
HAL Id: hal-00630821
https://hal.science/hal-00630821

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Increasing Reliability of Embedded Systems in a SysML
Centered MBSE Process: Application to LEA Project

Robin Cressent, Pierre David, Vincent Idasiak, Frédéric Kratz

To cite this version:
Robin Cressent, Pierre David, Vincent Idasiak, Frédéric Kratz. Increasing Reliability of Embedded
Systems in a SysML Centered MBSE Process: Application to LEA Project. M-BED 2010, Mar 2010,
Dresde, Germany. Increasing Reliability of Embedded Systems in a SysML Centered MBSE Process:
Application to LEA Proj. �hal-00630821�

https://hal.science/hal-00630821
https://hal.archives-ouvertes.fr

Increasing Reliability of Embedded Systems in a
SysML Centered MBSE Process: Application to

LEA Project

Robin CRESSENT, Institut PRISME – ENSIB, robin.cressent@ensi-bourges.fr
Pierre DAVID, Heudiasyc UMR 6599 - UTC, pierre.david@hds.utc.fr

Vincent IDASIAK, Institut PRISME – ENSIB, vincent.idasiak@ensi-bourges.fr
Frédéric KRATZ, Institut PRISME – ENSIB, frederic.kratz@ensi-bourges.fr

Abstract- The article presents a new method relying on Mod-
el-Based System Engineering concepts in order to efficiently
deal with real-time and dependability constraints, throughout
the design process of embedded systems. The method is de-
scribed and its use is exemplified on the LEA project shared
by MBDA and the PRISME Institute. The method is built in
a SysML-centric context, and proposes to merge current effi-
cient methods for safety, reliability and real time constraints
analysis. In particular, the AltaRica Data Flow and AADL
languages are integrated in the framework supporting the
method.

I. INTRODUCTION

The LEA flight test program was started in 2003 by
MBDA-France and ONERA to address the key issue of the
aeropropulsive balance of a dual-mode ramjet powered
vehicle in the range Mach 4 to 8. A development metho-
dology has been defined for such type of vehicle, together
with the numerical and experimental tools enhancement to
enable predicting the flight performances with suitable
accuracy. This methodology is now being applied to mi-
nimal size experimental vehicle, called LEA, which has
passed the preliminary design review in 2006, and the crit-
ical design review in 2009. Finally, several flight tests will
be performed at the end of the program to validate the
quality of performance prediction. Four flights are
planned, and will be performed between 2013 and 2014,
operated from Russian test range and using Russian hard-
ware for initial acceleration. Our team is charged of speci-
fying, designing, testing and validating the embedded sys-
tem, which must control the flight from the launching of
the craft to the final crash. Moreover, the embedded sys-
tem must control the dual-mode ramjet carburetion process
and some safety functionalities, like the auto-testing func-
tion for automating GO/NoGO decision before launch or
the detection of separation from booster and the ignition
order. Since three years, we develop around SysML some
tools to merge engineering process to safety studies for
critical systems [1,2]. The LEA project gives us an expe-
rimental platform to adapt our work on embedded system.

After a large presentation of the method developed and
its issues, we detail the tools we design and develop to
automated the method and take into account the specific

point of view introduced by embedded system, the soft-
ware architecture design and its temporal studies. In the
final part, we discuss interesting results like how SysML
and AADL models helped us to choose, in the first design
stage, the accurate hardware and software architecture
thanks to FMEA studies, SysML Parametric Diagrams and
SysML Internal Block Diagrams.

II. THE MÉDISIS METHOD

Nowadays the Model Based System Engineering

(MBSE) paradigm is becoming the predominant concept
used for System Engineering (SE) [3]. The main idea
brought by this practice, is to enhance the design process
of complex systems and making it more reliable, by orga-
nizing activities through formalized representations of the
systems called models. The Model Based representations
allow to obtain more consistent, traceable, coherent, reusa-
ble and expressive views of the system to be developed,
helping the management and realization of its design
process.

