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CELL-METABOLISM-D-10-00122R1: Mühlenhoff et al.  
 
Response to the Comments of Reviewer 1: 
 
We are pleased to read that all three Reviewers appreciated our response to their valuable 
suggestions and that they felt that our manuscript has been improved, with two Reviewers 
recommending the revised manuscript for publication. We have addressed the minor 
remaining concern of Reviewer 1 in detail below. We also have technically modified our 
manuscript as requested by the Editor.  
 
Reviewer #1:  
In the first review this Reviewer had suspected that our data may be explained by a complete 
overlap of the phenotypes/functions of Aft1/2 and Grx3/4. We are glad to learn that the data 
collected from published papers in our Response letter for the revised version of our 
manuscript (Table 1 and Fig. R1) convinced the Reviewer to accept that Grx3/4 perform a 
role additional to its Aft1/2-related function in iron uptake regulation (… argue towards 
additional rather than an epistatic function of these glutaredoxins with regards to Aft 
function). Nevertheless, s/he suggests to provide additional experimental evidence to support 
this point. First, the Reviewer asked for expression information for three specific genes (YAP5, 
CTH1 and CTH2) in Aft1up versus grx3/4∆ cells. As mentioned in our first response letter, 
such information is already available, since genome-wide DNA array studies have been 
performed for these mutant cells. The differences for the three genes mentioned by the 
Reviewer are minor (fold change in Aft1up versus Grx3/4-deleted cells is [CTH2: 11.2 
(grx3/4∆) vs. 5.1 (Aft1-up); CTH1 0.78 (grx3/4∆) vs. 1.5 (Aft1-up); YAP5: 1.9 (grx3/4∆) vs. 
1.9 (Aft1-up)]). This is not surprising because they all belong to the Aft1/2-regulated genes, 
i.e. a set of genes where the functions of Aft1/2 and Grx3/4 indeed overlap. However, 
comparison of the full data sets shows severe gene expression differences between the two 
cells types which – as we report in our manuscript – are imaged by respective biochemical 
alterations. This can only be explained on the basis of an additional function of Grx3/4.   

The second suggestion of the Reviewer, i.e. repeating experiments of Fig. 1 in the 
aft1/2 delta background is interesting, even though not really related to the content of our 
manuscript. Nevertheless, we have performed such an experiment (attached as Fig. R2, for 
Reviewer only). Part A shows that both aconitase and Leu1 activities are hardly changed in 
aft1/2∆ cells. The slight effect (20% decrease) is due to the limited iron uptake in these cells 
(as already discussed by the Reviewer). A direct comparison of these data to results presented 
in our manuscript (e.g., Figs. 1A-B, S1A) and shown in Fig. R2B below demonstrate that 
Grx3/4-depleted cells completely loose aconitase, Leu1, and catalase activities. These cells, in 
contrast to aft1/2∆ cells, have a huge iron overload (Fig. 3A). Notably, Fig. R2B (middle 
bars) also provides data on a Grx4 mutant protein (Mut1) which specifically activates Aft1/2-
dependent FET3, but still fully supports Fe/S protein maturation and heme biogenesis. This 
clear separation of the two functions of Grx3/4, iron uptake regulation and the novel function 
in iron trafficking, is also evident from the analysis of the site-directed mutants of Grx4 in Fig. 
6 and is discussed in our manuscript. This data fully satisfies the request of the Reviewer. 
Since the requested information is either published (first part) or redundant to data presented 
in our manuscript, we do not think they warrant the space to become integrated into the 
manuscript. However, to meet the concern of the Reviewer we have rewritten the 1st 
paragraph of Discussion to make this point (phenotypical difference of Aft1/2up and Grx3/4-
depleted cells) absolutely clear.   

We hope that, with these alterations, our manuscript is suitable for publication in Cell 
Metabolism. 

*Response to Reviewers
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Figure R2: The functions of Aft1/2 and Grx3/4 can be distinguished.  

(For reviewers only.) 

Legend: (A) Enzyme activities of the Fe/S proteins aconitase and Leu1 were determined in 

cell extracts of wild-type, aft1∆, and aft1/2∆ cells. Cells were cultivated in minimal SD 

medium supplemented with 50 µM Fe, and the indicated enzyme activities were determined. 

(B) Gal-GRX4 cells lacking (-) or expressing wild-type (WT) Grx4 or a Grx4 mutant protein 

(Mut1) under the control of the GRX4 promoter from vector pCM189 were cultivated in 

minimal SD medium. After 64 h, cells were analyzed for FET3 promoter activities, or 

aconitase and catalase enzyme activities. 
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Abstract 

 

Iron is an essential nutrient for cells. It is unknown how iron, after its import into the cytosol, 

is specifically delivered to iron-dependent processes in various cellular compartments. Here, 

we identify an essential function of the conserved cytosolic monothiol glutaredoxins Grx3 and 

Grx4 in intracellular iron trafficking and sensing. Depletion of Grx3/4 specifically impaired 

all iron-requiring reactions in the cytosol, mitochondria and nucleus including the synthesis of 

Fe/S clusters, heme and di-iron centers. These defects were caused by impairment of iron 

insertion into proteins and iron transfer to mitochondria, indicating that intracellular iron is 

not bioavailable, despite highly elevated cytosolic levels. The crucial task of Grx3/4 is 

mediated by a bridging, glutathione-containing Fe/S center which functions both as an iron 

sensor and in intracellular iron delivery. Collectively, our study uncovers an important role of 

monothiol glutaredoxins in cellular iron metabolism with a surprising connection to cellular 

redox and sulfur metabolisms.  

 

 

 

 

 

Highlights 

Glutaredoxins Grx3/4 are essential for iron insertion into proteins and cofactors 

Deficiency in Grx3/4 functionally impairs all iron-requiring processes 

Grx3/4-deficient cells accumulate iron but cannot biologically use it 

The Fe/S center of Grx3/4 is critical for both iron trafficking and sensing  

 

 

 

 

 

Keywords 

Mitochondria, iron homeostasis, metallo proteins, glutathione, sulfur metabolism, 

ribonucleotide reductase.  
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Introduction 

Iron is essential for virtually all organisms, since it functions as a cofactor in central cellular 

processes such as respiration, DNA synthesis and repair, ribosome biogenesis, and 

metabolism. Research over the past decade has uncovered sophisticated systems facilitating 

the specific transport of iron across the plasma and various intracellular membranes (Hentze 

et al., 2004; Kaplan and Kaplan, 2009; Philpott and Protchenko, 2008; Vergara and Thiele, 

2008). Despite its central metabolic function, little is known about the passage of iron through 

the eukaryotic cytosol to become incorporated into proteins and transported into various 

subcellular compartments.  A soluble, low molecular-mass form of iron was described in the 

1970s, but ever since the discovery of this ‘labile iron pool’ its physiological importance and 

composition has been under debate (Crichton and Charloteaux-Wauters, 1987; Richardson 

and Ponka, 1997). Presumably, iron may also be bound to dedicated proteins assuring specific 

delivery and insertion into iron-requiring sites. A metallo-chaperone function has been 

worked out for insertion of copper and nickel into respective metal-containing enzymes 

(Finney and O'Halloran, 2003; Lyons and Eide, 2007), but proteins performing a general role 

in iron trafficking or insertion are unknown. An iron donor function has been suggested for 

frataxin in mitochondrial Fe/S cluster biosynthesis (Bencze et al., 2006; Lill, 2009). In 

humans, the poly (rC) binding protein 1 (PCBP1) was shown to specifically deliver bound 

iron to ferritin, the major iron storage protein in higher eukaryotes (Shi et al., 2008). The 

apparently specific role of the PCBP1 iron chaperone and the fact that both ferritin and 

PCBP1 are not universally conserved leave open the possibility that other proteins with a 

general importance for iron trafficking exist. Clearly, the mode of specific iron delivery 

within the eukaryotic cytosol remains one of the fundamental unresolved problems of iron 

homeostasis. 

