N

N

Increasing Reliability of Embedded Systems in a SysML
Centered MBSE Process: Application to LEA Project

Robin Cressent, Pierre David, Vincent Idasiak, Frédéric Kratz

» To cite this version:

Robin Cressent, Pierre David, Vincent Idasiak, Frédéric Kratz. Increasing Reliability of Embedded
Systems in a SysML Centered MBSE Process: Application to LEA Project. M-BED 2010, Mar 2010,
Dresde, Germany. Increasing Reliability of Embedded Systems in a SysML Centered MBSE Process:
Application to LEA Proj. hal-00630821

HAL Id: hal-00630821
https://hal.science/hal-00630821

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00630821
https://hal.archives-ouvertes.fr

Increasing Reliability of Embedded Systems in a
SysML Centered MBSE Process: Application to
LEA Project

Robin CRESSENT, Institut PRISME — ENSI®bin.cressent@ensi-bourges.fr
Pierre DAVID, Heudiasyc UMR 6599 - UTC, pierre.dd@hds.utc.fr
Vincent IDASIAK, Institut PRISME — ENSIB, vincendasiak@ensi-bourges.fr
Frédéric KRATZ, Institut PRISME — ENSIB, fredericatz@ensi-bourges.fr

Abstract- The article presents a new method relying on Mod-
el-Based System Engineering concepts in order tofiefently
deal with real-time and dependability constraintsthroughout
the design process of embedded systems. The methedde-
scribed and its use is exemplified on the LEA projecshared
by MBDA and the PRISME Institute. The method is buit in
a SysML-centric context, and proposes to merge cuent effi-
cient methods for safety, reliability and real timeconstraints
analysis. In particular, the AltaRica Data Flow and AADL
languages are integrated in the framework supportig the
method.

. INTRODUCTION

The LEA flight test program was started in 2003 by
MBDA-France and ONERA to address the key issudef t
aeropropulsive balance of a dual-mode ramjet paivere
vehicle in the range Mach 4 to 8. A developmenthoet
dology has been defined for such type of vehidgether
with the numerical and experimental tools enhancere
enable predicting the flight performances with aii
accuracy. This methodology is now being appliednie
nimal size experimental vehicle, called LEA, whibhs
passed the preliminary design review in 2006, &edctit-
ical design review in 2009. Finally, several flighsts will
be performed at the end of the program to validhge
quality of performance prediction. Four flights are
planned, and will be performed between 2013 and4201
operated from Russian test range and using Rubsiah
ware for initial acceleration. Our team is chargédpeci-
fying, designing, testing and validating the emhetidys-
tem, which must control the flight from the launudiof
the craft to the final crash. Moreover, the embedsgs-
tem must control the dual-mode ramjet carburetiatess
and some safety functionalities, like the autohtgstunc-
tion for automating GO/NoGO decision before laumch
the detection of separation from booster and timétiam
order. Since three years, we develop around Sysbihes
tools to merge engineering process to safety stuftie
critical systems [1,2]. The LEA project gives us expe-
rimental platform to adapt our work on embeddedesys

After a large presentation of the method developed
its issues, we detail the tools we design and devéd
automated the method and take into account theifgpec

point of view introduced by embedded system, thi#&- so
ware architecture design and its temporal studieghe
final part, we discuss interesting results like h8wsML
and AADL models helped us to choose, in the fiesign
stage, the accurate hardware and software aralmiéect
thanks to FMEA studies, SysML Parametric Diagrand a
SysML Internal Block Diagrams.

Il. THEMEDISISMETHOD

Nowadays the Model Based System Engineering
(MBSE) paradigm is becoming the predominant concept
used for System Engineering (SE) [3]. The main idea
brought by this practice, is to enhance the depigtess
of complex systems and making it more reliable plya-
nizing activities through formalized representasiaf the
systems called models. The Model Based represensati
allow to obtain more consistent, traceable, cohterensa-
ble and expressive views of the system to be dpeelo
helping the management and realization of its desig
process.

