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Abstract- The article presents a new method relying on Mod-
el-Based System Engineering concepts in order to efficiently 
deal with real-time and dependability constraints, throughout 
the design process of embedded systems. The method is de-
scribed and its use is exemplified on the LEA project shared 
by MBDA and the PRISME Institute. The method is built in 
a SysML-centric context, and proposes to merge current effi-
cient methods for safety, reliability and real time constraints 
analysis. In particular, the AltaRica Data Flow and AADL 
languages are integrated in the framework supporting the 
method. 

I. INTRODUCTION 

The LEA flight test program was started in 2003 by 
MBDA-France and ONERA to address the key issue of the 
aeropropulsive balance of a dual-mode ramjet powered 
vehicle in the range Mach 4 to 8. A development metho-
dology has been defined for such type of vehicle, together 
with the numerical and experimental tools enhancement to 
enable predicting the flight performances with suitable 
accuracy. This methodology is now being applied to mi-
nimal size experimental vehicle, called LEA, which has 
passed the preliminary design review in 2006, and the crit-
ical design review in 2009. Finally, several flight tests will 
be performed at the end of the program to validate the 
quality of performance prediction. Four flights are 
planned, and will be performed between 2013 and 2014, 
operated from Russian test range and using Russian hard-
ware for initial acceleration. Our team is charged of speci-
fying, designing, testing and validating the embedded sys-
tem, which must control the flight from the launching of 
the craft to the final crash. Moreover, the embedded sys-
tem must control the dual-mode ramjet carburetion process 
and some safety functionalities, like the auto-testing func-
tion for automating GO/NoGO decision before launch or 
the detection of separation from booster and the ignition 
order. Since three years, we develop around SysML some 
tools to merge engineering process to safety studies for 
critical systems [1,2]. The LEA project gives us an expe-
rimental platform to adapt our work on embedded system. 

After a large presentation of the method developed and 
its issues, we detail the tools we design and develop to 
automated the method and take into account the specific 

point of view introduced by embedded system, the soft-
ware architecture design and its temporal studies. In the 
final part, we discuss interesting results like how SysML 
and AADL models helped us to choose, in the first design 
stage, the accurate hardware and software architecture 
thanks to FMEA studies, SysML Parametric Diagrams and 
SysML Internal Block Diagrams.     

 

II. THE MÉDISIS METHOD 

 
Nowadays the Model Based System Engineering 

(MBSE) paradigm is becoming the predominant concept 
used for System Engineering (SE) [3]. The main idea 
brought by this practice, is to enhance the design process 
of complex systems and making it more reliable, by orga-
nizing activities through formalized representations of the 
systems called models. The Model Based representations 
allow to obtain more consistent, traceable, coherent, reusa-
ble and expressive views of the system to be developed, 
helping the management and realization of its design 
process. 

Since several years multiple SE methods have been 
created, they describe how using some modeling ap-
proaches to carry the system design tasks from stakehold-
ers needs capture to system validation [4]. Each method 
focuses on employing a specific modeling langue and is 
used to conduct the tasks defined by SE processes. Those 
lasts are standardized in various norms tackling diverse 
class of systems or applicative domains. Few of these me-
thods include strategies to deal with safety and reliability 
related design activities required by SE processes as IEC 
61508 [5] (and its derivations) or the future ISO 26262 [6]. 
Therefore, we focused our contributions to MBSE on de-
fining a method to improve the realization of reliability 
analysis during the SE process and its early design phases. 
This method introduced in several publications [1,2], is 
called MéDISIS. This method is related to the use of 
SysML [7]. We assume that inputs models are expressed in 
SysML and we propose to build a repository registering 
and managing the knowledge raised by the activities per-



 

 
 

formed in a structure modeled in this language. 
The major assumption that was made for the constitu-

tion of MéDISIS, was to consider that the method used by 
the designer to construct the functional model of the sys-
tem is let totally free. This assumption was taken to make 
it possible to integrate MéDISIS to others MBSE methods 
tackling the other tasks of system development. 

MéDISIS proposes a deductive and iterative approach 
aiming at facilitating crucial reliability analysis and en-
hancing the use of the diverse tools and languages used for 
dysfunctional behavior validation. MéDISIS includes the 
following steps also depicted on figure 1: 
 

• Deduction of the dysfunctional behavior with an 
FMEA, identification of the impacted require-
ments. 

• Construction of a model integrating functional and 
dysfunctional behaviors with a formal language. 

