Relatively compact Siegel disks with non-locally connected boundaries

Arnaud Chéritat

To cite this version:

Arnaud Chéritat. Relatively compact Siegel disks with non-locally connected boundaries. Mathematische Annalen, 2011, 349 (3), pp.529-542. 10.1007/s00208-010-0527-1 . hal-00630976

HAL Id: hal-00630976
https://hal.science/hal-00630976
Submitted on 8 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Relatively compact Siegel disks with non-locally connected boundaries

Arnaud Chéritat ${ }^{12}$
Received: date / Revised version: date - © Springer-Verlag 2010

Abstract

We construct holomorphic maps f with a Siegel disk whose boundary is not locally connected (and is an indecomposable continuum), yet compactly contained in the domain of definition of the map. Our examples are injective and defined on a subset of \mathbb{C}.

1. Introduction

In [Han82], Handel constructed a C^{∞} area preserving diffeomorphism of the plane that has a minimal set that is a pseudo circle (see section 3.5 for a definition of pseudo circles). In [Her86], Herman adapted the construction to produce a C^{∞} diffeomorphism of the sphere that is conjugated to a rotation in the two complementary components of an invariant pseudo circle, and holomorphic in one of them. In the same spirit, in [PM97] Pérez Marco was able, using tube-log Riemann surfaces, to construct examples of injective holomorphic maps defined in a subset U of \mathbb{C} that have a Siegel disk compactly contained in U whose boundary is a \mathbb{C}^{∞} Jordan curve, which came as a surprise. Again the method is versatile and Kingshook Biswas used Pérez-Marco's construction to produce a set of interesting examples: [Bis05,Bis08]. Here we add an ingredient to this construction and get:

Theorem 1. There exists a holomorphic map f defined in a simply connected open subset U of \mathbb{C} containing the origin, fixing 0 and having at 0 a Siegel disk Δ that is compactly contained in U and whose boundary is a pseudo circle.

As Herman remarked, the construction is very flexible. The reader will find in the conclusion section more properties that these maps can be given. There, we also suggest possible other consequences of the method.

Remark 1 . We ignore if the maps can be chosen entire (or entire meromorphic).

[^0]
1.1. The new ingredient

Compared to the previous constructions of Siegel disks and hedgehogs, the main new idea is to make use of Runge's theorem. Runge's theorem has been applied in a variety of situations to construct unexpected examples. We will make use of the following version:

Theorem (Runge, simply connected case). For all holomorphic map f defined in a simply connected open set $U \subset \mathbb{C}$, there exists a sequence of polynomials that tends to f locally uniformly on $U .{ }^{1}$

It is easy to see that f can be approximated (in the sense above) by polynomials if and only if it can be approximated by entire maps. In our application, the fact that the approximating sequence consists in polynomials is not so important. We will only need entire maps.

1.2. Aknowledgements

The author would like to thank Kingshook Biswas with whom he had very useful discussions, Pérez-Marco for inventing his methods and explaining them to me, Yohann Genzmer for submitting me me a stimulating math problem for which I found a complicated solution using iterated exponentials, Julien Duval for explaining me a simple solution to Genzmer's problem using Runge's theorem, thus bringing back this theorem to my memory and showing me its usefulness. The author would also like to thank the referee for useful comments.

2. Terminology

Saying that two holomorphic maps commute can mean different things. To be rigorous, we will say that " f and g commute, domain included", if the domain of definition of $f \circ g$ equals that of $g \circ f$ and if they take the same values on it. This is what $f \circ g=g \circ f$ is supposed to mean. Similarly we will say that " $f \circ g=h \circ i$, domain included" if the domain of definition of $f \circ g$ equals that of $h \circ i$ and if they take the same values on it. We will say that " f and g commute on U " if U is included in the domain of $f \circ g$ and in the domain of $g \circ f$ and if both compositions take the same value on U. There is another natural notion that we will not use: " f and g commute, wherever defined", if $f \circ g(z)=g \circ f(z)$ for all z for which both hand sides are defined.

We will denote the domain of definition of a map f by $\operatorname{dom}(f)$.

[^1]
3. The construction

3.1. Working in the universal cover of \mathbb{C}^{*}

The map f will be the limit of a sequence of compositions $f_{n}=g_{n} \circ \cdots \circ g_{1}$ of maps g_{i} fixing the origin. However we prefer to work at the level of lifted coordinates: let

$$
E(z)=\exp (2 i \pi z)
$$

The map E is a universal cover from \mathbb{C} to \mathbb{C}^{*}, with deck transformations $(\mathbb{Z},+)$ and induces an isomorphism between the cylinder \mathbb{C} / \mathbb{Z} and \mathbb{C}^{*}. This map can be used to extend the Riemann surface \mathbb{C} / \mathbb{Z} at its upper end (we will not use the lower end in this article): denote $+i \infty$ the added point, corresponding to $0 \in \mathbb{C} \subset \mathbb{C}^{*}$.

Let T_{v} denote the translation by v : A holomorphic map F that commutes with T_{1}, domain included, and such that

$$
F(z)=z+t+o(1)
$$

for some $t \in \mathbb{R}$ as $\operatorname{Im}(z)$ tends 2 to $+\infty$, "projects" to a holomorphic map f with an erasable singularity at the origin, i.e. there exists f holomorphic defined on $\{0\} \cup E$ (domain of f), with $E \circ F=f \circ E, f(0)=0, f^{\prime}(0)=e^{2 \pi i t} \neq 0$, and $f(z)=0 \Longrightarrow z=0$.

Conversely, a holomorphic map f defined in an open subset O of \mathbb{C} containing the origin, with $f(0)=0, f^{\prime}(0) \neq 0$, and $f(z)=0 \Longrightarrow z=0$, will have a (non unique) lift $F: E^{-1}(O) \rightarrow \mathbb{C}$ that commutes with T_{1}, domain included, with $E \circ F=f \circ E$ and $F(z)-z$ has a limit when $\operatorname{Im}(z) \rightarrow+\infty$.

3.2. Presentation of the actors

Recall that T_{v} denotes the translation by v :

$$
T_{v}(z)=z+v
$$

Let

$$
\mathbb{H}_{h}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>h\}, \quad \mathbb{H}=\mathbb{H}_{0}
$$

that we will call upper half planes. Let $\mathbf{1}$ be the constant vector field in \mathbb{C} of expression $\mathbf{1}(z)=1$.

