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Geometrically Exact Kirchhoff Beam Theory: 
Application to Cable Dynamics

In this article, the finite element simulation of cables is investigated for future applica-tions to robotics and hydrodynamics. The 
solution is based on the geometrically exact approach of Cosserat beams in finite transformations, as initiated by Simo in the 1980s. 
However, the internal basic kinematics of the beam theory is not those of Reissner–Timoshenko but rather those of Kirchhoff. Based on 
these kinematics, the dynamic model adopted is a nonlinear extension of the so-called linear model of twisted and stretched Euler–
Bernoulli beams. In agreement with the investigated applications, one or both of the ends of the cable are submitted to predefined 
motions. This model is also implemented into a computational fluid dynamics code, which solves the Reynolds-averaged Navier–Stokes 
equations. Regarding this last point, an implicit/iterative algorithm including a conservative load transfer for the variable hydrodynamic 
forces exerted all along the beam length has been used to reach a stable coupling. The relevance of the approach is tested through three 
advanced examples. The first is related to the prediction of cable motion in robotics. Then, the two last illustrations deal with fluid-
structure interaction (FSI). A 2D classical benchmark in FSI is first investigated, and, at last, a computation illustrates the procedure in a 
3D case.

1 Introduction

Cables and other flexible pipes are found in many applications
of civil, aerospace, and mechanical engineering. They are also
commonly used in robotics, to bring energy to the actuators of a
robotic arm. In oceanic engineering, risers are used, for example,
to convey fluids from the bottom of the sea up to the surface. In
these applications, engineers need numerical models of nonlinear
thin deformable structures in order to predict their motions and the
internal stress they undergo for a given application. Hence, the
need for numerical nonlinear beam models is still an intense sub-
ject of research. Among the most advanced finite element methods
proposed for nonlinear beams, the geometrically exact approach
initiated by Simo is probably one of the most efficient. This ap-
proach is based on the Cosserat assumption of rigid cross sections
�1� and on Timoshenko’s internal kinematics �2�, as extended to
finite transformations by Reissner �3�. Following the pioneering
work of Simo �4�, Simo and Vu-Quoc �5,6�, and Cardona and
Gérardin �7�, this approach was further improved through the
work of Cardona et al. �8�, Ibrahimbegovic et al. �9�, Ibrahimbe-
govic �10�, Ibrahimbegovic and Al Mikdad �11�, Ibrahimbegovic
and Mamouri �12�, Chrisfield and Jelenic �13�, Kapania and Li
�14�, and Zupan and Saje �15�. As regards numerical perfor-
mances, the good results of this approach are essentially due to the
fact that it requires no approximation of the finite rotations of the
cross sections except the unavoidable discretization of the struc-
ture domain into finite elements and of the time axis through the
integration schemas �16�.

However, when the “length/thickness” ratio of the beam be-
comes very high �i.e., when the structure is more of a rope or a
cable than a beam�, it becomes relevant to use the alternative

internal kinematics of Kirchhoff and Clebsch �17�, as is done in

oceanic engineering for the simulation of very long undersea

cables �18–21�.
Based on the nonlinear Kirchhoff beam theory, much progress

has been accomplished by the oceanic engineering community.

However, most of the results related to undersea cables have been

based to date on the finite difference methods �see Refs. �18–21��
with a very few based on the usual �not geometrically exact� finite

element method �22�.
Hence, developing geometrically exact finite element methods

for cables is still a relevant challenge in nonlinear structural dy-

namics. A first step toward this goal was made in Ref. �23�, where

a geometrically exact finite element method based on Kirchhoff

kinematics is proposed. In this reference, two models are tested

and compared with the Reissner–Simo model. Prolonging the lin-

ear beam theory, these models correspond to those of Euler–

Bernoulli and Rayleigh �24�. In comparison to the geometrically

exact theory of Reissner–Timoshenko beams, these models are not

defined on the same configuration space since, in the case of very

slender beams, the orthonormal frames of the Reissner theory re-

duce to the field of the unit vectors tangent to the line of centroids,

i.e., in the language of Cosserat media, a continuous set of direc-

tors �25,26�. This difference requires replacing the Lie group

SO�3� of the configuration space of Reissner theory by the fibra-

tion S2�SO�2� �27�, where S2=SO�3� /SO�2� stands for the ori-

entation of the cross section normals, which is parameterized by

the position field of the centroid line while SO�2� stands for the

cross section roll around the centroid line. In the current article,
the geometrical approach is applied to this definition of the con-
figuration space in order to address the problem of the modeling
and simulation of cables with a view to future application to the
detection of collisions in robotics and to the installation of risers
in oceanic engineering. In particular, this article proposes a model
�and its finite element implementation� of a nonlinear Euler–
Bernoulli beam whose ends are possibly controlled by imposed
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motion and submitted to external forces �gravity and fluid forces�.
The constraints are modeled through an augmented Lagrangian
approach with penalty, consistent with the Kirchhoff parameter-
ization. Furthermore, this beam solver is coupled to a computa-
tional fluid dynamics �CFD� code, enabling complex vortex in-
duced vibration �VIV� configurations to be handled.

This article is structured as follows. We first start by establish-
ing the basic kinematics of the cable and the parameterization of
its configuration space �Sec. 2�. Once the geometric model has
been achieved, we derive, in Sec. 3, the weak forms of the dy-
namics of a cable constrained at its two ends to follow some
imposed motions. Then, the numerical algorithm is explained in
Sec. 4. It is based on a Newmark implicit integrator coupled to a
Newton resolution algorithm of the resulting algebraic formula-
tion. Finally, the algorithm must be completed with a finite ele-
ment discretization �Sec. 5� and some updated formulae of the
weak form and its linearization. This is the purpose of Sec. 6. In
Sec. 7, the approach is illustrated by some simulation results ob-
tained on three examples. The first is related to predicting the
motion of a cable linked to a moving robot arm. The second one
concerns the fluid-structure interaction �FSI� application field: The
main steps of the flow/motion coupling with a CFD solver are first
described, followed by a classical benchmark of a 2D filament
clamped behind a square rigid body and then submitted to a VIV
phenomenon. As the previous test-case, the third one is a FSI
illustration: It was done to show the capabilities of the FSI code in
3D.

