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Dear Dr Kostic, 

 

 We are very happy that the 4 reviewers commented positively on our manuscript “Coenzyme 

Q biosynthesis: Coq6 catalyzes the C5-hydroxylation reaction and substrate analogues rescue 

Coq6 deficiency” by Mohammad Ozeir, Ulrich Mühlenhoff, Holger Webert, Roland Lill, Marc 

Fontecave, and Fabien Pierrel.  We now submit a revised version of this manuscript “Coenzyme Q 

biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogues rescue 

Coq6 deficiency” which takes into consideration the points raised by the reviewers.   

 

In addition to all the requested modifications detailed in the “response to reviewers” file, we 

improved the completeness of the data set presented in fig 4D by including additional controls (cells 

transformed with a vector and Yah1-complemented cells with or without vanillic acid). The 

mitochondrial preparations used in these experiments were of better quality than the ones used to 

generate the data of the original submission explaining that the succinate dehydrogenase (SDH) 

activity values are now higher. Our original result that vanillic acid improved SDH-cyt c activity in 

Yah1-depleted cells expressing Fdx2 is completely reproduced in this new data set. Therefore, our 

original interpretation is reinforced.  

 Overall, we have modified the text of the manuscript as presented in the “response to 

reviewers” file and Figure 2, 3, 4, S1 and S3 have also been modified according to reviewers’ 

comments.  

 

We are confident that this revised manuscript is now suitable for publication in Chemistry and 

Biology and thank you for your consideration to our manuscript. 

 

        

Sincerely yours   

  

Dr. Fabien PIERREL 

Cover Letter

mailto:fabien.pierrel@cea.fr
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Tél : 04 38 78 91 10 
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th

 2011 

 

 

 We are very happy that the 4 reviewers commented positively on our manuscript “Coenzyme 

Q biosynthesis: Coq6 catalyzes the C5-hydroxylation reaction and substrate analogues rescue 

Coq6 deficiency” by Mohammad Ozeir, Ulrich Mühlenhoff, Holger Webert, Roland Lill, Marc 

Fontecave, and Fabien Pierrel.  We now submit a revised version of this manuscript “Coenzyme Q 

biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogues rescue 

Coq6 deficiency” which takes into consideration the points raised by the reviewers.   

 

For reviewer 1 :   

1) The title has been revised.  

 2) We have characterized in our previous publication (Chem. Biol. (2010), 17: 449-459) the 4-

AP and 4-HP intermediates accumulated in Yah1 and Arh1 depleted cells. Because of the limited 

amount of compounds accumulated by the coq6 mutant strains, we did not repeat the NMR analysis. 

However, we provide irrefutable evidences that the compounds accumulated by the coq6 mutant 

strains are indeed identical to 4-AP and 4-HP which accumulate in Yah1 and Arh1 depleted cells. 

First, they have the same retention time and electrochemical properties than 4-AP and 4-HP. Second, 

we now show in Fig. S1B the UV-vis spectra of both compounds which are identical to the ones we 

previously published for 4-HP and 4-AP (Fig S2C and S3B). Third, we now mention in the text the 

monitoring of the compounds by mass spectrometry. The 518/122 and the 519 /123 transitions are 

characteristics of the carboxytropylium ions formed upon fragmentation of 4-AP and 4-HP 

respectively. The undistinguishable HPLC-ECD, UV-vis and mass spectrometry properties of 4-AP/4-

HP and of the compounds accumulated by the Coq6-deficient strains prove that these compounds are 

identical.     

 3) While a scheme showing the proposed relationship between Yah1, Arh1 and Coq6 may be 

helpful to readers, we consider at this point that our proposal is still speculative and we do not want to 

“formalize” it by a scheme which may latter be taken as a fact by readers. We added one sentence in 

the discussion to further clarify our proposed relationship between Yah1, Arh1 and Coq6.   

*Response to Reviewers

mailto:fabien.pierrel@cea.fr


 2 

4) Our present experiments clearly establish that 4-AP and 4-HP do not transfer electrons in 

the respiratory chain since yeast strains accumulating these compounds can not grow on respiratory 

carbon sources (Fig 3A, B). In this sense, 4-AP and 4-HP may be considered non-functional. 

However, the possible function of these compounds in other established Q-dependent cellular 

functions like an antioxidant activity or an influence on the mitochondrial permeability pore has not 

been addressed yet but is certainly behind the scope of this manuscript. Whether 4-AP and 4-HP may 

be processed into Q, if the enzymatic deficiency that led to their accumulation is relieved, is not 

known either.  

 5) We have described in our previous publication (Chem. Biol. (2010), 17: 449-459) that 

endogenously synthesized pABA and 4-HB are limiting for Q biosynthesis. We again demonstrate this 

in fig. S1A by showing that biosynthesized Q levels are increased when exogenous pABA or 4-HB are 

added to the culture medium.  

 6) The figures in the supplemental section are now correctly identified.  

 

 

For reviewer 2 :  

1) Comment 2 from reviewer 3 recommends the opposite of comment 1 from reviewer 2, i.e. 

include supplemental figures into the main text. In this revised version, we have been careful to keep 

in the figures the data which are essential to the comprehension of the study while the supporting data 

have been included into the supplemental figures. We paid attention to clarify the presented 

chromatograms by either decreasing their numbers or increasing their contrast or increasing the 

spacing between them. In this regard, one chromatogram from fig 2A and one from fig 2B have been 

moved to Fig S1, in which the chromatograms are now displayed in two panels. One chromatogram 

from fig 3A has been moved to Fig S3, in which the chromatograms are now displayed in two panels.  

We chose to keep in the main figures chromatograms from cells grown in pABA and 4-HB 

because 4-AP and 4-HP respectively are characteristic of an impaired C5-hydroxylation. As pointed in 

comment 4, 4-HP has a retention time very similar to DMQ whereas no other compound elutes close 

to 4-AP.  In consequence, the accumulation of 4-AP which we can unambiguously identify based on 

its retention time, is diagnostic of a deficiency in the C5-hydroxylation and corroborates the 

accumulation of 4-HP (which elutes at a retention time close to that of DMQ) seen with cells grown in 

the presence of 4-HB.  

 

2) Large variation of the Q/DMQ ratio throughout the growth of S. cerevisiae has been 

described (Cell Mol Life Sci 2009,66,173-186). The data previously presented in Fig. S1 showed an 

equal abundance of Q and DMQ for the WT cells which were harvested in exponential growth. We 

repeated the experiment and analysed the quinone content of cells harvested in stationary phase. The 
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new chromatograms are displayed in Fig. S1A and are similar to the other chromatograms of WT cells 

(again harvested in stationary phase) presented in other figures.  

3) The coq6/Coq8 strain now presented in Fig S1C accumulates 4-HP and no 4-AP because 

when no exogenous precursor of Q is supplied in the growth medium (pABA or 4-HB) then 

endogenous 4-HB seems to be the preferred substrate over pABA. This statement has been included in 

the manuscript.  

4) When both 4-HP and DMQ are formed (fig 2C, 3A, S3C), the separation although not 

optimal is visible. We tried to improve the separation by varying the solvents (ethanol, mixture of 

isopropanol and acetonitrile) but we could not define conditions to better separate all the compounds 

analyzed (4-AP, 4-HP, DMQ6, Q6, N-DMQ6 (see comment 6 for reviewer 3)). As discussed in 

comment 1, the accumulation of 4-AP in cells grown in the presence of pABA corroborates the 

accumulation of 4-HP seen with cells grown in the presence of 4-HB. Concomitant accumulation of 4-

HP and DMQ in Fig. 2C results from a partial complementation of the C5-hydroxylation deficiency. 