Since several years multiple SE methods have been
created, they describe how using some modeling ap-
proaches to carry the system design tasks from stakehold-
ers needs capture to system validation [4]. Each method
focuses on employing a specific modeling langue and is
used to conduct the tasks defined by SE processes. Those
lasts are standardized in various norms tackling diverse
class of systems or applicative domains. Few of these me-
thods include strategies to deal with safety and reliability
related design activities required by SE processes as IEC
61508 [5] (and its derivations) or the future ISO 26262 [6].
Therefore, we focused our contributions to MBSE on de-
fining a method to improve the realization of reliability
analysis during the SE process and its early design phases.
This method introduced in several publications [1,2], is
called MéDISIS. This method is related to the use of
SysML [7]. We assume that inputs models are expressed in
SysML and we propose to build a repository registering
and managing the knowledge raised by the activities per-

formed in a structure modeled in this language.
The major assumption that was made for the constitu-

tion of MéDISIS, was to consider that the method used by
the designer to construct the functional model of the sys-
tem is let totally free. This assumption was taken to make
it possible to integrate MéDISIS to others MBSE methods
tackling the other tasks of system development.

MéDISIS proposes a deductive and iterative approach
aiming at facilitating crucial reliability analysis and en-
hancing the use of the diverse tools and languages used for
dysfunctional behavior validation. MéDISIS includes the
following steps also depicted on figure 1:

• Deduction of the dysfunctional behavior with an
FMEA, identification of the impacted require-
ments.

• Construction of a model integrating functional and
dysfunctional behaviors with a formal language.

• Analysis and quantification of dysfunctional beha-
vior.

Figure 1. MéDISIS overview

To perform the steps of MéDISIS several tools and
analysis routines have been defined to support each phase
and optimize the rapidity and quality of the reliability stu-
dies. These developments are made to construct a com-
plete System Development Environment (SDE) supporting
MéDISIS and system design. Analysis techniques and a
tool have defined to support FMEA realization. The results
of this study raise the dysfunctional behavior of each com-
ponent. They are capitalized in a dysfunctional models
repository and reused to construct a formal representation
of the system using the AltaRica Data Flow [8] language.
The construction of this formal model, mandatory for sys-
tem validation, is also helped by analyses techniques sys-
tematizing the creation of this reliability-oriented view. A
service to support embedded systems analysis is also
available. It proposes to generate AADL [9] models ex-
ploitable for real time application studies using Cheddar
tool. These three techniques will be summed up in the fol-
lowing section.

III. BUILDING A SDE FOR MÉDISIS

This section highlights the various techniques and tools
employed in MéDISIS to improve the efficiency of relia-
bility studies during design. Developments are made to
reduce the gap between the multiple specialized tools uti-
lized for the creation of embedded systems, and others are
set up to support analysis techniques as FMEAs.

A. Support to the FMEA process

FMEA is a crucial analysis in the dysfunctional beha-
vior study, since it gives a mean to identify the dysfunc-
tional aspects of each component. Moreover, this tech-
nique is fundamental because it organizes the passage from
a purely functional view of the system to its unexpected
behavior expression using only the designer’s description
and experts’ knowledge. Nevertheless, this founding study
for the reliability analysis process suffers of its heaviness
of deployment. Authors as [10] and [11] have well summa-
rized the drawbacks of this important but unpopular ap-
proach, which they depict as a heavy, error-prone, non-
flexible, and often done too late analysis.

Our conviction is that this kind of study can benefit
from a Model-Based approach. Therefore, we studied how
FMEA could be performed in a MBSE framework, using
SysML as a central language. We thus developed a method
of functional model analysis for performing FMEA sup-
ported by a software tool automating the more tedious
parts of the reasoning. Thanks to the Model Based ap-
proach, we obtained more consistent FMEAs and im-
proved the lesson-learnt sustainability throughout the sys-
tem development and the projects concerning a family of
products.

