of Qn: each link of the former is contained in a link of
the latter

– Qn+1 is crookedly embedded in Qn, which means the following: assume
that Qn = (di) has m links, and that Qn+1 = (ei) has m′ links. It will be
convenient to let i ∈ Z and let di denote dī where ī is the class of i modulo
m. Similarly, for i ∈ Z let ei denote eī for the residue class modulo m′. To
be crookedly embedded means that there exists a map f : Z→ Z such that
1. ∀i ∈ Z, the closure of ei is contained in df(i)

2. ∀i ∈ Z, f(i+ 1)− f(i) ∈ {−1, 0, 1} (10)
3. ∀i ∈ Z, f(i+m′) = f(i) +m (11)
4. for all i, j with f(i) + 2 < f(j) < f(i) + m, there exists i′ and j′ with
f(i′) = f(j) − 1, f(j′) = f(i) + 1 and either i < i′ < j′ < j or
i > i′ > j′ > j.

7 Let us mention the following facts: There exists a circularly chainable and hereditarily in-
decomposable planar continuum. For the definition of all these terms, the reader is referred to
the introduction of [Rog93]. It was proved to be unique up to homeomorphism (but it is not
homogeneous). Such an object is called a pseudo circle.

8 This is probably inspired from Čech cohomology: we want the nerve of the open cover to be
a circle. So for chains of length 3 one would also require e0 ∩ e1 ∩ e2 = ∅.

9 it does not matter whether the ei are connected or not
10 By condition 1 it is already the case modulo m because Qn and Qn+1 are circular chains.
11 It translates the idea of Qn+1 having winding number 1 in Qn.
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Then define K =
⋂
n≥1Qn: it is a pseudo circle. END OF DESCRIPTION

Let us say that a Jordan curve, parameterized by ι(t), t ∈ R/Z, is stably
crooked in a circular chain Qn = (ei) with i ∈ Z/mZ, whenever:

– the curve is contained in the union of the links of the chain,
– it has winding number 1 in Qn, oriented by ι, (12)
– ∀t1, t2 ∈ R with t1 < t2 < t1 + 1 and ∀u, v ∈ Z, if ι(t1) ∈ eu and
ι(t2) ∈ ev and if u + 2 < v < u + m then there exists t′1 and t′2 with
either t1 < t′1 < t′2 < t2 or t1 > t′1 > t′2 > t2 such that ι(t′1) ∈ ev−1 and
ι(t′2) ∈ eu+1.

It is independent of the choice of parameterization of the Jordan curve. The
subtlety of taking closures for eu and ev but not eu+1 and ev−1 is to ensure the
following: if a Jordan curve is stably crooked in Qn then any nearby Jordan
curve is. By nearby we mean a Jordan curve which is parameterized by a map
that is close to ι.

3.6. The core of the construction

Following Herman (with different conventions), form ≥ 4 consider the circular
chain Cm of length m consisting of the rectangular links ei =

]
i − 1/4, i +

5/4
[
×
]
0, 1
[

in the cylinder C/mZ. Then

– There exists a Jordan curve in C/mZ that is stably crooked in Cm and in-
variant by T1. The proof is in [Han82] but let us mention that it is quite
entertaining to work it out on one’s own. Figure 1 gives examples of solu-
tions for m = 5, 6 and 7.

– Fix such a Jordan curve J . Consider a conformal map φ from H/mZ ∪
{+i∞} to the component of C/mZ∪{+i∞}−J that contains the upper end,
and that fixes the upper end. There exists such maps.13 There exists ε such
that the Jordan curve Jε, image by φ of the curve of equation “Im (z) = ε”,
is stably crooked in Cm. It follows from the definition of stably crooked and

12 The winding number of an oriented closed curve ι in a circular chain Q = (dj) of length
m ≥ 4 could be defined in terms of first Čech cohomology groups with coefficients in Z by
a diagram looking like this: Z ≈ Ȟ1(Q,Z) 7→ Ȟ1(