Since several years multiple SE methods have been
created, they describe how using some modeling ap-
proaches to carry the system design tasks fronelstad-
ers needs capture to system validation [4]. Eacthode
focuses on employing a specific modeling langue iand
used to conduct the tasks defined by SE procesese
lasts are standardized in various norms tacklingrdie
class of systems or applicative domains. Few cdehue-
thods include strategies to deal with safety atidbitity
related design activities required by SE processefEC
61508 [5] (and its derivations) or the future ISE282 [6].
Therefore, we focused our contributions to MBSEden
fining a method to improve the realization of rbllay
analysis during the SE process and its early dgstigises.
This method introduced in several publications Jj1j8
called MéDISIS. This method is related to the ufse o
SysML [7]. We assume that inputs models are exptess
SysML and we propose to build a repository register
and managing the knowledge raised by the activjes

formed in a structure modeled in this language.

The major assumption that was made for the constitu
tion of MéDISIS, was to consider that the methoeduby
the designer to construct the functional modelhef $ys-
tem is let totally free. This assumption was tat@make
it possible to integrate MéDISIS to others MBSE mels
tackling the other tasks of system development.

MEéDISIS proposes a deductive and iterative approach
aiming at facilitating crucial reliability analysiand en-
hancing the use of the diverse tools and languaged for
dysfunctional behavior validation. MéDISIS includée
following steps also depicted on figure 1:

* Deduction of the dysfunctional behavior with an
FMEA, identification of the impacted require-
ments.

« Construction of a model integrating functional and
dysfunctional behaviors with a formal language.

e Analysis and quantification of dysfunctional beha-
vior.

SysML Functional Model o i%¢
& OOSEM activities NaE t" Automatic synthesis of

- FMEA

Impacted requirements

Updating %

he DMR

Reviewed
FMEA

— IL Validated Relationships
S Component / Requirement

"l
Behaviour

L U’pdming
“ the DMR

% Checking
Requirements

Commercial

Indicators on
Reliability and Performances
&

Failure Scenarios

Figure 1. MéDISIS overview

To perform the steps of MéDISIS several tools and
analysis routines have been defined to support paake
and optimize the rapidity and quality of the religp stu-
dies. These developments are made to construcima co
plete System Development Environment (SDE) suppgrti
MéDISIS and system design. Analysis techniques and
tool have defined to support FMEA realization. Thsults
of this study raise the dysfunctional behavior afte com-
ponent. They are capitalized in a dysfunctional et®d
repository and reused to construct a formal reptaten
of the system using the AltaRica Data Flow [8] laage.
The construction of this formal model, mandatory $gs-
tem validation, is also helped by analyses tectescgys-
tematizing the creation of this reliability-oriedteiew. A
service to support embedded systems analysis I als
available. It proposes to generate AADL [9] models
ploitable for real time application studies usinge@dar
tool. These three techniques will be summed ujnénfol-
lowing section.

Ill. BUILDING A SDEFORMEDISIS

This section highlights the various techniques touds
employed in MéDISIS to improve the efficiency ofiae
bility studies during design. Developments are msme
reduce the gap between the multiple specializet$ totd-
lized for the creation of embedded systems, andrstare
set up to support analysis techniques as FMEAs.

A. Support to the FMEA process

FMEA is a crucial analysis in the dysfunctional &eh
vior study, since it gives a mean to identify thesfdnc-
tional aspects of each component. Moreover, thit-te
nigue is fundamental because it organizes the gagsam
a purely functional view of the system to its unected
behavior expression using only the designer’s dlatsmn
and experts’ knowledge. Nevertheless, this foumdiudy
for the reliability analysis process suffers of lisaviness
of deployment. Authors as [10] and [11] have walhsna-
rized the drawbacks of this important but unpopuapf
proach, which they depict as a heavy, error-proms-
flexible, and often done too late analysis.

Our conviction is that this kind of study can bénef
from a Model-Based approach. Therefore, we stubdaed
FMEA could be performed in a MBSE framework, using
SysML as a central language. We thus developedtioahe
of functional model analysis for performing FMEApsu
ported by a software tool automating the more teslio
parts of the reasoning. Thanks to the Model Baged a
proach, we obtained more consistent FMEAs and im-
proved the lesson-learnt sustainability throughbet sys-
tem development and the projects concerning a Yadafil
products.