2 Basic Kinematics and Parameterization of the Cable

Geometry

The ambient space is given by a fixed Cartesian frame

�O ,e1 ,e2 ,e3�. Throughout this article, the tensor product will be

denoted by � , the contracted product of tensors by a point, and

for any V�R
3, V̂=V∧

�R
3

�R
3 will be the skew symmetric ten-

sor such that ∀x�R
3 :V�x= V̂ ·x. We consider a cable with a

constant circular cross section and suppose it to be straight when

at rest. We denote by X, the material abscissa along the cable and

by �ti�t ,X��i=1,2,3, the moving orthonormal frame rigidly attached

to the X cross section �centered on its center of gravity� and such

that t1 supports the material axis of the cable �see Fig. 1�. At t

=0, the cable is at rest, and such that its material axis �centroidal

line� is along �O ,e1�, i.e., �ti�0,X�=ei�i=1,2,3. Adopting the Euler–

Bernoulli model of thin beams, the cross sections remain orthogo-
nal to the centroidal line �Kirchhoff assumption�. Consequently,

any transformation undergone by the cable can be parameterized
by the composition of a translation changing the position field

X�r�X� into X�r��X�=r�X�+d�X� �where d is a displacement

field�, and a rotation changing the orientation field X�R�X� with

respect to the configuration at rest into �see Fig. 2�

R��X� = exp��t̂1
���t1

�t1
��R�X� �1�

where we introduce the field of unit tangent to the reference line

after the transformation X� t1
��X�=�Xr�

/ ��Xr�� and the following

rotation compatible with the Kirchhoff assumption:
1

�t1
�t1

�� = �t1 · t1
��I3 +

1

1 + t1 · t1
�
�t1 � t1

�� � �t1 � t1
�� + �t1 � t1

��ˆ

�2�

which is the unique rotation applying t1�S2 onto t1
�
�S2 while

leaving the unit vector t1� t1
�
/ �t1� t1

�� invariant �28,29�. Finally,

exp��t̂1
��, where “exp” denotes the exponential of matrices,

2
is the

rotation about the vector t1
� of an angle �, which stands for a roll

angle about the centroidal line. Once such a set of transformations
is defined, we can use it to parameterize the configuration space of

the cable. For that, we just distinguish a configuration �= �r ,R�
of the cable and define any other configuration ��= �r� ,R�� as the

action onto this arbitrary configuration �said to be “of reference”�
of any transformation of the form �d , exp��t̂1

���t1
�t1

����R
3

�SO�3�. In the numerical treatment that follows, the reference

configuration is not fixed once and for all but updated at each time
step of the simulation. Such a choice corresponds to the so-called
updated Lagrangian approach of nonlinear elasticity and has to be
distinguished from the “total Lagrangian” approach, where the
reference configuration is unique and usually coincides with the
initial one. This choice is adopted in order to avoid the singularity

of Eq. �2�, which occurs when t1=−t̂1
�. As a matter of fact, this

singularity corresponds to an antipodal �related on S2� rotation of
the cross section, easily avoidable by updating the reference con-
figuration sufficiently often. Finally, in this approach, the current

rotation field R�t , .� :X�R�t ,X� will be parameterized as

1
Referring to Riemannian geometry, any �u�v� defines on the unit sphere S2, the

action of the parallel transport of the Levi–Civita connection along the geodesic

�great circle� linking u�S2 with v�S2.
2
Given in the case of SO�3� by exp�v̂�=cos��v��I3+ �1−cos��v����v / �v��

� �v / �v��+sin��v���v / �v��ˆ.

Fig. 1 Basic kinematics of a beam Fig. 2 Parameterization of the rotation field
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R�t,X� = exp���t,X�t̂1�t,X���t1n
�t1�t,X��Rn�X� �3�

where t1n�X�=�Xrn / ��Xrn� and rn stands for the position field of

the centroidal line at the last time step tn, where the equilibrium
has been numerically reached by the algorithm. In the same man-

ner, Rn�X� is the orientation tensor of the X cross section at time tn

measured with respect to the initial straight configuration.

3 Governing Balance Equations: Weak Form

In what follows, we denote by a prime symbol and a dot sym-

bol, the operators �X and �t, respectively, and suppose the material

abscissa of the beam normalized �X� �0,1��.

3.1 Strain and Stress Fields. In the framework of finite dis-
placements and small strains and under the Kirchhoff assumption,
the strain state of the cable is defined by the three following fields

�a vector with the subscript � �respectively, with a �� is normal
�respectively, parallel� to the beam axis.

1. The vector field of curvature k� :X� t1�= �t1� · t2�t2

+ �t1� · t3�t3.

2. The scalar field of torsion K :X�K= t2� · t3=−t3� · t2.
3. The scalar field of stretching � :X��= �r��−1, where we

note that we have the following subsidiary relation:

R�RT = �k� + Kt1�ˆ = �k� + k��ˆ

and that these strain measurements verify the material objec-
tivity �30� required by the modeling of finite displacements.

On the dual side, we have the following internal force and
torque densities per unit of beam length �the convention on re-

peated subscript �=2,3 is adopted�:

m = Mt1 + M�t� = m� + m�, n = Nt1 + N�t� = n� + n�

Finally, occurring in the framework of small strains and mate-
rial elasticity, the internal stress and strains are related by the
reduced Hook’s law �4�

m� = GIpKt1, m� = EIat1�, n� = EA�t1

with EIa, GIp, and EA as the bending stiffness, twisting stiffness,
and stretching stiffness per unit of beam length, respectively.

3.2 Statement of the Variational Formulation. For the mo-
ment, we only consider the case where the external conservative
forces are due to gravity, and we will consider more general non-
conservative forces at the end of the section. Under the Euler–
Bernoulli assumption, the rotational kinetic energy of cross sec-
tions is neglected and the Lagrangian of the free cable �without
constraint� is simply

L f =
1

2
�

0

1

�Aṙ2dX −
1

2
�

0

1

EIat1�
2dX −

1

2
�

0

1

GIpK2dX

−
1

2
�

0

1

EA�2dX −
1

2
�

0

1

�Ag · rdX �4�

where, from left to right, we find the kinetic energy of the cable,
its bending energy, its torsion and stretching energies and, finally,

the potential energy due to gravity �g and �A are the gravity
acceleration field and the mass density per unit of beam length,
respectively�.