Since iron is not only essential but also toxic at higher levels, cells have developed 

sophisticated systems for assuring a tightly regulated iron homeostasis (Hentze et al., 2004; 

Kaplan and Kaplan, 2009). While in mammals this process is executed by iron-regulatory 

proteins in a post-transcriptional fashion, the yeast S. cerevisiae uses the iron-sensing 

transcription factors Aft1 and Aft2. Under iron deprivation, Aft1-Aft2 activate transcription of 

genes of the iron regulon encoding cell surface iron transporters and proteins involved in 

intracellular iron utilization (Kaplan and Kaplan, 2009; Philpott and Protchenko, 2008). 

Sensing of intracellular iron by Aft1 also requires the regulatory proteins Fra1-Fra2, and the 

cytosolic-nuclear monothiol glutaredoxins Grx3 and Grx4, which are essential for the nuclear 

export of Aft1 in response to iron sufficiency (Kumanovics et al., 2008; Ojeda et al., 2006; 
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Pujol-Carrion et al., 2006). The regulatory role of Grx3/4 is functionally conserved in fungi 

that utilize iron-regulated transcription systems unrelated to those from S. cerevisiae (Haas et 

al., 2008; Kaplan and Kaplan, 2009; Mercier and Labbe, 2009). 

Grx3/4 belong to the large thioredoxin (Trx) fold family, and are composed of an N-

terminal Trx and a C-terminal monothiol glutaredoxin (Grx) domain (Herrero and de la Torre-

Ruiz, 2007; Lillig et al., 2008). Although the Grx3/4 subfamily of multi-domain monothiol 

glutaredoxins is conserved in eukaryotes, no universal function has been assigned to this 

family so far. In contrast to most members of the Grx protein family that catalyze dithiol-

disulfide redox reactions, monothiol Grx proteins rarely possess oxidoreductase activity. 

Instead, after in vitro reconstitution or upon overexpression in E. coli they are capable of 

binding a bridging [2Fe-2S] cluster utilizing the active-site cysteine residue of the Grx 

domain and glutathione (GSH) as ligands (Li et al., 2009; Picciocchi et al., 2007). The 

existence of this unusual Fe/S center under physiological conditions, however, has not been 

demonstrated, and its functional role has remained unclear. 

Here, we have used yeast as a model to define an essential role of Grx3/4 in 

intracellular iron trafficking. Depletion of Grx3/4 led to functional impairment of virtually all 

iron-dependent processes including heme biosynthesis, mitochondrial and cytosolic Fe/S 

protein biogenesis, and the formation of di-iron centers in mitochondria and the cytosol, 

eventually leading to the loss of cell viability. We provide evidence for the in vivo binding of 

a bridging Fe/S cluster to Grx3/4, and we assign a crucial physiological function to this 

cofactor both in cytosolic iron trafficking and as an iron sensor. Thus, the conserved cytosolic 

monothiol glutaredoxins use their bound Fe/S cofactor for a general role in intracellular iron 

trafficking. 
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Results 

Deficiency in Grx3/4 is associated with defects in iron-dependent enzymes 

To facilitate the functional analysis of Grx3/4, we constructed a regulatable yeast strain (Gal-

GRX4; strain background W303-1A; Table S1) in which GRX3 was deleted and GRX4 was 

expressed under the control of the glucose-repressible GAL-L promoter. Upon Grx4 depletion 

Gal-GRX4 cells failed to grow on both fermentable and non-fermentable carbon sources 

(Figs. 1A and 3C). Likewise, double deletion of GRX3-GRX4 was lethal in the W303 strain 

background, distinguishing these cells from strain BY4742 grx3/4∆ which shows only 

severely retarded growth (Fig. 1A) (Ojeda et al., 2006). The strong effect of Grx3/4 

deficiency on cell viability is not explained by their role in iron regulation, since Aft1 is not 

essential under iron-replete conditions (Kaplan and Kaplan, 2009). These data and the general 

conservation of Grx3/4 in eukaryotes suggest that these proteins perform a so far unknown, 

important function. 

 Gal-GRX4 cells were used to investigate the immediate consequences of Grx3/4 

deficiency. Gal-GRX4 cells were cultivated in minimal medium supplemented with glucose 

and iron chloride to gradually deplete Grx4 (Figs. 1B and 1C). A strong activation of the 

Aft1-dependent FET3 gene was observed using a FET3 promoter-GFP fusion as a reporter 

(Fig. 1B; (Ojeda et al., 2006)). Surprisingly, the activities of the mitochondrial Fe/S protein 

aconitase and cytosolic catalase, a heme-containing protein, drastically decreased, despite the 

presumed sufficient cellular iron supply. These effects resemble those upon depletion of Ssq1, 

a component the iron-sulfur cluster (ISC) assembly machinery, even though the changes 

occurred later due to slower depletion of Ssq1 (strain Gal-SSQ1). Grx3/4 deficiency was 

associated with a severe activity loss of respiratory complexes II (succinate dehydrogenase) 

and IV (cytochrome oxidase), but was fully complemented by expression of GRX4 from a 

plasmid (Fig. 1D). Likewise, low activities of both aconitase and respiratory complexes III 

and IV were observed in BY4742 grx3/4∆ cells (Fig. S1A), consistent with our earlier 

observation of an impaired 55Fe/S cluster incorporation into aconitase (Ojeda et al., 2006). 

Immunostaining of cell extracts from Grx4-depleted Gal-GRX4 cells and BY4742 grx3/4∆ 

cells further revealed changes in the levels of several iron-containing proteins including the 

aconitase-type Fe/S proteins Aco1 and Leu1, ferrochelatase Hem15, and the core 

mitochondrial ISC assembly protein Isu1 (Fig. 1C). These changes of protein levels correlate 

with those of the transcriptome of both iron-deprived and ISC machinery-compromised cells 

(Hausmann et al., 2008; Shakoury-Elizeh et al., 2004). In contrast, other iron-dependent 

proteins such as succinate dehydrogenase subunit 2 (Sdh2), and the ubiquinone biosynthesis 
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enzyme Coq7 were hardly changed, and behaved similarly to the non-iron proteins 

mitochondrial cytochrome oxidase subunit 4 (Cox4) and porin (Por1), cytosolic Hsp70 and 

ribosomal subunit Rps3. Together, these findings indicate that Grx3/4-deficient cells develop 

severe defects in several mitochondrial and cytosolic iron-dependent proteins, despite the 

induction of the Aft1-dependent iron uptake system. Notably, these global iron-related defects 

are not detected upon the constitutive activation of Aft1 (Hausmann et al., 2008; Ihrig et al., 

2009), suggesting that these consequences of Grx3/4 deficiency occur independently of Aft1 

and a deregulated iron homeostasis. 

 

Deficiency in Grx3/4 impairs the de novo synthesis of cellular Fe/S clusters and heme 

We asked whether the decreased Fe/S protein activities in Grx3/4-depleted cells might be 

explained by an impaired de novo synthesis of their Fe/S clusters, and addressed this problem 

by using an established 55Fe radiolabelling and immunoprecipitation assay (Molik et al., 

2007). First, the essential cytosolic Fe/S proteins Rli1, Dre2, and Nar1 were analyzed by 

expressing these proteins from a high-copy vector in wild-type and Gal-GRX4 cells. Fe/S 

cluster insertion into all three Fe/S protein targets was decreased 4-10-fold upon Grx4 

depletion (Fig. 2A). The amount of Dre2 in Gal-GRX4 cells was comparable to that in wild-

type cells, indicating a specific Fe/S cluster assembly defect (insert). In the case of Rli1 and 

Nar1, protein levels were diminished likely suggesting that the apoforms of these Fe/S 

proteins were degraded. Similar apoprotein instability is frequently observed upon strong 

defects in Fe/S protein biogenesis (Balk et al., 2004). Analysis of 55Fe incorporation into the 

mitochondrial Fe/S proteins Bio2 (biotin synthase) and Ilv3 (dihydroxyacid dehydratase), and 

the essential mitochondrial ISC scaffold protein Isu1 revealed an up to 4-fold lower 55Fe 

incorporation upon Grx4 depletion (Figs. 2B and 2C). Protein levels of Bio2, Ilv3, and Isu1 

did not change upon depletion of Grx4 (inserts). These findings indicate a general impairment 

in the de novo assembly of Fe/S proteins upon depletion of Grx3/4. 