In fig 3A and S3C, 4-HP is formed by the endogenous 4-HB entering the Q pathway whereas DMQ is 

formed from the incomplete transformation of VA into Q6.     

5) Some repetitions and references have been deleted.  

 

For reviewer 3 :  

1) We changed yeast into S. cerevisiae where appropriate.  

2) See comment 1 for reviewer 2.  

 3)  The efficient restoration of Q biosynthesis by vanillic acid in the flx1 mutant (Fig S3D), 

implicates that only the C5-hydroxylation depends on FAD and therefore excludes that an unknown 

FAD-dependent protein could be required for another step of Q biosynthesis. Since our present work 

demonstrates that Coq6 is required for this C5-hydroxylation reaction and because Coq6 has been 

predicted to be a flavin-dependent monooxygenase, we feel that it is reasonable to assume that the 

FAD deficiency caused by the deletion of flx1 affects Coq6 activity and that Coq6 is an FAD-

dependent protein. However, we agree with reviewer 3 that we do not have a biochemical proof that 

Coq6 is FAD-dependent and we took care of not making this statement in the text.  In addition, based 

on the crystal structure of para-hydroxybenzoate hydroxylase (PobA) discussed in Protein Science 

1997, 6, 2454-2458, the three conserved residues that we mutated in Coq6 are likely involved in FAD 

and NADPH binding as now stated in the text (the corresponding references were added). We are 

working on Coq6 heterologous expression and purification but so far our attempts resulted in 

obtaining an insoluble protein. In consequence, we are not able to address whether Coq6 is a FAD-

binding protein but as discussed above, our study highly suggests this by clearly showing that Coq6 is 

required for the C5-hydroxylation and that the C5-hydroxylation is dependent on FAD.  

4) We now show the requested data in Fig. 2C 

5) See comment 2 for reviewer 2.  
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6) The peak corresponds to 4-aminodemethoxyquinone (N-DMQ) and forms in Yah1-

depleted cells only when pABA is added to the growth medium. The incomplete shut-down of Yah1 

results in formation of N-DMQ and of some residual Q as seen in Fig. 4B and S4. We are currently 

working on a collaborative manuscript in which a particular coq mutant accumulates greater amounts 

of N-DMQ than Yah1-depleted cells.  In this future manuscript, the full characterization of N-DMQ 

will be detailed and its formation in Yah1-depleted cells will be discussed.  

7) Our previous study (Chem. Biol. (2010), 17: 449-459) demonstrated the essentiality of 

Arh1 for the C5-hydroxylation reaction. We have modified the discussion to clarify this point.  

8) The review by Kawamukai is now cited.  

 

For reviewer 4 :  

 

We corrected our statement and simply discuss the potential advantage of using hydrophilic substrate 

analogues like vanillic acid instead of Q supplementation in some primary Q deficiencies.  

 

 

In addition to all these requested modifications, we improved the completeness of the data set 

presented in fig 4D by including additional controls (cells transformed with a vector and Yah1-

complemented cells with or without vanillic acid). The mitochondrial preparations used in these 

experiments were of better quality than the ones used to generate the data of the original submission 

explaining that the succinate dehydrogenase (SDH) activity values are now higher. Our original result 

that vanillic acid improved SDH-cyt c activity in Yah1-depleted cells expressing Fdx2 is completely 

reproduced in this new data set.  

 

 Overall, we have modified the text of the manuscript as presented above and Figure 2, 3, 4, S1 

and S3 have also been modified according to reviewers’ comments.  

 

     

Sincerely yours   

  

Dr. Fabien PIERREL 
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Summary  

 

Coenzyme Q (Q), an essential component of eukaryotic cells, is synthesized by several 

enzymes from the precursor 4-hydroxybenzoic acid. Mutations in six of the Q biosynthesis 

genes cause diseases that can sometimes be ameliorated by oral Q supplementation. We 

establish here that Coq6, a predicted flavin-dependent monooxygenase, is involved 

exclusively in the C5-hydroxylation reaction. In an unusual way, the ferredoxin Yah1 and the 

ferredoxin reductase Arh1 may be the in vivo source of electrons for Coq6. We also show that 

hydroxylated analogues of 4-hydroxybenzoic acid, such as vanillic acid or 3,4-

dihydroxybenzoic acid, restore Q biosynthesis and respiration in a Saccharomyces cerevisiae 

coq6 mutant. Our results demonstrate that appropriate analogues of 4-hydroxybenzoic acid 

can bypass a deficient Q biosynthetic enzyme and might be considered for the treatment of 

some primary Q deficiencies.  

 

 

 

 

 

 

 

 

Highlights  

 

 Inactivation of Coq6 abrogates the C5-hydroxylation in coenzyme Q biosynthesis 

 Vanillic acid restores  Q biosynthesis and respiration in coq6 S. cerevisiae mutants 

 4-hydroxybenzoic acid analogues bypass a deficient S. cerevisiae Q biosynthetic step 
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Introduction  

 

Coenzyme Q or ubiquinone (Q) is a redox active lipid present in most organisms and 

in all tissues of multicellular eukaryotes where it shuttles electrons from complex I and II to 

complex III of the mitochondrial respiratory chain and acts as an important lipid-soluble 

antioxidant. Moreover, Q participates in the control of the mitochondrial membrane transition 

pore and functions with uncoupling proteins in the mitochondrial inner membrane (Bentinger 

et al., 2010). Q contains a polyprenyl tail with six isopentenyl units in Saccharomyces 

cerevisiae (Q6) and ten in human (Q10) (Kawamukai, 2009) (Figure 1). In S. cerevisiae, the 

biosynthesis of Q is accomplished by multiple conserved mitochondrial matrix enzymes 

(termed Coq1-Coq9) some of which are assembled in a large Q biosynthetic complex 

associated with the inner membrane (Tran and Clarke, 2007). Mutations affecting five genes 

involved in Q biosynthesis have been described and result in primary Q deficiencies that 

cause clinically heterogeneous diseases (Quinzii and Hirano, 2010). Oral Q10 supplementation 

of patients yields significant improvement in some cases (Quinzii and Hirano, 2010). Very 

recently, mutations in a sixth gene, COQ6, were shown to cause nephrotic syndrome with 

sensorineural deafness (Heeringa et al., 2011).   

The initial stage of Q biosynthesis involves Coq2. In S. cerevisiae, Coq2 prenylates 4-

hydroxybenzoic acid (4-HB) or the newly identified precursor para-aminobenzoic acid 

(pABA) to yield 3-hexaprenyl-4-hydroxybenzoic acid (HHB) and 3-hexaprenyl-4-

aminobenzoic acid (HAB), respectively (Figure 1) (Marbois et al., 2010; Pierrel et al., 2010). 