In what follows, we consider the case of a cable constrained at
one or both of its ends to follow some imposed motions. Thus, for

a given cable configuration �= �r ,R� with R in the form Eq. �3�,
the geometric constraints at the two ends take the form

���,t� = ��0��,t�

�1��,t�
� = 0, with �X��,t� = 	

r�X� − rd�X,t�

r��X� − rd��X,t�

��X� − �d�X,t�


�5�

The case with only one constrained end is a particular subcase,

where �0 �respectively, �1� has to be canceled. In �X, the first
�from top to bottom� set of constraints imposes a desired position

of the X cross section while the next two �with � defined by 3 for

a field of arbitrary reference orientations Rn� completely specify
its orientation. With these constraints, we define the augmented
Lagrangian of the cable

L+ = L f + � · � �6�

where we introduced the vector of Lagrange multipliers �

= ��T�0� ,�T�l��T with ��X�= ��r
T�X� ,�

r�

T �X� ,���X��T.

The Hamilton principle of constrained systems postulates that
the motion of the cable makes the augmented action stationary
�8�, i.e.,

��
t1

t2

L+dt = 0, ∀ ��, ∀ �� �7�

where ��= ��r ,�R� and �R are compatible with Kirchhoff kine-

matics; it has to verify the infinitesimal version
3

of Eq. �1�

�R = � d

d�
�

�=0

�exp���	t̂1��t1
�t1,��R� = ��	t1 + t1 � �t1�ˆR

�8�

where we introduce the scalar field of variation �	=�t2 · t3=

−�t3 · t2, and where the fields subscripted by � are deduced from

those nonsubscripted by substituting the field r by its perturbation

r�=r+��r into their definition. As the variation is achieved with
fixed time and ends, Eq. �7� details as

�
t1

t2

�L f + �� · � + �� · �dt = 0, ∀ ��, ∀ �� �9�

Moreover, computing the variation of Eq. �3� with ��=�
+���, and identifying the result with Eq. �8�, gives

�R = ��	t1 + t1 � �t1�ˆR = � d

d�
�

�=0

�exp���t̂1,���t1n
�t1,��Rn�

After computation, we find the following scalar relation, which

links the iterative roll angle �	 with the incremental one ��:

�� = �	 + un�X� · �r� �10�

where we introduced the vector field

un =
t1n � t1

�r���1 + t1n · t1�
�11�

Then, inserting Eq. �10� into �� ·� of Eq. �9� allows one to
write

�L+ = �L f + 	
�r�0�

�r��0�

�	�0�

 · fc�0� + 	

�r�1�

�r��1�

�	�1�

 · fc�1� + �� · � = 0

�12�

where we introduce the following generalized forces induced by
the constraints:

3
d /d� ��=0 denotes the directional �Gateau� derivative.
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fc = 	
�r

�r�
+ ��un

��


 �13�

Finally, the variation of K is defined by

�K = � d

d�
�

�=0

�t2,�� · t3,�� = − � d

d�
�

�=0

�t3,�� · t2,��

and after computation, it can be detailed as

�K = �	� +  t1 � t1�

�r��
� · �r� �14�

Now, let us apply the extended Hamilton principle

��
t1

t2

L+dt =�
t1

t2

�Wextdt, ∀ ��, ∀ �� �15�

where �Wext is the virtual work produced by an eventual field of
nonconservative external fluid forces �such as those applied on an
underwater cable�. Such a field of forces will be approximated
through a wrench density of follower loads of the form

�0,1� → R
3 � SO�3��

X � �n̄,m̄� = �N̄iti,M̄iti� �16�

where N̄i and M̄i for i=1,2 ,3 are considered in the following as
explicit time-dependent functions. Finally, by inserting Eq. �14�
into Eq. �15� and achieving standard integrations by parts, the set

of partial differential equations �PDEs� in the Cauchy form �i.e.,
the strong form of a nonlinear Euler–Bernoulli clamped at both
ends� could be written. Since numerical applications are involved
in this paper, only the weak form is under consideration in what
follows.

3.3 Weak Form of Virtual Works. Now, let us consider the
following Lagrangian:

L+ = L f + � · � +
p

2
� · � �17�

where we add to Eq. �6� a penalty term �p is an arbitrary factor� in
order to improve the convergence of the subsequent algorithm �8�.
Then, repeating the same calculus as before �starting again from
Eq. �15�� but without achieving the spatial integration by parts,

4

we obtain the weak form of virtual works that will be used later to
solve the finite element formulation

�
0

1 	 �r

�r�

�	

 · �fdyn − fg − fext�dX +�

0

1 	�r�

�r�

�	�

 · fstatdX + �� · ��

+ p�� + �� · � = 0 �18�

where

�fdyn − fg − fext�
T = �A�r̈ − g�T − n̄T,−

�m̄ � t1�T

�r��
,− t1 · m̄�

�19�

and

fstat = 	EA1 −
1

�r��
�r� + EIa2

�r� · r��2

�r��6
−

�r� · r��r� + �r��2r�

�r��4 �
EIa r�

r�
2

−
�r� · r��

�r��4
r��

0


 + 	GIpK r� � r�

�r��3 �
03�1

GIpK

 �20�

Moreover, inserting Eq. �10� into �� · ��+ p�� allows one to

write the weak form of virtual works �denoted G in what follows�
as

G =�
0

1 	 �r

�r�

�	

 · �fdyn − fg − fext� + 	�r�

�r�

�	�

 · fstatdX

+ 	
�r�0�

�r��0�

�	�0�

 · fc�t,0� + 	

�r�1�

�r��1�

�	�1�

 · fc�t,1� + �� · � = 0

�21�

where fc�t ,0� and fc�t ,1� are given by

fc�t,X� = 	
�r + p�r − rd�t,X��

�r�
+ ��� + p�� − �d�t,X���un�X� + p�r� − rd��t,X��

�� + p�� − �d�t,X��



�22�

4 Principle of the Numerical Algorithm

At this point, the dynamic problem turns into a variational

problem, which consists in finding at each time t, the fields R, r,

ṙ, r̈, and �, satisfying Eq. �21� for any �� and �� imposed on the

cable. The numerical algorithm proposed to solve this problem is

based on a Newmark time integrator coupled to a Newton algo-

rithm �31�. Moreover, due to the Euler–Bernoulli assumption,

only the position field r is concerned by the time integration, the

torsion state being governed by the static equilibrium. This has

two important consequences on the following: first, the “roll dy-

namics” can be interpreted as infinitely fast �in the sense of the

“singular perturbation theory”� and, second, the roll dynamics will

present some singularities when the boundary conditions at both

ends of the cable are free. Fortunately, this case is not relevant for

standard applications �see the examples at the end of this article�.
Whatever the case, if the cable is free at both ends, it is necessary