The use of FMEA within the MéDISIS framework have
been discussed in [1], we will sum up here theniapkes
involved in the FMEA creation. We propose to comstr
the FMEA report in three phases, first the funciomodel
is processed, raising the significant points far BEMEA
and collecting the lesson-learnt knowledge fromasad
base, then a preliminary FMEA report is automaltycal
produced, finally the FMEA is completed and valathby
reliability experts. For the realization of thesfipoint we
defined 7 rules for SysML models study employediem-
tify and highlight the information about the systeseful
for the FMEA reasoning. For example, component ecnn
tions, failure propagation paths or probably impdcte-
quirements are tracked. A structure containing dach
component, the related neighborhood, behavior and r
qguirements is set up, this one include also therimétion
on the dysfunctional behavior already observed threro
applications, stored in the MéDISIS central databdse
elements of the structures are then organizedprelmi-
nary FMEA report, proposing for the components the
possible failure modes and their potential causesfects.
Those two first phases of the FMEA creation argees
tively performed by a model analyzer, using filegiag
techniques, and a FMEA table generator organiziveg t
gathered data. The last phase is let to the huntanven-

tion of reliability experts, as human reasoning fioaliz-
ing an FMEA cannot be performed automatically, @xce
from using artificial intelligence techniques whiahe not
enough confident for this kind of key decisions.

B. Connection to formal descriptions with AltaRica DF

The second support needed in MéDISIS, is the iategr
tion of formal means of validation and quantificati of
the dysfunctional behavior. Many solutions to parfdhis
task are available on the market. Therefore we extnate
on creating bridges between the tools used by iumait
engineers and those dedicated to reliability studide
focused on using AltaRica DF language, which igdar
spread among reliability engineers and efficiently
equipped by solutions as BPA-DAS (product of Daksau
Systemes) [2].

The service is performed in two major steps, wrdoh
the translation of the SysML model to obtain th¢éaRlica
DF description of the functional view of the systeamd
the modeling of the dysfunctional view using thesfiyc-
tional Model Repository (DMR) built with FMEA regsl
and previous studies lesson-learnt. The first tadios is
important in order to construct a reliability steslidedicat-
ed model consistent with de description of the esysthat
is common to the whole development lifecycle. Asi8i
and AltaRica DF share an Object-Oriented approaemy
translation elements are quite direct. Nevertheleeme
divergent declaration philosophies of the two laaggs, as
the treatment of state and flow variables, impaseide
more complicated translation rules that we defiriddre-
over, the complete automation of the translatigpoissible
only if the semi formal nature of the SysML destidp is
constrained by construction rules of the SysML nhdide
the utilization of expressive allocations betweka mod-
eling elements.

The completion of the functional view by the deseri
tion of the dysfunctional behavior of the composeastthe
occasion to note the benefit of the MéDISIS framewo
and its DMR centralizing the relevant informatiar fe-
liability studies. In fact, the data raised by FMB&fe add-
ed to the AltaRica DF model, thanks to its exp@ssn
the DMR. The complete model for formal reliabiliyal-
ysis is thus obtained and then exploited with therket
software tools. The metamodel of the DMR have been
developed in order to be coherent to the SysML rifesc
tion and to store the needed elements for the aariin
of the AltaRica DF final model. Therefore the DMR i
built in SysML and integrates constructs as statdmimes
to prepare dysfunctional models creation.

MéDISIS has been constituted as an evolutionary
framework aiming at connecting all the needed speed
analysis tools, permitting to assess all systematieh
dimensions. It has been augmented with a serviceefd
time constraints considerations exposed in the paxa-
graphs.

C. Support to the Embedded design process

AADL is a formal and textual language that appeared
for the first time in 2004. Its graphical form awother
extensions were added in 2006 [14]. The recentsi@vi
[9] shows the interest of the community to keep the lan-
guage up-to-date. The use of AADL gives the opputyu
to analyze formally real-time and embedded systélns.
reach this aim, the use of a transformation of Syshbd-
els to AADL ones is an efficient support. Furthermo
some tools dedicated to AADL exist such as Chefit2jy
which permits to study the scheduling, process@ges
and respect of temporal constraints.

1. Typeandimplementation

Each component of the embedded system is described
in AADL by its type which refers to the functional inter-
face and itsimplementation which refers to the inside
composition of our component (subcomponents, teaipor
properties, connections, etc). Besidgpe andimplemen-
tation can be defined by different persons, each being re
sponsible of different steps in the architecturéésign,
specifications and detailed design for example.

