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PRE-LIE SYSTEMS AND OBSTRUCTION TO A∞-STRUCTURES OVER A RING

MURIEL LIVERNET

Abstract. The aim of the note is to prove an obstruction theorem for A∞-structures over a commutative
ring R. Given a Z-graded Am-algebra, with m > 3, we give conditions on the Hochschild cohomology of the
associative algebra H(A) so that the Am−1-structure can be lifted to an Am+1-structure. These conditions

apply in case we start with an associative algebra up to homotopy and want to lift this structure to an
A∞-structure. The hidden purpose of the note is to show that there are no assumptions needed on the
commutative ring R nor bounded assumptions on the complex A.

Introduction

The purpose of this note is to fill a gap in the litterature concerning A∞-structures in the category of
differential Z-graded R-modules when R is a commutative ring. We are concerned with obstruction theory
for the existence of an A∞-structure on a dgmodule V endowed with a product which is associative up
to homotopy. We answer the question of the existence of higher homotopies, in terms of the Hochschild
cohomology of the associative algebra H∗(V ). In the context of A∞-spaces or A∞-spectra this question has
been answered by Robinson in [9]. If one applies the zig-zag of equivalences between the category of modules
over the Eilenberg Mac Lane ring spectrum HR and the category of differential graded R-modules described
by Shipley in [10], one gets the result we want. Our purpose is to give a direct account of the method in the
differential graded context. Note that the question has also been studied by Lefèvre-Hasegawa for minimal
A∞-algebras on a field in [6]. We follow the lines of his approach.

We recall that A∞-structures were defined by Stasheff in [11] for spaces, in order to give a recognition
principle for loop spaces. In order to do so, he built an operad based on associahedra. The simplicial chain
complex of this operad is what is known as the A∞-operad in the category of differential graded modules.
Algebras over this operad are called A∞-algebras. Kadesishvili studied in [4] an obstruction theory for the
uniqueness of A∞-structures, also in terms of the Hochschild cohomology ofH∗(A), when A is an A∞-algebra.
In this note we study the existence rather than the uniqueness of such a structure.

In the process of building an obstruction theory for the existence of A∞-structures on a ring R we
encountered two assumptions commonly needed on R-modules. The first one is the assumption that every
R-module considered should have no 2-torsion. We discovered that this hypothesis is not needed, if one takes
a closer look at the Lie algebra structure usually used to solve obstruction issues. Indeed, in our context,
the Lie algebra structure not only comes from a pre-Lie algebra structure but from a pre-Lie system as
defined by Gerstenhaber in [2]. The first section of the note is concerned with pre-Lie systems. The second
assumption is that every graded module over R should be N-graded. Again this hypothesis is not needed,
and we prove in the second section that, under some projectivity conditions, there is an isomorphism between
H(Hom(C,D)) and Hom(H(C), H(D)) for any differential Z-graded R-modules C and D. The last section
is devoted to obstruction theory.

Notation. We work over a commutative ring R.
We denote by dgmod the category of lower Z-graded R-modules with a differential of degree −1. Objects

in this category are called dgmodules for short.

• The category dgmod is symmetric monoidal for the tensor product

(C ⊗D)n = ⊕i+j=nCi ⊗R Dj
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with the differential given by

∂(ci ⊗ dj) = ∂C(ci)⊗ dj + (−1)ici ⊗ ∂D(dj), ∀ci ∈ Ci, dj ∈ Dj .

• For C a dgmodule, we denote by sC its suspension, that is, (sC)i = Ci−1 with differential ∂(sc) =
−s∂C(c).

• Let C be a dgmodule. For c ∈ Ci and d ∈ Cj , we will use the notation ǫc,d = (−1)ij .
• Let C and D be dgmodules. We denote by Hom(C,D) the dgmodule

Homi(C,D) =
∏

n

HomR(Vn,Wn+i)

with differential ∂ : Homi(C,D) → Homi−1(C,D) defined for c ∈ Cn by

(∂f)n(c) = ∂D(fn(c)) − (−1)ifn−1(∂Cc).

• We use the Koszul sign rule: let C,C′, D and D′ be dgmodules; for f ∈ Hom(C,D) and g ∈
Hom(C′, D′) the map f ⊗ g ∈ Hom(C ⊗ C′, D ⊗D′) is defined by

∀x ∈ C ⊗ C′, (f ⊗ g)(x⊗ y) = ǫx,gf(x)⊗ g(y).

• The suspension map s : C → (sC) has degree +1. The Koszul sign rule implies that

(s−1)⊗n ◦ s⊗n = (−1)
n(n−1)

2 idC⊗n .

