
HAL Id: hal-00630827
https://hal.science/hal-00630827

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mastering Safety and Reliability in a Model Based
Process

Robin Cressent, Vincent Idasiak, Frédéric Kratz, Pierre David

To cite this version:
Robin Cressent, Vincent Idasiak, Frédéric Kratz, Pierre David. Mastering Safety and Reliability in
a Model Based Process. 2011 Proceedings - Annual Reliability and Maintainability Symposium, Jan
2011, Lake Buena Vista, FL, United States. 6 p., �10.1109/RAMS.2011.5754506�. �hal-00630827�

https://hal.science/hal-00630827
https://hal.archives-ouvertes.fr

Mastering Safety and Reliability in a Model Based Process

Robin Cressent, Vincent Idasiak & Frederic Kratz
Institut PRISME, UPRES 4229, ENSI de Bourges, Bourges, France.

Pierre David
Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, Compiègne, France

Key Words: Reliable system engineering, SysML, AADL, Simulink

SUMMARY

This article follows a line of papers focused on defining a
method to improve the realization of reliability analysis during
the System Engineering process. As MBSE becomes a funda-
mental concept for specifying and designing systems, our me-
thod takes full advantages of this approach and try to provide
tools to ease the specification stage and the integration of
RAMS early in the conception process. Our method called
MeDISIS is related to the use of SysML to support MBSE and
RAMS activities.
Currently, MeDISIS is used within an industrial project to de-
sign a hypersonic aircraft which is a relevant complex and
critical system. During this project, MeDISIS has been
adapted to take into account technologies devoted to embed-
ded systems. Furthermore, MeDISIS had to comply with the
tools, used by our industrial partners during the design stage.
In this work, we present the new architecture of MeDISIS, and
the process added recently.

1 INTRODUCTION

Nowadays, the Model Based System Engineering
(MBSE) paradigm is becoming the predominant concept used
for System Engineering (SE) (1). The main idea brought by
this practice, is to enhance the design process of complex sys-
tems by making them more reliable and by organizing devel-
opment process activities through formalized system represen-
tations. The Model Based representations enable to obtain
more consistent, traceable, coherent, reusable and expressive
views of the system to be developed, thus helping the man-
agement and realization of its design process. However,
RAMS activities are generally forgotten in this engineering
field.

Our contributions to MBSE focus on defining a method to
improve the realization of reliability analysis during the SE
process and its early design phases. This method introduced in
several publications (2)(3)(4), is called MeDISIS and is related
to the use of SysML (5). We assume that input models are ex-
pressed in SysML and we intend to build a repository that reg-

isters and manages the knowledge raised by the performed ac-
tivities, in a structure modeled in this language.

Figure 1. MeDISIS processes overview

MeDISIS proposes a deductive and iterative approach that
aims at facilitating crucial reliability analysis and enhancing
the use of the diverse tools and languages used for dysfunc-
tional behavior validation. MeDISIS includes the following
process:

• Deduction of the dysfunctional behaviour with an
FMEA, identification of the impacted requirements.

• Construction of a model integrating functional and
dysfunctional behaviours with a formal language
such as Altarica DataFlow.

• Analysis and quantification of dysfunctional beha-
viour and the impact on requirements and timing
constraints with a semi formal language such as
AADL.

Those first two steps are described more precisely in (4).

Our current work consists in the application of these me-
thods to the specification and the conception of the embedded
controller of an aircraft system (LEA project). We add to the
specification stage of an embedded system a specific tool
based on AADL to achieve the temporal study of the specified
system and highlight possible impacts on dependability at the
same time. In addition we will highlight several best practices
that should be merged with the design activities. By following
some rules and using some SysML artifacts (parametric dia-
gram, BDD, item flow), it is possible to collect and classify
the parameters which influence reliability, such as the system
life cycle, the real mission profile of the system, the use condi-
tions and overstresses. For each identified class of parameters,
we define the flow sets that will be used to create test vectors
and perform reliability studies.