The use of FMEA within the MéDISIS framework have
been discussed in [1], we will sum up here the techniques
involved in the FMEA creation. We propose to construct
the FMEA report in three phases, first the functional model
is processed, raising the significant points for the FMEA
and collecting the lesson-learnt knowledge from a data-
base, then a preliminary FMEA report is automatically
produced, finally the FMEA is completed and validated by
reliability experts. For the realization of the first point we
defined 7 rules for SysML models study employed to iden-
tify and highlight the information about the system useful
for the FMEA reasoning. For example, component connec-
tions, failure propagation paths or probably impacted re-
quirements are tracked. A structure containing for each
component, the related neighborhood, behavior and re-
quirements is set up, this one include also the information
on the dysfunctional behavior already observed in other
applications, stored in the MéDISIS central database. The
elements of the structures are then organized in a prelimi-
nary FMEA report, proposing for the components the
possible failure modes and their potential causes or effects.
Those two first phases of the FMEA creation are respec-
tively performed by a model analyzer, using file parsing
techniques, and a FMEA table generator organizing the
gathered data. The last phase is let to the human interven-

tion of reliability experts, as human reasoning for finaliz-
ing an FMEA cannot be performed automatically, except
from using artificial intelligence techniques which are not
enough confident for this kind of key decisions.

B. Connection to formal descriptions with AltaRica DF

The second support needed in MéDISIS, is the integra-
tion of formal means of validation and quantification of
the dysfunctional behavior. Many solutions to perform this
task are available on the market. Therefore we concentrate
on creating bridges between the tools used by functional
engineers and those dedicated to reliability studies. We
focused on using AltaRica DF language, which is largely
spread among reliability engineers and efficiently
equipped by solutions as BPA-DAS (product of Dassault
Systèmes) [2].

The service is performed in two major steps, which are
the translation of the SysML model to obtain the AltaRica
DF description of the functional view of the system, and
the modeling of the dysfunctional view using the Dysfunc-
tional Model Repository (DMR) built with FMEA results
and previous studies lesson-learnt. The first translation is
important in order to construct a reliability studies dedicat-
ed model consistent with de description of the system that
is common to the whole development lifecycle. As SysML
and AltaRica DF share an Object-Oriented approach, many
translation elements are quite direct. Nevertheless, some
divergent declaration philosophies of the two languages, as
the treatment of state and flow variables, impose to use
more complicated translation rules that we defined. More-
over, the complete automation of the translation is possible
only if the semi formal nature of the SysML description is
constrained by construction rules of the SysML model like
the utilization of expressive allocations between the mod-
eling elements.

The completion of the functional view by the descrip-
tion of the dysfunctional behavior of the components is the
occasion to note the benefit of the MéDISIS framework
and its DMR centralizing the relevant information for re-
liability studies. In fact, the data raised by FMEA are add-
ed to the AltaRica DF model, thanks to its expression in
the DMR. The complete model for formal reliability anal-
ysis is thus obtained and then exploited with the market
software tools. The metamodel of the DMR have been
developed in order to be coherent to the SysML descrip-
tion and to store the needed elements for the construction
of the AltaRica DF final model. Therefore the DMR is
built in SysML and integrates constructs as statemachines
to prepare dysfunctional models creation.

MéDISIS has been constituted as an evolutionary
framework aiming at connecting all the needed specialized
analysis tools, permitting to assess all system behavior
dimensions. It has been augmented with a service for real
time constraints considerations exposed in the next para-
graphs.

C. Support to the Embedded design process

AADL is a formal and textual language that appeared
for the first time in 2004. Its graphical form and other
extensions were added in 2006 [14]. The recent revision
[9] shows the interest of the community to keep the lan-
guage up-to-date. The use of AADL gives the opportunity
to analyze formally real-time and embedded systems. To
reach this aim, the use of a transformation of SysML mod-
els to AADL ones is an efficient support. Furthermore,
some tools dedicated to AADL exist such as Cheddar [12],
which permits to study the scheduling, processor usage,
and respect of temporal constraints.

1. Type and implementation

Each component of the embedded system is described
in AADL by its type, which refers to the functional inter-
face and its implementation, which refers to the inside
composition of our component (subcomponents, temporal
properties, connections, etc). Besides, type and implemen-
tation can be defined by different persons, each being re-
sponsible of different steps in the architecture’s design,
specifications and detailed design for example.