Aknowledgment. I am indebted to Benoit Fresse, Birgit Richter and Sarah Whitehouse for valuable
discussions.

1. pre-Lie systems and graded pre-Lie algebras

Pre-Lie systems and pre-Lie algebras have been introduced by M. Gerstenhaber in [2], in order to under-
stand the richer algebra structure on the complex computing the Hochschild cohomology of an associative
algebra A, yielding to the “Gerstenhaber structure” on the Hochschild cohomology of A. In this section
we review some of the results of Gerstenhaber, together with variations on the gradings and signs involved.
Namely, different pre-Lie structures, as in Proposition 1.8 and in Theorem 1.11, are described from a given
pre-Lie system, depending on the grading we choose.

The main result of the section is the technical Lemma 1.10, allowing to use pre-Lie systems on a ring
with no assumptions concerning the 2-torsion. It is one of the key ingredient in the proof of the obstruction
Theorem 3.8.

Throughout the section we are given a (Z,N)-bigraded R-module
⊕

n∈N,i∈Z

On
i . The examples we have in

mind are

• Endni (V ) = Homi(V
⊗n, V ), for a dgmodule V .

• More generally O(n)i, for an operad O, symmetric or not, see e.g. [5].
• Hom(C,P) for given (non-symmetric) cooperad C and operad P or HomS(C,P) for a cooperad C and
an operad P where HomS is the subset of Hom of invariant maps under the action of the symmetric
group. This example is an application of the previous one, since Hom(C,P) forms an operad, the
convolution operad, as defined by Berger and Moerdijk in [1].

The paper will deal with the first item. It may be understood as the toy model for obstruction theory for
O∞-algebras, where O is a Koszul operad. If one would like to extend the result of this paper for operads,
one would use the third item, as suggested in the book in progress of Loday and Vallette [7].

Notation 1.1. Let O be a (Z,N)-bigraded R-module. For x ∈ On
i , the integer n is called the arity of x, the

integer i is called the degree of x and the integer i+ n− 1 is called the weight of x and denoted by |x|. For
a fixed n, we consider the Z-graded R-module On = ⊕iO

n
i .
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1.1. General case.

Definition 1.2. Let O be a (Z,N)-bigraded R-module. A graded pre-Lie system on O is a sequence of maps,
called composition maps,

◦k : On
i ⊗Om

j → On+m−1
i+j , ∀1 6 k 6 n,

satisfying the relations: for every f ∈ On
i , g ∈ Om

j and h ∈ Op
l

f ◦u (g ◦v h) = (f ◦u g) ◦v+u−1 h, ∀1 6 u 6 n and 1 6 v 6 m,

(f ◦u g) ◦v+m−1 h = (−1)jl(f ◦v h) ◦u g, ∀1 6 u < v 6 n.

We will denote by (O, ◦) a graded pre-Lie system.

Definition 1.3. Let O be a (Z,N)-bigraded R-module. A weight graded pre-Lie system on O is a sequence
of maps, called composition maps,

◦k : On
i ⊗Om

j → On+m−1
i+j , ∀1 6 k 6 n

satisfying the relations: for every f ∈ On
i , g ∈ Om

j and h ∈ Op
l

f ◦u (g ◦v h) = (f ◦u g) ◦v+u−1 h, ∀1 6 u 6 n and 1 6 v 6 m,(1.1)

(f ◦u g) ◦v+m−1 h = (−1)(j+m−1)(l+p−1)(f ◦v h) ◦u g, ∀1 6 u < v 6 n.(1.2)

Note that the composition maps preserve the weight grading.

A short computation proves the following Proposition.

Proposition 1.4. Any graded pre-Lie system gives rise to a weight graded pre-Lie system and vice versa.
Namely, if (O, ⋆) is a graded pre-Lie system, then the collection

◦k : On
i ⊗Om

j → On+m−1
i+j , ∀1 6 k 6 n

defined by

f ◦k g = (−1)(j+m−1)(n−1)+(m−1)(k−1)f ⋆k g

is a weight graded pre-Lie system.

Example 1.5. Given a graded operad O, the definition of the axioms for partial composition coincides with
the one for pre-Lie systems. Hence the collection On

i = O(n)i forms a pre-Lie system. In particular, let V
be a dgmodule. The collection of graded R-modules Endn(V ) := Hom(V ⊗n, V ) forms an operad, hence a
graded pre-Lie system. Recall that, for 1 6 k 6 n, the insertion map at place k, ◦k : Endni (V )⊗Endmj (V ) →

Endn+m−1
i+j (V ) is defined by

f ◦k g = f(id⊗k−1 ⊗ g ⊗ id⊗n−k).