After a first functional analysis, we use the FMEA gene-
rator of MeDISIS. At this stage, each failure mode of each
component is capitalized in a dysfunctional model repository
and will be reused later to build a formal or semi-formal repre-
sentation of the system and its dysfunctional behaviour.

At the design stage, we focus on introducing failure mod-
es in the system’s model thanks to SysML parametric dia-
grams and IBDs translated in Simulink blocks.

After introducing the synchronization process between
SysML and Matlab, we present how performing failure mode
propagation studies, using Simulink blocks generated from se-
lected parametric diagrams, or IBDs identified in the FMEA.

The proposed procedure is to select each impacted couple
(requirement and flow set) from our FMEA tool, based on
SysML. The SysML model analysis allows us to catch all the
impacted components or functions of the model. After their
translation into Simulink, we obtain computable models to
carry out reliability or safety studies.

In this paper, we present the processes used for the first
design step of our LEA project.

To perform the processes of MeDISIS several tools and
analysis routines have been defined to support each phase and
optimize the speed and quality of the reliability studies. These
developments will permit to construct a complete System De-
velopment Environment (SDE) supporting system design and
MeDISIS. The results of this study produce the dysfunctional
behavior of each component that will be stored in the DBD
(Dysfunctional Behaviour Database) to be used later to build
the Altarica DF model for example. They are capitalized in a
dysfunctional models repository and reused to construct a
formal representation of the system using the AltaRica Data
Flow (6) language. The construction of this formal model,
mandatory for system validation, is also helped by analysis
techniques systematizing the creation of this reliability-
oriented view. A service to support embedded systems analy-
sis has also been defined recently. It proposes to generate
AADL (7) models exploitable for real time application studies
using a scheduling tool named Cheddar (8). The FMEA auto-
matic synthesis has been explained in details in (3) and (4).
The first part of this paper will present how to perform relia-
bility analysis using Altarica DF, the second part will precise
how to make a timing analysis AADL, and finally we will de-

scribe a new way to extend MeDISIS to be used through the
design stage where safety and reliability issues will be take in-
to account.

2 CONNECTION TO FORMAL DESCRIPTIONS WITH
ALTARICA DF

The second support needed in MeDISIS, is the integration
of formal means of validation and quantification of the dys-
functional behavior. Many solutions to perform this task are
available on the market. Therefore we concentrated on creat-
ing bridges between the tools used by functional engineers and
those dedicated to reliability studies. We focused on using the
AltaRica DF language, which is widely used among reliability
engineers and which efficiently equips with solutions such as
BPA-DAS (Dassault Systems product) (2)(3)(4).

The service is performed in two major steps, which are
the translation of the SysML model to obtain the AltaRica DF
description of the functional view of the system, and the mod-
eling of the dysfunctional view using the Dysfunctional Beha-
vior Database (DBD) built with FMEA results and previous
studies. The first translation is important in order to construct
a reliability study dedicated model consistent with the descrip-
tion of the system that is common to the whole development
lifecycle. As SysML and AltaRica DF share an Object-
Oriented approach, many elements are easy to translate. Nev-
ertheless, some divergent declaration philosophies, such as the
treatment of state and flow variables, impose to use more
complicated translation rules. Moreover, the complete automa-
tion of the translation is possible only if the semi formal nature
of the SysML description is constrained by the construction
rules of the SysML model like the utilization of expressive al-
locations between the modeling elements.

The completion of the functional view by the description
of the dysfunctional behavior of the components permit to
point out the benefit of the MeDISIS framework and its DBD
that centralizes the relevant information for reliability studies.
In fact, the data raised by FMEA are added to the AltaRica DF
model, thanks to its expression in the DBD. The complete
model for formal reliability analysis is thus obtained and then
exploited with the market software tools. The meta-model of
the DBD has been developed in order to be coherent with the
SysML description and to store the needed elements for the
construction of the AltaRica DF final model. Therefore the
DBD is built in SysML and integrates state machines diagram
to prepare dysfunctional models creation.