to invoke a more refined model, such as that of Rayleigh �23� or

Reissner �6� �if the length/thickness ratio is not too high�, which

both take into account the rotational kinetic energy of cross sec-

tion, and so removing the eventual roll singularities. However,

these two models require the development of a time integrator on

4
In fact, one of the two integrations by parts is done; the second will be “re-

placed” by the polynomial interpolation �Hermit� of the finite element method.
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the curved manifolds SO�3� �32� or S2�SO�2� �23� or, alterna-

tively, the introduction of a vector parameterization of finite rota-
tion �7� so compromising the simplicity of the geometrically exact

approach. In our case, since the field r evolves in a vector space,
the time integration has been readily achieved through the New-
mark algorithm, which is quite standard for structural dynamics.
In particular, no special work has been performed here to enhance
energy and momentum conservation properties of the time inte-
gration.

In order to apply the Newton algorithm between two time steps,
we have to compute the Jacobian of the resulting algebraic non-
linear problem. This is achieved, thanks to the linearization of the
weak form Eq. �21� under the constraints imposed by the New-
mark integration scheme. First of all, let us note that these con-
straints force the velocity and acceleration increment constructed
on two steps of the Newton algorithm to verify


ṙ�t, .� =
�

�
t

r�t, .�, 
r̈�t, .� =

1

�
t2

r�t, .� �23�

where, for any field f , we use the notation 
f�t , .�= f �k��t , .�
− f �k−1��t , .�, with f �k� denoting the field computed at the kth New-

ton iteration. Then, the linearized weak form required by the New-
ton algorithm is computed by applying the operator “second varia-

tion” denoted by 
 to Eq. �21� �see Ref. �33��. Finally, we obtain


G =�
0

1 	 �r

�r�

�	

 · �
fdyn − 
fg − 
fext� + 	�r�

�r�

�	�

 · 
fstatdX

+ 	
�r�0�

�r��0�

�	�0�

 · 
fc�t,0� + 	

�r�1�

�r��1�

�	�1�

 · 
fc�t,1� + �� · 
� = 0

�24�

where we make the second variations appear �produced by 

= �
r ,
R�, with 
R= �
	t1+ t1�
t1�ˆR, i.e., by an infinitesimal

transformation compatible with Kirchhoff kinematics�


fdyn = 	�A
r̈

03�1

0

, 
fg = 07�1, 
fext = Kext	 
r


r�


	

 ,


fstat = Kstat	
r�


r�


	�




fc�t,X� = Kc�t,X�	 
r�X�


r��X�


	�X�

 + ��X · 
��X� �25�

Furthermore, we introduce in Eq. �25� the tangent stiffness op-

erators of external, internal, and constraint forces denoted by Kext,

Kstat, and Kc, respectively, and detailed in Appendices A and B.

Then, identifying the second variations 
ṙ and 
r̈ with the New-
ton increment Eq. �23� allows one to rewrite the tangent dynamics
Eq. �24� as


G =�
0

1 	 �r

�r�

�	

 · ��Kdyn − Kext�	 
r�X�


r��X�


	�X�

�

+ 	�r�

�r�

�	�

 · �Kstat	
r��X�


r��X�


	��X�

�dX + 	

�r�0�

�r��0�

�	�0�

 · �Kc�t,0�

�	

r�0�


r��0�


	�0�

� + 	

�r�1�

�r��1�

�	�1�

 · �Kc�t,1�	


r�1�


r��1�


	�1�

� + �� · 
�

+ 
� · �� = 0 �26�

where Kdyn is the dynamic tangent stiffness operator given in
Appendix A, whereas the last two constraint terms will be detailed
in Sec. 5.

5 Finite Element Method

We now have all the ingredients required by the finite element
resolution. For that, let us discretize the weak form Eq. �21� and

its linearization Eq. �26� as follows. The beam of initial length l

=1 is first of all subdivided into P elements subscripted e. Each

element has a length le and a first point Xe �going along the beam

from X=0 to l�.

�0,1� = �
e=1

P

�Xe,Xe + le� �27�

The first and second variations of the position field r are inter-
polated using Hermit polynomials while the first and second

variations of the �iterative� roll angle ��	 ,
	� are interpolated

using Lagrange ones, i.e., for any X� �Xe ,Xe+ le�

�r�X� = NI,e�X��rI,e + MI,e�X��rI,e� , 
r�X� = NI,e�X�
rI,e

+ MI,e�X�
rI,e�

�	�X� = LI,e�X��	I,e, 
	�X� = LI,e�X�
	I,e �28�

where �NI ,MI� and LI are the Hermit and Lagrange polynomials,

respectively. Note that the summation convention on repeated

subscripts �I=1,2� is adopted. Finally, considering the partition

Eq. �27� and inserting Eq. �28� in Eqs. �21� and �26� give the
discrete equilibrium and its discrete linearization �a tilde symbol
denotes a discrete vector coming from a continuous field�

G̃ = ��qT,��
T�� f̃dyn + f̃stat − f̃ext + f̃c

�
� = ��qT,��

T�r̃+ = 0

�29�

and


G̃ = ��qT,��
T��K̃dyn + K̃stat − K̃ext + K̃c J̃T

J̃ 0
��
q


�
�

= ��qT,��
T�K̃+�
q


�
� = 0 �30�

where �q and 
q are the 7�P+1��1 vectors of nodal variations

appearing in Eq. �28� while f̃dyn, f̃stat, and f̃ext and K̃dyn, K̃stat, and

K̃ext are 7�P+1��1 force vectors and 7�P+1��7�P+1� band

matrices, respectively, obtained by assembling the corresponding
elementary forces and stiffness matrices. On the other hand, the
constraint forces and stiffness do not require any assembling pro-

cedure since we simply have f̃c= �fc
T�t ,0� ,01�7�P−1� , fc

T�t ,1��T and

K̃c=diage=1,. . .,P+1�Kc,e�, with Kc,e=07�7, except Kc,1=Kc�t ,0�
and Kc,P+1=Kc�t ,1�. Finally, due to the discretization of ��
�
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+
���, we also introduce the 14�7�P+1� matrix J̃ given by