 In principle, the defect of Fe/S protein maturation upon Grx3/4 depletion could be 

explained by a primary mitochondrial Fe/S protein assembly defect, since mitochondria are 

involved in generation of all cellular Fe/S proteins (Lill and Muhlenhoff, 2008). However, we 

note that the observed effects were less severe in mitochondria compared to the cytosol. To 

directly test the functionality of the mitochondrial ISC assembly machinery, we made use of 

an anaerobic in vitro system analyzing the capacity of mitochondrial detergent extracts to 

support Fe/S cluster insertion into the apoform of purified Yah1, a [2Fe-2S] ferredoxin (Molik 

et al., 2007). Apo-Yah1 was incubated with mitochondrial lysates and 55Fe, bound to Q-
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sepharose, and the amount of bound radioactivity was quantified by scintillation counting. 

Remarkably, extracts derived from Grx3/4-depleted mitochondria were even more competent 

in synthesizing the Fe/S cluster on Yah1 than Grx4-complemented Gal-GRX4 cells (Fig. 2D). 

This finding strongly suggests that the mitochondrial ISC assembly system is functional in 

Grx3/4-depleted cells rendering it likely that the decreased Fe/S cluster incorporation into 

apoproteins is explained by impaired iron supply. 

 Consistent with this idea, 55Fe insertion into heme was 5.5-fold lower in Grx4-depleted 

Gal-GRX4 cells compared to wild-type cells or Gal-GRX4 cells complemented by GRX4 

(Fig. 2E). This diminished heme synthesis activity may explain the loss of function of heme-

dependent enzymes such as catalase and cytochrome oxidase upon depletion of Grx3/4 (see 

above). In summary, Grx3/4-depleted cells are strongly impaired in both cellular Fe/S protein 

maturation and heme biosynthesis. Such defects are not observed in Aft1-activated cells 

(Hausmann et al., 2008; Ihrig et al., 2009). 

 

Deficiency in Grx3/4 leads to impairment of di-iron enzymes despite cytosolic iron overload 

The strong decrease of cellular Fe/S clusters and heme in Grx3/4-deficient cells is somewhat 

paradoxical, since these cells are expected to accumulate iron due to a constitutively activated 

cellular iron uptake system (Ojeda et al., 2006). To verify this, we measured the cellular iron 

content by ICP-MS analysis of wild-type and Grx4-depleted Gal-GRX4 cells grown in 

minimal medium supplemented with 100 µM FeCl3. Total cellular iron increased 6-fold upon 

depletion of Grx4 (Fig. 3A). The level of chelatable iron increased similarly and was mainly 

present as Fe2+ (Fig. S2). Cellular levels of other metals, with the exception of Zn (3-fold 

higher), were hardly changed. In contrast, mitochondrial iron levels were up to 2.3-fold lower 

in Grx4-depleted Gal-GRX4 cells compared to wild-type (Fig. 3B). Mitochondria from 

BY4742 grx3/4∆ cells contained even 7.5-fold less iron. Mitochondrial Mn, Co and Zn levels 

were hardly altered, but Cu changed in parallel to iron. The decrease in mitochondrial iron 

levels in Grx3/4-depleted cells is the more remarkable, as cells with mitochondrial Fe/S 

protein assembly defects usually display strongly elevated mitochondrial iron levels (Lill and 

Muhlenhoff, 2008). The fact that this was not observed, despite high levels of total cellular 

iron, indicates a defective delivery of iron to mitochondria in Grx3/4-deficient cells. 

 A reasonable explanation for these general defects in iron handling in the absence of 

Grx3/4 may be a sequestration of iron into the vacuole, the major iron storage compartment in 

fungi (Kaplan and Kaplan, 2009; Philpott and Protchenko, 2008). To test this, we varied the 

amount of Ccc1, the major importer of divalent metals into the vacuole. Deletion of CCC1 did 
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not restore growth of Grx4-depleted Gal-GRX4 cells and did not increase the low enzyme 

activities of aconitase and catalase (Fig. 3C, top panel and Fig. 3D). Similarly, overproduction 

of Ccc1 failed to restore growth (Fig. 3C, middle). These data suggest that the accumulated 

iron is not stored in the vacuole. 

 Grx4-depleted Gal-GRX4 cells failed to grow under anaerobic conditions (Fig. 3C, 

bottom). Thus, reactive oxygen species (due to increased iron levels) are not responsible for 

the lethal phenotype of Grx3/4-depleted cells. Moreover, oxidized glutathione levels (GSSG; 

measured under anaerobic conditions) were below the detection limit (not shown). Rather, 

reduced glutathione (GSH) was strongly elevated in Grx4-depleted Gal-GRX4 cells, but not 

in BY4742 grx3/4∆ (Fig. 3E). Together, these results and the predominant presence of iron in 

its ferrous form (Fig. S2) indicate that reducing conditions prevail in Grx3/4-deficient cells. 

 The experiments presented above showed a maturation defect in cellular Fe/S and 

heme proteins in Grx3/4-deficient cells despite a cytosolic iron accumulation. Since this 

indicated a defective delivery of iron, we asked whether other iron-dependent enzymes were 

affected by Grx3/4 deficiency. First, the iron status of ribonucleotide reductase (Rnr), a 

cytosolic diferric-tyrosyl radical enzyme essential for deoxyribonucleotide synthesis, was 

analyzed (Perlstein et al., 2005). Upon depletion of Grx4 in Gal-GRX4 cells the protein levels 

of Rnr2 decreased slightly (Fig. S3). Nevertheless, the specific activity of Rnr  was 6-fold 

lower compared to wild-type cells (Fig. 4A). This was likely due to inefficient metallation, 

since 55Fe insertion into Rnr in vivo (followed by immunoprecipitation of subunit Rnr2) was 

5-7-fold decreased in Grx4-depleted cells (Fig. 4B). As a second di-iron protein, we analyzed 

the mitochondrial mono-oxygenase Coq7 which catalyses the hydroxylation of 

demethoxyubiquinol (DMQ6), the penultimate reaction of ubiquinone (CoQ6) biosynthesis 

(Tran et al., 2006). HPLC analysis of mitochondrial lipid extracts revealed diminished CoQ6 

and increased DMQ6 levels upon Grx4 depletion (Fig. 4C). This effect was reversed to wild-

type ratios by expression of GRX4 from a plasmid (Fig. 4D). The simultaneous accumulation 

of the substrate (DMQ6) and decrease of the product (CoQ6) of the enzyme Coq7 indicates a 

diminished activity of this di-iron mono-oxygenase upon depletion of Grx3/4. Collectively, 

these data demonstrate that a Grx3/4 deficiency causes a severe defect in cellular di-iron 

enzymes. 

 Are the observed defects in Grx3/4-depleted cells specific for iron-dependent proteins? 

This question was addressed by analyzing the activities and protein levels of several metal-

dependent enzymes. The in-gel activities of the endogenous Cu/Zn- and Mn-dependent 

superoxide dismutases (Sod1 and Sod2, respectively) remained unchanged in Grx4-depleted 
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Gal-GRX4 cells (Fig. 4E). In marked contrast, both the level and activity of ectopically 

expressed iron-only superoxide dismutase (FeSod) from E. coli strongly declined. Further, the 

Zn-dependent alcohol dehydrogenase (ADH) was 3-fold more active upon Grx4 depletion 

(Fig. S1B). This increased ADH activity is characteristic for a switch towards fermentative 

metabolism and is typically observed upon iron deprivation. The normal function of several 

metal-reliant enzymes indicates that the described defects in Grx3/4-depleted cells are specific 

for iron-related processes. We conclude that Grx3/4 perform an essential role in cellular iron 

trafficking, in addition and independently of their non-essential function in iron uptake 

regulation. 

 

Grx3/4 assemble a bridging Fe/S cluster independently of the CIA machinery 

For a function of monothiol glutaredoxins in cellular iron trafficking, iron-binding may be a 

necessary prerequisite. Recent in vitro studies have shown that various glutaredoxins, 

including yeast Grx3/4, can bind a bridging, GSH-liganded [2Fe-2S] cluster (Bandyopadhyay 

et al., 2008; Berndt et al., 2007; Johansson et al., 2007; Li et al., 2009). We asked whether this 

unusual Fe/S cofactor is of physiological relevance and can be observed in a native 

environment using the 55Fe radiolabelling assay. Significant amounts of 55Fe were co-

immunoprecipitated with anti-Grx4-antibodies from cell extracts derived from wild-type cells 

(strain BY4742), while only background levels were observed in grx3/4∆ cells (Fig. 5A). 