MeDISIS has been designed as an evolutionary frame-
work aiming at connecting all the needed specialized analysis
tools, to assess all system behavior dimensions. It has been
augmented with a service for real time constraints considera-
tions exposed in the next paragraphs.

3 SUPPORT TO THE EMBEDDED DESIGN PROCESS US-
ING AADL

AADL is a formal and textual language that appeared for
the first time in 2004. Its graphical form and other extensions

were added in 2006. The recent revision (7) shows the interest
of the community in keeping the language up-to-date. The use
of AADL gives the opportunity to formally analyze real-time
and embedded systems. To reach this objective, the use of a
transformation of SysML models into AADL ones is an effi-
cient support. Furthermore, some tools dedicated to AADL ex-
ist such as Cheddar (8), which permits to study the scheduling,
processor usage, and respect of temporal constraints.

The aim of the translation is to automatically reuse the
knowledge contained in the SysML model, to perform the real
time behavior analysis. However, certain pieces of information
such as the temporal properties of the system are often absent
from the SysML model. In fact, SysML is usually used for
high-level design that does not contain much temporal infor-
mation. Nevertheless, we can help reuse information contained
in the preliminary conception SysML model and ease its com-
pletion with the missing pieces of information in order to en-
hance the analysis in terms of speed and consistency. In this
perspective, we have identified the possible links that could be
made between the two languages.

The object-oriented approach of both languages allows an
efficient translation of architectural concepts. Nevertheless,
since AADL is a lower level representation, it uses more spe-
cific types of components. To classify the components accord-
ing to the 10 categories (Memory, processor …) available in
AADL; we have to consider another source of information to
perform the model translation. The usable techniques are listed
below:

• Imposing a methodology to model the system in
SysML differentiating the various AADL stereo-
types.

• Asking a specialist to classify each component. For
example, using a questionnaire can be a way.

• Using a database of correspondences between
SysML blocks and their category in AADL, based
on the recorded past projects.

A similar problem is found to define all the properties that
size the system, representing the quantitative properties
needed to use tools properly such as Cheddar (8) or RMA
(11). To completely define the properties of our system, we
suggest the development of one of the three solutions pre-
sented before.

To manage those problems, we use a similar method to
the one used to create FMEA and AltaRica DF models: using
specialist judgment to complete our model, and maintain a da-
tabase of feedbacks for future projects. The steps used to
create the AADL model where described in (12) and are
summarized below:

Step n°1. Identifying all the SysML blocks and parts
and establishing the hierarchy between all those
entities, taking the different levels of design into
consideration.

Step n°2. Mapping every component with each other
using ports and connections.

Step n°3. Categorizing each component of the system.
(e.g.: this « shared memory » block belongs to the
memory category).

Step n°4. Creating the structural model in AADL (tex-
tual and graphical models can be made at this point).

Step n°5. Filling in the properties that are not deducted
from the SysML model.

Step n°6. Creating the final AADL model, which in-
cludes the structure description and the system prop-
erties.

It is visible that steps 1,2,4,6 can be instantaneous with
proper software, but even with the database, steps 3 and 5 re-
quire a specialist, because some information may not have
been recorded in the database yet.

Concepts AADL SysML

Software component
/Implementation

Software component
/Implementation

Block
Part

Hardware component
/Implementation

Hardware component
/Implementation

Block
Part

Bindings Bindings Block Bindings

Subcomponents Subcomponents Part

Connectors
Flow

Port Connections
Event, Data, Data-
Event
In, Out, Inout

Flow ports
Value type / Block
Flow Port Direction /
Interface

States Modes State Diagram/state

Properties

Properties

Requirement Diagram,
Parametric Diagram

Figure 2. Concept correspondence between AADL and
SysML

The table from figure 2 highlights the correspondence be-
tween the main concepts of both languages, SysML and
AADL. This table is a basic translation table that leads us to
steps 1, 2 and 4.