J̃ = � J�0� 07�7P

07�7P J�1�
�, with J�X� = 	

I3 03�3 03�1

03�3 I3 03�1

01�3 un
T�X� 1



�31�

as well as the augmented residue vector and stiffness matrix de-

noted by r̃+ and K̃+, respectively. Finally, once discretized, the

linear expansion of the equilibrium at t+
t gives the linear dis-
crete system

K̃+�t+
t�

�k� 
q�t+
t�
�k+1� = − r̃+�t+
t�

�k� �32�

that we solve at each Newton step k with respect to the vector of

nodal increments 
q
t+
t

�k+1�
.

6 Updating Formulae

In order to solve the balance equilibrium, it is necessary to
update the forces and the tangent stiffness operators at each New-

ton iteration k. This is achieved by updating the position, tangent,

and curvature fields r, r�, and r�, the velocity and acceleration

fields ṙ and r̈, the torsion rate field K, the roll angles at the two

boundaries ��0� and ��1�, as well as the associated vectors of

Lagrange multipliers ��0� and ��1�. We give below the updating

formulae of these fields, at any point X� �Xe ,Xe+ le�. To be used,

these formulae first require Eq. �32� to be solved with respect to

the vector of nodal increments 
q�t+
t�
�k+1�

and second, Eq. �28� to be

invoked to get the current incremental fields that we simply note


r, 
r�, and 
r�. These are the following.

1. Updating of the position, tangent, and curvature fields

r�t+
t�
�k+1� = r�t+
t�

�k� + 
r, r�t+
t��
�k+1� = r�t+
t��

�k� + 
r�, r�t+
t��
�k+1� = r�t+
t��

�k�

+ 
r�

2. Updating of the velocity and acceleration fields

ṙ�t+
t�
�k+1� = ṙ�t+
t�

�k� +
�

�
t

r, r̈�t+
t�

�k+1� = r̈�t+
t�
�k� +

1

��
t�2

r

The following field is not explicitly required by the formu-
lation; nevertheless, it is of practical interest since it inter-
venes as an intermediate variable in many calculations.

3. Updating of the unit tangent field

t1,�t+
t�
�k+1� �X� =

r�t+
t��
�k+1��X�

�r�t+
t��
�k+1��X��

4. Updating of the orientation field. Replacing the two arbitrary
configurations of Eq. �1�, by two successive configurations
of the Newton algorithm, the updating of the rotation field is
done as follows:

R�t+
t�
�k+1� = exp�
	�t1 + 
t1�ˆ��t1

�t1 + 
t1�R�t+
t�
�k� �33�

with

t1 = t1,�t+
t�
�k� �X�, 
t1 = t1,�t+
t�

�k+1� �X� − t1,�t+
t�
�k� �X� ,


	 = 
	̃�t+
t�
�k� �X�

5. Updating of the torsion rate. The updating formula of K
results from the answer to the following question: “What is

the finite increment 
K generated by a finite variation of the

configuration defined by 
r and 
	?” To get this result, we

can, for instance, apply the Frenet formulae K= t2� · t3=

−t3� · t2 to the updated configuration of the beam, and obtain
after computations

K�t+
t�
�k+1� = K�t+
t�

�k� −
1

1 + t1,�t+
t�
�k� · t1,�t+
t�

�k+1� ���t1,�t+
t�
�k+1�

� t1,�t+
t��
�k+1� � · t1,�t+
t�

�k� � − �t1,�t+
t�
�k� � t1,�t+
t��

�k� � · t1,�t+
t�
�k+1� �

+ 
	�

6. Updating of the roll angle. After having updated the rotation
field as in Eq. �33�, we can extract from it the new incre-

mental roll angle � at any point of the beam. This is
achieved by inverting the identity Eq. �3�, where the current

configuration here is the �k+1�th configuration calculated by

the Newton algorithm

��t+
t�
�k+1� = exp

t̂�t+
t�
�k+1�

−1 ��t1n

T �t1�t+
t�

�k+1� �Rn
TR�t+
t�

�k+1� �

where we introduce the inverse map exp
V̂

−1
such that

exp
V̂

−1�exp��V̂��=�� �0,2��.
7. Updating of the Lagrange multipliers. Because they belong

to a linear space, the Lagrange multipliers are updated by the
simple additive formula

��t+
t�
�k+1� = ��t+
t�

�k� + 
��t+
t�
�k+1� , with ��t+
t�

�0� = 0

7 Numerical Illustrations

In what follows, the previous model is illustrated on three cases
related to robotics and fluid-structure interaction fields. Due to
weak instabilities introduced by the algebraic constraints in the
first case and in order to reach a stable FSI coupling while keeping
standard time step in the second, a modified version of the New-
mark time scheme has to be used for the structural solver such as
the Hilber-Hughes-Taylor �HHT� �34�, the Bossak �35� method, or

the �-generalized technique �36�. These algorithms introduce a
numerical dissipation of the higher frequencies without degrading
the accuracy. In the following results, the Bossak scheme was

used with an � coefficient fixed to 0.1.

7.1 Robotics Application: Cable and Six-Axis Puma
Robot. In the robotics field, cables or flexible tubes are found
everywhere since they bring electric or hydraulic power to the
actuators. The main problems are how to guide them, how to
avoid collisions, and how to minimize their wear. The present
illustrations will show that the beam solver can predict the move-
ment and positions of a complex robotics problem.

We consider a six degrees of freedom �DOFs� manipulator of
the Puma type �cf. Fig. 3�. The time evolution of the joints is
defined in Table 1. The cable is clamped to the robot at the origin

of the tool frame O7, and to the earth at the point C of the envi-
ronment. Its characteristics are presented in Table 2. Figure 3
shows the robot and the cable in the initial configuration of the
motion. The initial configuration of the cable is deduced from a
vertical straight reference configuration by applying the constraint
Eq. �5� to it with an imposed motion compatible with its manipu-
lation by a person. This preliminary mounting phase first consid-

ers the cable embedded in C and lying under gravity. Then, the

free end of the cable is brought along the circular �-parameterized

path defined in Table 3 until it reaches the point O7 while the
robot is in the initial configuration of Fig. 3.