Definition 1.6. Let C ∈ dgmod. A graded pre-Lie algebra structure on C is a graded R-bilinear map
◦ : C ⊗ C → C satisfying

(1.3) ∀a, b, c ∈ C, (a ◦ b) ◦ c− a ◦ (b ◦ c) = ǫb,c a ◦ (c ◦ b)− ǫb,c (a ◦ c) ◦ b.

Proposition 1.7. Let C be a graded pre-Lie algebra. The bracket defined by

∀c, d ∈ C, [c, d] = c ◦ d− ǫc,d d ◦ c,

endows C with a graded Lie algebra structure. Namely, it satisfies the graded antisymmetry and graded
Jacobi relations:

[c, d] = −ǫc,d [d, c],

ǫa,c [a, [b, c]] + ǫb,a [b, [c, a]] + ǫc,b [c, [a, b]] = 0.

Proof. The first equation is immediate. The second one relies on the pre-Lie relation (1.3):

ǫa,c [a, [b, c]] + ǫb,a [b, [c, a]] + ǫc,b [c, [a, b]] = ǫa,c (a ◦ (b ◦ c)− (a ◦ b) ◦ c− ǫb,c a ◦ (c ◦ b) + ǫb,c (a ◦ c) ◦ b)+

ǫb,a (b◦(c◦a)−(b◦c)◦a−ǫa,c b◦(a◦c)+ǫa,c (b◦a)◦c)+ǫc,b (c◦(a◦b)−(c◦a)◦b−ǫa,b c◦(b◦a)+ǫa,b (c◦b)◦a) = 0.

�
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Proposition 1.8 (Gerstenhaber [2]). Any graded pre-Lie system (O, ◦) gives rise to a graded pre-Lie algebra
OL = ⊕nO

n with the pre-Lie product given by

⋆ : On ⊗Om ⊂ OL ⊗OL → On+m−1 ⊂ OL

f ⊗ g 7→ f ⋆ g =
∑n

k=1 f ◦k g

The associated graded Lie structure is denoted by

{f, g} = f ⋆ g − (1)ijg ⋆ f, with f ∈ On
i , g ∈ Om

j .

Using Proposition 1.4, one gets the following Corollary.

Corollary 1.9. Any graded pre-Lie system (O, ◦) gives rise to a (weight) graded pre-Lie algebra

(OwL)p =
⊕

i,n|i+n−1=p

On
i

with the pre-Lie product given by: ∀f ∈ On
i , g ∈ Om

j ,

f ◦ g = (−1)|g|(n−1)
n∑

k=1

(−1)(m−1)(k−1)f ◦k g,

with |g| = m+ j − 1. The associated (weight) graded Lie structure is denoted by

[f, g] = f ◦ g − (−1)|f ||g|g ◦ f.

Next Lemma is a technical lemma that will be useful in the sequel. We will see in the proof, that this
lemma is independent of the ring R that we consider and there is no assumption concerning the 2-torsion of
the R-modules considered. This is a new fact that can be of independent interest.

Lemma 1.10. Let (O, ◦) be a graded pre-Lie system.

• Let g ∈ O be an odd degree element. Then ∀f ∈ O one has

(f ⋆ g) ⋆ g = f ⋆ (g ⋆ g) and

{f, g ⋆ g} = −{g, {g, f}} = −{g ⋆ g, f}.

• Let g ∈ O be an element of odd weight, i.e. |g| is odd. Then ∀f ∈ O, one has

(1.4) (f ◦ g) ◦ g = f ◦ (g ◦ g) and

(1.5) [f, g ◦ g] = −[g, [g, f ]] = −[g ◦ g, f ].

Proof. The proof is the same in the two cases. Let us focus on the weight graded case. Let i be the weight
of f . Relation (1.5) is a consequence of Relation (1.4), for

− [g, [g, f ]] = −g ◦ (g ◦ f) + (−1)ig ◦ (f ◦ g) + (−1)i+1(g ◦ f) ◦ g − (−1)i+1+i(f ◦ g) ◦ g =

(−1)i(g ◦ (f ◦ g)− (g ◦ f) ◦ g − (−1)ig ◦ (g ◦ f) + (−1)i(g ◦ g) ◦ f︸ ︷︷ ︸
=0 by (1.3)

)− (g ◦ g) ◦ f + (f ◦ g) ◦ g︸ ︷︷ ︸
=f◦(g◦g)

= [f, g ◦ g].