Using those steps with our DBD, we can easily obtain an
AADL DBD since dysfunctional model only contain SysML
artifact used also in the functional model. The need to model
dysfunctional behaviour in AADL is not new, moreover an ex-
tension released by the SAE in 2006 (13) was created to fulfill
this need: the error model annex. This annex should provide
artifacts to model dysfunctional behaviour in AADL and pro-
vide help to generate dependability studies. The use of the er-
ror model annex and the enhancement it can provide to safety
studies are well presented in works such as (14).

The main difference between our dysfunctional represen-
tation in the DBD using classic AADL artifact and the use of
the error model annex is the modeling of failure propagation:
because our SysML DBD was made to ease FMEA analysis,
the failure propagation is made through the fact that the data
transmitted are corrupted and false, but no new signal is emit-
ted (i.e. the error model annex use a signal dedicated to the
propagation of an error), then a component must compute a
diagnosis of their input data to detect a failure. It’s very effi-
cient to simulate the whole system in functional and dysfunc-
tional mode and to study the real impact of a failure on output
data. But this method is too heavy to allow fault trees or Mar-
kov model generation, used generally to study safety, reliabili-

ty and availability. In addition, the errors models of low-level
components need specific information for this type of studies.
Dependability analysis requires dependability-related informa-
tion from the model: fault assumptions, repair assumptions,
fault-tolerance mechanisms, stochastic parameters of the sys-
tem (i.e., the occurrence of fault events and propagations).

Finally, the error model annex will permit to enhance the
dysfunctional models of our components from the DBD in
AADL. The tools provided by the error model annex are very
useful to carry out a dependability analysis of the system orig-
inally modeled in SysML that is used as the backbone of our
entire method. However, we use our error model to take into
account the main dysfunctional behaviour in the design step.
This is underlined in the part four.

4 SUPPORT TO DESIGN USING MATLAB/SIMULINK

We want to transpose our method to standard engineering
and safety tools. In a recent partnership, we used MeDISIS
during the specification of a hypersonic vehicle, and we en-
countered several problems. The first was the deployment of
our tools in our partner’s industrial network, and the second
was the deployment of our methodology on the tools common-
ly used by our partner. Simulink appeared to be a tool that
could solve our issue since it is widely used in industrial
processes and offers artifacts of modeling compatible with
SysML. Furthermore Simulink is an important step in a design
process since it permits to detail the design and to simulate the
system.

We will now outline the help that can be brought by the
modeling of our system using Matlab/Simulink. This model
would allow us to simulate the system to get information
about error propagation, early in the design process. We will
highlight how to translate SysML artifact to Simulink and af-
ter, we will describe the possibility provided by the Simulink
model to study the dysfunctional behaviour of the system dur-
ing its design.

Concept Simulink SysML

Components Block Block / Part

Bindings Line Block Association

Subcomponents Subsystems Part

Connectors
Flow

Inport / Outport Line Flow ports
Flow specification

States Stateflow Diagram/states State Diagram /States

Constraints Block Parametric diagram
/Constraint block

Constraint associ-
ation

Line Parametric diagram
/Connections

Requirement Block Requirement Diagram

Requirement as-
sociation

Line Requirement Diagram
/Connections

Figure 3. Correspondence table between Simulink and
SysML artifacts

First, we can easily find correspondence between SysML

artifacts of modeling and the one from Simulink. Blocks and
line are basic entities of a Simulink model. A block represents
a system that might contain a subsystem. The subsystem is
specified using Inport and Outport relationships. A line con-
nects two blocks together. We can find equivalent modeling
entities in Simulink and in SysML, as both languages are ob-
ject oriented.