Once the mounting phase has been achieved, the tool begins to

move at t=0, according to the imposed motion of the robot �Table
1�. The time-varying constraints �see Eq. �5�� imposed on the
moving end of the cable are deduced from the direct geometric
model of the Puma type manipulator with Denavit–Hartenberg

parameters �37� r1=d4=1 m and r5=r7=0.3 m. The spatial dis-
cretization uses ten finite elements. The mounting phase is first
performed using a static version of the algorithm. Then, the simu-

lation is achieved over a duration of 4 s with a time step of 
t

=0.001 s. Figure 4, which shows snapshots at every 25 ms, high-
lights the dynamic effects such as the pendular oscillations due to
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gravity and the high velocity of the robot.
Table 4 shows the typical evolution of the residual vector norm

during the iterations of the beam solver for one time step �the
convergence for the others is quite similar�.

Today, this solver is in progress toward virtual reality and hap-
tic applications. In this case, it becomes necessary to address the
problem of collision modeling, which is not considered here.

7.2 2D FSI Illustration: Hübner Test-Case. Another appli-
cation, where this model is relevant, concerns risers used in oce-
anic engineering. In this case, FSI is involved. Thus, the previous
cable model has to be coupled with a fluid solver. As a first step
toward this goal, we consider here the benchmark due to Hübner.
This FSI application was originally carried out by Wall and Ramm
�38� in order to demonstrate the ability of their FSI formulation to
deal with complex flow-flexible structure interactions exhibiting
large deformations. In 2004, Huebner et al. modified the inflow
velocity and used this new problem to test his monolithic code

�39�.
The application consists of a thin elastic nonlinear beam at-

tached to a fixed square rigid body, plunged in an incompressible

fluid flow �cf. Fig. 5�. The square rigid body produces a very

unsteady phenomenon: Vortices separate alternatively from its

corners. These vortices create an oscillating force on the filament,

which deforms itself.

The fluid and structure characteristics are given in Table 5. The
Reynolds number is fixed to 204; the computation is consequently
done with a laminar flow. The boundary conditions are set to the
following:

1. imposed velocity at the inflow, upper, and lower boundaries
2. imposed pressure at the outflow
3. adherence boundary on the filament

Two meshes are generated using the commercial software

GRIDGEN
™

. One is totally unstructured and coarse ��4000 cells

and �2000 nodes�. The second is finer ��33,000 cells and

�27,000 nodes� and it is structured near the body and then fully
unstructured.

Flows are computed using an in-house solver ISIS-CFD, devel-
oped by the Equipe Modélisation Numérique �EMN� of the Fluid
Mechanics Laboratory of the Ecole Centrale Nantes. It solves the
incompressible unsteady Reynolds-averaged Navier–Stokes
�RANS� equations under isothermal conditions on generalized un-
structured meshes, enabling complex geometries to be dealt with.
The solver is based on a finite-volume method to build a second-
order accurate discretization of the RANS equations. An arbitrary
Lagrangian Eulerian �ALE� approach is used to deal with moving
bodies. Ad-hoc deformation techniques have thus been developed
to keep a body-fitted mesh during its motion.

At first, the filament is supposed to be rigid and only a fluid
problem is solved. The flow is then established after 8 s and a
Fourier analysis is performed on the lift effort: The dominant fre-

quency of the fluid field yields f1
f =3.74 Hz, which is in good

agreement with the Hübner result �39�.
Now, the filament is considered as a deformable beam. In prin-

ciple, the physics of the FSI problem is the following: The beam is

Fig. 3 Initial configuration of the six-axis “Puma robot”

Table 1 Joint time evolutions

j 	 j � j

1 	1�t�=� /6 sin��1t� �1=�
2 0 0
3 0 0

4 	4�t�=−� /2+� /6 sin��4� �1=�

5 	5�t�=� /6 sin��5t� �5=�
6 0 0
7 0 0

Table 2 Cable characteristics „SI units…

Length L=5 m

Diameter d=0.015 m

Lineic mass �=5 kg m−1

Stretching stiffness EA=5�107 N

Twisting stiffness GIp=9�102 N.m2

Bending stiffness EIa=5�102 N.m2

Table 3 Imposed motions during the mounting phase „SI units…

Imposed motions in X=0 Imposed motions in X=L

rd
T�0�= �0,0 ,0� rd

T�L�= ��L−2�+2 /� sin��� ,−2 /�+2 /� cos��� ,0�, �� �0,��
rd�

T�0�= �1,0 ,0� rd�
T�L�= �cos��� ,−sin��� ,0�, �� �0,��

�d�0�=0 �d�L�=0
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submitted to the hydrodynamic �viscous and pressure� forces ex-
erted by the fluid through its boundaries. These forces make the
beam move. As a feedback, the motion of the beam modifies the
boundary conditions of the flow, so closing the chain of causalities
�see Fig. 6�.

To handle this problem numerically, the CFD solver is coupled
with the geometrically exact beam solver presented here. More
precisely, an implicit/iterative algorithm �see Fig. 7� is used to

coordinate the data exchanges between the fluid and solid solvers

and obtain a stable coupling �40�. This algorithm is structured into

three hierarchical loops. The highest level corresponds to the tem-

poral loop. The second one, denoted here as the FSI loop, aims to

solve the nonlinearities of the fluid problem. Included in it, the

third loop calls the beam solver. Thus, at each new FSI iteration

�where the time is fixed�, the structure problem is solved until

convergence on the geometric nonlinearities using the current

fluid loads �beam loop�. It can be done at each FSI iteration since

the CPU time of the structure resolution is negligible compared

with that of the fluid resolution. The computed configuration of

the beam is then updated. In particular, an adjustment of the fluid

mesh is carried out to fit with the updated configuration of the

beam. At that time, the core of the fluid solver is called to obtain
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Fig. 4 A cable fixed at the end of a moving Puma type manipulator: „a… planar projection in „e1 ,e2…, „b… planar
projection in „e3 ,e1…, „c… planar projection in „e2 ,e3…, and „d… 3D visualization

Table 4 Typical convergence history

Iteration 0 1 2 3

Residual 1.2e6 1.0e3 0.16 4.6e−8
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a new computation of the current flow �inducing new values of
fluid loads for the beam�. A new nonlinear iteration can thus re-
start. This coupling process �FSI loop� is repeated until conver-
gence of the fluid flow �since the beam structure is almost solved
up to the zero machine each time�. Then, a new time step can go
on.