Note that Relation (1.4) is a consequence of the pre-Lie relation in case every R-module On
i has no 2-torsion,

for if g has odd weight, then 2(f ◦ g) ◦ g − 2f ◦ (g ◦ g) = 0. This is still true without this assumption, if one
looks closely at the definition of the (weight) graded pre-Lie structure of Corollary 1.9. The weight graded
pre-Lie system relation (1.1) gives

(f ◦ g) ◦ g = f ◦ (g ◦ g) +

n∑

u=1

u−1∑

v=1

(f ◦u g) ◦v g +

n∑

u=1

n+m−1∑

v=u+m

(f ◦u g) ◦v g.

The weight graded pre-Lie system relation (1.2) implies that

n∑

u=1

n+m−1∑

v=u+m

(f ◦u g) ◦v g =

n∑

u=1

n∑

k=u+1

(f ◦u g) ◦k+m−1 g = −

n∑

k=1

k−1∑

u=1

(f ◦k g) ◦u g,

which ends the proof. �
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1.2. Application to End(V ). In the sequel we will be concerned with the (Z,N)-bigraded R-module
Endni (V ) = Endi(V

⊗n, V ) where V is a dgmodule. Example 1.5, Proposition 1.8 and Corollary 1.9 as-
semble in the following Proposition.

Proposition 1.11. Let V be a dgmodule. The (Z,N)-bigraded R-module End(V ) forms a graded pre-Lie
system. Consequently, ∀f ∈ Endn(V ), the product

f ⋆ g =
n∑

k=1

f(idk−1 ⊗ g ⊗ idn−k)

endows End(V ) with a structure of graded pre-Lie algebra and the product

f ◦ g = (−1)|g|(n−1)
n∑

k=1

(−1)(m−1)(k−1)f(idk−1 ⊗ g ⊗ idn−k)

endows End(V ) with a structure of (weight) graded pre-Lie algebra.

Remark 1.12. The signs obtained in the equivalence between graded pre-Lie systems and weight graded
pre-Lie systems in Proposition 1.4 come from a bijection between End(V ) and End(sV ). Let us consider the
isomorphism Θ of Getzler and Jones in [3]

(1.6)
Θ : Homi((sV )⊗n, sV ) → Homi+n−1((V )⊗n, V )

F 7→ Θ(F )

defined by
sΘ(F )(s−1)⊗n = F.

For F ∈ Endni (sV ) and G ∈ Endmj (sV ) one has,

sΘ(F ◦k G)(s−1)⊗n+m−1 = F (id⊗k−1 ⊗G⊗ idn−k) = sΘ(F )(s−1)⊗n(id⊗k−1 ⊗ sΘ(G)(s−1)⊗m ⊗ id⊗n−k)

= (−1)j(n−k)sΘ(F )((s−1)⊗k−1 ⊗Θ(G)(s−1)⊗m ⊗ (s−1)⊗n−k)

= (−1)j(n−k)(−1)(k−1)(j+m−1)sΘ(F )(id⊗k−1 ⊗Θ(G)⊗ idn−k)(s−1)⊗n+m−1,

hence (−1)(m−1)(k−1)+|Θ(G)|(n−1)Θ(F ) ◦k Θ(G) = Θ(F ◦k G). Consequently,

(1.7) Θ(F ) ◦Θ(G) = Θ(F ⋆ G).

In particular, Lemma 1.10 applies for the graded pre-Lie system End(V ). Next proposition states that
both pre-Lie products behave well with respect to the differential of the dgmodule V .

Proposition 1.13. Let V be a dgmodule with differential m1. The induced differential ∂ on End(V ) satisfies,
∀f ∈ Endni (V ), ∀g ∈ End(V ),

∂f = {m1, f}, ∂f = [m1, f ];

∂(f ⋆ g) = ∂f ⋆ g + (−1)if ⋆ ∂g ∂(f ◦ g) = ∂f ◦ g + (−1)|f |f ◦ ∂g;

∂{f, g} = {∂f, g}+ (−1)i{f, ∂g}, ∂[f, g] = [∂f, g] + (−1)|f |[f, ∂g].

As a consequence End(V ) is a differential graded Lie algebra and a differential (weight) graded Lie algebra.

Proof. The differential m1 is considered as an element of End1−1(V ), hence of degree −1 and of weight −1.
Recall that ∀f ∈ Endni (V ), one has

∂f = m1 ◦1 f − (−1)i
m∑

k=1

f ◦k m1 = {m1, f} = (m1 ◦ f − (−1)i+n−1f ◦m1) = [m1, f ].