Assume that maps \mathcal{R}_{k} are given for $k=1, \ldots, n$, satisfying the following conditions:

- \mathcal{R}_{k} is entire

[^2]- there exists $q_{k} \in \mathbb{N}^{*}$ such that $\mathcal{R}_{k} \circ T_{1}=T_{q_{k}} \circ \mathcal{R}_{k}$
- $\mathcal{R}_{k}(z)$ is injective on some upper half-plane. Given the above condition, it is equivalent to " $\mathcal{R}_{k}(z)=q_{k} z+c+o(1)$ as $\operatorname{Im}(z) \longrightarrow+\infty$ "
- $\forall z \in \mathbb{C}, \mathcal{R}_{k}^{\prime}(z) \neq 0$

We call these maps renormalizations. They will be inductively defined later in this article.

Let

- $X_{n}=\mathcal{R}_{1}^{*} \cdots \mathcal{R}_{n}^{*} 1$, i.e. the pull back of the vector field 1 by the composition $\mathcal{R}_{n} \circ \cdots \circ \mathcal{R}_{1}$
- G_{n}, the time 1 of the flow of the vector field X_{n}
$-F_{n}=G_{n} \circ \cdots \circ G_{1}$
Then X_{n} is a non-vanishing entire vector field. The maps G_{n} and F_{n} are holomorphic but not necessarily defined on all of \mathbb{C}.

These objects "project" to \mathbb{C} / \mathbb{Z} in the following sense:

- $T_{1}^{*} X_{n}=X_{n}$, i.e. X_{n} is T_{1}-invariant
- G_{n} and F_{n} commute with T_{1}, domain included
- recall that $\mathcal{R}_{n} \circ T_{1}=T_{q_{n}} \circ \mathcal{R}_{n}$

In particular, they can be thought of objects living on \mathbb{C} / \mathbb{Z}.
Also, they are defined in a neighborhood ${ }^{3}$ of $+i \infty$, and we have the following expansions as $\operatorname{Im}(z) \longrightarrow+\infty$:
$-\mathcal{R}_{n}(z)=q_{n} z+c+o(1)$
$-X_{n}(z)=\frac{1}{q_{1} \ldots q_{n}}+o(1)$
$-G_{n}(z)=z+\frac{1}{q_{1} \ldots q_{n}}+o(1)$

- $F_{n}(z)=z+\sum_{k=1}^{n} \frac{1}{q_{1} \ldots q_{k}}+o(1)$

Since each G_{n}, and thus F_{n} commute with T_{1}, domains included, the map F_{n} projects by E to a map f_{n}, i.e. there exists a holomorphic map $f_{n}:\{0\} \cup$ $E\left(\operatorname{dom}\left(F_{n}\right)\right) \rightarrow \mathbb{C}$ such that $E \circ F_{n}=f_{n} \circ E$, domain included, and f_{n} fixes the origin.

Let Dom be the set of points that have a neighborhood on which all F_{n} are defined and converge uniformly. It is an open set. It might be empty. Let F be the map defined on $D o m$ as the limit of the F_{n}. Then F is holomorphic and commutes with T_{1}. The following lemma is elementary so we will not explain its proof: it is stated for reference.

[^3]Lemma 1. Assume that Dom contains an upper half plane. Define dom $=$ $E(D o m) \cup\{0\}$. Then dom is an open subset of \mathbb{C} and f_{n} converges locally uniformly on dom to a holomorphic map f defined on dom and satisfying $f \circ E=E \circ F$, domain included.

The set of domains containing an upper half plane and on which \mathcal{R}_{n} is a bijection to an upper half plane or to \mathbb{C}, is non-empty and has a greatest element V_{n} for inclusion. Let $U_{0}=\mathbb{C}$ and for $n \geq 1$ let U_{n} be the set of points $z \in V_{1}$ such that for all $k<n, \mathcal{R}_{k} \circ \cdots \circ \mathcal{R}_{1}(z) \in V_{k+1}$. Then $\left(U_{n}\right)_{n \in \mathbb{N}}$ forms a decreasing sequence for inclusion, of T_{1}-invariant simply connected open subsets U_{n} of \mathbb{C} containing upper half planes, on which $\mathcal{R}_{n} \circ \cdots \circ \mathcal{R}_{1}$ is an isomorphism to an upper half plane or to \mathbb{C} and on which $\mathcal{R}_{k} \circ \cdots \circ \mathcal{R}_{1}$ is injective for all $k \leq n$. Let $U_{n}=E\left(U_{n}\right) \cup\{0\}$. It is a connected and simply connected open subset of \mathbb{C}. Note that each f_{n} is conjugated to a rotation in a neighborhood of the origin. Indeed, let $\theta_{n}=\sum_{k=1}^{n} 1 /\left(q_{1} \cdots q_{k}\right)$. The map $z \mapsto \frac{1}{q_{n}} \mathcal{R}_{n} \circ \cdots \circ \mathcal{R}_{1}(z)$ is a conjugacy from F_{n} on U_{n} to $T_{\theta_{n}}$ on an upper half plane or on \mathbb{C}, and commutes with T_{1} on U_{n}, domain included. Therefore it projects by E to a conjugacy on \widetilde{U}_{n} to the rotation of angle $2 \pi \theta_{n}$ on a disk or on \mathbb{C}.

We will use the following lemma, applied to well chosen subsets \widetilde{D}_{n} of \widetilde{U}_{n} :
Lemma 2. Assume f_{n} is a sequence of holomorphic maps defined on open subsets of \mathbb{C} containing the origin. Assume f_{n} fixes 0 and that $f_{n}^{\prime}(0)=e^{i 2 \pi \theta_{n}}$ with $\theta_{n} \in \mathbb{R}$ and $\theta_{n} \longrightarrow \theta \in \mathbb{R}$ as $n \rightarrow+\infty$. Assume \widetilde{D}_{n} is a sequence of simply connected open subsets of the domain of f_{n} and containing 0 , such that f_{n} is analytically conjugated on \widetilde{D}_{n} to the rotation of angle $2 \pi \theta_{n}$ on a disk or on \mathbb{C}. Assume that there exists a limit \widetilde{D} to the sequence \widetilde{D}_{n} in the sense of Caratheodory. Then f_{n} tends on \widetilde{D} locally uniformly to a map f that is analytically conjugated on D to the rotation of angle θ on a disk or on \mathbb{C}.
Proof. Let $R_{\alpha}(z)=e^{i 2 \pi \alpha} z$. The conjugacy ϕ_{n} on \widetilde{D}_{n} can always be chosen so that $\phi_{n}^{\prime}(0)=1$. Then a theorem of Caratheodory says that ϕ_{n} converges locally uniformly on \widetilde{D} to the unique conformal map ϕ from \widetilde{D} to a disk or \mathbb{C} such that $\phi(0)=0$ and $\phi^{\prime}(0)=1$. The reciprocal ϕ_{n}^{-1} is locally uniformly convergent to ϕ^{-1}. From $f_{n}=\phi_{n}^{-1} \circ R_{\theta_{n}} \circ \phi_{n}$ we deduce that f_{n} tends to $\phi^{-1} \circ R_{\theta} \circ \phi$ locally uniformly.