⋃
 d,Z) 7→ Ȟ1(S1,Z) ≈ Z, but this

is sophisticated. It amounts to doing the following: cut the curve into a finite number of small
consecutive pieces eı = ι([tı, tı+1]) for some sequence tı indexed by Z/pZ for some p > 0. If
they are small enough, they will all be contained in some d. There is at most two possible values
of . Choose anyone and call it g(ı). SinceQn is a chain, g(ı+ 1) and g(ı) must differ of at most
one in Z/mZ. There exists a lift f : Z→ Z of g such that f(i+ 1) and f(i) differ of at most one
for all i. Then there exists k ∈ Z such that f(i+ p) = f(i) + km for all i. This k is the winding
number. It is independent of all choices and of the oriented parameterization ι, and invariant by
small perturbations of ι.

13 Apply the Riemann mapping theorem to the image of the situation by E.
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from the following theorem of Caratheodory: φ extends continuously to the
closure of H/mZ and the extension is on R/mZ a parameterization of the
Jordan curve J .

– Let W be the preimage by the natural projection C → C/mZ of the image
of φ. Then W is connected and φ lifts to a conformal bijection, also denoted
by φ, from H to W . Since W is T1-invariant, φ commutes with T1, domain
included. So φ induces an isomorphism from H/Z to W/Z that we will also
denote by φ.

– Now apply lemma 4 to φ andW/Z. We get a sequence of holomorphic maps
ψn : C/Z→ C/Z such that:
– ψ′n does not vanish,
– ψn(z)− z has a limit when Im (z) tends to +∞,
– as n tends to +∞, ψn tends uniformly to φ−1 on every compact subset

of W and in a neighborhood of the upper end of C/Z.
– By this uniform convergence, there is for n big enough a branch φn of ψ−1

n

defined for Im (z) > ε/2 and mapping the upper end to itself. There exists
M ≥ 4 and N ∈ N such that for all m′ ≥ M and n ≥ N , the image of
the chain Cm′ by z 7→ φn

(
m
m′ z + iε

)
is a circular chain that is crookedly

embedded in Cm.
Proof. Denote (eı) this circular chain and Cm = (d), with ı ∈ Z/m′Z
and  ∈ Z/mZ. First there is M,N such that for m′ ≥ M and n ≥ N ,
for all link eı, the set of  such that “eı ⊂ d” is not empty, for otherwise,
taking subsequences, there would be a point of Jε that is a limit of points not
contained in any link, but links are open and Jε is contained in their union,
which leads to a contradiction. Since Cm is a chain, this set of  is at most
two consecutive integers modulo m. Let g(ı) be any of them (the “smallest”
for instance). Because (eı) and (d) are circular chains, we have necessarily
g(ı+ 1)−g(ı) ∈ {−1, 0, 1}. There is thus a unique lift of f from Z to Z that
satisfies f(i+ 1)− f(i) ∈ {−1, 0, 1} and f(0) ∈ {0, . . . ,m− 1}. This lift
necessarily satisfies f(i+m′) = f(i)+km for some k independent of i. This
k is necessarily equal to the winding number in Cm of the curve φn(x+ iε)
that runs along the lower edges of the “rectangles” defining (eı), which is
equal to the winding number of Jε in Cm, that is 1, so we get condition
(3). If condition (4) were not satisfied for all m′, n big enough, then taking
subsequences would contradict the fact that Jε is stably crooked in Cm. ut
Let us sum up what we will use of the above analysis. Setting ψ(z) =

ψN (z)− iε for the value of N mentioned above, we get:

Lemma 5. For all m ≥ 4 there exists M ≥ 4 and a holomorphic map ψ such
that

– ψ is entire,
– ψ′ does not vanish,
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Fig. 1. Examples of T1-invariant stably crooked Jordan curves in circular chains (unrolled) of
length 5, 6 and 7. To make the figure more readable, we replaced the rectangles of the chain Cm

by smoother regions.