Similar amounts of 55Fe were co-immunoprecipitated from both grx3∆ and grx4∆ cells, 

indicating that the homologous Grx3 and Grx4 bind iron with similar efficiency and 

independently of each other. The amount of Grx4-bound 55Fe was unchanged both in wild-

type cells of our standard strain W303-1A, and, remarkably, under anaerobic or oxidative 

stress conditions prevailing after addition of H2O2 or upon deletion of SOD1 (sod1∆ cells) 

indicating that iron binding to Grx3/4 was insensitive to oxidative stress (Fig. 5B). 

 To analyze whether the iron bound to Grx3/4 is part of an Fe/S cluster, we investigated 

the requirement of 55Fe binding for components of Fe/S protein biogenesis (Lill and 

Muhlenhoff, 2008). We first analyzed the role of the cysteine desulfurase complex Nfs1-Isd11 

which serves as the sulfur donor for Fe/S protein biogenesis. For regulated depletion of Nfs1 

or Isd11 we used Gal-NFS1 or Gal-ISD11 cells, respectively. 55Fe binding to Grx4 (Fig. 5C) 

and to the cytosolic Fe/S protein Leu1 as a control (Fig. S4) declined to background levels 

upon depletion of either Nfs1 or Isd11. The same result was seen in Gal-ISU1∆isu2 cells 

depleted for the core ISC scaffold proteins Isu1/2. No recovery of iron binding to Grx3/4 was 

observed, when a cytosolic-nuclear version of Nfs1 (∆N-Nfs1) was produced in Gal-NFS1 
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cells lacking mitochondrial Nfs1 (Fig. 5C). We found during these experiments that the Grx4 

protein levels decreased upon Nfs1 depletion, while the Grx3 levels remained unchanged. 

While the reason for this specific decrease is unknown, we note that the remaining Grx3 did 

not bind 55Fe above background levels, unlike in grx4∆ cells (cf. Fig. 5A). The dependence of 

iron binding to Grx3/4 on core components of the mitochondrial ISC assembly system 

demonstrates that Grx3/4 bind an Fe/S cluster in vivo. 

 Does incorporation of the Fe/S cluster into Grx3/4 also require the cytosolic iron-

sulfur protein assembly (CIA) system (Lill, 2009)? Depletion of the essential CIA 

components Nbp35 and Dre2 in the respective GAL promoter-exchange mutants significantly 

increased rather than impaired 55Fe binding to Grx3/4 (Fig. 5D), while hardly any 55Fe 

binding was observed to Leu1 as a control (Fig. S4). This surprising finding suggests that 

incorporation of the Fe/S cluster into Grx3/4, while requiring mitochondrial Nfs1-Isd11-Isu1, 

does not depend on the cytosolic CIA machinery. 

 The non-canonical pathway used for Fe/S cluster assembly on Grx3/4 may be due to 

the special nature of this cofactor, with a conserved Cys and GSH serving as ligands of a 

[2Fe-2S] cluster bridged between two Grx monomers, as observed after in vitro reconstitution 

or after overexpression in  E. coli (Li et al., 2009; Picciocchi et al., 2007). We therefore 

sought to obtain in vivo evidence for this configuration. First, we determined which ligands 

might coordinate the Fe/S cluster. The importance of the conserved active-site cysteine 

residues C171 in the C-terminal Grx domain and C37 in the N-terminal Trx domain (Fig. 5E, 

top) for 55Fe binding was tested in wild-type cells expressing a plasmid-encoded Myc-tagged 

Grx4 (Grx4-Myc) in which these residues were mutated to serine (mutant proteins C171S and 

C37S) or alanine (C171A). Myc-tagged wild-type Grx4 was fully functional (see below), and 

was produced at similar levels as the mutant proteins (Fig. 5E, bottom). Mutant proteins 

C171S and C171A did not bind 55Fe above background levels (Fig. 5E, middle). In contrast, 

mutant protein C37S bound wild-type amounts of 55Fe suggesting that iron is bound via C171. 

Second, the importance of GSH for 55Fe binding to Grx3/4 in vivo was tested using the GSH 

synthesis-deficient mutant gsh1∆ that can be depleted for GSH upon growth in media lacking 

GSH. While significant amounts of 55Fe were bound to Grx4-Myc in the presence of 

exogenously added GSH, only background levels of 55Fe were found in GSH-deprived cells 

(Fig. 5F). Together, these findings suggest that the active-site C171 of the Grx domain and 

GSH serve as ligands of the Grx3/4-bound Fe/S cluster. 

 Finally, we tried to find in vivo evidence for the presence of a bridging Fe/S cluster on 

Grx3/4. A yeast strain was constructed that simultaneously expressed C-terminally HA- and 
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Myc-tagged Grx4. Cell extracts were subjected to immunoprecipitation with anti-HA or anti-

Myc immunobeads followed by immunoblotting. Immunoprecipitation with anti-HA 

antibodies led to co-isolation of Grx4-HA and a smaller amount of Grx4-Myc (Fig. 5G). The 

same result, yet with inversed intensities was observed using anti-Myc beads, while no cross-

reacting bands were visible in wild-type cells. In cells expressing a C171S mutant Grx4-Myc 

and wild-type Grx4-HA, co-immunoprecipitation was far less efficient, but still detectable. 

These observations document the importance of residue C171 for efficient Grx4 dimer 

formation, and thus are consistent with the idea of a bridging Fe/S cluster between two Grx 

monomers. Collectively, our findings suggest that under physiological conditions Grx3/4 bind 

a bridging Fe/S cluster that is coordinated by the active-site cysteine and GSH consistent with 

the structure of glutaredoxins reconstituted in vitro. 

 

The Grx3/4-bound Fe/S cluster is important for iron metabolism 

Is the Grx3/4-bound Fe/S cluster important for the function of Grx3/4 in iron trafficking and 

is this cofactor also required for iron sensing? As shown above the C171S and C171A Grx4-

Myc mutant proteins have lost the ability to stably bind the Fe/S cluster (Fig. 5E). Grx4-

depleted Gal-GRX4 cells expressing these mutant proteins from the endogenous GRX4 

promoter failed to grow, whereas wild-type and C37S Grx4-Myc that retained normal iron 

binding supported wild-type growth (Fig. 6A, top). Aft1-dependent transcription of FET3 was 

fully activated and virtually no aconitase and catalase activities were observed in Gal-GRX4 

cells producing C171S and C171A Grx4-Myc instead of wild-type Grx4 (Fig. 6B). In 

contrast, wild-type and C37S Grx4-Myc-expressing Gal-GRX4 cells showed wild-type 

signals in these assays. All Grx4-Myc proteins were present at similar levels, with the 

exception of C171A which apparently was less stable (Fig. 6A, bottom). These results 

demonstrate the crucial role of residue C171 and thus the Grx3/4-bound Fe/S cluster for both 

iron regulation and iron trafficking. 

 Formally, it is possible that the active-site C171 performs its essential role in Grx4 via 

thiol-dependent redox chemistry (Herrero and de la Torre-Ruiz, 2007; Lillig et al., 2008) 

rather than by coordination of the Fe/S cluster. Such a function can be excluded from the 

observation that overexpression (from a Tet promoter) of the C171S (but not C171A) Grx4-

Myc mutant protein in Grx4-depleted Gal-GRX4 cells restored wild-type growth (Fig. 6C). 