Depending on authors, the definition of Siegel disks mays differ slightly. For us, it is the maximal domain of conjugacy to an irrational rotation. In the lemma above, if θ is irrational, then \widetilde{D} is an invariant subset of the Siegel disk of f : could the Siegel disk of f be bigger? It necessarily requires the boundary of \widetilde{D} to be an analytic Jordan curve ${ }^{4}$, compactly contained in dom. In fact it is equivalent. So if we get a boundary that is not a Jordan curve or not an analytic

[^4]one, then we know that \widetilde{D} equals the Siegel disk of f. (This implies that \widetilde{U}_{n} has the same Caratheodory limit as \widetilde{D}_{n}.)

How to build examples with $\widetilde{D} \subset \subset$ dom? First we will ensure that Dom contains \mathbb{H}_{-h} for some $h>0$. Second we will ensure that \widetilde{D} is contained in \mathbb{H}.

3.3. Ensuring convergence on big domains

Here we give a slightly informal description, and a rigorous lemma that will be used in the more formal construction described in section 3.6.

It will be handy to use a notation for the set of maps satisfying the conditions we required on \mathcal{R}_{n} in the previous section. So let \mathcal{H}_{1} denote the set of maps \mathcal{R} such that:

- \mathcal{R} is entire
- $\mathcal{R} \circ T_{1}=T_{1} \circ \mathcal{R}$
- $\mathcal{R}(z)$ is injective on some upper half-plane
- $\forall z \in \mathbb{C}, \mathcal{R}^{\prime}(z) \neq 0$

So that $\mathcal{R}_{k} \in q_{k} \mathcal{H}_{1}$, i.e. \mathcal{R}_{k} is the product of a member of \mathcal{H}_{1} with the scalar q_{k}.

For this, we will inductively define the maps \mathcal{R}_{n} using the following (elementary) lemma:

Lemma 3. Fix $n \in \mathbb{N}$. Assume we are given $\mathcal{R}_{k} \in q_{k} \mathcal{H}_{1}$ for $k=1, \ldots, n-1$ and some $B_{n} \in \mathcal{H}_{1}$. Let $\mathcal{R}_{n}=q B_{n}$ for some $q \in \mathbb{N}^{*}$. The corresponding map f_{n} depends on q but f_{n-1} does not. Then, as $q \longrightarrow+\infty, f_{n}$ tends to f_{n-1} in the following sense: every compact subset K of $\operatorname{dom}\left(f_{n-1}\right)$ is eventually contained in $\operatorname{dom}\left(f_{n}\right)$ and $f_{n} \longrightarrow f_{n-1}$ uniformly on K. Note however, that the domain U_{n} defined in section 3.2 is independent of q.

Proof. Indeed, $\mathcal{R}_{n}^{*} \mathbf{1}=\left(q B_{n}\right)^{*} \mathbf{1}=\frac{1}{q} B_{n}^{*} \mathbf{1}$. So X_{n} is the product of the scalar $\frac{1}{q}$ with an entire vector field that does not depend on q. The map G_{n} is the time $1 / q$ of the flow of the latter vector field. The rest follows easily.

Fix some number $h>0$. We will inductively define the sequence \mathcal{R}_{n} by first choosing B_{1}, then q_{1}, then B_{2}, then q_{2}, etc \ldots We will be careful to choose q_{k} big enough so that the domain of definition of f_{n} contains the upper half plane $\mathbb{H}_{-h-\frac{1}{n}}$ and $\left|f_{n-1}-f_{n}\right|<1 / 2^{n}$ on \mathbb{H}_{-h}. This is always possible by the lemma above. We can also choose q_{n} to ensure that the sum θ is convergent ${ }^{5}$ and has an irrational value: a sufficient condition for this is that q_{n} tends to $+\infty$. Then the half plane \mathbb{H}_{-h} is contained in the domain of definition Dom of F.

[^5]It shall be stressed out that in the construction, the sequence $\left(B_{n}\right)$ will not be fixed independently of the sequence $\left(q_{n}\right)$: the choice of B_{n+1} will depend on the choice of all the previous objects $B_{1}, q_{1}, B_{2}, q_{2}, \ldots B_{n}, q_{n}$.

3.4. Ensuring compactly contained bad boundaries

As in the previous section we give here a slightly informal description, and a rigorous lemma that will be used in the more formal construction described in section 3.6.

The following claim is where we use Runge's theorem:
Lemma 4. Assume ϕ is a conformal bijection from \mathbb{H} / \mathbb{Z} to a domain $W \subset \mathbb{C} / \mathbb{Z}$ that extends to a conformal bijection fixing the upper end. Then there exists a sequence of holomorphic maps $\psi_{n}: \mathbb{C} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ such that:

- ψ_{n}^{\prime} does not vanish,
$-\psi_{n}(z)-z$ has a limit when $\operatorname{Im}(z)$ tends to $+\infty$,
- as n tends to $+\infty, \psi_{n}$ tends uniformly to ϕ^{-1} on every compact subset of W and in a neighborhood of the upper end of \mathbb{C} / \mathbb{Z}.

Proof. Conjugate the situation by E : let $\widetilde{W}=E(W) \cap\{0\}$ and $\Psi: \widetilde{W} \rightarrow \mathbb{D}$ be the conjugate of ϕ^{-1}, extended by setting $\Psi(0)=0$, where \mathbb{D} denotes the unit disk. It is a conformal isomorphism. It can therefore be written as $\Psi(z)=$ $z e^{v(z)}$ for some holomorphic map $v: \widetilde{W} \rightarrow \mathbb{C}$. As a conformal isomorphism its derivative does not vanish, hence $1+z v^{\prime}(z) \neq 0$. Thus there exists a map $u: \widetilde{W} \rightarrow \mathbb{C}$ such that $1+z v^{\prime}(z)=e^{u(z)}$. Since $e^{u(0)}=1$, we can choose u such that $u(0)=0$. So $u(z)=z w(z)$ for some holomorphic $w: \widetilde{W} \rightarrow \mathbb{C}$. Now apply Runge's theorem: there exists a sequence of entire maps w_{n} (even polynomials) that converge locally uniformly to w on \widetilde{W}. There exists an entire map v_{n} (unique) taking the same value as v at the origin and such that $1+$ $z v_{n}^{\prime}=e^{z w_{n}}$. Indeed $\left(e^{z w_{n}}-1\right) / z$ has a removable singularity at the origin, so it extends to an entire map, of which v_{n} is just the appropriate primitive. The maps $\psi_{n}(z)=z+v_{n}\left(e^{z}\right)$ satisfy the required conditions.