The proof will be the same for the pre-Lie product ⋆ and the pre-Lie product ◦. Let us prove it for ◦. Using
the pre-Lie relation (1.3), one gets

∂(f ◦ g)− ∂f ◦ g − (−1)|f |f ◦ ∂g = m1 ◦ (f ◦ g)− (−1)|f |+|g|(f ◦ g) ◦m1 − (m1 ◦ f) ◦ g+

(−1)|f |(f ◦m1) ◦ g − (−1)|f |f ◦ (m1 ◦ g) + (−1)|f |+|g|f ◦ (g ◦m1) = m1 ◦ (f ◦ g)− (m1 ◦ f) ◦ g.
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The last term of the equalities vanish because of Relation (1.1). The relation ∂[f, g] = [∂f, g]+ (−1)|f |[f, ∂g]
is immediate. �

Remark 1.14. Assume we are given an operad P in graded R-modules, that is, a collection (P(n))n>1 where
P(n) is a graded R-module P(n) = ⊕i∈ZP

n
i . The axioms for the operad are exactly the ones of Proposition

1.8, where ◦k denotes the partial composition. As a consequence ⋆ determines a graded pre-Lie structure on
P and ◦ a weight graded pre-Lie structure on P where f ∈ Pn

i has weight i + n − 1. Lemma 1.10 applies
also in this case. The same is true for the convolution operad Hom(C,P) as noticed in the introduction of
the section. In particular, the convolution operad forms a graded pre-Lie system.

2. Homology of graded R-modules of homomorphisms

In this section, we give the conditions on the complexes C and D so that the map

H(Hom(C,D)) → Hom(H(C), H(D))

is an isomorphism (Proposition 2.3) and that the map

H(Hom(C⊗n, C)) → Hom(H(C)⊗n, H(C))

is an isomorphism (Corollary 2.4). The last result is one of the key ingredient in order to prove the obstruction
Theorem 3.8. It might be also of independent interest.

Definition 2.1. Let C and D be dgmodules. We denote by Hom(C,D) the dgmodule

Homi(C,D) =
∏

n

HomR(Vn,Wn+i)

with differential ∂ : Homi(C,D) → Homi−1(C,D) defined for c ∈ Cn by

(∂f)n(c) = ∂D(fn(c)) − (−1)ifn−1(∂Cc).

The graded R-module of cycles in C is Zi(C) = Ker(δC : Ci → Ci−1) and Bi(C) = Im(δC : Ci+1 → Ci) is
the graded R-module of boundaries in C. The homology of C is the graded R-module Hi(C) = Zi(C)/Bi(C).

One has ∂f = 0 if and only if f is a morphism of differential graded R-modules. In particular f(Z(C)) ⊂
f(Z(D)) and f(B(C)) ⊂ B(D). As a consequence, if f ∈ Homi(C,D) and ∂f = 0, then f defines a map
f̄ ∈ Homi(H(C), H(D)) as f̄([c]) = [f(c)]. Moreover, if f = ∂u, then f(Z(C)) ⊂ B(D) and f̄ = 0. Thus
one has a well defined map

HC,D : H(Hom(C,D)) → Hom(H(C), H(D)).

Definition 2.2. We say that a dgmodule C satisfies assumption (A), if the sequences 0 → Z(C) → C
∂C−−→

B(C) → 0 and 0 → B(C) → Z(C) → H(C) → 0 are split exact.

Proposition 2.3. Let C and D be dgmodules satisfying assumption (A).

a) Given g ∈ Homi(H(C), H(D)), there exists f ∈ Homi(C,D) such that ∂f = 0 and f̄ = g.
b) For f ∈ Homi(C,D) satisfying ∂f = 0 and f̄ = 0 ∈ Homi(H(C), H(D)), there exists u ∈ Homi+1(C,D)

such that ∂u = f .

Consequently the map HC,D : H(Hom(C,D)) → Hom(H(C), H(D)) is an isomorphism of graded R-modules
and the dgmodule Hom(C,D) satisfies assumption (A).

Proof. The short exact sequence 0 → Z(C) → C
∂C−−→ B(C) → 0 splits. Let τC : Bn−1(C) → Cn denote a

splitting so that Cn = Zn(C) ⊕ τC(Bn−1(C)). The short exact sequence 0 → B(C) → Z(C) → H(C) → 0
splits. Let σ : H(C) → Z(C) denote a splitting so that Zn(C) = σ(Hn(C)) ⊕Bn(C). Consequently

Cn = σ(Hn(C))⊕Bn(C) ⊕ τC(Bn−1(C)) with ∂C(σ(h) + y + τC(z)) = z ∈ Bn−1(C).

We use the same notation for D.
Part a) of the proposition is proved building f as

fn : Cn = σ(Hn(C))⊕Bn(C) ⊕ τC(Bn−1(C)) → Dn+i = σ(Hn+i(D))⊕Bn+i(D)⊕ τD(Bn+i−1(D))
c = σ(h) + y + τC(z) 7→ σ(gn(h)) ∈ σ(Hn+i(D)).