We noted that Grx4 overexpression generally diminished FET3 induction (Fig. 6D). The 

corresponding C171S cells still displayed strong FET3 activation, yet wild-type aconitase and 

strongly increased catalase activities. The restored iron loading of these and presumably other 
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iron-dependent proteins may explain why the C171S cells grow normally, despite a still 

disturbed iron regulation. Consistent with this interpretation, C171A cells did not show any 

recovery of enzyme activities. This striking result for C171S Grx4-Myc may be explained on 

the basis of earlier observations showing that, in some cases, Ser (but not Ala) may function 

as a (weak) ligand for iron (da Silva and Williams, 2001; Johnson et al., 2005). We therefore 

suppose that the C171S Grx4 still binds an Fe/S cluster, thus stabilizing the protein and 

maintaining its function in iron trafficking at high protein levels (Figs. 6A and 6C). However, 

the Fe/S cluster is bound in a fashion too labile to be isolated by our co-immunoprecipitation 

method, and to function properly in iron regulation. In summary, these data indicate that the 

essential function of residue C171 cannot be explained by thiol-dependent redox reactivity but 

rather by coordination of the bridging Fe/S cluster which was characterized here to perform 

an essential function in both intracellular iron trafficking and sensing. 

 

Discussion 

Our analysis of the cytosolic-nuclear monothiol glutaredoxins Grx3 and Grx4 provides strong 

evidence for an essential and general role of these proteins in intracellular iron trafficking, a 

so far poorly understood process (Fig. S5). This function of Grx3/4 is additional to their 

involvement in Aft1-dependent iron sensing, since the phenotypes of Grx3/4-depleted and 

Aft1-activated cells differ markedly in that only the former cells display global and severe 

biochemical defects in multiple iron-dependent enzymes (Hausmann et al., 2008; Ihrig et al., 

2009). For instance, the function of cellular Fe/S-, heme- and other iron-containing proteins is 

strongly impaired upon depletion of Grx3/4, but not affected when Aft1 is activated. Many of 

these proteins are involved in essential processes such as DNA synthesis and ribosome 

function, explaining why Grx3/4-depleted cells eventually loose their viability. The two 

functions of Grx3/4 in iron trafficking and sensing are mediated by their crucial cofactor, a 

GSH-liganded and bridging [2Fe-2S] center. Destruction of this Fe/S center elicits a highly 

similar phenotype as the depletion of the Grx proteins. The observed biochemical 

consequences of Grx3/4 depletion are specific for iron, since the functions of other metal-

dependent enzymes such as Cu,Zn- and Mn-dependent superoxide dismutases were not 

affected. Together, our findings demonstrate a crucial role of Grx3/4 in intracellular iron 

delivery from the cytosolic labile iron pool to virtually all iron-binding proteins or pathways 

in the cell (Fig. S5). Hence, Grx3/4 represent long-sought general factors that facilitate the 

proper assembly of various iron centers in proteins and cofactors. Grx3/4 are unlikely to make 
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specific and direct contacts with the potential iron-dependent targets. Therefore, they may not 

function as classical metallo-chaperones that deliver their metal specifically to individual 

targets (Finney and O'Halloran, 2003; Lyons and Eide, 2007). Rather, the iron activated by 

Grx3/4 may be utilized by dedicated assembly factors such as components of the 

mitochondrial ISC or cytosolic CIA systems (Lill and Muhlenhoff, 2008) or the cytosolic 

ferritin-specific iron chaperone PCBP1 (Shi et al., 2008) for proper insertion into recipient 

apo-proteins. 

Several observations make it unlikely that the severe iron trafficking defect in the 

absence of Grx3/4 is related to oxidative stress damage, even though, in principle, Fenton 

chemistry is possible in Grx3/4-depleted cells due to their massive accumulation of 

intracellular ferrous iron. First, the lethal phenotype of Grx3/4-depleted cells was not cured 

under anaerobic conditions, and the activities of iron-dependent enzymes were not recovered. 

Second, BY4742 grx3/4∆ cells display only weak signs of oxidative stress, possibly because 

the cytosolic redox balance in yeast is maintained by the dithiol glutaredoxins Grx1 and Grx2 

(Rodriguez-Manzaneque et al., 1999). Third, binding of the essential Fe/S center to Grx3/4 

was rather insensitive to oxidative stress. Finally, Grx3/4-depleted cells show hyper-

accumulation of reduced GSH with no signs for an increase in oxidized GSSG. 

The observed cytosolic iron trafficking defect in Grx3/4-deficient cells cannot be 

explained by low levels of iron in the cytosol. Rather, these cells accumulate high amounts of 

chelatable iron which in all likelihood is predominantly present in the cytosolic compartment. 

An iron efflux into the vacuole, the main storage organelle for excess iron in plants and fungi 

(Kaplan and Kaplan, 2009; Philpott and Protchenko, 2008), is unlikely since the deletion of 

the vacuolar divalent metal transporter gene CCC1 did not rescue any of the defects of 

Grx3/4-depleted cells. Mitochondria, which accumulate iron under conditions of hampered 

Fe/S protein biogenesis (Lill and Muhlenhoff, 2008), displayed diminished iron levels in 

Grx3/4-depleted cells. These data suggest that the surplus iron in Grx3/4-deficient cells is not 

bioavailable for efficient funneling into iron-dependent processes. 

Our 55Fe radiolabelling experiments demonstrate that the Fe/S cluster of monothiol 

glutaredoxins, as initially characterized in vitro or after overexpression in E. coli (Li et al., 

2009; Picciocchi et al., 2007), is also assembled in its native environment and is of utmost 

physiological relevance. The essential involvement of the core components of the 

mitochondrial ISC assembly system provides strong evidence that the bound iron is part of an 

Fe/S cluster, and that the sulfide ions of the [2Fe-2S] cluster are derived from the 

mitochondrial cysteine desulfurase complex Nfs1-Isd11. Our in vivo results support the 
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unusual bridging character of the Fe/S cluster, which is coordinated by the Grx domain active-

site Cys171 and GSH. Hence, GSH performs a dual role in cellular iron metabolism. As part 

of the Grx3/4 complex it is central for intracellular iron delivery and sensing, and as a 

component of the ISC export machinery it cooperates with the mitochondrial ABC transporter 

Atm1 both in the assembly of cytosolic-nuclear Fe/S proteins and in mitochondrial-cytosolic 

iron homeostasis (Lill, 2009; Sipos et al., 2002). Surprisingly, the Grx3/4 Fe/S cofactor is 

assembled independently of the CIA system, an observation which differs from all other 

known, non-scaffold cytosolic Fe/S proteins analyzed so far (Lill and Muhlenhoff, 2008). 

This unique assembly mode is likely related to the special type of Fe/S cluster on Grx3/4. The 

CIA machinery-independent maturation of Grx3/4 is consistent with earlier observations that 

this machinery is not important for cellular iron regulation in yeast (Hausmann et al., 2008; 

Kaplan and Kaplan, 2009).  

While it is clear that the bridging Fe/S cluster of Grx3/4 is crucial for iron trafficking, 

the question remains how it may function. Currently, it cannot be discerned whether the iron 

moiety of the Fe/S cluster is mobilized and used for insertion into iron-dependent proteins, or 

whether the Fe/S cluster plays a more indirect role by activating cytosolic iron for specific 

trafficking. In any case, it is well-known for Fe/S clusters that they can reversibly loose one of 

their iron ions, the most prominent example being aconitase (Beinert et al., 1997). Thus, the 

Fe/S cluster of Grx3/4 may not be fully disassembled during its action in iron delivery. The 

role of the Grx3/4 Fe/S center in iron trafficking is clearly distinct from the proposed function 

of other monothiol glutaredoxins as Fe/S scaffold (or Fe/S carrier) proteins facilitating Fe/S 

cluster transfer to target apoproteins (Bandyopadhyay et al., 2008; Picciocchi et al., 2007). 

Thus, monothiol glutaredoxins may use diverse mechanisms for maturation of iron-containing 

proteins. 