Now we describe informally how we can use this lemma to choose the functions B_{n} to get interesting examples. A more formal, but more specific, description is done in section 3.6.

Let $D_{0}=\mathbb{H} / \mathbb{Z}$. Let W_{1} be any open simply connected strict subset of $\mathbb{H} / \mathbb{Z} \cup\{+i \infty\}$ containing the upper end $+i \infty$. Let ϕ be any conformal map from $\mathbb{H} / \mathbb{Z} \cup\{+i \infty\}$ to W_{1} that fixes the upper end. Let $\varepsilon>0$ and let the Jordan curve J_{1} be the image by ϕ of the Jordan curve of equation " $\operatorname{Im}(z)=\varepsilon$ " in \mathbb{H} / \mathbb{Z}. If the boundary of W_{1} is a convoluted Jordan curve (or something more complicated than a Jordan curve) and ε is small then J_{1} will also be convoluted.

Apply lemma 4 to $W=W_{1}-\{+i \infty\}$. By the uniform convergence of ψ_{n} to ϕ^{-1} on compact subsets of W and on a neighborhood of the upper end of \mathbb{C} / \mathbb{Z}, there is for n big enough a branch ϕ_{n} of ψ_{n}^{-1} defined for $\operatorname{Im}(z)>\varepsilon / 2$ and mapping the upper end to itself. For n big, the Jordan curve $J_{1}^{\prime}=\phi_{n}(\mathbb{R}+i \varepsilon)$, image by ϕ_{n} of the Jordan curve of equation " $\operatorname{Im}(z)=\varepsilon$ " in \mathbb{H} / \mathbb{Z}, will be close to J_{1} so it will also be convoluted.

So we will choose $B_{1}=\psi_{n}(z)-i \varepsilon$ for some big value of n. Then we will chose q_{1} as in section 3.4. Let D_{1} be the domain bounded by J_{1}^{\prime} and containing the upper end. Among the integral lines of the vector field X_{1}, there are the images of the horizontals by ϕ_{n}, which loop. This includes J_{1}^{\prime} and also a set of curves foliating the domain D_{1}. The map $F_{1}=G_{1}$, seen as acting on \mathbb{C} / \mathbb{Z}, is conjugate to a finite order ${ }^{6}$ rotation on D_{1}. The renormalization \mathcal{R}_{1} induces a conjugacy of the restriction of F_{1} to D_{1} to the translation T_{1} on the half cylinder $\mathbb{H} / q_{1} \mathbb{Z}$.

The next step in the construction consists in choosing a new simply connected domain W_{2}, contained in D_{1}, containing the upper end, whose boundary is even more convoluted, yet invariant by F_{1}, and very close to J_{1}^{\prime}. By the conjugacy \mathcal{R}_{1} on D_{1} it amounts to choosing a domain in $\mathbb{H} / q_{1} \mathbb{Z} \cup\{+i \infty\}$ that is invariant by T_{1}, i.e. to choosing a simply connected domain W_{2}^{\prime} in $\mathbb{H} / \mathbb{Z} \cup\{+i \infty\}$ (by applying the cover $z+q_{1} \mathbb{Z} \in \mathbb{H} / q_{1} \mathbb{Z} \mapsto z+\mathbb{Z} \in \mathbb{H} / \mathbb{Z}$), and whose boundary is very close to \mathbb{R}.

Let $\phi: \mathbb{H} / \mathbb{Z} \cup\{+i \infty\} \rightarrow W_{2}^{\prime}$ be a conformal map fixing the upper end. We choose a new value of ε, which gives a new Jordan curve $J_{2}=D_{1} \cap \mathcal{R}_{1}^{-1}(\phi(\mathbb{R}+$ $i \varepsilon)$) close to the boundary of W_{2}. We apply lemma 4 again and get a new sequence of entire maps ψ_{n} tending to ϕ^{-1} on W_{2}^{\prime}. We set $B_{2}=\psi_{n}(z)-i \varepsilon$ for n big enough so that the curve $J_{2}^{\prime}=D_{1} \cap \mathcal{R}_{1}^{-1}\left(\phi_{n}(\mathbb{R}+i \varepsilon)\right)$ is close to J_{2}. We choose q_{2} as in section 3.4. The domain D_{2} bounded by J_{2}^{\prime} is then invariant by G_{1} and by the flow of the vector field X_{2}. The maps G_{1} and G_{2}, will be thus conjugated by $\mathcal{R}_{2} \circ \mathcal{R}_{1}$ on D_{2} to the translations by respectively q_{2} and 1 on $\mathbb{H} / q_{1} q_{2} \mathbb{Z}$.

And so on... We get a decreasing sequence of domains $D_{n} \subset \mathbb{H} / \mathbb{Z}$ on which $\mathcal{R}_{n} \circ \cdots \circ \mathcal{R}_{1}$ is a conformal bijection to $\mathbb{H} /\left(q_{1} \cdots q_{n}\right) \mathbb{Z}$ and conjugating all the maps G_{k}, for $k \leq n$, to integer translations, and thus the map F_{n} too. Their boundaries form a sequence of Jordan curves extremely convoluted and close to each other. The construction has enough flexibility to allow for $D=\bigcap_{n} D_{n}$ to have a non locally connected boundary, as we will prove in the following sections (basically by the same method as Handel in [Han82]).

[^6]
3.5. Pseudo circles

Pseudo circles are amazing topological objects. The interested ${ }^{7}$ reader may look at [Bin51] (Example 2 p.48), [Fea70], [Rog70], [KG09]. It was chosen by Handel in [Han82] as a good example of extreme pathology that a minimal set can have even for an area preserving smooth diffeomorphism of the sphere. Herman did the same choice in [Her86] for his construction. So we will continue this tradition.

For our purpose, it will be enough to know the following:

- A pseudo circle is compact, connected, separates the plane into two components, but it is not locally connected thus it is not a Jordan curve.
- It is equal to the boundary of both components (in particular it has empty interior).
- Any set K obtained by the following procedure is a pseudo circle.