The equality ∂Dfn(c) = 0 = (−1)ifn−1(∂Cc) implies that ∂f = 0 and f = g.
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Let us prove part b). Since f̄ = 0, the map f satisfies f(σ(H(C))) ⊂ B(D). The map u ∈ Homi+1(C,D)
defined by

un(σ(h) + y + τC(z)) = (−1)ifn+1(τC(y)) + τDfn(σ(h)),

satisfies ∂u = f , for (∂u)n(σ(h)+y+τC(z)) = ∂D
(
(−1)ifn+1(τC(y)) + τDfn(σ(h))

)
−(−1)i+1(−1)ifn(τCz) =

fn(∂CτCy) + fn(σ(h)) + fn(τCz) and ∂CτCy = y.
As a consequence, the map HC,D is an isomorphism. The proof of part a) builds an explicit splitting

of the projection Z(Hom(C,D)) → H(Hom(C,D)) ≃ Hom(HC,HD) while the proof of part b) builds an
explicit splitting of the map ∂ : Hom(C,D) → B(Hom(C,D)). Hence, if C and D satisfy assumption (A),
so does Hom(C,D). �

Corollary 2.4. Let C be a dgmodule such that Z(C) and H(C) are projective graded R-modules. For every
n > 1 the map

H(Hom(C⊗n, C)) → Hom(H(C)⊗n, H(C))

is an isomorphism of graded R-modules.

Proof. Note that if H(C) is projective, then the short exact sequence 0 → B(C) → Z(C) → H(C) → 0
splits and B(C) is projective because it is a direct summand of Z(C) which is projective. Consequently, the
short exact sequence 0 → Z(C) → C → B(C) → 0 splits and C satisfies assumption (A).

The proof is by induction on n, applying recursively Proposition 2.3. For n = 1, the corollary amounts to
the statement of Proposition 2.3, with D = C. Moreover Hom(C,C) satisfies assumption (A).

Because C is a dgmodule such that Z(C) and H(C) are projective, the Künneth formula applies (see e.g.
[8]), that is, for every n one has H(C⊗n) ≃ H(C)⊗n.

Let n > 1. Assume that the map H(Hom(C⊗n−1, C)) → Hom(H(C⊗n−1), H(C)) is an isomorphism
and that Hom(C⊗n−1, C) satisfies assumption (A). Then the following sequence of maps is a sequence of
isomorphisms:

H(Hom(C⊗n, C)) ≃ H(Hom(C,Hom(C⊗n−1, C))) → Hom(H(C), H(Hom(C⊗n−1, C))) →

Hom(H(C),Hom(H(C⊗n−1), H(C))) ≃ Hom(H(C),Hom(H(C)⊗n−1, H(C))) ≃ Hom(H(C)⊗n, H(C)))

and Hom(C⊗n, C) = Hom(C,Hom(C⊗n−1, C)) satisfies assumption (A). �

3. Obstruction to A∞-structures

This section is devoted to the obstruction theorem. We first introduceA∞-algebras,Ar-algebras, Hochschild
cohomology and prove Theorem 3.8.

3.1. A∞-algebras. There are mainly two equivalent definitions of A∞-algebras.

Definition 3.1. Let V be a gradedR-module. We denote by T c(sV ) the free conilpotent coalgebra generated
by the suspension of V . An A∞-algebra structure on V is a degree −1 coderivation ∂ on T c(sV ) of square 0.
Namely, the universal property of T c(sV ) implies that ∂ is determined by the sequence ∂n : (sV )⊗n → sV
for n > 1, obtained as the composite

(sV )⊗n →֒ T c(sV )
∂
−→ T c(sV ) ։ sV.

Conversely, given a sequence ∂n ∈ Hom−1((sV )⊗n, sV ) the unique coderivation on T c(sV ) extending ∂ is
given by

∂(sv1 ⊗ . . .⊗ svn) =

n∑

j=1

n+1−j∑

k=1

(−1)|sv1|+...+|svk−1|sv1 ⊗ . . .⊗ svk−1 ⊗ ∂j(svk ⊗ . . .⊗ svk+j−1)⊗ . . .⊗ svn.

Proposition 3.2. Let V be a graded R-module. The following definitions are equivalent. An A∞-algebra
structure on V is

a) a collection of elements ∂i ∈ Hom−1((sV )⊗i, sV ), i > 1, satisfying with the notation of Proposition
1.8

∀n > 1,
∑

i+j=n+1

∂i ⋆ ∂j = 0, or
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b) a collection of elements mi ∈ Homi−2((V )⊗i, V ), i > 1 satisfying, with the notation of Theorem 1.11

(3.1) ∀n > 1,
∑

i+j=n+1

mi ◦mj =
∑

i+j=n+1

(−1)i−1
i∑

k=1

(−1)(j−1)(k−1)mi ◦k mj = 0.