A Simulink block will be represented by a SysML block
and a subsystem will be represented by an internal block dia-
gram structure. Lines between Simulink blocks correspond to
SysML connectors with ports attached to it. Control flow and
data flow through a Simulink connector can also be directly
represented as control and data flow in SysML. SysML pro-
vides options for standard port requiring service-based inter-
face that is used in conjunction with flow ports to specify the
inport/outport structure and line representing
flow/interaction between blocks in Simulink. In terms of be-
haviour mapping, Stateflow in Simulink is represented by a
state machine diagram in SysML. And the constraints im-
posed to our system that are modeled using parametric dia-
grams in SysML will be represented also using blocks and
lines in Simulink.

As we can see in figure 3, some different artifacts in
SysML will be transformed into the same type of artifacts in
Simulink, for example: lines in Simulink will represent both
the association connection and the flowport connections from
the SysML model. In fact, the transformation from SysML to
Simulink is surjective, which means that there will be a loss of
information in the transformation process, or at least a loss of
precision in the representation of the system. On the other
way, the transformation from Simulink to SysML will produce
a model far from being complete since some information
needed in SysML cannot be stored in a Simulink model.

For example, tagging a line with “Association” if it was a
block association in SysML or with “Flow” if it was a flow
port connection.

This process added in MeDISIS (figure 1) will give us a
functional model in Simulink in parallel with our functional
model in SysML. In fact every process based on the SysML
functional model would be conceivable, but the one that draws
our attention is the FMEA synthesis. The FMEA synthesis
will be easier due to the simulation of the system that will help
find the effects on the systems of error propagation.

To make the simulation of error propagation possible, we
will use a dysfunctional library associated with our DBD to
complete our Simulink model with dysfunctional behaviour.
Finally, the system will be simulated for each main failure
mode to determine the possible causes and the effects it has on
the system.

Based on a functional model of our System in SysML, we
saw how we could help through the process of redacting an
FMEA, and how the information obtained during this process
could help us model the dysfunctional behaviour of the sys-
tem. At this moment, we obtain the same level of modeling as

in the previous AADL process using the error model annex
but we are able to study physical effects of a failure mode. The
whole system can be simulated to check error propagation and
the effects of such failure mode on the system and its blocks.
It is now possible to design some mechanism or control law to
avoid the propagation of failure in the system.

In addition with that aspect of modeling functional and
dysfunctional behaviour, Simulink provides means to perform
detailed design, to enhance the precision of our FMEA synthe-
sis that is still possible from the Simulink Model as we can see
on the figure 3.

4.1 D.B.D. update for design in Simulink

After building the FMEA from the functional model of
the specification stage, we obtain the list of the failure modes
and their severity. So, we can introduce in the design model,
dysfunctional behaviour of selected components. Those se-
lected components are the ones on which the effect of a failure
is partially known or on which the designer chose to develop a
control law or mechanism to decrease the effect of failure.

Figure 4 Simulink model of a failure mode.

Formerly, we must update the project DBD. As we said
before, the FMEA process establishes a selection in the gener-

ic DBD. The achievements of the FMEA are done by the up-
date of each component in the project DBD. The knowledge
about dysfunctional behaviour can be obtained from the Alta-
rica or AADL model analysis. For each selected component,
the design of Simulink dysfunctional model is realized from a
generic dysfunctional model chosen regarding the type of the
component.

The dysfunctional generic model (figure 4) introduces
some configuration parameters:

• Failure type,
• Activation mode,
• Failure and repair law

Concerning the failure type, there are multiple choices to
consider: no service, degraded service, intermittent service,
and even the “no failure” value.

The activation mode provides two choices: manual trig-
gered and automatic activation following failure and repair
laws. In our studies, we only use manual mode. We activate
one or several failure modes following the test scenarios ela-
borated during previous safety studies.

Considering the possibility to choose automatic activa-
tion, we needed to introduce parameters of configuration:

• The failure law (Exponential law or Uniformly dis-
tributed Law),

• The failure rate to be used with an exponential law,
• The possibility to repair the system,
• The repair rate to be used following an exponential

law.
After the update of the DBD, the designer have some new

blocks that are the fault model to be selected to perform fault
diagnosis, feedback control with fault rejection or fault tole-
rant control. This activity follows the rules and definitions
from the field of control theory. In our actual study, we use the
models defined by (15) which are efficient for additive faults
and system structural changes for linear systems.