Procedure: A circular chain in a topological space X is a sequence $e=$ $\left(e_{i}\right)$ of open subsets of X, called links, indexed by $\mathbb{Z} / m \mathbb{Z}$ for some $m \geq 4$, such that $e_{i} \cap e_{j} \neq \varnothing$ if and only if i, j are adjacent or equal. ${ }^{8}$ For each $n \geq 1$, let Q_{n} be a circular chain in the plane ${ }^{9}$ such that:

- the diameters of the links of Q_{n} are finite for all n and their supremum for a given n tends to 0 as $n \rightarrow+\infty$
- Q_{n+1} is a refinement of Q_{n} : each link of the former is contained in a link of the latter
- Q_{n+1} is crookedly embedded in Q_{n}, which means the following: assume that $Q_{n}=\left(d_{i}\right)$ has m links, and that $Q_{n+1}=\left(e_{i}\right)$ has m^{\prime} links. It will be convenient to let $i \in \mathbb{Z}$ and let d_{i} denote $d_{\bar{i}}$ where i is the class of i modulo m. Similarly, for $i \in \mathbb{Z}$ let e_{i} denote $e_{\bar{i}}$ for the residue class modulo m^{\prime}. To be crookedly embedded means that there exists a map $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

1. $\forall i \in \mathbb{Z}$, the closure of e_{i} is contained in $d_{f(i)}$
2. $\forall i \in \mathbb{Z}, f(i+1)-f(i) \in\{-1,0,1\}\left({ }^{10}\right)$
3. $\forall i \in \mathbb{Z}, f\left(i+m^{\prime}\right)=f(i)+m\left({ }^{11}\right)$
4. for all i, j with $f(i)+2<f(j)<f(i)+m$, there exists i^{\prime} and j^{\prime} with $f\left(i^{\prime}\right)=f(j)-1, f\left(j^{\prime}\right)=f(i)+1$ and either $i<i^{\prime}<j^{\prime}<j$ or $i>i^{\prime}>j^{\prime}>j$.
[^7]Then define $K=\bigcap_{n \geq 1} Q_{n}$: it is a pseudo circle. END OF DESCRIPTION
Let us say that a Jordan curve, parameterized by $\iota(t), t \in \mathbb{R} / \mathbb{Z}$, is stably crooked in a circular chain $Q_{n}=\left(e_{i}\right)$ with $i \in \mathbb{Z} / m \mathbb{Z}$, whenever:

- the curve is contained in the union of the links of the chain,
- it has winding number 1 in Q_{n}, oriented by $\iota,\left({ }^{(2)}\right)$
- $\forall t_{1}, t_{2} \in \mathbb{R}$ with $t_{1}<t_{2}<t_{1}+1$ and $\forall u, v \in \mathbb{Z}$, if $\iota\left(t_{1}\right) \in \bar{e}_{u}$ and $\iota\left(t_{2}\right) \in \bar{e}_{v}$ and if $u+2<v<u+m$ then there exists t_{1}^{\prime} and t_{2}^{\prime} with either $t_{1}<t_{1}^{\prime}<t_{2}^{\prime}<t_{2}$ or $t_{1}>t_{1}^{\prime}>t_{2}^{\prime}>t_{2}$ such that $\iota\left(t_{1}^{\prime}\right) \in e_{v-1}$ and $\iota\left(t_{2}^{\prime}\right) \in e_{u+1}$.
It is independent of the choice of parameterization of the Jordan curve. The subtlety of taking closures for \bar{e}_{u} and \bar{e}_{v} but not e_{u+1} and e_{v-1} is to ensure the following: if a Jordan curve is stably crooked in Q_{n} then any nearby Jordan curve is. By nearby we mean a Jordan curve which is parameterized by a map that is close to ℓ.

3.6. The core of the construction

Following Herman (with different conventions), for $m \geq 4$ consider the circular chain C_{m} of length m consisting of the rectangular links $\left.e_{i}=\right] i-1 / 4, i+$ $5 / 4[\times] 0,1[$ in the cylinder $\mathbb{C} / m \mathbb{Z}$. Then

- There exists a Jordan curve in $\mathbb{C} / m \mathbb{Z}$ that is stably crooked in C_{m} and invariant by T_{1}. The proof is in [Han82] but let us mention that it is quite entertaining to work it out on one's own. Figure 1 gives examples of solutions for $m=5,6$ and 7 .
- Fix such a Jordan curve J. Consider a conformal map ϕ from $\mathbb{H} / m \mathbb{Z} \cup$ $\{+i \infty\}$ to the component of $\mathbb{C} / m \mathbb{Z} \cup\{+i \infty\}-J$ that contains the upper end, and that fixes the upper end. There exists such maps. ${ }^{13}$ There exists ε such that the Jordan curve J_{ε}, image by ϕ of the curve of equation $" \operatorname{Im}(z)=\varepsilon$ ", is stably crooked in C_{m}. It follows from the definition of stably crooked and

[^8]from the following theorem of Caratheodory: ϕ extends continuously to the closure of $\mathbb{H} / m \mathbb{Z}$ and the extension is on $\mathbb{R} / m \mathbb{Z}$ a parameterization of the Jordan curve J.