In principle, the essential requirement of the Grx active-site C171 for iron homeostasis 

could be explained by thiol-dependent redox chemistry. However, with few exceptions, 

monothiol glutaredoxins, including yeast Grx3/4, are inactive in GSH-dependent redox 

reactions in vitro, and there is little evidence that monothiol glutaredoxins carry out specific 

catabolic functions (Herrero and de la Torre-Ruiz, 2007). In addition, BY4742 grx3/4∆ cells 

display wild-type glutathione reductase activity (Rodriguez-Manzaneque et al., 1999). Most 

convincingly, the high-copy suppressor phenotype of the C171S mutation in the Grx domain 

excludes impaired thiol-related (redox) chemistry as an explanation for the functional defects 

prevailing in Grx3/4-depleted cells. High levels of the Cys171 mutant protein, but not the 

corresponding Ala variant, supported wild-type growth, and almost fully restored the 
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activities of iron-dependent proteins. This suggests that the C171S protein is still capable of 

coordinating the Fe/S co-factor, as this is known for other proteins with Cys to Ser mutations 

(da Silva and Williams, 2001; Johnson et al., 2005). However, iron binding to the C171S 

mutant protein may be more labile thus precluding its detection by our in vivo 55Fe labeling 

and immunoprecipitation assay. As a consequence the amount of bound Fe/S cluster may be 

too low to support Grx4 function in Aft1 sensing. Consistent with this interpretation, in 

reconstituted human Grx2 and poplar GrxC1, the [2Fe-2S] cluster is coordinated in a binding 

pocket at the interface of two Grx monomers by the two active-site Cys residues and two non-

covalently bound GSH molecules (Berndt et al., 2007; Johansson et al., 2007; Rouhier et al., 

2007). The replacement of cysteine with serine may still provide a low-affinity iron binding 

site. 

Grx3/4 play a role in iron-uptake regulation by cooperating with the iron-responsive 

transcription factor Aft1, the major regulator of cellular iron uptake in yeast (Philpott and 

Protchenko, 2008). In fact, the physical interaction between Grx3/4 and Aft1 was the initial 

evidence linking Grx3/4 and cellular iron homeostasis (Ojeda et al., 2006; Pujol-Carrion et 

al., 2006). Our study shows that the Grx3/4-bound Fe/S cluster functions as the long-sought 

iron sensor which communicates the cytosolic iron status to Aft1 (Fig. S5). Removal of the 

bound Fe/S cluster, e.g., by mutation of the active-site Cys of the Grx domain or by depletion 

of GSH abolished the ability of Grx3/4 to regulate Aft1. The iron-sensing role of Grx3/4 

appears to be conserved in other fungi that utilize iron-responsive transcription factors, even if 

they are structurally unrelated to S. cerevisiae Aft1 (Kaplan and Kaplan, 2009; Mercier and 

Labbe, 2009). 

The crucial function of Grx3/4 and its unique Fe/S center in intracellular iron 

trafficking and sensing opens an additional chapter of the intimate connection between the 

iron metabolism and Fe/S protein biogenesis. Not only is the iron metabolism regulated by 

(mitochondrial) Fe/S protein biogenesis (Kaplan and Kaplan, 2009), but conversely iron 

insertion into Fe/S proteins requires its activation by the Fe/S cluster-containing Grx3/4. The 

mutual dependence of these two important pathways is further linked to the cellular redox 

balancing systems via GSH which is crucial for both iron insertion into iron-dependent factors 

and regulation of cellular iron homeostasis (Lill and Muhlenhoff, 2008). These considerations 

reserve a central role for monothiol glutaredoxins Grx3/4 and their bound Fe/S center in 

cellular metabolism. The central function of Grx3/4 in intracellular iron trafficking may 

provide the explanation for the conservation of this protein family in eukaryotes. The 
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discovery of this glutaredoxin function now paves the way towards mechanistic investigations 

of how iron is specifically activated for incorporation into iron-requiring processes. 

Experimental procedures 

Yeast strains, cell growth and plasmids- Yeast strains used in this study are listed in Table S1. 

If not stated otherwise, the strain background is W303-1A. Cells were cultivated in minimal 

medium containing all recommended supplements (SC), 2% w/v glucose (SD) or 3% w/v 

glycerol (Sherman, 2002). Iron-replete media were supplemented with 50 µM FeCl3. Media 

for anaerobic growth were supplemented with Tween80, ergosterol and methionine. Gal-

GRX4 cells were depleted for Grx4 to critical levels by cultivation in SD medium for 40 to 64 

h prior to analysis. Repression of other conditional Gal-strains was performed as described 

(Table S2). gsh1∆ cells were cultivated in the presence or absence of 1 mM GSH for 64 h 

prior to analysis (Sipos et al., 2002). Wild-type and site-directed mutant Grx4 proteins were 

expressed in yeast with a C-terminal Myc-tag from plasmid pCM189 (Ojeda et al., 2006) 

under the control of the tetO7 or the endogenous GRX4 promoter (Table S2). 

Biochemical analyses- In vivo radiolabelling of yeast cells with 55FeCl3 (Perkin-Elmer) and 

measurement of 55Fe incorporation into proteins by immunoprecipitation and into heme was 

carried out as described (Pierik et al., 2009). Antibodies were raised in rabbits against 

recombinant proteins expressed in E. coli. 55Fe-labelling of added apo-ferredoxin in detergent 

extracts of isolated mitochondria was carried out as described (Molik et al., 2007). DMQ6 and 

CoQ6 were quantified according to (Tran et al., 2006), GSH and GSSG according to (Elledge 

and Davis, 1987). 

Miscellaneous methods- The following published methods were used: manipulation of DNA 

and PCR (Sambrook and Russel, 2001); preparation of yeast mitochondria (Molik et al., 

2007), immunological techniques (Harlow and Lane, 1988); FET3 promoter assays (Molik et 

al., 2007); determination of cellular and mitochondrial metal contents by ICP-MS 

(Muhlenhoff et al., 2003); enzyme activities of iron proteins, ADH, and MDH (Molik et al., 

2007), ribonucleotide reductase (Wang et al., 2009), and superoxide dismutase (Flohe and 

Otting, 1984). Error bars represent the standard error of the mean (SEM) (n � 4). 
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Figure legends  

 

Fig. 1: Deficiency in Grx3/4 is associated with defects in iron-dependent enzymes.  

(A) Wild-type (WT), Gal-GRX4, grx3∆ (strain background W303-1A), and grx3/4∆ (strain 

background BY4742) were grown in SD medium for 40 h. Tenfold serial dilutions were 

spotted onto YPEG plates and incubated for 2 days at 30°C. (B) WT, Gal-GRX4 and Gal-

SSQ1 strains harbouring plasmid pFET3-GFP were grown in SD minimal medium. At the 

indicated times, FET3 promoter activities were determined by measuring the GFP-specific 

fluorescence emission of cells, and cell extracts were assayed for aconitase and catalase 

activities, or (C) analyzed for the indicated proteins by immunostaining. (D) Enzyme 

activities of respiratory complexes II (SDH) and IV (COX) were determined relative to malate 

dehydrogenase (MDH) in mitochondria isolated from Gal-GRX4 cells cultivated in rich 

glucose medium for 40 h and 64 h, and from Gal-GRX4 cells expressing GRX4 from vector 

pCM189 (+Grx4). Error bars indicate the SEM (n � 4). 

 

Fig. 2: Deficiency in Grx3/4 impairs the de novo synthesis of cellular Fe/S clusters and 

heme. (A-C) Wild-type (WT) and Grx4-depleted Gal-GRX4 cells overproducing the 

cytosolic Fe/S proteins Rli1-HA, Dre2 or Nar1 (A), mitochondrial Bio2, Ilv3-Myc (B), or 

Isu1 (C) were radiolabeled with 10 µCi 55Fe for 2 h. The Fe/S proteins were 

immunoprecipitated and bound 55Fe was quantified by scintillation counting. Protein levels 

were assessed by immunostaining. Porin (Por1) served as a loading control. Gal-GRX4 cells 

were depleted for Grx4 by growth in SD medium for 40 h, and 64 h (in case of Isu1). (D)  

Purified apo-Yah1 was incubated under anaerobic conditions in the presence of 55Fe and 

cysteine either alone (-) or with detergent extracts of mitochondria isolated from 40 h or 64 h 

depleted Gal-GRX4 cells or Gal-GRX4 cells overproducing Grx4 (+Grx4). 55Fe/S cluster 

reconstitution on re-isolated Yah1 was quantified by scintillation counting. (E) WT and Gal-

GRX4 cells (40 h depletion) harboring either vector pCM189 (-) or pCM189-GRX4 (+Grx4) 

were radiolabeled with 55Fe. 55Fe-heme was extracted with butyl-acetate and quantified by 

scintillation counting. Error bars indicate the SEM (n � 4). 