Each component is part of one of the 3 category of

AADL: Execution Platform, Application Software and
Composite. Each category is subdivided to reach 10 differ-
ent categories of components. Each one possesses a
graphical notation (see figure 2):

Figure 2. Graphical notation of the different categories of com-

ponent in AADL

Each type can be associated to zero, one or more
implementations. The example below shows us two types
of components, the first is associated to implementations
(see figure 3):

system type1
end type1;
system type2
end type2;

system implementation type1.impl1
end type1.impl1;
system implementation type1.impl2
end type1.impl2;

Figure 3. Component’s type and implementation example

The principle of type and implementations can be
compared to the use of BDD and IBD in SysML.

2. Properties

Each component possesses properties which serve to
characterize the component.

Some properties are part of the language. They are
identified by a name and associated to a category of com-
ponent. For example, threads possess their own properties
such as execution period, deadline,... (see figure 4).

New properties can be created by the user and asso-
ciated to one or more category of component. That way,
every detail related to the user’s need, can be considered,
and that is one point that makes AADL very useful.

thread thread1
 properties
 Period => 15 ms;
 Deadline => 10 ms;
end thread1;

Figure 4. Thread properties example

Those properties may be found partially by going

through the value properties in the SysML model.

3. Port and connection

The description of data and control flow in our
AADL model is done using ports and connections. A port
is point of entry and/or exit of a component, in which data
or events can pass through. A connection permits to link
two ports. A connection can be made between a port of
entry and a port of exit on a same hierarchical level, or
between same types port which are in different hierarchical
levels. A verification of the conformity of the types and
directions is made between connected ports.

Figure 5 and figure 6 show us a system containing
two processes, themselves containing a thread. The group
of connected ports represented by triangles and the group
of connections represented by lines establish the link be-
tween the threads.

Figure 5. Connection between two threads

system system1
end system1;

system implementation system1.impl
 subcomponents
 p1: process process1.impl;
 p2: process process2.impl;
 connections
 cn: data port p1.outport -> p2.inport;
end system1.impl;

process process1

 features
 outport: out data port;
end process1;

process implementation process1.impl
 subcomponents
 t1: thread thread1.impl;
 connections
 cn: data port t1.outport -> outport;
end process1.impl;

process process2
 features
 inport: in data port;
end process2;

process implementation process2.impl
 subcomponents
 t2: thread thread2.impl;
 connections
 cn: data port inport -> t2.inport;
end process2.impl;

thread thread1
 features
 outport: out data port;
end thread1;

thread implementation thread1.impl
end thread1.impl;

thread thread2
 features
 inport: in data port;
end thread2;

thread implementation thread2.impl
end thread2.impl;

Figure 6. Connections description example

The AADL language provides other possibilities to
model embedded systems:

• modes : permit to describe the running modes of
the architecture;

• flows : describe data and control flow , similar to
the SysML flow specification;

• packages : permit to organize our model, this a
principle present in SysML tool ;

• annexes: enable the use of declarations written in
another sublanguage.

4. From SysML to AADL

The SysML model contains a lot of information

about our system; it would be a loss of time and energy, to
have to recreate that information to make an AADL model.
However, certain detailed pieces of information such as
the temporal properties of our system are often absent of a
SysML model. In fact, SysML is usually used for high
level design, and that type of temporal information is de-
signed later in the process during detailed conception.
Nevertheless, we could help reusing information contained
in our SysML model not to waste time, and to ease com-

plete with the pieces of information the SysML model
lacks. In this perspective, it is important to determine
which are the possible links that can be made between
those two languages.

SysML contain the architecture of our embedded

system, and all the links between the components. Fur-
thermore, the SysML BDD and IBD are close to the notion
type and implementation in AADL. Indeed, the definition
of block in the BDD permits to define the functional inter-
face of our component which corresponds to the type of
the component in AADL. The IBD of a block in SysML
represent the same thing as the implementation of a com-
ponent in AADL: the internal organisation of the compo-
nent. Thereby, SysML’s parts become components in
AADL, flow ports become ports with AADL type depend-
ing on the kind of information they exchange, les flow
specifications will be transformed in AADL’s flows, …

The object-oriented approach of both languages allows a

efficient translation of architectural concepts. Neverthe-
less, since AADL is a lower level representation, it uses
more specific type of components. That’s why to classify
the components according to the 10 categories (Memory,
processor, …) available in AADL, we have to consider
another source of information to perform the model trans-
lation. The suitable answers are listed below:

• Impose a new way to model in SysML to make
the AADL type present in the SysML model.