• Analysis and quantification of dysfunctional beha-
vior. 

 

 
Figure 1. MéDISIS overview 
 

To perform the steps of MéDISIS several tools and 
analysis routines have been defined to support each phase 
and optimize the rapidity and quality of the reliability stu-
dies. These developments are made to construct a com-
plete System Development Environment (SDE) supporting 
MéDISIS and system design. Analysis techniques and a 
tool have defined to support FMEA realization. The results 
of this study raise the dysfunctional behavior of each com-
ponent. They are capitalized in a dysfunctional models 
repository and reused to construct a formal representation 
of the system using the AltaRica Data Flow [8] language. 
The construction of this formal model, mandatory for sys-
tem validation, is also helped by analyses techniques sys-
tematizing the creation of this reliability-oriented view. A 
service to support embedded systems analysis is also 
available. It proposes to generate AADL [9] models ex-
ploitable for real time application studies using Cheddar 
tool. These three techniques will be summed up in the fol-
lowing section. 

III.  BUILDING A SDE FOR MÉDISIS 

This section highlights the various techniques and tools 
employed in MéDISIS to improve the efficiency of relia-
bility studies during design. Developments are made to 
reduce the gap between the multiple specialized tools uti-
lized for the creation of embedded systems, and others are 
set up to support analysis techniques as FMEAs. 

A. Support to the FMEA process 

FMEA is a crucial analysis in the dysfunctional beha-
vior study, since it gives a mean to identify the dysfunc-
tional aspects of each component. Moreover, this tech-
nique is fundamental because it organizes the passage from 
a purely functional view of the system to its unexpected 
behavior expression using only the designer’s description 
and experts’ knowledge.  Nevertheless, this founding study 
for the reliability analysis process suffers of its heaviness 
of deployment. Authors as [10] and [11] have well summa-
rized the drawbacks of this important but unpopular ap-
proach, which they depict as a heavy, error-prone, non-
flexible, and often done too late analysis. 

Our conviction is that this kind of study can benefit 
from a Model-Based approach. Therefore, we studied how 
FMEA could be performed in a MBSE framework, using 
SysML as a central language. We thus developed a method 
of functional model analysis for performing FMEA sup-
ported by a software tool automating the more tedious 
parts of the reasoning. Thanks to the Model Based ap-
proach, we obtained more consistent FMEAs and im-
proved the lesson-learnt sustainability throughout the sys-
tem development and the projects concerning a family of 
products.  

The use of FMEA within the MéDISIS framework have 
been discussed in [1], we will sum up here the techniques 
involved in the FMEA creation. We propose to construct 
the FMEA report in three phases, first the functional model 
is processed, raising the significant points for the FMEA 
and collecting the lesson-learnt knowledge from a data-
base, then a preliminary FMEA report is automatically 
produced, finally the FMEA is completed and validated by 
reliability experts. For the realization of the first point we 
defined 7 rules for SysML models study employed to iden-
tify and highlight the information about the system useful 
for the FMEA reasoning. For example, component connec-
tions, failure propagation paths or probably impacted re-
quirements are tracked. A structure containing for each 
component, the related neighborhood, behavior and re-
quirements is set up, this one include also the information 
on the dysfunctional behavior already observed in other 
applications, stored in the MéDISIS central database. The 
elements of the structures are then organized in a prelimi-
nary FMEA report, proposing for the components the 
possible failure modes and their potential causes or effects. 
Those two first phases of the FMEA creation are respec-
tively performed by a model analyzer, using file parsing 
techniques, and a FMEA table generator organizing the 
gathered data. The last phase is let to the human interven-



 

 
 

tion of reliability experts, as human reasoning for finaliz-
ing an FMEA cannot be performed automatically, except 
from using artificial intelligence techniques which are not 
enough confident for this kind of key decisions. 

B. Connection to formal descriptions with AltaRica DF 

The second support needed in MéDISIS, is the integra-
tion of formal means of validation and quantification of 
the dysfunctional behavior. Many solutions to perform this 
task are available on the market. Therefore we concentrate 
on creating bridges between the tools used by functional 
engineers and those dedicated to reliability studies. We 
focused on using AltaRica DF language, which is largely 
spread among reliability engineers and efficiently 
equipped by solutions as BPA-DAS (product of Dassault 
Systèmes) [2]. 