The failure mode block (figure 4)) represents a generic
failure mode for an electronic component (i.e. adapted for em-
bedded system). To have a better understanding, we illustrate
our reasoning with an example of how to integrate such a
block (figure 5) in a Simulink model.

4.2 Generic failure mode and the functional model

We can place the failure mode block for each signal that
must be studied. Two points of view are possible for the
placement of failure mode block (FMB). In case of fault injec-
tion study, we chose to insert the block as an input of a block
(functional block or component block) to study the effect of
the failure on this block. On the other hand, when we must
study the impact of error propagation from FMEA results, we
insert the FMB after the output of the faulty block. In this
case, the output of the FMB block became the new output of
the faulty block.

Figure 5 shows how this failure mode simulation block
interacts on the signal. On this example, we decided to use an
automatic mode configuring both failure and repair law in the
block parameters. This explains why there is constant 0 signal

for the “manual mode” entry. A constant 1 signal connected
to the “activation” entry allows activating the generation of the
failure law. In fact, the “manual mode” port can receive a sig-
nal with pulse that will command the failure occurrence and
the “activation” port can inhibit the failure occurrence in au-
tomatic mode. The signal on which the block is applied is
represented by a Sine wave. The two-scope-representation be-
low represents the signal of failure and repair occurrence and
the output signal with its failure mode (i.e. no service).

Figure 5 Example of automatic failure generation

CONCLUSION

The complexity of the multi-domain design and optimiza-
tion at the specific tool level is a major obstacle against a bet-
ter design process. While considering a model based approach
for complex systems, we want to handle the complexity issues
at the specific tool level, the exchange of model information
and parameters between different domains, the communication
from the specific tool level back to the system level (i.e.
SysML model) and “include this process in the MeDISIS me-
thod. The embedded system specification can be led using the
description language AADL. With the bridge to Simulink
models, we finalize the specification stage and we begin the
design process of our system.

Some work like (16) describe, from a control engineer
point of view, a comprehensive method based on fault tolerant
control scheme to design a fault tolerant controller of compact
disc player. Our study links the FMEA process and the centric
SysML model to this kind of work in a coherent and traceable
way. The AADL process provides to the designer, the control
structure of the embedded system and the Altarica DF process
establishes the vectors of test from the most significant failure
scenarios.

REFERENCES

1. Friedenthal, S., Moore, A. & Steiner, R., “A Practical
Guide to SysML : The Systems Modeling Language”, The
MK/OMG press, Elsevier, 2008.

2. David, P., Idasiak, V. & Kratz, F., “Automating the syn-
thesis of AltaRica Data-Flow models from SysML”. Pro-
ceedings of ESREL 2009, Prague, Czech Republic, 7-10
September 2009.

3. David, P., Idasiak, V. & Kratz, F., “Use and improve-
ments os SysML in reliability study”. Proceedings of the
55th Annual Reliability and Maintainability Symposium,
RAMS2009, Fort Worth, Texas, USA, 26-29 January
2009.

4. David, P, Idasiak, V. & Kratz, F., “Reliability study of
complex physical systems using SysML”, Journal of Re-
liability Engineering and System Safety, Volume 95, Issue
4, April 2010, Pages 431-450

5. OMG 2008. “OMG Systems Modeling Language (OMG
SysML) V1.1., 1st November 2008.

6. Rauzy, A., “Mode Automata and their compilation into
Fault tree”. Reliability Engineering and System Safety 78:
1-12, 2002.