• Ask a specialist to classify each component. Us-
ing a questionnaire can make this step easier.

• Use a database of correspondences between
SysML blocks and their category in AADL based
on the record of the past projects.

A similar issue is observed to define all the properties

that size the system, representing the quantitative proper-
ties needed to use properly tools as Cheddar [12] or RMA
[13]. To completely define the properties of our system,
we suggest the development of one of the three solutions
presented before.

 To manage those problems, we use a similar me-

thod than the one used to create FMEA and AltaRica DF
models: using specialist’s judgment to complete our mod-
el, and maintain a database of feedbacks for future
projects. The use of the database will restrain the interven-
tion of the experts as long as this database will be devel-
oped.

The steps used to create the AADL model are summa-
rized below:

Step n°1. Identifying all the SysML blocks and
parts and establishing the hierarchy between all
those entities, taking into consideration the dif-
ferent levels of design.

Step n°2. Mapping every component with each
others using ports and connections.

Step n°3. Categorizing each component of the sys-
tem. (Ex: this block « shared_memory » belong
to the category: memory).

Step n°4. Creating the structural model in AADL
(textual and graphical model can be made at this
point).

Step n°5. Filling in the properties that are not de-
ducted from the SysML model.

Step n°6. Creating the final AADL model, which
includes the structure description and the system
properties.

AADL model-

ling
 steps

Step of
SysML
analysis

1
 :

C
o

m
po

ne
nt

s
lis

tin
g 2
 :

C
o

m
po

ne
nt

s
cl

a
ss

ifi
ca

tio
n

3
 :

P
ro

po
rt

io
n

 th
e

sy

st
e

m

4
 :

C
re

at
e

 th
e

co

m
p

le
te

 A
A

D
L

m
o

de
l

Step 1 •
Step 2 • • •
Step 3 •
Step 4 •
Step 5 •
Step 6 •
DataBase •
Specialist’s
judgement • •

Figure 7. Table of the steps of modelling and analysis

It is visible that the steps 1,2,4,6 can be instantaneous

with proper software, however steps 3 and 5 even using
the database need to have recourse to a specialist, because
some information may not be recorded in the database yet.
The table from figure 7 sums up the correlations between
the steps of the SysML model analysis and the steps which
lead to the creation of the AADL model.

bdd [Package] Package1
«block»

System1

«block»
Process1

«block»
Process2

«block»
Thread1

«block»
Thread2

1
1

1

1

1

1

1
1

Figure 8. Example of BDD

ibd [block] System

«block»

System1

«part»
: Process2

IN : Data «part»
: Thread2

IN : Data

«part»
: Process1

OUT : Data«part»
: Thread1

OUT : Data

Figure 9. Example of IBD

 For example, the SysML model corresponding to
figure 8 and figure 9 permits to obtain the AADL model of
figure 5 and figure 6 after realizing each of the steps de-
fined before. Using the same method with our DMR, we
can easily obtain an AADL DMR. In fact, dysfunctional
behaviour is modelled with the same SysML artefact as the
previous functional example.
 If we compare the result with the extension re-
leased by the SAE in 2006 [14]: the error model annex
which should provide tools to generate dependability stud-
ies, there is some difference. The main difference is the
modelling of failure propagation: because our SysML
DMR was made to ease FMEA analysis, the failure propa-
gation is made through the fact that the data transmitted
are corrupted and false, but no new signal is emitted, then
a component must compute a diagnosis of their input data
to detect a failure. It’s very efficient to simulate the whole
system in functional and dysfunctional mode and to study
the real impact of a failure on the output data. But this
method is too heavy to allow fault trees generation to study
safety or Markov model generation to study reliability and
availability.