The service is performed in two major steps, which are 
the translation of the SysML model to obtain the AltaRica 
DF description of the functional view of the system, and 
the modeling of the dysfunctional view using the Dysfunc-
tional Model Repository (DMR) built with FMEA results 
and previous studies lesson-learnt. The first translation is 
important in order to construct a reliability studies dedicat-
ed model consistent with de description of the system that 
is common to the whole development lifecycle. As SysML 
and AltaRica DF share an Object-Oriented approach, many 
translation elements are quite direct. Nevertheless, some 
divergent declaration philosophies of the two languages, as 
the treatment of state and flow variables, impose to use 
more complicated translation rules that we defined. More-
over, the complete automation of the translation is possible 
only if the semi formal nature of the SysML description is 
constrained by construction rules of the SysML model like 
the utilization of expressive allocations between the mod-
eling elements. 

The completion of the functional view by the descrip-
tion of the dysfunctional behavior of the components is the 
occasion to note the benefit of the MéDISIS framework 
and its DMR centralizing the relevant information for re-
liability studies. In fact, the data raised by FMEA are add-
ed to the AltaRica DF model, thanks to its expression in 
the DMR. The complete model for formal reliability anal-
ysis is thus obtained and then exploited with the market 
software tools. The metamodel of the DMR have been 
developed in order to be coherent to the SysML descrip-
tion and to store the needed elements for the construction 
of the AltaRica DF final model. Therefore the DMR is 
built in SysML and integrates constructs as statemachines 
to prepare dysfunctional models creation. 

MéDISIS has been constituted as an evolutionary 
framework aiming at connecting all the needed specialized 
analysis tools, permitting to assess all system behavior 
dimensions. It has been augmented with a service for real 
time constraints considerations exposed in the next para-
graphs. 

C. Support to the Embedded design process 

AADL is a formal and textual language that appeared 
for the first time in 2004.  Its graphical form and other 
extensions were added in 2006 [14]. The recent revision 
[9] shows the interest of the community to keep the lan-
guage up-to-date. The use of AADL gives the opportunity 
to analyze formally real-time and embedded systems. To 
reach this aim, the use of a transformation of SysML mod-
els to AADL ones is an efficient support. Furthermore, 
some tools dedicated to AADL exist such as Cheddar [12], 
which permits to study the scheduling, processor usage, 
and respect of temporal constraints. 

1. Type and implementation 
 

Each component of the embedded system is described 
in AADL by its type, which refers to the functional inter-
face and its implementation, which refers to the inside 
composition of our component (subcomponents, temporal 
properties, connections, etc). Besides, type and implemen-
tation can be defined by different persons, each being re-
sponsible of different steps in the architecture’s design, 
specifications and detailed design for example.  

 
Each component is part of one of the 3 category of 

AADL: Execution Platform, Application Software and 
Composite. Each category is subdivided to reach 10 differ-
ent categories of components. Each one possesses a 
graphical notation (see figure 2): 

 
Figure 2. Graphical notation of the different categories of com-

ponent in AADL 

Each type can be associated to zero, one or more 
implementations. The example below shows us two types 
of components, the first is associated to implementations 
(see figure 3): 

system type1 
end type1; 
system type2 
end type2; 
 
system implementation type1.impl1 
end type1.impl1; 
system implementation type1.impl2 
end type1.impl2; 

Figure 3. Component’s type and implementation example 
 

The principle of type and implementations can be 
compared to the use of BDD and IBD in SysML. 

 



 

 
 

2. Properties 

Each component possesses properties which serve to 
characterize the component.  

Some properties are part of the language. They are 
identified by a name and associated to a category of com-
ponent. For example, threads possess their own properties 
such as execution period, deadline,... (see figure 4). 

New properties can be created by the user and asso-
ciated to one or more category of component. That way, 
every detail related to the user’s need, can be considered, 
and that is one point that makes AADL very useful. 

thread thread1 
    properties 
        Period => 15 ms; 
        Deadline => 10 ms; 
end thread1; 

Figure 4. Thread properties example 
 
Those properties may be found partially by going 

through the value properties in the SysML model.  
 

3. Port and connection 

The description of data and control flow in our 
AADL model is done using ports and connections. A port 
is point of entry and/or exit of a component, in which data 
or events can pass through. A connection permits to link 
two ports. A connection can be made between a port of 
entry and a port of exit on a same hierarchical level, or 
between same types port which are in different hierarchical 
levels. A verification of the conformity of the types and 
directions is made between connected ports.  

Figure 5 and figure 6 show us a system containing 
two processes, themselves containing a thread. The group 
of connected ports represented by triangles and the group 
of connections represented by lines establish the link be-
tween the threads. 