- Let W be the preimage by the natural projection $\mathbb{C} \rightarrow \mathbb{C} / m \mathbb{Z}$ of the image of ϕ. Then W is connected and ϕ lifts to a conformal bijection, also denoted by ϕ, from \mathbb{H} to W. Since W is T_{1}-invariant, ϕ commutes with T_{1}, domain included. So ϕ induces an isomorphism from \mathbb{H} / \mathbb{Z} to W / \mathbb{Z} that we will also denote by ϕ.
- Now apply lemma 4 to ϕ and W / \mathbb{Z}. We get a sequence of holomorphic maps $\psi_{n}: \mathbb{C} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ such that:
- ψ_{n}^{\prime} does not vanish,
- $\psi_{n}(z)-z$ has a limit when $\operatorname{Im}(z)$ tends to $+\infty$,
- as n tends to $+\infty, \psi_{n}$ tends uniformly to ϕ^{-1} on every compact subset of W and in a neighborhood of the upper end of \mathbb{C} / \mathbb{Z}.
- By this uniform convergence, there is for n big enough a branch ϕ_{n} of ψ_{n}^{-1} defined for $\operatorname{Im}(z)>\varepsilon / 2$ and mapping the upper end to itself. There exists $M \geq 4$ and $N \in \mathbb{N}$ such that for all $m^{\prime} \geq M$ and $n \geq N$, the image of the chain $C_{m^{\prime}}$ by $z \mapsto \phi_{n}\left(\frac{m}{m^{\prime}} z+i \varepsilon\right)$ is a circular chain that is crookedly embedded in C_{m}.
Proof. Denote $\left(e_{\bar{\imath}}\right)$ this circular chain and $C_{m}=\left(d_{\bar{\jmath}}\right)$, with $\bar{\imath} \in \mathbb{Z} / m^{\prime} \mathbb{Z}$ and $\bar{\jmath} \in \mathbb{Z} / m \mathbb{Z}$. First there is M, N such that for $m^{\prime} \geq M$ and $n \geq N$, for all link $e_{\bar{\imath}}$, the set of $\bar{\jmath}$ such that " $\overline{e_{\bar{\imath}}} \subset d_{\bar{\jmath}}$ " is not empty, for otherwise, taking subsequences, there would be a point of J_{ε} that is a limit of points not contained in any link, but links are open and J_{ε} is contained in their union, which leads to a contradiction. Since C_{m} is a chain, this set of $\bar{\jmath}$ is at most two consecutive integers modulo m. Let $g(\bar{\imath})$ be any of them (the "smallest" for instance). Because $\left(e_{\bar{\imath}}\right)$ and $\left(d_{\bar{\jmath}}\right)$ are circular chains, we have necessarily $g(\overline{\imath+1})-g(\bar{\imath}) \in\{\overline{-1}, \overline{0}, \overline{1}\}$. There is thus a unique lift of f from \mathbb{Z} to \mathbb{Z} that satisfies $f(i+1)-f(i) \in\{-1,0,1\}$ and $f(0) \in\{0, \ldots, m-1\}$. This lift necessarily satisfies $f\left(i+m^{\prime}\right)=f(i)+k m$ for some k independent of i. This k is necessarily equal to the winding number in C_{m} of the curve $\phi_{n}(x+i \varepsilon)$ that runs along the lower edges of the "rectangles" defining $\left(e_{\bar{\imath}}\right)$, which is equal to the winding number of J_{ε} in C_{m}, that is 1 , so we get condition (3). If condition (4) were not satisfied for all m^{\prime}, n big enough, then taking subsequences would contradict the fact that J_{ε} is stably crooked in C_{m}.
Let us sum up what we will use of the above analysis. Setting $\psi(z)=$ $\psi_{N}(z)-i \varepsilon$ for the value of N mentioned above, we get:

Lemma 5. For all $m \geq 4$ there exists $M \geq 4$ and a holomorphic map ψ such that

- ψ is entire,
- ψ^{\prime} does not vanish,

Fig. 1. Examples of T_{1}-invariant stably crooked Jordan curves in circular chains (unrolled) of length 5,6 and 7 . To make the figure more readable, we replaced the rectangles of the chain C_{m} by smoother regions.
$-\psi \circ T_{1}=T_{1} \circ \psi$,
$-\psi(z)-z$ has a limit when $\operatorname{Im}(z) \rightarrow+\infty$,
$-\psi$ has an inverse branch ϕ defined for $\operatorname{Im}(z)>-\varepsilon / 2$ for some $\varepsilon>0$, with $\phi(z)-z$ having a limit as $\operatorname{Im}(z) \rightarrow+\infty$, and $\phi \circ T_{1}=T_{1} \circ \phi$,

- for all $m^{\prime} \geq M$, the image of the circular chain $C_{m^{\prime}}$ by $z \mapsto \phi\left(\frac{m}{m^{\prime}} z\right)$ is a circular chain crookedly embedded in C_{m}.

3.7. Putting it all together

We can now apply this to build our example. Fix $h>0$. Let $B_{n} \in \mathcal{H}_{1}, q_{n} \in \mathbb{N}^{*}$ be defined by induction as follows:

Let $B_{1}=$ id on \mathbb{C}, and q_{1} be any integer ≥ 5.
Assume that $B_{1}, q_{1}, \ldots B_{n}, q_{n}$ have been fixed such that the following holds for all $k \leq n$:

1. As in section 3.2, let $\mathcal{R}_{k}=q_{k} B_{k}$, let V_{k} be biggest domain containing an upper half plane and on which \mathcal{R}_{k} is a bijection to an upper half plane, let $U_{0}=\mathbb{C}$ and let U_{n} be the set of points $z \in V_{1}$ such that for all $k<n$, $\mathcal{R}_{k} \circ \cdots \circ \mathcal{R}_{1}(z) \in V_{k+1}$. We already saw that $\mathcal{R}_{k} \circ \cdots \circ \mathcal{R}_{1}$ are bijections from U_{k} to upper half planes. We require these half-planes to contain $\mathbb{H}_{-\varepsilon}$ for some $\varepsilon>0$ which may depend on k.
2. Let Q_{k} be the circular chain defined as the preimage in \mathbb{C} / \mathbb{Z} by the restriction of $\mathcal{R}_{k} \circ \cdots \circ \mathcal{R}_{1}$ to U_{k} / \mathbb{Z} of the chain $C_{m} \subset \mathbb{H} / m \mathbb{Z}$ with $m=q_{1} \ldots q_{k}$. If $k>1$, we require Q_{k} to be crookedly embedded in Q_{k-1}.
3. The supremum of the diameters of the links of Q_{k} is $\leq 1 / k$.
4. Let F_{k} be defined as in section 3.2. We require the domain of definition of F_{k} to contain $\mathbb{H}_{-h-1 / k}$.
5. If $k>1$, the supremum on \mathbb{H}_{-h} of $\left|F_{k}-F_{k-1}\right|$ is $\leq 1 / 2^{k}$.
6. $q_{k} \geq k$.

This set of conditions is satisfied for $n=1$: for (1) we have $\mathcal{R}_{1}(z)=5 z$, $\mathbb{C}=V_{1}=U_{1}=\mathcal{R}_{1}\left(U_{1}\right) ;$ (2) is empty; for (3) the diameter of the links C_{m} is $\sqrt{13} / 2$ thus the diameter of the links of Q_{1} is $\sqrt{13} / 2 q_{1}$ and here $m=q_{1} \geq 5$; (4) $F_{1}=T_{1 / q_{1}}$ and is defined on \mathbb{C}; (5) is empty; (6) $q_{1} \geq 5 \geq 1$.