Nevertheless it’s necessary to specialize our
DMR like showed in figure 10, as we did with to simplify
the transformation to Altarica. The errors models of low
level components for this type of studies capture the in-
formation needed for specific studies. Dependability anal-
ysis requires dependability-related information from the
model: fault assumptions, repair assumptions, fault-
tolerance mechanisms, stochastic parameters of the system
(i.e., the occurrence of fault events and propagations).

bdd [Package] DMR [Comp]

«block»

operations
Compute ()

values
DataIn : Float
DataOut : Float
InUse : Boolean

Comp

«block»

operations
Def_Compute ()
Compute ()

values
DataIn : Float
DataOut : Float
InUse : Boolean

constraints
c_Def_Compute : CompKO_Def_Compute

Comp_KO

«constraint»

constraints
{IF InUse
DataOut = 0;
ELSE
DataOut = -1;}

parameters
DataOut : Float
InUse : Boolean

CompKO_Def_Compute

1

mdd

Figure 10. Example of DMR in SysML

Finally, the error model annex will permit to en-

hance the dysfunctional models of our components from
the DMR in AADL. The tools provided by the error model
annex are very useful to carry out dependability analysis of
the system originally modeled in SysML which is used as
the backbone of our entire method.

IV. RESULTS AND PROJECT LEA LEARNINGS

Detailed results will be presented in the final pa-
per. We will tackle the following points. We will explain
how translation process from SysML to AADL allow us to
obtained rapidly from specified architecture a timed model
and proceed to a temporal analyze thanks Rate Monotonic
Analyses [13] and cheddar tools [12].

We will focused on how memorize this informa-
tion on SysML central model mainly with the help of pa-
rametric diagrams. At this stage we have the possibility to
choose between several functional architectures. We will
explain how we have made this choice guided by the fol-
lowing parameters: the Specifications of Physical ports,
type of flows and their allowed requirements, bandwidth
of candidate subsystems. Thanks the quality of FMEA
process we have also took into account failure mode of the
system to achieve the choice of the final architecture. We
will present how FMEA process highlights the require-
ments impacted by dysfunctional mode and how it would
direct our reasoning to choose the accurate functional ar-
chitecture. In last, we will summarize the advantage to
have two more axes of modeling: temporal and dysfunc-
tional.

REFERENCES
[1] P. David, V. Idasiak & F. Kratz. Improving Reliability Studies with

SysML. Proceedings of the 55th Annual Reliability and Maintaina-
bility Symposium, RAMS 2009, Fort Worth, Texas, USA, Jan. 2009.

[2] P. David, V. Idasiak & F. Kratz. Automating the synthesis of Alta-
Rica Data-Flow models from SysML. Proceedings of ESREL 2009,
Prague, République Tchèque, 7-10 septembre 2009.

[3] S. Friedenthal, A. Moore & R. Steine. A Practical Guide to SysML :
The Systems Modeling Language. The MK/OMG press, Elsevi-
er.2008

[4] J. Estefan. Survey of Model-Based Systems Engineering (MBSE)
Methodologies, Rev. B. INCOSE MBSE Initiative, 23 Mai 2008.
2008

[5] IEC 61508. International Electrotechnical Commission. Functional
Safety of Electrical /Electronic /Programmable Electronic Safety-
Related Systems. Parts 1 to 7. 1998-2005

[6] ISO 26262. International Organization for Standardization. Road
Vehicles functional Safety. Standard under development.

[7] OMG Systems Modeling Language (OMG SysML) V1.1. 1st No-
vember 2008.

[8] A. Rauzy. Mode Automata and their compilation into Fault tree.
Reliability Engineering and System Safety 78: 1-12. 2002.

[9] Society of Automotive Engineers. SAE Architecture Analysis
&Design Language. Specification V2, janvier 2009.

[10] C. Price, N. Taylor. Automated multiple failure FMEA. Reliability
Engineering and System Safety Vol. 76, pp. 1-10, 2002.

[11] P. Teoh & K. Case. Failure modes and effects analysis through
knowledge modelling. Journal of Materials Processing Technology
153-154, pp. 253-260, 2004.

[12] F. Singhoff, « The Cheddar AADL Property sets (Release 2.x) »
LISyC technical report number singhoff-03-07, February 2007.

[13] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, Michael
González Harbour, « A practitioner’s Handbook for Real-Time
Analysis », Kluwer Academic Publishers, 1993

[14] Society of Automotive Engineers. SAE Standards: AS5506/1, Ar-
chitecture Analysis & Design