The C4-amine originating from pABA is subsequently converted into an hydroxyl at an 

unidentified step of Q6 biosynthesis (Figure 1). S. cerevisiae cells depleted for either the 

mitochondrial ferredoxin Yah1 or the mitochondrial ferredoxin reductase Arh1 synthesize 

almost no Q6 and accumulate 3-hexaprenyl-4-aminophenol (4-AP) upon culturing in the 
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presence of pABA or 3-hexaprenyl-4-hydroxyphenol (4-HP) in the presence of 4-HB (Figure 

1) (Pierrel et al., 2010). This result established that Yah1 and Arh1 are absolutely required for 

the C5-hydroxylation step. Arh1 and Yah1 form a well established electron transfer complex 

necessary in S. cerevisiae for iron sulphur cluster (ISC) and heme A biosynthesis (Barros et 

al., 2002; Lange et al., 2000; Li et al., 2001). Yah1 has two human homologues, Fdx1 and 

Fdx2. Fdx1 functions in steroid biogenesis by transferring electrons to mitochondrial 

cytochrome P450 enzymes whereas Fdx2 transfers electrons for the biogenesis of heme A and 

ISC (Sheftel et al., 2010).  

Coq6 is required for Q6 biosynthesis in Saccharomyces cerevisiae (Gin et al., 2003) 

and, based on its amino acid sequence, has been predicted to belong to the class A 

flavoprotein monooxygenase family suggesting that it contains a FAD cofactor (van Berkel et 

al., 2006). Coq6 has been postulated to function in the C1- and/or the C5-hydroxylation 

reactions (Gin et al., 2003) (Figure 1). This ambiguity has not been resolved partly because a 

S. cerevisiae mutant lacking the entire COQ6 gene (coq6) accumulates only the early Q6 

biosynthetic intermediate, HHB when grown in the presence of 4-HB (Gin et al., 2003). In 

fact, the coq3-9 mutants all accumulate HHB because most Coq polypeptides (excluding 

Coq1, Coq2, Coq5 and Coq8) are interdependent for their stability within the Q biosynthetic 

complex (Hsieh et al., 2007). Indeed, the absence of a single Coq polypeptide causes the 

degradation of other Coq proteins (Tran and Clarke, 2007), thus preventing the biosynthesis 

of Q6 intermediates diagnostic of the altered step in coq mutants. Consequently, it has been 

difficult to elucidate the precise function of Coq4, Coq6 and Coq9. Coq8, a predicted protein 

kinase, is essential for Q6 biosynthesis and participates in the phosphorylation of Coq3, Coq5 

and Coq7 (Tauche et al., 2008; Xie et al., 2011). Overexpression of Coq8 has been shown to 

restore the levels of Coq3 and Coq4 in most coq mutants (Zampol et al., 2010). In addition, 

overexpression of Coq8 in a coq7 strain causes the accumulation of demethoxyquinone 
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(DMQ6) (Padilla et al., 2009), the substrate of the C6-hydroxylase, Coq7 (Stenmark et al., 

2001) (Figure 1). This result implies that overexpression of Coq8 in the coq7 strain prevents 

the degradation of the Coq polypeptides involved in Q6 biosynthetic steps upstream of Coq7. 

DMQ6 also forms in a coq7 strain expressing the inactive allele COQ7-E233K even in the 

absence of Coq8 overexpression (Padilla et al., 2004).  It therefore seems that single 

mutations in a given Coq protein have less impact on the integrity of the Q6 biosynthetic 

complex than null mutations.  

 In the current study, we sought to define which hydroxylation step of Q6 biosynthesis 

is dependent on Coq6. We show that a coq6 strain expressing inactive COQ6 alleles or 

overexpressing Coq8 accumulates products of the Q6 biosynthetic pathway which establish 

that the monooxygenase Coq6 is specifically required for the C5-hydroxylation reaction. The 

functional combination of Yah1, Arh1 and Coq6 in the C5-hydroxylation reaction is 

discussed. In addition, we demonstrate that hydroxylated forms of 4-HB like vanillic acid or 

3,4-dihydroxybenzoic acid are able to restore Q6 biosynthesis and respiration in a S. 

cerevisiae strain deficient for Coq6. This represents the first indication that the use of 4-HB 

analogues might be considered as a strategy to bypass defective steps in the Q biosynthetic 

pathway.   

 

Results 

 

Coq6 is required for the C5- but not the C1-hydroxylation reaction of Q biosynthesis. 

Regular synthetic yeast growth medium contains pABA which is a precursor of Q6 (Marbois 

et al., 2010; Pierrel et al., 2010). In order to control the nature of the precursors employed for 

Q6 biosynthesis, we used a synthetic medium without pABA for all our experiments. 

Electrochemical detection (ECD) of cell lipid extracts separated by HPLC revealed that 
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addition of pABA or 4-HB to the growth medium increased the Q6 and DMQ6 content of S. 

cerevisiae (Figure S1A) consistent with our previous conclusion that endogenous 4-HB is 

limiting for Q6 biosynthesis (Pierrel et al., 2010).  Overexpression of Coq8 in the coq6 

mutant strain led to an accumulation of 4-AP or 4-HP in cells cultured in the presence of 

pABA or 4-HB, respectively, whereas no products were formed in the absence of Coq8 

overexpression (Figure 2A). Identities of 4-AP and 4-HP were established previously (Pierrel 

et al., 2010) and here confirmed by their retention time in HPLC chromatograms, their UV-vis 

spectra (Figure S1B) and the expected ion transitions (m/z: 518.3/122 for 4-AP and 519.3/123 

for 4-HP) in mass spectrometry coupled to HPLC (data not shown). Without pABA or 4-HB 

supplementation of the growth medium, the coq6 strain overexpressing Coq8 accumulated 

4-HP suggesting that endogenous 4-HB enters the Q biosynthetic pathway preferentially over 

endogenous pABA (Figure S1C). We also mutated residues in Coq6 (G202, G386, N388) 

selected on the basis of their conservation in other flavoprotein monooxygenases (Figure S2) 

in which they are implicated in the binding of NADPH and FAD, as shown in the case of the 

para-hydroxybenzoate hydroxylase PobA (Eppink et al., 1997; Palfey et al., 1994). As 

expected, a vector coding for Coq6 restored Q biosynthesis in the coq6 strain whereas 

G202A and G386A-N388D mutant alleles of COQ6 were inactive as proven by the absence 

of Q and DMQ6 (Figure 2B and Figure S1C). However, these mutants caused an 

accumulation of 4-AP in coq6 cells cultured in the presence of pABA, and of 4-HP upon 

growth in the presence of 4-HB (Figure 2B). Together, these results show that a coq6 strain 

either expressing a Coq6 protein inactivated by point mutations or overexpressing Coq8 

accumulates 4-AP and 4-HP. This finding demonstrates that the C1- but not the C5-

hydroxylation reaction is still catalyzed in the absence of Coq6 activity (Figure 1). Since 

Coq6 is a predicted FAD-dependent monooxygenase (Gin et al., 2003; van Berkel et al., 

2006), we checked whether the C5-hydroxylation is dependent on the availability of FAD in 
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mitochondria. Deletion of the gene FLX1 which codes for a mitochondrial FAD transporter 

results in decreased activity of FAD-dependent mitochondrial enzymes (Bafunno et al., 2004; 

Tzagoloff et al., 1996). The flx1 strain showed markedly diminished levels of Q6 and 

accumulated 4-AP and 4-HP when cultured in the presence of pABA and 4-HB respectively 

(Figure 2C). Furthermore, we observed that overexpression of Fad1, the flavin adenine 

dinucleotide synthetase, restored Q6 biosynthesis in the flx1 strain, however without 

completely abolishing the formation of 4-HP (Figure 2C). This result is in agreement with the 

overexpression of Fad1 being able to partially complement the mitochondrial FAD deficiency 

of a flx1 mutant strain (Wu et al., 1995). Collectively, our results show that the C5-

hydroxylation depends on mitochondrial FAD and that Coq6, a predicted FAD-dependent 

monooxygenase, is essential for the C5- but not for the C1-hydroxylation reaction of Q6 

biosynthesis.  