If it is satisfied for some n, then let us explain why it is possible to choose (B_{n+1}, q_{n+1}) such that it is satisfied for $n+1$:

- First, we define B_{n+1}. Let $m=q_{1} \cdots q_{n}$. Let ψ, ϕ, M be given by lemma 5 . Let $B_{n+1}(z)=\psi(z)$ and for any $q_{n+1} \in \mathbb{N}^{*}$ set $m^{\prime}=q_{n+1} m$. We obtain at once (1), and (2) follows as soon as q_{n+1} is big enough so that $m^{\prime} \geq M$.
- That (3) holds when q_{n+1} is big enough follows merely from the continuity of ϕ.
- That (4) and (5) hold when q_{n+1} is big enough follows from section 3.3.
- Point (6) needs no comment.

Then by (5) the sequence F_{n} tends uniformly on \mathbb{H}_{-h} to some holomorphic map F, so $\mathbb{H}_{-h} \subset D o m$ in the notations of section 3.2. Let f the map associated to F in lemma 1. By (6) the number $\theta=\sum_{n} 1 /\left(q_{1} \cdots q_{n}\right)$ is irrational. By (2) and (3) the set $K=\bigcap_{n} Q_{n}$ is a pseudo circle. Let D_{n} be the preimage of \mathbb{H} by the restriction of $\mathcal{R}_{k} \circ \cdots \circ \mathcal{R}_{1}$ to U_{k} and let $\widetilde{D}_{n}=E\left(D_{n}\right) \cup\{0\}$.

By (1), f_{n} is conjugated to a (rational ${ }^{14}$) rotation on \widetilde{D}_{n} (see the discussion in section 3.2). The sequence \widetilde{D}_{n} is decreasing for inclusion, and tends in the sense of Caratheodory to the connected component \widetilde{D} of the complement of the pseudo circle $E(K)$ that contains the origin. The boundary of \widetilde{D} is equal to $E(K)$ (it is a property that pseudo circles share with Jordan curves: they are equal to the boundary of both components of their complement). By lemma 2 , \widetilde{D} is contained in the Siegel disk of f. But since its boundary is not a Jordan curve (it is a pseudo circle) and the rotation number is irrational, \widetilde{D} is the Siegel disk. It is contained in the unit disk \mathbb{D}, because $\widetilde{D}_{1}=\mathbb{H}$ and \widetilde{D}_{n} is decreasing. So the Siegel disk of f is compactly contained in the domain of definition of f, because the latter contains $e^{2 \pi h} \mathbb{D}$.

4. Conclusion

With the above proof, we realize that the map f we constructed is injective, as a limit of injective holomorphic maps. The domain of definition can be taken to contain $R \mathbb{D}$ for R as big as wanted (while the pseudo circle is contained in \mathbb{D}). By injectivity and properties of univalent maps, f will be very close to a rotation on, say, $2 \mathbb{D}$ when R gets big. The pseudo circle can be chosen to be very close to the unit circle. Alternatively, with a slight modification of the construction it can be chosen to span between distance ε and $1-\varepsilon^{\prime}$.

In [PM97], it is mentioned that with Pérez Marco's examples, one can get a whole uncountable group of commuting maps sharing the same Siegel disk. Here the same holds: by taking the u_{n} small enough we can ensure that for any infinite subset J of \mathbb{N}, the infinite composition of the G_{k} over $k \in J$ will converge on big domains, and they will all leave the Siegel disk of f invariant, so they will have the same Siegel disk since their rotation number remains irrational.

We believe that the new flexibility allowed by Runge's theorem allows to prove the following claims. But this has to be carefully checked.

Claim. Prove that there exists an injective holomorphic map f defined in a simply connected open subset U of \mathbb{C} containing the origin, fixing 0 and having at 0 a hedgehog of positive Lebesgue measure compactly contained in U.

Claim. Prove that there exists an injective holomorphic map f defined in a doubly connected open subset U of \mathbb{C} and a Jordan curve J with positive Lebesgue measure contained in U that is invariant by f, and carries an invariant line field.

We still believe in the following conjecture:

[^9]Conjecture. The boundary of the Siegel disks of all polynomials are Jordan curves.

It seems very likely that the construction requires gigantic values of q_{k} so that we probably always get very Liouvillian rotation numbers (in particular non Brjuno). We can always arrange so that it is the case. So Herman's question in [Her86] concerning which rotation numbers allow for non Jordan curve boundaries is still quite topical.

5. Addendum: Anosov and Katok

After submitting the present article, the author learned by discussion with colleagues that Herman's construction is an instance of a general construction by Anosov and Katok [AK70a], [AK70b]. The following description of the Anosov and Katok construction is adapted from [FK04] (with the area preserving assumption removed and h_{n} replaced by its inverse): consider a (real) manifold M together with a smooth action of the group $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ by diffeomorphisms : $S_{\alpha}: M \rightarrow M$ with $S_{\alpha+\beta}=S_{\alpha} S_{\beta}$. Typically, imagine $M=$ a sphere and S_{α} are rotations of angle $2 \pi \alpha$ around a common axis. Then one tries to construct $f: M \rightarrow M$ obtained as a limit:

$$
f=\lim _{n \rightarrow \infty} f_{n}, \text { where } f_{n}=H_{n}^{-1} \circ S_{\alpha_{n+1}} \circ H_{n}
$$

with $\alpha_{n} \in \mathbb{Q}$ and

$$
H_{n}=h_{n} \circ \cdots \circ h_{1},
$$

where every h_{n} is a diffeomorphism of M that satisfies

$$
h_{n} \circ S_{\alpha_{n}}=S_{\alpha_{n}} \circ h_{n}
$$

The sequence f_{n} converges but usually not the sequence H_{n}. The h_{n} and α_{n} are chosen inductively in the following order:

$$
\alpha_{1}, h_{1}, \alpha_{2}, h_{2}, \alpha_{3}, \ldots
$$

The choice of h_{n} is very free (within the condition $h_{n} \circ S_{\alpha_{n}}=S_{\alpha_{n}} \circ h_{n}$), it does not need to be close to the identity, and usually won't. To ensure convergence of the sequence f_{n}, it is enough to choose each time α_{n+1} very close to α_{n}, because then f_{n} is close to f_{n-1}.

This can be rewritten as follows:

$$
f_{n}=g_{n} \circ \cdots \circ g_{1}
$$

with

$$
g_{n}=H_{n}^{-1} \circ S_{\alpha_{n+1}-\alpha_{n}} \circ H_{n} .
$$

Note that g_{n} is the time $\alpha_{n+1}-\alpha_{n}$ of the flow of a vector field $\left(H_{n}\right)^{*} X$, the pull back by $H_{n}=h_{n} \circ \cdots \circ h_{1}$ of the vector field X generating the action S.