– ψ ◦ T1 = T1 ◦ ψ,
– ψ(z)− z has a limit when Im (z)→ +∞,
– ψ has an inverse branch φ defined for Im (z) > −ε/2 for some ε > 0, with
φ(z)− z having a limit as Im (z)→ +∞, and φ ◦ T1 = T1 ◦ φ,

– for all m′ ≥ M , the image of the circular chain Cm′ by z 7→ φ
(
m
m′ z
)

is a
circular chain crookedly embedded in Cm.
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3.7. Putting it all together

We can now apply this to build our example. Fix h > 0. Let Bn ∈ H1, qn ∈ N∗
be defined by induction as follows:

Let B1 = id on C, and q1 be any integer ≥ 5.

Assume thatB1, q1, . . . Bn, qn have been fixed such that the following holds
for all k ≤ n:

1. As in section 3.2, let Rk = qkBk, let Vk be biggest domain containing an
upper half plane and on which Rk is a bijection to an upper half plane, let
U0 = C and let Un be the set of points z ∈ V1 such that for all k < n,
Rk ◦ · · · ◦ R1(z) ∈ Vk+1. We already saw thatRk ◦ · · · ◦ R1 are bijections
from Uk to upper half planes. We require these half-planes to contain H−ε
for some ε > 0 which may depend on k.

2. LetQk be the circular chain defined as the preimage in C/Z by the restriction
of Rk ◦ · · · ◦ R1 to Uk/Z of the chain Cm ⊂ H/mZ with m = q1 . . . qk. If
k > 1, we require Qk to be crookedly embedded in Qk−1.

3. The supremum of the diameters of the links of Qk is ≤ 1/k.
4. Let Fk be defined as in section 3.2. We require the domain of definition of
Fk to contain H−h−1/k.

5. If k > 1, the supremum on H−h of
∣∣Fk − Fk−1

∣∣ is ≤ 1/2k.
6. qk ≥ k.

This set of conditions is satisfied for n = 1: for (1) we have R1(z) = 5z,
C = V1 = U1 = R1(U1); (2) is empty; for (3) the diameter of the links Cm is√

13/2 thus the diameter of the links of Q1 is
√

13/2q1 and here m = q1 ≥ 5;
(4) F1 = T1/q1 and is defined on C; (5) is empty; (6) q1 ≥ 5 ≥ 1.

If it is satisfied for some n, then let us explain why it is possible to choose
(Bn+1, qn+1) such that it is satisfied for n+ 1:

– First, we define Bn+1. Let m = q1 · · · qn. Let ψ, φ, M be given by lemma 5.
Let Bn+1(z) = ψ(z) and for any qn+1 ∈ N∗ set m′ = qn+1m. We obtain at
once (1), and (2) follows as soon as qn+1 is big enough so that m′ ≥M .

– That (3) holds when qn+1 is big enough follows merely from the continuity
of φ.

– That (4) and (5) hold when qn+1 is big enough follows from section 3.3.
– Point (6) needs no comment.

Then by (5) the sequence Fn tends uniformly on H−h to some holomorphic
map F , so H−h ⊂ Dom in the notations of section 3.2. Let f the map associated
to F in lemma 1. By (6) the number θ =

∑
n 1/(q1 · · · qn) is irrational. By

(2) and (3) the set K =
⋂
nQn is a pseudo circle. Let Dn be the preimage

of H by the restriction of Rk ◦ · · · ◦ R1 to Uk and let D̃n = E(Dn) ∪ {0}.
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By (1), fn is conjugated to a (rational14) rotation on D̃n (see the discussion
in section 3.2). The sequence D̃n is decreasing for inclusion, and tends in the
sense of Caratheodory to the connected component D̃ of the complement of
the pseudo circle E(K) that contains the origin. The boundary of D̃ is equal
to E(K) (it is a property that pseudo circles share with Jordan curves: they are
equal to the boundary of both components of their complement). By lemma 2,
D̃ is contained in the Siegel disk of f . But since its boundary is not a Jordan
curve (it is a pseudo circle) and the rotation number is irrational, D̃ is the Siegel
disk. It is contained in the unit disk D, because D̃1 = H and D̃n is decreasing.
So the Siegel disk of f is compactly contained in the domain of definition of f ,
because the latter contains e2πhD.