 

 

Vanillic acid and 3,4-dihydroxybenzoic acid restore Q6 biosynthesis in strains lacking 

Coq6 activity.  

We tested whether hydroxylated forms of 4-HB like 3,4-dihydroxybenzoic acid (3,4-diHB) or 

vanillic acid (VA) (Figure S3A) may enter the Q6 biosynthetic pathway and therefore bypass 

the C5-hydroxylation step which is deficient in coq6 mutants. Addition of 3,4-diHB or VA to 

the growth medium restored Q6 biosynthesis in a dose-dependent manner in the coq6 strain 

overexpressing Coq8 (Figure 3A and Figure S3B) or expressing the inactive Coq6 mutant 

G386A-N388D (Figure S3C). The coq6 strain containing only an empty vector synthesized 

no Q6 from VA showing that the integrity of the Q biosynthetic complex is required to 

convert VA in Q6 (Figure S3B). The coq6 strain overexpressing Coq8 or expressing Coq6-

G386A-N388D was able to grow on respiratory carbon sources supplemented with 3,4-diHB 
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or VA, showing that Q6 biosynthesized from these substrate analogues is physiologically 

functional (Figure 3B). When pABA or 4-HB were added in place of VA or 3,4-diHB, the 

cells were not able to grow on respiratory substrates (Figure 3B), thus showing that 4-AP or 

4-HP are not competent for electron transfer in the respiratory chain. VA also restored Q6 

biosynthesis in the flx1 mutant to 70% of WT (Figure S3D).  

Addition of increasing concentrations of 4-HB to the growth medium containing 1mM VA 

gradually decreased Q6 levels and promoted the accumulation of 4-HP in the coq6 strain 

overexpressing Coq8 (Figure 3C). pABA had a similar impact on Q6 levels at concentrations 

comparable to those of 4-HB (Figure S3E). Altogether our data show that exogenous pABA 

and 4-HB compete with VA to enter the Q6 biosynthetic pathway at the prenylation step 

catalyzed by Coq2 and that prenylated VA is converted into Q6, therefore bypassing the 

deficient C5-hydroxylation reaction in coq6 mutant cells.  

 

Coq6 and Yah1 are functionally coupled in the C5-hydroxylation reaction. 

Our results show that the phenotypes of cells depleted for Yah1 (Pierrel et al., 2010) or 

deficient for Coq6 are strikingly similar with regard to Q6 biosynthesis suggesting a 

mechanism in which Coq6 and Yah1 work together in the C5-hydroxylation step. The 

following experiments establish indeed that depletion of Yah1 directly impacts Coq6 activity. 

First, we demonstrate that Coq6 is stable when Yah1 is depleted. We constructed a Gal-YAH1 

COQ6-3HA strain which contains a chromosomal insertion of a sequence coding for a triple 

hemagglutinin (3HA) epitope tag on the 3’ end of COQ6 and allows for regulated expression 

of Yah1. Indeed, the native YAH1 promoter has been replaced by the GAL1-10 promoter 

allowing for expression of Yah1 in a culture medium containing galactose and for depletion 

of Yah1 in a medium containing glucose (Lange et al., 2000). The Coq6-3HA protein was 

detected by immunoblotting at the expected size of 57 kDa (Figure 4A). Depletion of Yah1 by 
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culturing the Gal-YAH1 COQ6-3HA strain in the presence of glucose had no effect on the 

steady-state level of Coq6 (Figure 4A). The presence of Coq6 in Yah1-depleted cells is also 

confirmed by the observation that VA or 3,4-diHB restores Q6 biosynthesis in the Yah1-

depleted cells regardless of Coq8 overexpression (Figure S4A), thus showing that the Q 

biosynthetic complex is intact and therefore that Coq6 is present. Second, overexpression of 

Fad1 did not complement the Q6 biosynthetic defect in Yah1-depleted cells (Figure S4B), 

suggesting that this defect does not result from a depletion of mitochondrial FAD. These data 

together show that Yah1 depletion, while having a negative effect on Q6 biosynthesis, has no 

effect on Coq6 stability or mitochondrial FAD content.  

Human Fdx2 was recently shown to complement the ISC biosynthetic defect of Yah1-

depleted cells (Sheftel et al., 2010). Surprisingly, none of the two human homologues of 

Yah1, Fdx1 or Fdx2 complemented the Q6 defect of Yah1-depleted cells as shown from the 

observation that the cells contained almost no Q6 and furthermore accumulated 4-AP upon 

culture in the presence of pABA (Figure 4B). Growth of the Gal-YAH1 strain on synthetic 

medium containing the respiratory carbon source lactate was limited unless it contained a 

plasmid carrying the YAH1 gene (Figure 4C). With a plasmid expressing Fdx2, growth was 

restored upon addition of VA or 3,4-diHB to the lactate medium while addition of 4-HB was 

without any effect (Figure 4C). Our results thus suggest that, in the absence of VA or 3,4-

diHB, Q6 is limiting for respiratory growth of the Gal-YAH1 strain expressing Fdx2. This was 

confirmed by measuring the in vitro activity of succinate dehydrogenase (SDH), a multi-

protein complex which contains three ISC and one FAD, all required for activity. As expected 

from the complementation of the ISC biosynthetic defect of Yah1-depleted cells by Fdx2 

(Sheftel et al., 2010), Fdx2 significantly restored reduction of the chemical dichlorophenol-

indophenol (DPIP) by SDH in Yah1-depleted cells, although not to WT levels (Figure 4D). 

Q6 is required to transfer electrons from SDH to the cytochrome bc1 complex which reduces 
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cytochrome c (cyt c). Fdx2 restored SDH-cyt c reductase activity in Yah1-depleted cells only 

when VA was added to the culture medium (Figure 4D). This result shows that the limiting 

factor in transferring electrons from succinate to cyt c in Yah1-depleted cells expressing 

human Fdx2 is Q6, the level of which is restored by addition of VA to the growth medium 

(Figure S4A).  

 

Discussion 

Our current work addresses the precise functional role of the Coq6 monooxygenase in 

the hydroxylation reactions of the Q biosynthetic pathway. As shown previously in the case of 

the coq7 strain (Padilla et al., 2004; Padilla et al., 2009), overexpression of Coq8 or 

expression of inactive alleles of COQ6 allow for preservation of the integrity of the Q6 

biosynthetic complex in a coq6 strain. We show here for the first time that under these 

conditions, the coq6 strain grown in the presence of pABA or 4-HB accumulates significant 

amounts of 4-AP and 4-HP respectively. The accumulation of 4-AP and 4-HP is diagnostic of 

an impaired C5-hydroxylation but of a functional C1-hydroxylation. As a consequence, the 

predicted FAD-dependent monooxygenase Coq6 is required for the C5-hydroxylation but not 

for the C1-hydroxylation, definitively resolving the uncertainty regarding which 

hydroxylation reaction is catalyzed by Coq6. As a result, the C1-hydroxylase is still unknown 

(Figure 5) and is unlikely to be any of the Coq proteins identified to date because among 

these, only Coq6 and Coq7 display sequence homologies with monooxygenases and Coq7 

participates exclusively in the C6-hydroxylation (Behan and Lippard, 2010; Padilla et al., 

2004). Some experiments reported here suggest that the C1-hydroxylase is unlikely to be a 

FAD-dependent monooxygenase. A flx1 strain, characterized by impaired FAD-dependent 

mitochondrial activities (Bafunno et al., 2004; Tzagoloff et al., 1996), accumulates 4-AP and 

4-HP indicating that the C1-hydroxylase is functional in this mutant (Figure 2C). 
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Furthermore, restoration of Q6 biosynthesis in flx1 strain by VA (Figure S3D) is consistent 

with the C1-hydroxylation proceeding normally in the flx1 strain.  