7. SAE, Society of Automotive Engineers, “Architecture
Analysis & Design Language. Specification V2”, January
2009.

8. Singhoff, F., “The Cheddar AADL Property sets (Release
2.x). LISyC technical report, February 2007

9. Price, C. & Taylor, N., “Automated multiple failure
FMEA”. Reliability Engineering and System Safety Vol.
76, pp. 1-10, 2002.

10. Teoh, P. & Case, K., “Failure modes and effects analysis
through knowledge modelling. Journal of Materials
Processing Technology 153-154, pp. 253-260, 2004.

11. Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour, M.
& Harbour G. “A practitioner’s Handbook for Real-Time
Analysis”. Kluwer Academic Publishers, 1993.

12. Cressent, R., David, P. & Idasiak, V. & Kratz, F., “In-
creasing Reliability of Embedded Systems in a SysML
Centered MBSE Process: Application to the LEA
Project”, 1st M-BED workshop, during DATE 2010, Dres-
den, Germany, 12 March 2010.

13. SAE, Society of Automotive Engineers, June 2006. “SAE
Standards: AS5506/1, Architecture Analysis & Design.

14. Feiler, P. & Rugina A. “Dependability Modeling with the
Architecture Analysis & Design Language (AADL)”,
Carnegie Mellon Institute, CMU/SEI-2007-TN-043, July
2007.

15. Niemann, H. & Stoustrup, J., “An Architecture for Fault
Tolerant Controllers”, International Journal of Control,
78(14):1091-1110, 2005.

16. Odgaard, P.F., Stroustrup, J., Andersen, P., Wickerhau-
ser, M.V.& Mikkelsen, “Feature based handling of sur-
face faults in compact disc players”. Control Engineering
Practice, Volume 14, Issue 12, 2006.

BIOGRAPHY

CRESSENT Robin
ENSIB,
88 boulevard Lahitolle,

18020, Bourges CEDEX, France
e-mail: robin.cressent@ensi-bourges.fr

Robin CRESSENT holds Master’s Degree in Engineering and
Risk Management from the Ecole Nationale Supérieure
d’Ingénieur de Bourges (ENSIB, engineering school). He is
currently pursuing his Ph.D. in Control Engineering at Orleans
University, working for the team-project Modeling, Control
and Diagnosis of Systems (MCDS) of the PRISME laboratory.
His research topics are RAMS activities supported by the
Model-Based System Engineering approach, applied on indus-
trial projects.

IDASIAK Vincent
ENSIB,
88 boulevard Lahitolle,
18020, Bourges CEDEX, France
e-mail: vincent.idasiak@ensi-bourges.fr

Vincent IDASIAK received the Ph.D. Degree in Software En-
gineering and Robotics in 1996 from the University of Pierre
et Marie Curie (Paris VI). Since 1997, he is assistant professor
at the Ecole Nationale Supérieure d'Ingénieurs de Bourges and
a member of the team-project Modeling, Control and Diagno-
sis of Systems of the PRISME laboratory. His interests include
Real Time System, System Engineering and Formal Methods,
Safety and Reliability Studies of Complexes Systems.

KRATZ Frédéric
ENSIB,
88 boulevard Lahitolle,
18020, Bourges CEDEX, France
e-mail: frederic.kratz@ensi-bourges.fr

Frédéric KRATZ received the Master's Degree in Engineering
in 1988 from the Ecole Nationale Supérieure de Physique de
Strasbourg, France, the Ph.D. Degree in Electrical Engineering
in 1991 from the University of Nancy, France and his Accredi-
tation to supervise researches in Electrical Engineering in
1998 from the Institut National Polytechnique de Lorraine
(INPL). He has been employed at the INPL from 1992 to 2000
as an assistant professor and from 2000 to 2005 at the Univer-
sity of Orléans, France as a professor. Since 2005, he is pro-
fessor at the Ecole Nationale Supérieure d'Ingénieurs de
Bourges. His interests include process control, diagnosis for
nonlinear hybrid systems. He is then head of the team-project
Modeling, Control and Diagnosis of Systems of the PRISME
laboratory.