Each component is part of one of the 3 category of
AADL: Execution Platform, Application Software and
Composite. Each category is subdivided to reactiff€r-
ent categories of components. Each one possesses a
graphical notation (see figure 2):

Execution Platform
Lo

Application Software

Composite

< bus
processor

system

Figure 2. Graphical notation of the different cateigs of com-
ponent in AADL

Eachtype can be associated to zero, one or more
implementations. The example below shows us tiypes
of components, the first is associatedirttplementations
(see figure 3):

system typel
end typel;
system type2
end type2;

system implementation typel.impll
end typel.impl1;
system implementation typel.imjl2
end typel.impl2;

Figure 3. Component’s type and implementation examp

The principle oftype and implementationscan be
compared to the use of BDD and IBD in SysML.

2. Properties

Each component possesses properties which serve to

characterize the component.

Some properties are part of the language. They are
identified by a name and associated to a categocpm-
ponent For examplethreadspossess their own properties
such as execution period, deadline,... (see figure

New properties can be created by the user and asso-

ciated to one or more category of component. Theaf, w
every detail related to the user’s need, can bsidered,
and that is one point that makes AADL very useful.

thread threadl
properties
Period => 15 ms;
Deadline => 10 ms;
end threadl;

Figure 4. Thread properties example

Thosepropertiesmay be found partially by going
through thevalue propertiesn the SysML model.

3. Portandconnection

The description of data and control flow in our
AADL model is done using ports and connectiongpakt
is point of entry and/or exit of a component, iniethdata
or events can pass through. A connection permitgko
two ports. A connection can be made between a qfort
entry and a port of exit on a same hierarchicatllear
between same types port which are in differentanaical
levels. A verification of the conformity of theypesand
directions is made between conneqtedts.

Figure 5 and figure 6 show us a system containing
two processes, themselves containing a thread.gidwg
of connectedports represented by triangles and the group
of connections represented by lines establish itile He-
tween the threads.

systerm.imp

process.impl process2.impl

Figure 5. Connection between two threads

system system1l
end systeml;

system implementation systemZ1.impl
subcomponents
pl: process processl.impl;
p2: process process2.impl;
connections
cn: data port pl.outport -> p2.inport;
end systemZl.impl;

process processl

features
outport: out data port;
end processl;

process implementation processl.impl
subcomponents
t1: thread threadl.impl;
connections
cn: data port t1.outport -> outport;
end processl.impl;

process process2
features
inport: in data port;
end process?2;

process implementation process2.impl
subcomponents
t2: thread thread2.impl;
connections
cn: data port inport -> t2.inport;
end process2.impl;

thread threadl
features
outport: out data port;
end threadl;

thread implementation threadl.impl
end threadl.impl;

thread thread2
features
inport: in data port;
end thread2;

thread implementation thread2.impl
end thread2.impl;

Figure 6. Connections description example

The AADL language provides other possibilities to
model embedded systems:

* modes: permit to describe the running modes of
the architecture;

» flows: describe data and control flow , similar to
the SysMLflow specification

* packages: permit to organize our model, this a
principle present in SysML tool ;

* annexes enable the use of declarations written in
another sublanguage.

4. From SysML to AADL

The SysML model contains a lot of information
about our system; it would be a loss of time anergy to
have to recreate that information to make an AADdded.
However, certain detailed pieces of informationtsas
the temporal properties of our system are ofteremtbsf a
SysML model. In fact, SysML is usually used for lhig
level design, and that type of temporal informatisrde-
signed later in the process during detailed comnaept
Nevertheless, we could help reusing informationtaioed
in our SysML model not to waste time, and to eas®-c

plete with the pieces of information the SysML miode
lacks. In this perspective, it is important to detme
which are the possible links that can be made kmtwe
those two languages.

SysML contain the architecture of our embedded
system, and all the links between the componenis: F
thermore, the SysML BDD and IBD are close to théam
type andimplementationin AADL. Indeed, the definition
of blockin the BDD permits to define the functional inter-
face of our component which corresponds to tpe of
the component in AADL. The IBD of hlock in SysML
represent the same thing as the implementation aoina
ponent in AADL: the internal organisation of thengmo-
nent. Thereby, SysML'sparts become components in
AADL, flow portsbecomeportswith AADL typedepend-
ing on the kind of information they exchange, leflow
specificationswill be transformed in AADL'Slows ...