As an illustration, Table 6 shows the residual norm for the
structure problem during the iterations of the beam solver �at a
given fluid nonlinear iteration of a given time step�.

One of the difficulties in fluid-structure interaction is due to the
fact that the fluid and solid meshes do not generally match �cf.
Ref. �41��. In the present case, the dimensions of the two media
models are not even the same. In fact, from the structure point of
view, the beam is represented by its discretized 1D centroidal line,
whereas the fluid views the structure by a set of boundary faces
around this line �see Fig. 8�a��. As a consequence, the 3D contact
forces �pressure and viscous� exerted by the fluid on the bound-
aries of the beam have to be converted into a set of nodal
wrenches compatible with Kirchhoff kinematics. The fluid forces
acting on the beam are initially described by elementary forces
applied on each face of the fluid mesh in contact with the beam

boundary �Fig. 8�b��. Due to possible overlaps of fluid faces on
beam elements, the faces are split on each element into a set of
subfaces. Then, for each subface �which belongs to a single beam
element�, the corresponding part of the contact force is applied as
a localized one at the geometric center of the subface �Fig. 8�c��.
In the end, we have, on each beam element, a set of localized 3D
loads exerted onto the wetted boundaries of some intermediate
cross sections �between the two nodes of each element� �see Fig.
9�a��. Then, invoking Kirchhoff kinematics, these forces are first

changed into localized generalized forces fext �Fig. 9�b��. Next,

these forces are discretized and assembled into the vector f̃ext �of
the form given by Eq. �19��, which is applied at the two end nodes
of the beam by invoking the nodal interpolation �Fig. 9�c��. This
process ensures the global conservation of the forces, which is an

important criterion to fulfill. Finally, when computing K̃ext, only
the beam configuration dependence is taken into account in the

linearization of fext. Indeed, the complete computation of K̃ext

would require the numerical Jacobian of the CFD solver to be
computed, which is prohibitive �in terms of complexity and CPU
time�. This choice explains why we assumed the hydrodynamic
wrench density �see Eq. �16�� to be of the follower type. Note that

even if f̃ext is only considered as an imposed force �without com-

putation K̃ext�, the FSI coupling is also successful.
In the Hübner problem with a deformable beam, the time step is

set at 
t=10−3 s. The inflow leads to the production of vortices
and so the filament begins to oscillate in the second mode. Figure

10 represents the deflection of the free end of the beam yB in time.
This curve can be compared with the following results of Valdés
Vázquez �42� and Hübner.

1. The free end evolution is very similar �the maximum ampli-

tude is reached at 8�10−3 m�.
2. The first oscillating frequency obtained by FFT around 3 Hz

Fig. 5 Elastic filament fixed to a square rigid body in an in-
compressible flow

Table 5 Hübner test-case characteristics „SI units…

Square edge a=0.01 m

Beam length L=0.04 m

Beam thickness d=0.0006 m

Young modulus E=2 MPa

Solid density �s=2000 kg m−3

Fluid density � f =1.18 kg m−3

Dynamic viscosity � f =1.8210−5 Pa s

Inflow velocity U�=0.315 m s−1

STRUCTURE

conditions

boundary

FLUID

hydrodynamic

forces

Fig. 6 Diagram of FSI coupling

FLUID SOLVER

flow

boundary conditions

remeshing

BEAM SOLVER

beam kinematics

fluid forces

CV1

CV2

t t+dt

initialization

FSI loop

temporal loop

beam loop

convergence test on structure residuals

convergence test on fluid residuals

Fig. 7 Algorithm of the FSI coupling

Table 6 Typical convergence history of the beam solver

Iteration 0 1 2 3 4 5

Residual 4.22 2.8e−2 2.1e−2 1.1e−4 1.0e−4 5.3e−7
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is in quite good agreement with the results of Valdés
Vázquez and Hübner �3.22 Hz and 3.1 Hz, respectively�.

The coupled problem frequency f1
c �3 Hz is similar to the

dominant frequency of the fluid �f1
f =3.74 Hz� and the second

natural frequency of the structural part �f2
s =4.09 Hz� but it is

lower, and so we can think that the first frequency of the structure

�f1
s =0.61 Hz� influences the coupled problem.

From the beam point of view, the results obtained with the
coarse or fine fluid meshes are very similar. However, with the
fine mesh, the details of the fluid flow are better described �cf. Fig.
11�. The number of beam finite elements can be reduced from 100
to 20 without a noticeable degradation of the beam motion. Fi-
nally, we recover the good numerical performance of the geo-
metrically exact approach since a limited number of elements
leads to a grid-independent solution �as a comparison, 123 ele-
ments were used in Ref. �42��.

7.3 3D FSI Illustration: A Towed Cable in Water. A 3D IFS
simple test-case has been done in order to show the capabilities of

the FSI code in 3D and to prepare the program to work on riser/
VIV problems: A deformable cable is fixed at an extremity, free at
the other, and is partly dived into water �see Fig. 12�. The follow-
ing two different configurations were realized using the same cou-
pling procedure described in Sec. 7.2:

1. one with a fixed cable in a fluid with constant velocity �see
Fig. 13�

2. one with a towed cable in still water �see Fig. 14�

In both configurations, the cable deforms itself a lot �see Fig.
13� and periodically oscillates. It is a consequence of the VIV. The
position of nodes is updated using the same grid deformation tech-
nique used for the Hübner test-case 7.2 to recover a body-fitted
mesh each time it is needed. Near the body, the cells are not
deformed and, so, are always orthogonal to the cable �see Fig. 15�,
which is good for the quality of the results.

The two configurations are physically identical. However, the
second one �where the cable is towed in still water �see Fig. 14�
enables to use complex imposed motion at the cable extremity, for
example, the cable could be slowly accelerated to reach the nomi-
nal velocity, which avoids a violent start�.