Our results show that VA and 3,4-diHB can be used as Q6 precursors and thus restore 

Q6 biosynthesis and respiration in coq6 cells overexpressing Coq8 or expressing the Coq6 

inactive alleles (Figure 5). This proves that analogues of 4-HB added to the growth medium 

of S. cerevisiae can reach the mitochondrial matrix, where Q6 biosynthesis takes place, and 

then enter the Q6 biosynthetic pathway via prenylation by Coq2 (Figure 5). The strong impact 

of minor quantities of pABA or 4-HB observed on the levels of Q6 synthesized from VA 

(Figure 3C and Figure S3E) may be explained by two non-exclusive hypotheses. VA may not 

be as efficiently transported to the mitochondrial matrix as pABA and 4-HB or Coq2 may 

have a higher affinity for pABA and 4-HB compared to VA. In any case, Coq2 has a broad 

substrate specificity in agreement with early in vitro studies which showed that mitochondrial 

preparations from rat heart and liver were able to prenylate VA and 3,4-diHB (Nambudiri et 

al., 1977).  In fact, these analogues of 4-HB meet the structural requirements for prenylation 

by the polyprenyl transferase Coq2, i.e. an electron-donating substituent at position 4 of the 

aromatic ring combined with a carboxylic acid, a strong electron-attracting group, at position 

1 (Alam et al., 1975). On the contrary, 4-nitrobenzoic acid which harbours the strong 

electron-attracting nitro group at position 4 inhibits Coq2 and as a consequence acts as an 

inhibitor of Q biosynthesis in mammalian cells cultures (Forsman et al., 2010). We would like 

to suggest that 4-HB analogues compatible with prenylation by Coq2 may also bypass 

deficient Q biosynthetic steps downstream of the C5-hydroxylation reaction. It is interesting 

to note that most mutations identified so far in humans to cause primary Q deficiency are not 

found in genes encoding enzymes that catalytically modify the prenylated aromatic ring 

except for COQ6 (Heeringa et al., 2011). In fact they are found in (i) PDSS1 and PDSS2 

(Lopez et al., 2006; Mollet et al., 2007), which are the relatives of COQ1 catalyzing the 



 12 

synthesis of the polyprenyl tail, (ii) the polyprenyl transferase COQ2 (Mollet et al., 2007), 

(iii) ADCK3/CABC1 (Lagier-Tourenne et al., 2008; Mollet et al., 2008), the COQ8 homolog 

and (iv) COQ9, a gene with no specific function assigned (Duncan et al., 2009). Our results 

suggest that VA may be efficient at promoting Q10 biosynthesis in patients with COQ6 

mutations. Practically, as vanillin (3-methoxy-4-hydroxybenzaldehyde), a common non-toxic 

food additive, is converted in the liver to VA (Muskiet and Groen, 1979; Sayavongsaa, 2007), 

vanillin may represent an interesting therapeutic molecule to try in patients with COQ6 

mutations.  

Finally, we previously demonstrated that Yah1 and Arh1 are essential for the C5-

hydroxylation reaction (Pierrel et al., 2010). The similar impact on Q6 biosynthesis of Yah1 or 

Arh1 depletion or Coq6 inactivation raises the question of how these three enzymes are 

functionally coupled. Here we provide preliminary data aiming at understanding this link. 

Yah1/Arh1 form a ferredoxin/ferredoxin reductase system that transfers electrons for different 

mitochondrial processes, in particular ISC assembly (Lill, 2009). The fact that Fdx2, a human 

homolog of Yah1, complements the ISC biosynthetic defect but not the Q6 biosynthetic defect 

of Yah1-depleted cells excludes that Coq6 and thus Q6 metabolism may indirectly be affected 

by an impairment of ISC biosynthesis. Coq6 is classified among Class A flavoprotein 

monooxygenases which have been described to contain a tightly bound FAD cofactor and to 

depend on NAD(P)H as a coenzyme for reduction of FAD (van Berkel et al., 2006). We 

checked whether inactivation of Yah1 could indirectly cause a depletion of mitochondrial 

NAD(P)H or FAD which would result in decreased Coq6 activity. Our data summarized 

below indicate that, in the absence of Yah1, the Coq6 polypeptide is not degraded, 

mitochondrial FAD and NAD(P)H are available, and yet Coq6 is unable to perform the C5-

hydroxylation, implying that Yah1 itself plays a role in this reaction. First, the Coq6-3HA 

polypeptide is detected in Yah1-depleted cells. Second, a shortage of mitochondrial FAD, the 
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predicted cofactor of Coq6, is unlikely. Indeed, Yah1-depleted cells expressing Fdx2 are 

impaired for the C5-hydroxylation reaction but display significant SDH activity, known to 

depend on FAD. In addition, overexpression of FAD1 restored Q6 biosynthesis in the flx1 

strain whereas it failed to do so in Yah1-depleted cells. Third, mitochondrial NAD(P)H levels 

may not be dramatically affected in Yah1-depleted cells expressing Fdx2 since the latter is 

able to assemble ISC, a process supported by mitochondrial NADPH (Pain et al., 2010). Also 

in support of this, Yah1-depleted cells are prototroph for arginine (data not shown), the 

biosynthesis of which requires mitochondrial NADPH produced by Pos5 via phosphorylation 

of mitochondrial NADH (Outten and Culotta, 2003). As a conclusion, if Coq6 was a classical 

class A flavoprotein monooxygenase catalyzing reduction of FAD by NAD(P)H, it should be 

active in Yah1-depleted cells since their levels of mitochondrial FAD and NAD(P)H are not 

compromised. Consequently, we end up with the hypothesis of an unusual mechanism in 

which the reducing power of NAD(P)H may transit via the Yah1/Arh1 system before reaching 

Coq6. The β-cyclohexenyl carotenoid epoxidase, another class A flavoprotein 

monooxygenase, has been shown to require a ferredoxin/ferredoxin reductase system for in 

vitro activity (Bouvier et al., 1996) and thus represents a precedent for such an electron 

transfer pathway from a ferredoxin to a flavin-monoxygenase. Unequivocal demonstration 

that Coq6 may also use an unconventional reducing system like Arh1/Yah1 will necessitate 

the development of an in vitro assay with purified proteins; a challenging task given that Coq6 

likely interacts with several Coq polypeptides in the Q6 biosynthetic complex (Marbois et al., 

2005). Nonetheless, our study has unambiguously established that Coq6 is required 

exclusively for the C5-hydroxylation of Q6 biosynthesis and that hydroxylated analogues of 4-

HB can be used as precursors of Q6, two results that significantly improve our understanding 

of the biosynthesis of this crucial coenzyme. 

 



 14 

Significance  

Coenzyme Q (Q) or ubiquinone, an important cellular antioxidant, is essential to electron 

transport chains and is required for several other cellular processes. Q biosynthesis requires at 

least eleven proteins in S. cerevisiae but the precise function of several of them is not known. 