 

Fig. 3: Deficiency in Grx3/4 results in cytosolic iron and GSH accumulation. The metal 

content of (A) wild-type (WT) and Gal-GRX4 cells (depleted for 64 h) and (B) mitochondria 

isolated from the indicated strains was determined by ICP-MS. (C) The indicated strains 

lacking (ccc1∆) or overproducing Ccc1 (Ccc1�) were cultivated in SD medium for 40 h. 
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Tenfold serial dilutions were spotted onto SC agar plates containing glycerol (Glyc) or 

glucose (Glc), and cultivated at 30°C under aerobic (+O2) or anaerobic (-O2) conditions. (D) 

WT, Gal-GRX4 and Gal-GRX4/ccc1∆ cells were grown in SD medium for 64 h, and 

aconitase and catalase enzyme activities were determined. (E) GSH levels were determined in 

cell extracts from WT, BY4742 grx3/4∆, Gal-GRX4 (depleted for 40 h or 64 h) and Gal-

GRX4 cells expressing GRX4 from a plasmid (+Grx4). 

 

Fig. 4: Deficiency in Grx3/4 leads to functional impairment of di-iron enzymes.  

(A) Permeabilised wild-type (WT) and Grx4-depleted Gal-GRX4 cells were assayed for 

specific ribonucleotide reductase activity (see also Fig. S3). (B) WT and Gal-GRX4 cells 

were grown in SD medium for 40 and 64 h, radiolabeled, and 55Fe binding to Rnr2 was 

analyzed by immunoprecipitation and scintillation counting. Protein levels of Rnr2 and Por1 

were determined by immunoblotting (insert). (C) The substrate (demethoxyubiquinol DMQ6) 

and product (ubiquinone CoQ6) of mitochondrial mono-oxygenase Coq7 were analyzed by 

electrochemical detection coupled to HPLC separation of mitochondrial lipid extracts from 

WT and Grx4-depleted Gal-GRX4 cells. CoQ4 is a commercial standard.  (D) Ratio of DMQ6 

and CoQ6 levels in mitochondria isolated from WT, Gal-GRX4 cells (depleted for 40 h or 64 

h) containing either vector pCM189 or pCM189-GRX4 (+Grx4). (E) WT and Grx4-depleted 

Gal-GRX4 cells overproducing Fe-only superoxide dismutase from E. coli (FeSod) were 

analyzed for superoxide dismutase in-gel activities and FeSod by immunoblotting. 

 

Fig. 5: Grx3/4 assemble a bridging Fe/S cluster independently of the CIA machinery.  

(A) 55Fe binding to Grx3/4 was determined in wild-type (WT), grx3∆,  grx4∆ and grx3/4∆ 

cells (strain background BY4742). Grx3/4 protein levels were assessed by immunostaining. 

Por1 served as a loading control. The anti-Grx4 antiserum recognizes an unspecific band, in 

addition to Grx3/4. (B) 55Fe binding to Grx3/4 was determined in WT and sod1∆ cells (strain 

background W303-1A). Where indicated, cells were pretreated with 1 mM H2O2 for 10 min or 

examined under anaerobic (-O2) conditions. (C, D) 55Fe binding to Grx3/4 was determined in 

WT, Gal-NFS1 (with and without a plasmid expressing a cytosolic version of Nfs1 (+∆N-

NFS1)), Gal-ISD11, Gal-ISU1 (C) or Gal-NBP35 and Gal-DRE2 cells (D) after growth in SD 

medium for 40 h. BY4742 grx3/4∆ cells served as a background control. Grx3/4 and Por1 

levels were assessed by immunostaining. (E) Top: Schematic presentation of the domain 

structure of Grx4. Middle: C-terminally Myc-tagged WT, C37S, C171S, or C171A mutant 

Grx4 were expressed in WT cells from vector pCM189, and 55Fe binding to Grx4 was 



 23  

determined by radiolabelling and immunoprecipitation with α-Myc beads. Bottom: Grx4-Myc 

and Por1 levels were assessed by immunostaining. (F) WT and gsh1∆ cells overproducing 

Grx4-Myc were cultivated in the presence or absence of 1 mM GSH for 64 h (Sipos et al., 

2002). 55Fe binding to Grx4-Myc was determined by immunoprecipitation with α-Myc beads. 

(G) Extracts of WT cells expressing C-terminally HA-tagged Grx4 and wild-type or C171S 

Grx4-Myc as indicated were subjected to immunoprecipitation (IP) with α-Myc or α-HA-

antibodies. The precipitate was analyzed by immunostaining with α-HA or α-Grx4 

antibodies. The arrow (�) indicates a lane with a molecular mass marker which is stained by 

the α-HA antiserum. 

  

Fig. 6: The active-site cysteine of the Grx domain is essential for iron metabolism. Gal-

GRX4 cells lacking (-) or expressing wild-type (WT) Grx4-Myc or the Grx4-Myc mutant 

proteins C37S, C171S or C171A under the control of the GRX4 (A) or tetO7 (C) promoter 

from vector pCM189 were cultivated in SD medium. After 40 h, tenfold serial dilutions were 

spotted onto SC medium with glycerol. The levels of Grx4-Myc, endogenous Grx4, and 

cytosolic Hsp70 were assessed by immunostaining. (B, D) After 64 h cells from A and C were 

analyzed for FET3 promoter activities, or aconitase and catalase enzyme activities. 
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Supplemental Figure S1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Grx4 depletion induces multiple iron-related defects. (Related to Figure 1 

and Figure 3.) (A) Activities of aconitase and respiratory complexes III and IV were 

determined in mitochondria isolated from BY4742 wild-type and isogenic grx3/4 cells. (B) 

Alcohol dehydrogenase (ADH) activities were determined in extracts from Gal-GRX4 cells 

harboring plasmid pCM189 (-) or pCM189GRX4 (+ GRX4) cultivated for 64 h in iron-replete 

minimal medium.W303-1A wild type cells (WT) cultivated in iron-replete (+ Fe (50µM)) or 

iron-depleted minimal medium in the presence of 50µM bathophenantroline (-Fe) were 

analyzed in parallel. Error bars indicate the SEM (n ≥ 4). 
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Supplemental Figure S2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Grx3/4-depleted cells accumulate chelatable, ferrous iron. (Related to Figure 

3.) W303-1A wild-type (WT), Gal-GRX4 cells and WT cells overproducing Aft1 from vector 

p415-MET25-FET3-GFP were cultivated for 40 h in iron-replete minimal SD medium and for 

16 h in SD medium supplemented with 100 µM Fe
3+

. Cell extracts were prepared by 

mechanical disruption with glass beads under anaerobic conditions on ice and the amount of 

ferrous Fe
2+

 in the extracts was quantified by the bathophenantroline method before (-) and 

after (+) reduction with sodium dithionite (Na2S2O6) (Kispal et al., 1999; Molik et al., 2007). 

Error bars indicate the SEM (n ≥ 4). 
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Supplemental Figure S3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Low levels of Grx3/4 impair the enzymatic function of ribonucleotide 

reductase. (Related to Figure 4.) W303-1A wild type (WT) and Gal-GRX4 cells (GRX) 

were grown in 50 ml SD medium for 16 h, diluted into 500 ml of the same medium, and 

cultivated for 5 h. (A, B) Cells were harvested at log phase, permeabilized and the activity of 

the small subunit of ribonucleotide reductase (Rnr2) was determined. Assay mixtures 

contained 3.3  10
7
 cells, 10 mM NaF, 50 mM DTT, 1 mM ATP, 80 µg purified recombinant 

Rnr1 (specific activity 100 nmol min
-1

 mg
-1

), 1 mM 
3
H-CDP (3,400 cpm/nmol). Then, 0.1 M 

KPO4 and 0.6 M sorbitol, pH 7.7 was added to give a total volume of 240 µl. After 0, 5, and 

10 min, 80 µl aliquots were withdrawn, heat inactivated, and dCDP formation was quantified 

as described (Steeper and Steuart, 1970). Rnr small subunit activities were normalized to cell 

number (A) or Rnr2 protein levels (B).  (C) Rnr2 protein levels were determined by Western 

blotting with purified recombinant His-Rnr2 (1-10 ng) as a standard. (D) Whole cell protein 

contents were visualized by amido black staining. Standard deviations were calculated from 

duplicate measurements of three independent preparations. 