8 Conclusion

In this article, we propose a geometrically exact finite element
approach in order to solve the problem of nonlinear cable simu-
lations in finite transformation with small strains. Two potential
applications are envisaged by this work. The first is related to the
prediction of motions and forces undergone by cables or other
flexible pipes, which are often used in robotics for carrying energy
to the actuators. The second concerns the interaction with a fluid

fluid mesh

of the beam

1−D discretised neutral line

structure viewed by the fluid :
a set of boundary faces

(a)

node i

node i+1

beam element

(b)

node i

node i+1

beam element

(c)

Fig. 8 Models of the structure and fluid loads
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Fig. 9 Transfer of fluid contact forces to external wrenches
compatible with Kirchhoff beam kinematics
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flow and especially the VIV phenomenon for undersea cables,
such as risers, that are used in oceanic engineering or electric
cables subjected to wind. As is usual when dealing with very
elongated structures, such as ropes or cables, the model of the
structure is that of Kirchhoff beams. However, the proposed finite
element approach differs from the previous work on that topic by
the fact that it is directly inspired by the geometrically exact ap-
proach initiated by Simo and his successors for dealing with
Reissner–Timoshenko beams. In fact, like in this modeling frame-
work, no approximation of the finite rotations is assumed in all the
analytical computations required by the finite element method,
except those related to the unavoidable time and space discretiza-
tions. Here, no advanced work has been investigated on this nu-
merical part, and classical time integration has been used. Beyond
these considerations, it will be useful to design specific time inte-
grators able to preserve energy and momentum of the cable. This
could be done through the growing results of geometric integra-

tors �43–46�, extending them to the configuration space S2

�SO�2�. Based on this nonlinear Euler–Bernoulli dynamic

model, the problem of cable dynamics with imposed motions at
the ends is investigated through an augmented Lagrangian ap-
proach. The resulting dynamic beam solver is also coupled with a
CFD solver that deals with the Reynolds-averaged Navier–Stokes
equations. The methodologies are presented here and validated
through a 2D benchmark test-case of VIV. An illustration dealing
with a 3D case is also shown. These results are currently being
extended to more realistic 3D tests related to a riser, where ex-
perimental data are available. This integration opens the way to
analyze more accurately FSI configurations with high Reynolds
number turbulent flow around complex geometry. The challenge
to simulate such configurations is vital in the industrial domain
�such as off-shore�. Finally, as regards its application to robotics,
the solver is currently coupled with a numerical code devoted to
the detection of collisions and the simulation of the contacts of the
cable with itself and with its environment through nonsmooth dy-
namic techniques.

Appendix A: Dynamic and Internal Tangent Stiffness

Because only the stiffness operators are concerned in this Ap-

pendix, in what follows, all the fields subscripted by � are deduced

from those nonsubscripted by substituting the field r by its pertur-

bation r�=r+�
r and the roll field � by ��=�+�
�.

Kdyn = � d

d�
�

�=0

fdyn,� = 	�
A

��
t�2
I3 03�3 03�1

03�3 03�3 03�1

01�3 01�3 0



Kstat = � d

d�
�

�=0

fstat,� = 	Kstat,11 Kstat,12 Kstat,13

Kstat,21 Kstat,22 03�1

Kstat,31 01�3 Kstat,33



with

Kstat,11 = EA�1 −
1

�r��
�I3 +

1

�r��3
r� � r�� + EIa�−

1

�r��4
��r��2I3

+ r� � r�� +
4

�r��6
��r��2r� � r� + �r� · r���r� � r� + r�

� r��� +
�r� · r��2

�r��6 2I3 −
12

�r��2
r� � r��� + GIp�−

K

�r��3
r̂�

− 3
K

�r��5
��r� � r�� � r�� +

1

�r��6
�r� � r�� � �r� � r���

Kstat,11 = EIa� 1

�r��2
I3 −

1

�r��4
r� � r��

Kstat,21 = EIa�−
1

�r��4
�2r� � r� + r� � r�� −

r� · r�

�r��4
I3 + 4

r� · r�

�r��6
r�

� r��
Kstat,12 = Kstat,21

T + GIp� K

�r��3
r̂��

Kstat,33 = GIp

Kstat,31 = GIp� �r� � r��T

�r��3 �
Kstat,13 = Kstat,31

T

0 10 20 30 40 50
-0.01

-0.005

0

0.005

0.01

B

time (s)

y
(m

)

Fig. 10 Hübner test-case results with the Bossak method „�t=10−3 s… on the coarse mesh
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Appendix B: Tangent Stiffness of Follower Loads and

Generalized Constraint Forces

Tangent stiffness of follower loads

Kext = 	03�3 Kext,12 Kext,13

03�3 Kext,22 Kext,23

01�3 Kext,32 0



with

Kext,12 = −
1

�r��2
n̂̄ · r̂�, Kext,13 =

1

�r��
r� � n̄

Kext,23 = −
1

�r��3
r� � �r� � m̄�

Kext,22 =
1

�r��4
r̂̄� · m̂̄ · r̂̄� +

1

�r��2
m̂̄ −

2

�r��4
�m̄ � r�� � r�

Fig. 11 Pressure field around the filament, which deforms itself during a half period T /2É0.16 s „calculation on the fine
mesh… : „a… t=0, „b… tÉT /12, „c… tÉT /6, „d… tÉT /4, „e… tÉT /3, and „f… tÉT /2

12



Kext,32 = −
1

�r��3
r�

T · m̂̄ · r̂� +
1

�r��
m̄T −

1

�r��3
�r� · m̄� · r�

T

Tangent stiffness of generalized constraint forces

Kc = � d

d�
�

�=0

fc,� = 	03�3 03�3 03�1

03�3 ��� + p�� − �d�t,X����n�X� 03�1

01�3 01�3 0



where we introduce the differential of un

Fig. 12 Deformable cable partly in water

Fig. 13 Cable with inflow piercing the free surface: „a… initial configuration and „b… deformed cable at t=15 s

Fig. 14 Towed cable into a multifluid domain „snapshots every
0.5 s…

Fig. 15 Deformed mesh at t=15 s: „a… global view and „b… zoom at the free
cable extremity
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�n�X� = un � −
r�

�r��2
−

1

��rn���r�� + rn� · r��
�rn��

r�

�r��
+ rn���

+
1

�r����rn���r�� + rn� · r��
r̂n��
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