4. Conclusion

With the above proof, we realize that the map f we constructed is injective, as
a limit of injective holomorphic maps. The domain of definition can be taken to
contain RD for R as big as wanted (while the pseudo circle is contained in D).
By injectivity and properties of univalent maps, f will be very close to a rotation
on, say, 2D when R gets big. The pseudo circle can be chosen to be very close
to the unit circle. Alternatively, with a slight modification of the construction it
can be chosen to span between distance ε and 1− ε′.

In [PM97], it is mentioned that with Pérez Marco’s examples, one can get
a whole uncountable group of commuting maps sharing the same Siegel disk.
Here the same holds: by taking the un small enough we can ensure that for
any infinite subset J of N, the infinite composition of the Gk over k ∈ J will
converge on big domains, and they will all leave the Siegel disk of f invari-
ant, so they will have the same Siegel disk since their rotation number remains
irrational.

We believe that the new flexibility allowed by Runge’s theorem allows to
prove the following claims. But this has to be carefully checked.

Claim. Prove that there exists an injective holomorphic map f defined in a sim-
ply connected open subset U of C containing the origin, fixing 0 and having at
0 a hedgehog of positive Lebesgue measure compactly contained in U .

Claim. Prove that there exists an injective holomorphic map f defined in a dou-
bly connected open subset U of C and a Jordan curve J with positive Lebesgue
measure contained in U that is invariant by f , and carries an invariant line field.

We still believe in the following conjecture:

14 Some iterate of fn is thus the identity on the component of its domain that contains Un.
Recall that fn is not entire: when fn is iterated, its domain decreases and may disconnect.
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Conjecture. The boundary of the Siegel disks of all polynomials are Jordan
curves.

It seems very likely that the construction requires gigantic values of qk so
that we probably always get very Liouvillian rotation numbers (in particular
non Brjuno). We can always arrange so that it is the case. So Herman’s ques-
tion in [Her86] concerning which rotation numbers allow for non Jordan curve
boundaries is still quite topical.

5. Addendum: Anosov and Katok

After submitting the present article, the author learned by discussion with col-
leagues that Herman’s construction is an instance of a general construction by
Anosov and Katok [AK70a], [AK70b]. The following description of the Anosov
and Katok construction is adapted from [FK04] (with the area preserving as-
sumption removed and hn replaced by its inverse): consider a (real) manifold
M together with a smooth action of the group T = R/Z by diffeomorphisms :
Sα : M → M with Sα+β = SαSβ . Typically, imagine M = a sphere and Sα
are rotations of angle 2πα around a common axis. Then one tries to construct
f : M →M obtained as a limit:

f = lim
n→∞

fn, where fn = H−1
n ◦ Sαn+1 ◦Hn

with αn ∈ Q and
Hn = hn ◦ · · · ◦ h1,

where every hn is a diffeomorphism of M that satisfies

hn ◦ Sαn = Sαn ◦ hn.

The sequence fn converges but usually not the sequenceHn. The hn and αn are
chosen inductively in the following order:

α1, h1, α2, h2, α3, . . .

The choice of hn is very free (within the condition hn◦Sαn = Sαn ◦hn), it does
not need to be close to the identity, and usually won’t. To ensure convergence
of the sequence fn, it is enough to choose each time αn+1 very close to αn,
because then fn is close to fn−1.

This can be rewritten as follows:

fn = gn ◦ · · · ◦ g1

with
gn = H−1

n ◦ Sαn+1−αn ◦Hn.
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Note that gn is the time αn+1 − αn of the flow of a vector field (Hn)∗X , the
pull back by Hn = hn ◦ · · · ◦ h1 of the vector field X generating the action S.

For comparison, the construction in the present article also takes the form

fn = gn ◦ · · · ◦ g1

but gn is the time αn+1 − αn of the flow of a vector field (Hn)∗X where (X
generates the group of rotations on C and) Hn = hn ◦ · · ·h1 where the hn
are entire holomorphic maps of C with non-vanishing derivative but are not
injective: they are only semi-conjugacies.
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