Proof. To prove part a) of the proposition, it is enough to apply Definition 3.1 and compute

(∂2)n(sv1 ⊗ . . .⊗ svn) =

∑

i+j=n+1

n+1−j∑

k=1

(−1)|sv1|+...+|svk−1|∂i(sv1 ⊗ . . .⊗ svk−1 ⊗ ∂j(svk ⊗ . . .⊗ svk+j−1)⊗ . . .⊗ svn) =

∑

i+j=n+1

(∂i ⋆ ∂j)(sv1 ⊗ . . .⊗ svn).

To prove part b) we use the isomorphism Θ defined in (1.6), setting mi to be Θ(∂i). By relation (1.7),
one gets

∂2 = 0 ⇐⇒ ∀n,
∑

i+j=n+1

mi ◦mj = 0.

For the definition of mi ◦mj we refer to Theorem 1.11. �

Remark 3.3. Note that there exist different sign conventions for the definition of an A∞-algebra. Choosing
the bijection

Θ̃ : End(sV ) → End(V )

defined by Θ̃(F ) = s−1Fs⊗n and letting m̃i = Θ̃(bi) one gets the original definition of J. Stasheff in [11]:
the collection of operations m̃i : A

⊗i → A of degree i − 2 satisfies the relation

(3.2) ∀n > 1,
∑

i+j=n+1

(−1)jn
i∑

k=1

(−1)k(j−1)m̃i ◦k m̃j = 0.

This is equivalent to our definition, because

mi = (−1)
i(i−1)

2 m̃i.

Definition 3.4. Let r > 0 be an integer. A graded R-module V is an Ar-algebra if there exists a collection
of elements mi ∈ Homi−2(V

⊗i, V ), for 1 6 i 6 r, such that

∀1 6 n 6 r,
∑

i+j=n+1

mi ◦mj = 0.

Remark 3.5. Note that V is an A1-algebra if and only if V is a dgmodule, with differential m1 of degree −1.
Recall from Proposition 1.13 that the induced differential ∂ on End(V ) satisfies ∂f = [m1, f ].

The dgmodule V is an A2-algebra if and only if there exists an element m2 ∈ End20(V ) such that ∂m2 = 0,
that is, m2 is a morphism of dgmodules.

An A3-algebra is an A2-algebra such that m2 is associative up to homotopy: there exists m3 ∈ End31(V )
such that ∂m3 = −m2 ◦m2. Since m2 has odd weight and ∂m2 = 0 one gets from section 2 that m2 defines a
map m2 ∈ End(H(V )) such that [m2,m2] = [m2,m2] = 2m2 ◦m2 = 0. Namely the graded R-module H(V )
is a graded associative algebra.

3.2. Hochschild cohomology. In this section we recall some facts concerning Hochschild cohomology of
graded associative algebras. Let (A,m2) be a graded associative algebra. Recall that m2 ∈ End20(A) is
associative if and only if m2 ◦m2 = 0.

Lemma 3.6. Let (A,m2) be a graded associative algebra. The map d = [m2,−] : Endni (A) → Endn+1
i (A)

has weight degree 1 and is a differential. The complex so obtained is the Hochschild cochain complex of A
and its cohomology is called the Hochschild cohomology of A. Note that the cohomology is bigraded and is
denoted by HHn

i (A) when the grading needs to be specified.
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Proof. From relation (1.5) one has d2(f) = [m2, [m2, f ]] = −[f,m2 ◦m2] = 0. �

When A is an A2-algebra, the map d is still defined but does not satisfy d2 = 0. Nevertheless, we have
the following lemma:

Lemma 3.7. Let A be an A2-algebra, with structure maps m1 and m2. The maps ∂ = [m1,−] : Endni (A) →

Endni−1(A) and d = [m2,−] : Endni (A) → Endn+1
i (A) satisfy
{
∂2 = 0,

∂d = −d∂.

Proof. Note that since m1 has weight −1 and m2 has weight 1, they are both elements of odd weight. Hence,
equality ∂2 = 0 is a consequence of m1 ◦ m1 = 0 and relation (1.5). Let f be an element of weight i in
End(A). Proposition 1.7 and relation m1 ◦m2 +m2 ◦m1 = 0 = [m1,m2] imply that

∂d(f) = [m1, [m2, f ]] = (−1)i+1
(
−[m2, [f,m1]] + (−1)i[f, [m1,m2]]

)
= −[m2, [m1, f ]] = −d∂(f). �

3.3. Obstruction theory.

Theorem 3.8. Let r > 3. Let A be a dgmodule such that H(A) and Z(A) are graded projective R-modules.