 

R
n
r2

 a
c
ti
v
it
y

n
m

o
ld

C
D

P
/ 

1
0

 7
ce

lls

1 2.5 5 10

ng His-Rnr2

WT GRX

1X 4X

GRXWT
1 2.5 5 10

ng His-Rnr2

WT GRX

1X 4X

GRXWT WT GRX

1X 4X

GRXWTWT GRX

1X 4X

GRXWT

A

C D

B

R
n
r2

 a
c
ti
v
it
y

n
m

o
ld

C
D

P
/m

g 
R

N
R

2WT WT

Gal-GRX4

Gal-GRX4

incubation time (min) incubation time (min)



 4 

Supplemental Figure S4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Maturation of the cytosolic Fe/S protein Leu1 iron requires the components 

of both the ISC and CIA systems and Grx3/4. (Related to Figure 5.) 
55

Fe-binding to 

endogenous Leu1 was determined in W303-1A wild type (WT), the isogenic Gal-strains Gal-

NFS1, Gal-NBP35 and Gal-DRE2 cells after respective protein depletion for 40 h, and in 

BY4741 grx3/4 cells (Molik et al., 2007; Pierik et al., 2009). The analysis was carried out on 

the same samples that were used for estimating iron binding to Grx4 in Fig. 5. Error bars 

indicate the SEM (n ≥ 4). 
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Supplemental Figure S5 
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Figure S5. Monothiol glutaredoxins Grx3/4 function in iron trafficking and sensing. 

(Related to Discussion.) After iron import into the cell’s cytosol the monothiol glutaredoxins 

Grx3/4 mediate the specific trafficking of iron from a hypothetical labile iron pool to iron-

dependent enzymes and cell organelles including mitochondria where heme (H) and Fe/S 

cluster synthesis occurs (black arrows; (Lill, 2009)). The Grx3/4-bound Fe/S cluster (yellow 

and red circles) is essential for this trafficking function. Regulation of iron uptake and 

intracellular iron distribution involves the iron-responsive transcription factor Aft1, Grx3/4, 

and a mitochondrial signaling molecule (X) that is exported by the ABC transporter Atm1 to 

signal the mitochondrial iron status (red and green arrows). Under iron-limiting conditions, or 

in the absence of Grx3/4 or X, Aft1 translocates into the nucleus, where it acts as 

transcriptional activator of the iron regulon encoding proteins involved in iron uptake and 

distribution. The Fe/S cluster of Grx3/4 functions as the sensor of cytosolic iron levels. See 

text and (Kaplan and Kaplan, 2009; Lill and Muhlenhoff, 2008) for further details.  
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Supplemental Experimental Procedures 

 

 

Supplemental Table I: Yeast Strains Used in This Study 

 

Strain Genotype Method of Generation Source/Reference 

W303-1A MATa; ura3-1; ade2-1; trp1-1; 

his3-11,15; leu2-3,112 

 (Mortimer and 

Johnston, 1986) 

BY4742 MAThis31; leu20; 

met150; ura30 

obtained from Euroscarf (Brachmann et al., 

1998) 

grx3 BY4742, grx3:: KanMX4  obtained from Euroscarf (Ojeda et al., 2006) 

W303-1A 

grx3 

W303A, grx3:: LEU2  PCR Fragment (pUG73) 

(Gueldener et al., 2002) 

this work 

grx4 BY4742, grx4::KanMX4  obtained from Euroscarf (Ojeda et al., 2006) 

grx3/4 BY4742, grx3::LEU2 

grx4::KanMX4  
grx4; PCR Fragment 

(pUG73) 

(Ojeda et al., 2006) 

gsh1 YPH500; gsh1::HIS3 PCR Fragment (pFA6a-

HIS3) (Euroscarf) 

(Sipos et al., 2002) 

sod1 BY4742, sod1::KanMX4 obtained from Euroscarf  

Gal-GRX4 

/grx3 

W303-1A, pGRX4:: GAL-L-

natNT2; grx3::LEU2 
W303 grx3; PCR 

fragment (pYM-N27) 

(Janke et al., 2004) 

this work 

Gal-GRX4 

/grx3ccc1 

W303-1A, pGRX4::GAL1-10-

HIS3; grx3::LEU2; ccc1::HIS3 
Gal-Grx4 /grx3PCR 

fragments (pFA6a-HIS3) 

this work 

Gal-DRE2 W303-1A, pNBP35::GAL-L-

natNT2 

PCR fragment (pYM-N27) 

(Janke et al., 2004) 

this work 

Gal-NBP35 W303-1A, pNBP35::GAL1-10-

HIS3 

PCR fragment (pFA6a-

HIS3-Gal) (Muhlenhoff et 

al., 2003) 

(Hausmann et al., 

2005) 

Gal-ISU1/ 

isu2 

W303-1A, pISU1::GAL1-10-

HIS3, isu2::LEU2 

PCR fragments (pFA6a-

HIS3-Gal, pUG73)  

(Gerber et al., 

2004) 

Gal-NFS1 W303-1A, pNFS1::GAL1-10-

HIS3 

PCR fragment (pFA6a-

HIS3-Gal)  

(Muhlenhoff et al., 

2003) 

Gal-ISD11 W303-1A, pISD1::GAL1-10-

HIS3 

PCR fragment (pFA6a-

HIS3-Gal)  

 (Wiedemann et al., 

2006) 

Gal-SSQ1 W303-1A, pSSQ1::GAL1-10-

LEU2 

PCR fragment (pTL26) (Muhlenhoff et al., 

2003) 

 

Gene disruptions and promoter exchanges were generated by PCR-based gene replacement 

and verified by PCR as described previously (Gueldener et al., 2002; Muhlenhoff et al., 

2002b). Yeast cells were transformed by the lithium acetate method (Gietz and Woods, 2002). 
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Supplemental Table II. Plasmid Constructs Used in This Study. 

 

plasmid ORF backbone Source/Reference 

p426-BIO2 BIO2 p426-TDH3  (Muhlenhoff et 

al., 2002a) 

p426-DRE2 DRE2 p426-TDH3 (Funk et al., 

2002) 

this work. 

p426-ISU1 ISU1 p426-TDH3  (Muhlenhoff et 

al., 2003) 

p426-NAR1 NAR1 p426-TDH3  (Balk et al., 2004) 

p416-N-

NFS1 

NFS1; N-terminal 33 

residues deleted. 

p416-MET25 (Funk et al., 

2002) 

(Kispal et al., 

1999) 

p426-RLI1-HA RLI1; C-terminal HA p426-TDH3  (Kispal et al., 

2005) 

pFET3-GFP GFP p416-MET25  (Hausmann et al., 

2008) 

pFe-Sod E.coli sod1 p426-TDH3 this work 

pET3d-GRX4  GRX4; N-terminal His-tag pET3d  this work 

p426-CCC1 CCC1 p426-TDH3 this work 

pCM189-Grx4 GRX4; C-terminal Myc-tag pCM189 (Gari et al., 

1997) 

(Ojeda et al., 

2006) 

pCM189-

Grx4-C37S 

GRX4; C-terminal Myc-tag; 

C37S 

pCM189-Grx4 this work 

pCM189-

Grx4-C171S 

GRX4; C-terminal Myc-tag; 

C171S 

pCM189-Grx4 this work 

pCM189-

Grx4-C171A 

GRX4; C-terminal Myc-tag; 

C171A 

pCM189-Grx4 this work 

pGRX4-Grx4 GRX4; C-terminal Myc-tag; pCM189-Grx4; 

pGRX4 (422bp upstream) 

in Sma I and Hind III sites 

this work 

pGRX4-Grx4-

C37S 

GRX4; C-terminal Myc-tag; 

C37S 

pGRX4-Grx4 this work 

pGRX4-Grx4-

C171S 

GRX4; C-terminal Myc-tag; 

C171S 

pGRX4-Grx4 this work 

pGRX4-Grx4- GRX4; C-terminal Myc-tag; pGRX4-Grx4 this work 
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C171A C171A 

pGRX4-HA GRX4; C-terminal HA-tag; 

TetO7 promoter; 

pMM518; Integrative 

LEU2 

(Pujol-Carrion et 

al., 2006) 
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