Our work establishes that the predicted monoxygenase Coq6 is involved in the C5-

hydroxylation reaction and that an unidentified monooxygenase catalyzes the C1-

hydroxylation reaction. We further demonstrate the possibility to bypass a deficient Q 

biosynthetic step in S. cerevisiae by providing the defective chemical group within a synthetic 

4-hydroxybenzoic acid analogue. Indeed, a coq6 mutant impaired in the C5-hydroxylation 

reaction recovers Q6 biosynthesis and respiration upon addition of two such analogues, 3,4-

dihydroxybenzoic acid and vanillic acid. Primary Q10 deficiencies have been linked to 

mutations in six genes of the Q biosynthetic pathway and result in clinically heterogeneous 

diseases which, if diagnosed early, are improved by Q10 supplementation. However, the 

lipophilicity of Q10 may restrain its efficient transport to the mitochondrial inner membrane 

where Q10 functions in the respiratory chain (Quinzii and Hirano, 2010). Our work suggests 

that hydrophilic analogues of 4-hydroxybenzoic acid may restore Q10 biosynthesis in patients 

with some primary Q10 deficiencies by bypassing the altered biosynthetic step. The use of 

various 4-hydroxybenzoic acid analogues will also contribute to characterize the biosynthetic 

step(s) blocked in some S. cerevisiae coq mutants and will thus help to identify the molecular 

function of Coq proteins with unknown function. Our work illustrates the importance of a 

molecular understanding of the Q biosynthetic pathway and warrants the identification of yet 

unidentified proteins that participates in Q biosynthesis, in particular the monooxygenase 

responsible for the C1-hydroxylation reaction.  
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Experimental Procedures 

Yeast strains and culture conditions: S. cerevisiae strains used in this study are listed in 

Table S1. S. cerevisiae strains were transformed using lithium acetate. A 3HA epitope tag was 

inserted on the 3’ end of COQ6 ORF by PCR as described previously (Longtine et al., 1998) 

to create the COQ6-3HA strain. This strain was crossed with the Gal-YAH1 strain to isolate 

the Gal-YAH1 COQ6-3HA strain by selecting the corresponding markers after tetrad 

dissection. YNB without pABA and folate was from MP Biomedicals. Rich YP medium was 

prepared as described (Sherman, 2002). Glucose, galactose or lactate-glycerol were used at 

2%. The Gal-YAH1 strain was maintained and precultured on galactose medium. Depletion of 

Yah1 was accomplished by diluting 200 fold the preculture into glucose containing medium 

and growing the cells for 18 hours at 30°C.  

Plasmids: COQ6 ORF was cloned into pRS416 under the control of the MET25 promoter and 

the CYC1 terminator using XhoI and XbaI (Mumberg et al., 1994). This vector served as a 

template to generate the G202V and G386A-N388D Coq6 mutants by site directed 

mutagenesis. FAD1 was cloned with its own promoter (370 bp) and terminator (210 bp) into 

pRS423 using EcoRI and XhoI. Fdx1 and Fdx2 expressing plasmids have been described 

(Sheftel et al., 2010) and COQ8 cloned in pFL44 was a kind gift from Dr. Geneviève 

Dujardin. Sequencing was used to confirm cloning products in all created vectors.  

Miscellaneous biochemical analysis: Isolation of mitochondria and immunostaining were 

performed as described (Diekert et al., 2001; Harlow and Lane, 1988). Cellular lipid 

extraction after addition of the Q4 standard and quantification of electroactive compounds by 

HPLC-ECD with a 5011A analytical cell (E1, –420 mV; E2, +380 mV) were as described 

(Pierrel et al., 2010). Hydroquinones present in samples were oxidized with a pre-column 
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5020 guard cell set in oxidizing mode (E, +650 mV). Mitochondrial enzymatic activities were 

measured as previously described (Pierik et al., 2009). 
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Figure 1: Current model of the S. cerevisiae coenzyme Q biosynthetic pathway. The 

names of proteins (underlined) and intermediates (italicized) relevant to this study are for S. 

cerevisiae. The numbering of the aromatic carbon atoms used throughout this study is shown 

on HHB and Q6. Prenylation of 4-hydroxybenzoic acid (4-HB) or para-aminobenzoic acid 

(pABA) by Coq2 yields 3-hexaprenyl-4-hydroxybenzoic acid (HHB) or 3-hexaprenyl-4-

aminobenzoic acid (HAB). In subsequent reactions, R stands for the hexaprenyl tail and X 

designates NH2 or OH. NH2 is converted into OH prior to demethoxyubiquinone (DMQ6) 

formation (Marbois et al., 2010; Pierrel et al., 2010).  The three hydroxylation reactions 

necessary to yield Q6 are shown in red and the potential implication of Coq6 in the C5- and/or 

the C1-hydroxylation reactions is indicated (Coq6?). In cells depleted for Yah1 or Arh1, the 

C5-hydroxylation is deficient which results in synthesis of 3-hexaprenyl-4-aminophenol (4-

AP) from HAB and of 3-hexaprenyl-4-hydroxyphenol (4-HP) from HHB (green dashed 

arrows and green boxes) (Pierrel et al., 2010).   

 

Figure 2: Coq6 is required for the C5- but not for the C1-hydroxylation of Q6 

biosynthesis. (A) WT cells or coq6 cells transformed with an empty vector (vec) or with an 

episomal vector coding for Coq8 were grown in 2% glucose synthetic medium without pABA 

containing or not 100 μM 4-hydroxybenzoic acid (4-HB) or  100 μM  pABA. Lipid extracts 

of 1 mg of cells (WT), 2 mg of cells (/Coq8) or 8 mg of cells (/vec) were analyzed by HPLC-

ECD. Chemical structures of 3-hexaprenyl-4-aminophenol (4-AP, eluting at 610 sec) and of 

3-hexaprenyl-4-hydroxyphenol (4-HP, eluting at 810 sec) are displayed. The peaks 

corresponding to coenzyme Q6 (Q6), demethoxyquinone (DMQ6) and to the Q4 standard are 

indicated. (B)coq6 cells transformed with an empty vector (vec) or centromeric vectors 

coding either for Coq6 or Coq6-G386A-N388D were grown in glucose synthetic medium 
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without pABA containing 100 μM pABA or 100 μM 4-HB. Lipid extracts of 4 mg of cells 

were analyzed by HPLC-ECD. (C) WT and flx1 cells transformed or not with an episomal 

vector coding for Fad1 were grown in glucose synthetic medium without pABA 

supplemented or not with pABA or 4-HB at 100 μM. Lipid extracts of 4 mg of cells (flx1) 

and 1 mg of WT were analyzed by HPLC-ECD. 

 

Figure 3: Vanillic acid and 3,4-dihydroxybenzoic acid  restore Q6 biosynthesis and 

respiration in coq6 mutant cells (A)coq6 cells transformed with an episomal vector 

coding for Coq8 were grown in 2% glucose synthetic medium without pABA containing the 

indicated concentrations of 4-HB, pABA or vanillic acid (VA). Lipid extracts of 4 mg of cells 

were analyzed by HPLC-ECD. (B)coq6 cells transformed either with an episomal vector 

coding for Coq8, an empty vector (vec) or with centromeric vectors coding for WT Coq6 or 

Coq6-G386A-N388D were grown in glucose synthetic medium for 24 hours and serial 

dilutions were spotted onto agar plates. The plates contained synthetic medium without pABA 

supplemented with 2% glucose (Glu) or 2% lactate-2% glycerol (LG) and either vanillic acid 

(VA), pABA or 3,4-dihydroxybenzoic acid (3,4-diHB).  The plates were incubated for 2 days 

(Glu) or 4 days (LG) at 30°C. (C) Quantification of Q6 and 4-HP formed in coq6 cells 

overexpressing Coq8 grown in glucose synthetic medium without pABA with 1mM VA and 

the indicated concentration of 4-HB. Error bars are standard deviation (n=2).  