Assume A is an Ar-algebra, with structure maps mi ∈ Endii−2(A) for 1 6 i 6 r. The obstruction to lift the

Ar−1-structure of A to an Ar+1-structure lies in HHr+1
r−2(H(A)).

Proof. By assumption, one has ∀n 6 r,
∑

i+j=n+1 mi ◦mj = 0 which writes

∀n 6 r, ∂mn = −
∑

i+j=n+1,
i,j>1

mi ◦mj .

The weight of mi is i− 2 + i− 1 = 2i− 3, thus odd. Let

Or+1 =
∑

i+j=r+2,
i,j>1

mi ◦mj ∈ Homr−2(A
⊗r+1, A).

Proposition 1.13 gives

∂Or+1 =
∑

a+b+c=r+3,
a,b,c>1

−(ma ◦mb) ◦mc +ma ◦ (mb ◦mc)

The sum splits into the following sums:

If a, b, c ∈ {2, . . . , r} are distinct integers, one gets the twelve terms of the Jacobi relation, i.e.
∑

1<a<b<c6r
a+b+c=r+3

[ma, [mb,mc]] + [mb, [mc,ma]] + [mc, [ma,mb]] = 0.

Regrouping the terms where a = b and c 6= a or a = c and b 6= a, one gets the four terms of the
pre-Lie relation of the form,

∑

α6=γ,α,γ>1
2α+γ=r+3

−(mα ◦mα) ◦mγ +mα ◦ (mα ◦mγ)− (mα ◦mγ) ◦mα +mα ◦ (mγ ◦mα) = 0

If b = c ∈ {2, . . . , r}, relation (1.4) implies
∑

16a,1<b6r
a+2b=r+3

−(ma ◦mb) ◦mb +ma ◦ (mb ◦mb) = 0.

Consequently ∂Or+1 = 0 and Or+1 gives rise to an element Or+1 ∈ Endr+1
r−2(H(A)). Again, by splitting the

sum,

dOr+1 =
∑

a+b=r+2,a,b>1

[m2,ma ◦mb]

and using the relation (1.5) one gets
9



If a = 2 or b = 2, then [m2, [m2,mr]] = [m2 ◦m2,mr] = −[∂m3,mr];
If a 6= b, a, b > 2, then [m2, [ma,mb]] = −[ma, [m2,mb]]− [mb, [m2,ma]];
If a = b, a > 2, then [m2,ma ◦ma] = −[ma, [m2,ma]).

Thus, on the one hand,

dOr+1 = −[∂m3,mr]−
∑

a+b=r+2,a,b>2

[ma, [m2,mb]].

On the other hand, by splitting the sum and using the computation of ∂Or+1, one gets that

∂(
∑

a+b=r+3,
a,b>2

ma ◦mb) =
∑

a+b=r+3,
a,b>2

(∂ma) ◦mb −ma ◦ ∂(mb)

= [∂m3,mr] +
∑

a+b=r+2,
a,b>2

−[m2,mb] ◦ma +ma ◦ [m2,mb]

= [∂m3,mr] +
∑

a+b=r+2,
a,b>2

[ma, [m2,mb]] = −dOr+1

As a consequence d(Or+1) = 0. If the class of Or+1 vanishes in HHr+1
r−2(H(A)), then there exists u ∈

Endrr−2(H(A)) such that du = Or+1.
The hypotheses made on the R-module A allow us to apply Corollary 2.4. There exists m′

r ∈ Endrr−2(A)

such that ∂m′
r = 0 and m′

r = u. Moreover

[m2,m′
r] = dm′

r = du = Or+1 = [m2,mr] +
∑

i+j=r+2,
i,j>2

mi ◦mj .

By Corollary 2.4, there exists mr+1 ∈ Endr+1
r−1(A) such that

∂mr+1 = [m2,m
′
r −mr]−

∑

i+j=r+2,
i,j>2

mi ◦mj.

As a consequence the collection {m1, . . . ,mr−1,mr −m′
r,mr+1} is an Ar+1-structure on A extending its

Ar−1-structure. �

Corollary 3.9. Let A be an associative algebra up to homotopy such that H(A) and Z(A) are graded
projective R-modules. If HHr+1

r−2(H(A)) = 0, ∀r > 3, then there exists an A∞-structure on A with m1 the
differential of A and m2 its product.
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