The object-oriented approach of both languagesvalk
efficient translation of architectural concepts.viighe-
less, since AADL is a lower level representatidnyses
more specific type of components. That's why tcssity
the components according to the 10 categories (Mgmo
processor, ...) available in AADL, we have to conside
another source of information to perform the mddahs-
lation. The suitable answers are listed below:

* Impose a new way to model in SysML to make
the AADL typepresent in the SysML model.

» Ask a specialist to classify each component. Us-
ing a questionnaire can make this step easier.

» Use a database of correspondences between
SysML blocks and their category in AADL based
on the record of the past projects.

A similar issue is observed to define all the prtips
that size the system, representing the quantitgiroeper-
ties needed to use properly tools as Cheddar [1RMA
[13]. To completely define thpropertiesof our system,
we suggest the development of one of the thredisnsi
presented before.

To manage those problems, we use a similar me-
thod than the one used to create FMEA and AltaRiEa
models: using specialist's judgment to complete mod-
el, and maintain a database of feedbacks for future
projects. The use of the database will restrairintesven-
tion of the experts as long as this database wilbbvel-
oped.

The steps used to create the AADL model are summa-
rized below:

Step n°1l. Identifying all the SysML blocks and
parts and establishing the hierarchy between all
those entities, taking into consideration the dif-
ferent levels of design.

Step n°2. Mapping every component with each
others using ports and connections.

Step n°3. Categorizing each component of the sys-
tem. (Ex: this block « shared_memory » belong
to the categorymemory.

Step n°4. Creating the structural model in AADL
(textual and graphical model can be made at this
point).

Step n°5. Filling in the properties that are not de-

ducted from the SysML model.

Step n°6. Creating the final AADL model, which
includes the structure description and the system
properties.

AADL model-| .. & L8 c| .0 L=
ling H%EN%% mﬁﬂgj *ﬁﬁlé
+ [
step éé §_.§ S7| © 38
Step of £ = =3 5
SysML 8 8= S o
; 3 £

analysis o S

Step 1 .

Step 2 . . .

Step 3 .

Step 4 .

Step 5 .

Step 6 .

DataBase .

Specialist's R .

judgement

Figure 7. Table of the steps of modelling and asialy

It is visible that the steps 1,2,4,6 can be instagbus
with proper software, however steps 3 and 5 evangus
the database need to have recourse to a spediglistuse
some information may not be recorded in the datapat
The table from figure 7 sums up the correlationsvben
the steps of the SysML model analysis and the stdych
lead to the creation of the AADL model.

bdd [Package] PackagelJ

«block»
System1

l\l/ ’ l\l/

1

«block»
Process2

«block»
Process1

1I 1I

«block» «block»
Threadl Thread2

Figure 8. Example of BDD

ibd [block] System

«block»
System1

«part»
: Process2

«part»
: Processl

IN : Data «part>

«part» OUT : Data |OUT :Data IN: Datal
=l
i Threadl [[‘] L[T : Thread2

Figure 9. Example of IBD

For example, the SysML model corresponding to
figure 8 and figure 9 permits to obtain the AADL deb of
figure 5 and figure 6 after realizing each of gteps de-
fined before. Using the same method with our DMR,
can easily obtain an AADL DMR. In fact, dysfunctan
behaviour is modelled with the same SysML artedacthe
previous functional example.

If we compare the result with the extension re-
leased by the SAE in 2006 [14]: the error modelexnn
which should provide tools to generate dependaistiad-
ies, there is some difference. The main differeiscéhe
modelling of failure propagation: because our SysML
DMR was made to ease FMEA analysis, the failur@aro
gation is made through the fact that the data inétied
are corrupted and false, but no new signal is edhitthen
a component must compute a diagnosis of their idpta
to detect a failure. It's very efficient to simwathe whole
system in functional and dysfunctional mode andttaly
the real impact of a failure on the output datat Bhis
method is too heavy to allow fault trees generatinstudy
safety or Markov model generation to study reliaphnd
availability.