 

 

Figure 4: Q6 is limiting for respiratory growth of Yah1-depleted cells expressing Fdx2. 

(A) Immunoblot of whole-cell lysates from WT, COQ6-3HA and Gal-YAH1 COQ6-3HA (two 

clones) cells grown in YP rich medium containing either 2% glucose (Glu) or 2% galactose 

(Gal).  Coq6-3HA was detected at 57 kDa with an anti-HA antibody and as expected was 
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absent from extracts of the WT strain. Yah1 was detected around 16 kDa and Anc2, the major 

ADP/ATP carrier of the mitochondrial inner membrane, at 35kDa. (B) Gal-YAH1 cells 

transformed with an empty vector (vec), a centromeric vector coding for Yah1 or episomal 

vectors coding for mitochondrially targeted human ferredoxin 1 or 2 (Fdx1 or Fdx2) were 

grown for 24 hours in synthetic medium supplemented with glucose and 1mM pABA. Lipid 

extracts of 4 mg of cells were analyzed by HPLC-ECD. (C) Same cells as in (B) were grown 

in glucose synthetic medium without pABA for 24 hours and serial dilutions were spotted 

onto agar plates. The plates contained synthetic medium without pABA supplemented at 2% 

with either glucose (Glu), galactose (Gal) or lactate (Lac) and either vanillic acid (VA), 3,4-

dihydroxybenzoic acid (3,4-diHB) or 4-HB.  The plates were incubated for 4 days at 30°C. 

(D) Gal-YAH1 cells containing an empty vector (vec), a centromeric vector coding for Yah1 

(Yah1) or an episomal vector coding for mitochondrially-targeted human ferredoxin 2 (Fdx2) 

were cultivated in glucose synthetic medium for 26 hours and finally in glucose synthetic 

medium without pABA in the presence or absence of 1 mM vanillic acid (VA)  for 14 hours. 

Mitochondria were isolated and the enzyme activities of SDH (succinate to dichlorophenol-

indophenol (DPIP)) and SDH in combination with complex III (succinate to cytochrome c 

(cyt c)) were determined and normalized to malate dehydrogenase activity (MDH). Error bars 

are standard deviation (n=3). 

 

Figure 5: Coq6 is required for the C5-hydroxylation of Q6 biosynthesis but Coq6 

deficiency can be bypassed by using analogues of 4-HB. The pathway leading to Q6 

biosynthesis in WT S. cerevisiae cells is shown (above dashed line) with Coq6 implicated 

together with Yah1 and Arh1 in the C5-hydroxylation, whereas the C1-hydroxylation is 

catalyzed by an unidentified protein (?). In Yah1-depleted cells or in coq6 cells 

overexpressing either COQ8 or an inactive COQ6 allele (below dashed line), the C5-
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hydroxylation does not take place (crossed arrow) but the C1-decarboxylation (dashed arrow) 

and the C1-hydroxylation proceed efficiently, leading to the accumulation of 4-HP when 4-

HB is prenylated, or the accumulation of 4-AP when pABA is prenylated (blue). 3,4-diHB 

and VA contain an additional C5-hydroxyl (green) or C5-methoxyl (green) compared to 4-

HB. 3,4-diHB and VA which correspond to the unprenylated products of the reactions 

catalyzed by Coq6 and Coq3 are prenylated in vivo by Coq2 and restore Q6 biosynthesis in 

cells deficient for Coq6.  
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Supplemental information includes four figures and one table.  

Figure S1 relates to the growth media used in Figure 2. 

Figure S2 is a sequence alignment of Coq6 with other flavine-dependent monooxygenases. It 

illustrates the residues that we mutated in Coq6. These Coq6 mutants are used in Figure 2.  

According to the instructions, Figure S1 and S2 should be grouped together because they both 

relate to Figure 2, however since the format of Fig. S1 and S2 is different, I took the liberty 

not to group the figures.  

Figure S3 displays the chemical structure of compounds used in Figure 3 and additional 

experiments complementary to those of Figure 3. 

Figure S4 shows data obtained with the Gal-YAH1 strain which are complementary to those 

presented in Figure 4.  

Table S1 contains the yeast strains used in this study.  
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Coq6            MFFSKVMLTRRILVRGLATAKSSAPKLTDVLIVGGGPAGLTLAASIKNSPQLKDLKTTLV 60 

UbiH            ---------------------------MSVIIVGGGMAGATLALAISR------LSHGAL 27 

PobA            -------------------------MKTQVAIIGAGPSGLLLGQLLHK---------AGI 26 

Kmo             -------------------MDSSVIQRKKVAVIGGGLVGSLQACFLAKR-------NFQI 34 

                                            .* ::*.*  *   .  : .           : 

 

Coq6            DMVDLKDKLSDFYNSPPDYFTNRIVSVTPRSIHFLENNAGATLMHDRIQSYDG-LYVTDG 119 

UbiH            PVHLIEATAPESHAHPG--FDGRAIALAAGTCQQLARIGVWQSLADCATAITT-VHVSDR 84 

PobA            DNVILERQTPDYVLGRI-----RAGVLEQGMVDLLREAGVDRRMARDGLVHEG-VEIAFA 80 

Kmo             DVYEAREDTRVATFTRG---RSINLALSHRGRQALKAVGLEDQIVSQGIPMRARMIHSLS 91 

                     .                    :     . *   .    :          :  :   

 

Coq6            CSKATLDLARDS-MLCMIEIINIQASLYNRISQYDSKKDSIDIIDNTKVVNIKHSDPNDP 178 

UbiH            GHAGFVTLAAEDYQLAALGQVVELHNVGQRLFALLRKAPGVTLHCPDRVANVAR-----T 139 

PobA            GQRRRIDLKRLS--GGKTVTVYGQTEVTRDLMEAREACGATTVYQAAEVRLHDLQ----- 133 

Kmo             GKKSAIPYGTKS----QYILSVSRENLNKDLLTAAEKYPNVKMHFNHRLLKCNPE----- 142 

                     :     .             .: . :           :    .:            

 

Coq6            LSWPLVTLS-NGE--VYKTRLLVGADGFNSPTRRFSQIPSRGWMYNAYGVVASMKLEYPP 235 

UbiH            QSHVEVTLE-SGE--TLTGRVLVAADGTHSALATACGVDWQQEPYEQLAVIANVATS-VA 195 

PobA            GERPYVTFERDGERLRLDCDYIAGCDGFHG-ISRQSIPAERLKVFERVYPFGWLGLLADT 192 

Kmo             -EGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPP 201 

                 .   ..:  .          :...**  .          :    :     . :     . 