For comparison, the construction in the present article also takes the form

$$
f_{n}=g_{n} \circ \cdots \circ g_{1}
$$

but g_{n} is the time $\alpha_{n+1}-\alpha_{n}$ of the flow of a vector field $\left(H_{n}\right)^{*} X$ where (X generates the group of rotations on \mathbb{C} and) $H_{n}=h_{n} \circ \cdots h_{1}$ where the h_{n} are entire holomorphic maps of \mathbb{C} with non-vanishing derivative but are not injective: they are only semi-conjugacies.

References

[AK70a] D. V. Anosov and A. B. Katok. New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obšč., 23:3-36, 1970.
[AK70b] D. V. Anosov and A. B. Katok. New examples of ergodic diffeomorphisms of smooth manifolds. Uspehi Mat. Nauk, $25(4$ (154)):173-174, 1970.
[Bin51] R. H. Bing. Concerning hereditarily indecomposable continua. Pacific J. Math., 1:4351, 1951.
[Bis05] Kingshook Biswas. Smooth combs inside hedgehogs. Discrete Contin. Dyn. Syst., 12(5):853-880, 2005.
[Bis08] Kingshook Biswas. Hedgehogs of Hausdorff dimension one. Ergodic Theory Dynam. Systems, 28(6):1713-1727, 2008.
[Fea70] Lawrence Fearnley. The pseudo-circle is unique. Trans. Amer. Math. Soc., 149:45-64, 1970.
[FK04] Bassam Fayad and Anatole Katok. Constructions in elliptic dynamics. Ergodic Theory Dynam. Systems, 24(5):1477-1520, 2004.
[Han82] Michael Handel. A pathological area preserving C^{∞} diffeomorphism of the plane. Proc. Amer. Math. Soc., 86(1):163-168, 1982.
[Her86] Michael-R. Herman. Construction of some curious diffeomorphisms of the Riemann sphere. J. London Math. Soc. (2), 34(2):375-384, 1986.
[KG09] Krystyna Kuperberg and Kevin Gammon. A short proof of nonhomogeneity of the pseudo-circle. Proc. Amer. Math. Soc., 137(3):1149-1152, 2009.
[PM97] Ricardo Pérez Marco. Siegel disks with smooth boundary. Submited, 1997.
[Rog70] James Ted Rogers, Jr. Pseudo-circles and universal circularly chainable continua. Illinois J. Math., 14:222-237, 1970.
[Rog93] James T. Rogers, Jr. Intrinsic rotations of simply connected regions and their boundaries. Complex Variables Theory Appl., 23(1-2):17-23, 1993.

[^0]: Centre National de la Recherche Scientifique.
 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062
 Toulouse Cedex 9, France. e-mail: arnaud. cheritat@math.univ-toulouse.fr

[^1]: ${ }^{1}$ a.k.a. "on every compact subset" of U

[^2]: ${ }^{2}$ The filter understood by "Im $(z) \longrightarrow+\infty$ " is the one generated by all the half planes \mathbb{H}_{h} for $h \in \mathbb{R}$. We also imply that the domain of F contains such a half-plane.

[^3]: ${ }^{3}$ i.e. on a set containing a half plane \mathbb{H}_{h} for some h that may depend on n

[^4]: ${ }^{4}$ this claim uses the fact that θ is irrational

[^5]: ${ }^{5}$ It already follows from the convergence of f_{n}, though.

[^6]: ${ }^{6}$ Recall that these maps are not entire. Some iterate will be the identity on the component of the domain for the iterate that contains D_{1}.

[^7]: ${ }^{7}$ Let us mention the following facts: There exists a circularly chainable and hereditarily indecomposable planar continuum. For the definition of all these terms, the reader is referred to the introduction of [Rog93]. It was proved to be unique up to homeomorphism (but it is not homogeneous). Such an object is called a pseudo circle.
 ${ }^{8}$ This is probably inspired from Čech cohomology: we want the nerve of the open cover to be a circle. So for chains of length 3 one would also require $e_{\overline{0}} \cap e_{\overline{1}} \cap e_{\overline{2}}=\varnothing$.
 ${ }^{9}$ it does not matter whether the e_{i} are connected or not
 ${ }^{10}$ By condition 1 it is already the case modulo m because Q_{n} and Q_{n+1} are circular chains.
 ${ }^{11}$ It translates the idea of Q_{n+1} having winding number 1 in Q_{n}.

[^8]: ${ }^{12}$ The winding number of an oriented closed curve ι in a circular chain $Q=\left(d_{j}\right)$ of length $m \geq 4$ could be defined in terms of first Čech cohomology groups with coefficients in \mathbb{Z} by a diagram looking like this: $\mathbb{Z} \approx \check{H}^{1}(Q, \mathbb{Z}) \mapsto \check{H}^{1}\left(\bigcup_{\bar{j}} d_{\bar{j}}, \mathbb{Z}\right) \mapsto \check{H}^{1}\left(S^{1}, \mathbb{Z}\right) \approx \mathbb{Z}$, but this is sophisticated. It amounts to doing the following: cut the curve into a finite number of small consecutive pieces $e_{\bar{\imath}}=\iota\left(\left[t_{\bar{\imath}}, t_{\overline{\imath+1}]}\right]\right)$ for some sequence $t_{\bar{\imath}}$ indexed by $\mathbb{Z} / p \mathbb{Z}$ for some $p>0$. If they are small enough, they will all be contained in some $d_{\bar{\jmath}}$. There is at most two possible values of $\bar{\jmath}$. Choose anyone and call it $g(\bar{\imath})$. Since Q_{n} is a chain, $g(\overline{\imath+1})$ and $g(\bar{\imath})$ must differ of at most one in $\mathbb{Z} / m \mathbb{Z}$. There exists a lift $f: \mathbb{Z} \rightarrow \mathbb{Z}$ of g such that $f(i+1)$ and $f(i)$ differ of at most one for all i. Then there exists $k \in \mathbb{Z}$ such that $f(i+p)=f(i)+k m$ for all i. This k is the winding number. It is independent of all choices and of the oriented parameterization ι, and invariant by small perturbations of ι.
 ${ }^{13}$ Apply the Riemann mapping theorem to the image of the situation by E.

[^9]: ${ }^{14}$ Some iterate of f_{n} is thus the identity on the component of its domain that contains U_{n}. Recall that f_{n} is not entire: when f_{n} is iterated, its domain decreases and may disconnect.