Nevertheless it's necessary to specialize our
DMR like showed in figure 10, as we did with to giify
the transformation to Altarica. The errors modeidov
level components for this type of studies captine in-
formation needed for specific studies. Dependabdital-
ysis requires dependability-related informationnirghe
model: fault assumptions, repair assumptions, fault
tolerance mechanisms, stochastic parameters afydtem
(i.e., the occurrence of fault events and propagaji

bdd [Package] DMR [Comp]J

«block»

Comp_KO
operations
Def_Compuite ()
Compute ()
«block» values
Comp Dataln : Float
: DataOut : Float
C operations 1 InUse : Boolean
ompute () constraints
values mdd |c_Def Compute : CompKO_Def_Compute
Dataln : Float

DataOut : Float

InUse : Boolean «constraint»

CompKO_Def_Compute

constraints
{IF InUse
DataOut = 0;
ELSE
DataOut = -1;}
parameters
DataOut : Float
InUse : Boolean

Figure 10. Example of DMR in SysML

Finally, the error model annex will permit to en-
hance the dysfunctional models of our componeram fr
the DMR in AADL. The tools provided by the error deb
annex are very useful to carry out dependabiliglysis of
the system originally modeled in SysML which is diges
the backbone of our entire method.

IV. RESULTS ANDPROJECTLEA LEARNINGS

Detailed results will be presented in the final pa-
per. We will tackle the following points. We wilkplain
how translation process from SysML to AADL allow tas
obtained rapidly from specified architecture a tihmodel
and proceed to a temporal analyze thanks Rate Moiwot
Analyses [13] and cheddar tools [12].

We will focused on how memorize this informa-
tion on SysML central model mainly with the help p-
rametric diagrams. At this stage we have the pdigito
choose between several functional architectures.wille
explain how we have made this choice guided byfahe
lowing parameters: the Specifications of Physicaitp
type of flows and their allowed requirements, baialtlv
of candidate subsystems. Thanks the quality of FMEA
process we have also took into account failure noidbe
system to achieve the choice of the final architectWe
will present how FMEA process highlights the regquir
ments impacted by dysfunctional mode and how itldiou
direct our reasoning to choose the accurate fumatiar-
chitecture. In last, we will summarize the advaetag
have two more axes of modeling: temporal and dysfun
tional.

REFERENCES

[1] P. David, V. Idasiak & F. Kratz. Improving Reliabjl Studies with
SysML. Proceedings of the #5Annual Reliability and Maintaina-
bility Symposium, RAMS 2009, Fort Worth, Texas, ,lJ8A 2009.

[2] P. David, V. Idasiak & F. KratZAutomating the synthesis of Alta-
Rica Data-Flow models from SysMProceedings of ESREL 2009,
Prague, République Tcheque, 7-10 septembre 2009.

[3] S. Friedenthal, A. Moore & R. Steine. A Practicaili@® to SysML :
The Systems Modeling Languagéhe MK/OMG press, Elsevi-
er.2008

[4] J. Estefan. Survey of Model-Based Systems Enging€iViBSE)
Methodologies, Rev. BINCOSE MBSE Initiative, 23 Mai 2008.
2008

[5] IEC 61508. International Electrotechnical CommissiBunctional
Safety of Electrical /Electronic /Programmable Hiecic Safety-
Related Systems. Parts 1 to 7. 1998-2005

[6] 1SO 26262. International Organization for Standeation. Road
Vehicles functional Safety. Standard under develapm

[7] OMG Systems Modeling Language (OMG SysML) V11%.No-
vember 2008.

[8] A. Rauzy. Mode Automata and their compilation irftault tree.
Reliability Engineering and System Safédy 1-12. 2002.

[9] Society of Automotive EngineersSAE Architecture Analysis
&Design LanguageSpecification V2, janvier 2009.

[10] C. Price, N. TaylorAutomated multiple failure FMEAReliability
Engineering and System Safety Vol. 76, pp. 1-10220

[11] P. Teoh & K. CaseFailure modes and effects analysis through
knowledge modellingJournal of Materials Processing Technology
153-154, pp. 253-260, 2004.

[12] F. Singhoff, « The Cheddar AADL Property sets (Bste 2.x) »
LISyC technical report number singhoff-03-07, Fesn2007.

[13] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obanaichael
Gonzélez Harbour, « A practitioner's Handbook foeaRTime
Analysis », Kluwer Academic Publishers, 1993

[14] Society of Automotive Engineers. SAE Standards: 20881, Ar-
chitecture Analysis & Design