 

Coq6            FKLR-----GWQRFLPTGPIAHLPMPENNATLVWSSSERLSRLLLSLPPESFTALINAAF 290 

UbiH            HEGR-----AFERFTQHGPLAMLPMSDGRCSLVWCHPLERREEVLSWSDEKFCRELQSAF 250 

PobA            PPVS-----HELIYANHPRGFALCSQRSATRSRYYVQVPLSEKVEDWSDERFWTELKARL 247 

Kmo             KNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYF 261 

                                      :                  .     . : .   ::  : 

 

Coq6            VLEDADMNYYYRTLEDGSMDTDKLIEDIKFRTEEIYATLKDESDIDEIYPPRVVSIIDKT 350 

UbiH            GWRLGKITHAGK------------------------------------------------ 262 

PobA            PSEVAEKLVTGPS---------------------------------------------LE 262 

Kmo             PDAIPLIGEKLLVQD-----------------------------------------FFLL 280 

                                                                             

 

Coq6            RARFPLKLTHADRYCTDRVALVGDAAHTTHPLAGQGLNMGQTDVHGLVYALEKAM----- 405 

UbiH            RSAYPLALTHAARSITHRTVLVGNAAQTLHPIAGQGFNLGMRDVMSLAETLTQAQ----- 317 

PobA            KSIAPLRSFVVEPMQHGRLFLAGDAAHIVPPTGAKGLNLAASDVSTLYRLLLKAY----- 317 

Kmo             PAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSL 340 

                 :   :           :  * *:**:   *  .:*:* .  *   :   : :        

 

Coq6            ----------ERGLDIGSSLSLEPFWAERYPSN------------------------NVL 431 

UbiH            ----------ERGEDMGDYGVLCRYQQRRQSDR------------------------EAT 343 

PobA            ----------REGRGE-LLERYSAICLRRIWKA------------------------ERF 342 

Kmo             CLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTM 400 

                            .              .   .                             

 

Coq6            LGMADKLFKLYHTNFPPVVALRTFGLNLTNKIGPVKNMIIDTLGGNEK------------ 479 

UbiH            IGVTDSLVHLFANRWAPLVVGRNIGLMTMELFTPARDVVAQRTLGWVAR----------- 392 

PobA            SWWMTSVLHRFPDTDAFSQRIQQTELEYYLGSEAGLATIAENYVGLPYEEIE-------- 394 

Kmo             VTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWI 460 
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Coq6            -------------------------- 

UbiH            -------------------------- 

PobA            -------------------------- 

Kmo             AHFRNTTCFPAKAVDSLEQISNLISR 486 
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Strain Genotype Source 
BY4741 MAT a, his31 leu20 met150 ura30 euroscarf 
Gal-YAH1 ade2-1 his3-1,15 leu2-3,112 trp1-1, ura3-1, Gal-YAH1::LEU2 (Lange et al., 

2000) 
∆coq6 MAT; his31 leu20 lys20 ura30 COQ6::kanMX4 euroscarf 
COQ6-3HA his31 leu20 lys20 ura30  COQ6-3HA::HIS3 This work 
COQ6-3HA Gal-YAH1 his3 ura3 COQ6-3HA::TRP1, Gal-YAH1::LEU2 This work 

∆flx1  MAT a, his31 leu20 met150 ura30 FLX1::kanMX4 euroscarf 

 
Table S1 : Yeast strains used in this study 

 

 

Figure S1 related to Figure 2: A) WT cells were grown for 24 hours to stationary phase in 

glucose synthetic medium without pABA supplemented or not with 0.1 mM pABA or 0.1 

mM 4-HB as indicated. Extracts of 2 mg of cells (no addition) or 1.5 mg of cells (4-HB and 

pABA) were analyzed by HPLC-ECD. B) Purified 3-hexaprenyl-4-aminophenol (4-AP) or 3-

hexaprenyl-4-hydroxyphenol (4-HP) were injected on the HPLC column with the precolumn 

electrode set at +550mV (ox) or -500mV (red). The UV-vis spectra of the oxidized (ox) and 

reduced (red) forms of 4-AP and 4-HP were recorded at the apex of the elution peak. 

Absorption maxima of the spectra are indicated. C) coq6 cells transformed with an episomal 

vector coding for Coq8, with an empty vector (vec) or with a centromeric vector coding for 

Coq6-G202V were grown in glucose synthetic medium without pABA containing or not 100 

μM pABA or 100 μM 4-HB. Lipid extracts of 4 mg of cells were analyzed by HPLC-ECD.   

 

 

Figure S2: Sequence alignment of different Class A flavoprotein monooxygenases. 

Alignments were generated with ClustalW2. The proteins are the Coq6 monooxygenase from 

Saccharomyces cerevisiae (AAB61341), the 2-polyprenyl-6-methoxyphenol 4-hydroxylase 

from Escherichia coli (UbiH, BAA14326), the P-hydroxybenzoate hydroxylase from 



Pseudomonas aeruginosa (PobA, P20586) and the kynurenine 3-monooxygenase from Homo 

sapiens (Kmo, NP_003670). The conserved residues that we mutated in Coq6 (G202, G386 

and N388) are highlighted. The DG motif (D201, G202 in Coq6) has been proposed to bind 

the pyrophosphate moieties of both FAD and NADPH in PobA (Eppink et al., 1997) whereas 

the N300 from PobA is in contact with the isoalloxazine ring of the active site FAD (Palfey et 

al., 1994).  

 

 

Figure S3 related to Figure 3: A) Chemical structure of 4-HB, 3,4-dihydroxybenzoic acid 

(3,4-diHB) and vanillic acid (VA). B)coq6 cells transformed with an empty vector (vec) or 

an episomal vector coding for Coq8 were grown in glucose synthetic medium without pABA 

containing or 0.5 mM vanillic acid (VA) or 0.5 mM 3,4-dihydroxybenzoic acid (3,4-diHB). 

Lipid extracts of 8 mg of cells (vec) or 4 mg of cells (Coq8) were analyzed by HPLC-ECD. 

C)coq6 cells transformed with a centromeric vector coding for Coq6-G386A-N388D were 

grown in glucose synthetic medium without pABA containing or not the indicated 

concentration of VA. Lipid extracts of 3 mg of cells were analyzed by HPLC-ECD. D) Q6 

content of coq6 strain overexpressing Coq8, of Gal-YAH1 and flx1 strains grown in 

glucose synthetic medium without pABA containing 1 mM VA compared to WT cells grown 

in the same medium. Q6 was quantified by integrating the peak of Q6 on 

electrochromatograms and correction for eventual loss during the extraction procedure was 

made based on the peak of the Q4 standard. The error bars represent standard deviation (n=3). 

E) Quantification of Q6 and 3-hexaprenyl-4-aminophenol (4-AP) formed in coq6 cells 

containing an episomal vector coding for Coq8 grown in glucose synthetic medium without 

pABA with 1mM VA and the indicated concentration of pABA. 

 



Figure S4 related to Figure 4: A) Gal-YAH1 cells transformed with an empty vector (vec) or 

an episomal vector coding for Coq8 were grown for 24 hours in synthetic medium without 

pABA supplemented with glucose and 0.1 mM pABA or 0.1 mM 3,4-dihydroxybenzoic acid 

(3,4-diHB) or 0.1 mM vanillic acid (VA). Extracts of 1.5 mg of cells were analyzed by 

HPLC-ECD. B) Gal-YAH1 cells transformed with an empty vector (vec) or an episomal 

vector coding for Fad1 were grown for 24 hours in synthetic medium without pABA 

supplemented with glucose and 1mM pABA or 1mM 4-HB. Extracts of 4 mg of cells were 

analyzed by HPLC-ECD.  

 

 