 
Figure 5. Connection between two threads 

 

system system1 
end system1; 
 
system implementation system1.impl 
    subcomponents 
        p1: process process1.impl; 
        p2: process process2.impl; 
    connections 
        cn: data port p1.outport -> p2.inport; 
end system1.impl; 
 
process process1 

    features 
        outport: out data port; 
end process1; 
 
process implementation process1.impl 
    subcomponents 
        t1: thread thread1.impl; 
    connections 
        cn: data port t1.outport -> outport; 
end process1.impl; 
 
process process2 
    features 
        inport: in data port; 
end process2; 
 
process implementation process2.impl 
    subcomponents 
        t2: thread thread2.impl; 
    connections 
        cn: data port inport -> t2.inport; 
end process2.impl; 
 
thread thread1 
    features 
        outport: out data port; 
end thread1; 
 
thread implementation thread1.impl 
end thread1.impl; 
 
thread thread2 
    features 
        inport: in data port; 
end thread2; 
 
thread implementation thread2.impl 
end thread2.impl; 

 
Figure 6. Connections description example 

The AADL language provides other possibilities to 
model embedded systems:  

• modes : permit to describe the running modes of 
the architecture;  

• flows : describe data and control flow , similar to 
the SysML flow specification; 

• packages : permit to organize our model, this a 
principle present in SysML tool ;  

• annexes: enable the use of declarations written in 
another sublanguage. 

4. From SysML to AADL 
 
The SysML model contains a lot of information 

about our system; it would be a loss of time and energy, to 
have to recreate that information to make an AADL model. 
However, certain detailed pieces of information such as 
the temporal properties of our system are often absent of a 
SysML model. In fact, SysML is usually used for high 
level design, and that type of temporal information is de-
signed later in the process during detailed conception. 
Nevertheless, we could help reusing information contained 
in our SysML model not to waste time, and to ease com-



 

 
 

plete with the pieces of information the SysML model 
lacks. In this perspective, it is important to determine 
which are the possible links that can be made between 
those two languages. 

 
SysML contain the architecture of our embedded 

system, and all the links between the components. Fur-
thermore, the SysML BDD and IBD are close to the notion 
type and implementation in AADL. Indeed, the definition 
of block in the BDD permits to define the functional inter-
face of our component which corresponds to the type of 
the component in AADL. The IBD of a block in SysML 
represent the same thing as the implementation of a com-
ponent in AADL: the internal organisation of the compo-
nent. Thereby, SysML’s parts become components in 
AADL, flow ports become ports with AADL type depend-
ing on the kind of information   they exchange, les flow 
specifications will be transformed in AADL’s flows, … 

 
The object-oriented approach of both languages allows a 

efficient translation of architectural concepts. Neverthe-
less, since AADL is a lower level representation, it uses 
more specific type of components. That’s why to classify 
the components according to the 10 categories (Memory, 
processor, …) available in AADL, we have to consider 
another source of information to perform the model trans-
lation. The suitable answers are listed below: 

• Impose a new way to model in SysML to make 
the AADL type present in the SysML model. 

• Ask a specialist to classify each component. Us-
ing a questionnaire can make this step easier. 

• Use a database of correspondences between 
SysML blocks and their category in AADL based 
on the record of the past projects. 

 
A similar issue is observed to define all the properties 

that size the system, representing the quantitative proper-
ties needed to use properly tools as Cheddar [12] or RMA 
[13]. To completely define the properties of our system, 
we suggest the development of one of the three solutions 
presented before. 

 
 To manage those problems, we use a similar me-

thod than the one used to create FMEA and AltaRica DF 
models: using specialist’s judgment to complete our mod-
el, and maintain a database of feedbacks for future 
projects. The use of the database will restrain the interven-
tion of the experts as long as this database will be devel-
oped. 
  

The steps used to create the AADL model are summa-
rized below: 
 

Step n°1. Identifying all the SysML blocks and 
parts and establishing the hierarchy between all 
those entities, taking into consideration the dif-
ferent levels of design. 

Step n°2. Mapping every component with each 
others using ports and connections. 

Step n°3. Categorizing each component of the sys-
tem. (Ex: this block « shared_memory » belong 
to the category: memory). 

Step n°4. Creating the structural model in AADL 
(textual and graphical model can be made at this 
point). 

Step n°5. Filling in the properties that are not de-
ducted from the SysML model. 

Step n°6. Creating the final AADL model, which 
includes the structure description and the system 
properties. 
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Step 1 •    
Step 2 • • •  
Step 3  •   
Step 4    • 
Step 5   •  
Step 6    • 
DataBase  •   
Specialist’s 
judgement  • •  

Figure 7. Table of the steps of modelling and analysis 
 
It is visible that the steps 1,2,4,6 can be instantaneous 

with proper software, however steps 3 and 5 even using 
the database need to have recourse to a specialist, because 
some information may not be recorded in the database yet. 
The table from figure 7 sums up the correlations between 
the steps of the SysML model analysis and the steps which 
lead to the creation of the AADL model. 

bdd [Package] Package1
«block»

System1

«block»
Process1

«block»
Process2

«block»
Thread1

«block»
Thread2

1
1

1

1

1

1

1
1

 

Figure 8. Example of BDD 

ibd [block] System

«block»

System1

«part»
: Process2

IN : Data «part»
: Thread2

IN : Data

«part»
: Process1

OUT : Data«part»
: Thread1

OUT : Data

 



 

 
 

Figure 9. Example of IBD 

 For example, the SysML model corresponding to 
figure 8 and figure 9 permits to obtain the AADL model of 
figure 5 and figure 6   after realizing each of the steps de-
fined before.  Using the same method with our DMR, we 
can easily obtain an AADL DMR. In fact, dysfunctional 
behaviour is modelled with the same SysML artefact as the 
previous functional example. 
 If we compare the result with the extension re-
leased by the SAE in 2006 [14]: the error model annex 
which should provide tools to generate dependability stud-
ies, there is some difference. The main difference is the 
modelling of failure propagation: because our SysML 
DMR was made to ease FMEA analysis, the failure propa-
gation is made through the fact that the data transmitted 
are corrupted and false, but no new signal is emitted, then 
a component must compute a diagnosis of their input data 
to detect a failure. It’s very efficient to simulate the whole 
system in functional and dysfunctional mode and to study 
the real impact of a failure on the output data. But this 
method is too heavy to allow fault trees generation to study 
safety or Markov model generation to study reliability and 
availability. 

Nevertheless it’s necessary to specialize our 
DMR like showed in figure 10, as we did with to simplify 
the transformation to Altarica. The errors models of low 
level components for this type of studies capture the in-
formation needed for specific studies. Dependability anal-
ysis requires dependability-related information from the 
model: fault assumptions, repair assumptions, fault-
tolerance mechanisms, stochastic parameters of the system 
(i.e., the occurrence of fault events and propagations). 

 
bdd [Package] DMR [Comp]

«block»

operations
Compute ()

values
DataIn : Float
DataOut : Float
InUse : Boolean

Comp

«block»

operations
Def_Compute ()
Compute ()

values
DataIn : Float
DataOut : Float
InUse : Boolean

constraints
c_Def_Compute : CompKO_Def_Compute

Comp_KO

«constraint»

constraints
{IF InUse
DataOut = 0;
ELSE
DataOut = -1;}

parameters
DataOut : Float
InUse : Boolean

CompKO_Def_Compute

1

mdd

 
Figure 10. Example of DMR in SysML 

  
Finally, the error model annex will permit to en-

hance the dysfunctional models of our components from 
the DMR in AADL. The tools provided by the error model 
annex are very useful to carry out dependability analysis of 
the system originally modeled in SysML which is used as 
the backbone of our entire method. 

IV.  RESULTS AND PROJECT LEA LEARNINGS 

Detailed results will be presented in the final pa-
per. We will tackle the following points. We will explain 
how translation process from SysML to AADL allow us to 
obtained rapidly from specified architecture a timed model 
and proceed to a temporal analyze thanks Rate Monotonic 
Analyses [13] and cheddar tools [12]. 

We will focused on how memorize this informa-
tion on SysML central model mainly with the help of pa-
rametric diagrams.  At this stage we have the possibility to 
choose between several functional architectures. We will 
explain how we have made this choice guided by the fol-
lowing parameters: the Specifications of Physical ports, 
type of flows and their allowed requirements, bandwidth 
of candidate subsystems. Thanks the quality of FMEA 
process we have also took into account failure mode of the 
system to achieve the choice of the final architecture. We 
will present how FMEA process highlights the require-
ments impacted by dysfunctional mode and how it would 
direct our reasoning to choose the accurate functional ar-
chitecture. In last, we will summarize the advantage to 
have two more axes of modeling: temporal and dysfunc-
tional. 
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