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 for the dynamic modeling of hyper-redundant robots. This working frame was named "macro-continuous" since at this macroscopic scale, the robot (or the animal) is considered as a Cosserat beam internally (and continuously) actuated. This article proposes new results in two directions. Firstly, it achieves an extension of the Lighthill theory to the case of a self propelled body swimming in three dimensions, while including a model of the internal control torque. Secondly, this generalization of the Lighthill model is achieved due to a new set of equations which is also derived in this article. These equations generalize the Poincaré equations of a Cosserat beam to the case of an open system containing a uid stratied around the slender beam.

Introduction

Performances of shes in terms of manoeuvrability and eciency are very much higher than those of our technological under-water devices today. As far as underwater manoeuvrability is more particularly concerned, anguilliform shes like the moray-eel or the eel represent "an optimum" selected by natural evolution. In fact, their high number of internal degrees of freedom (the european eel has more than 120 vertebrae) make of these animals some hyper-redundant locomotors capable of moving with a high agility in very unstructured environments such as the submarine caves of coral reefs. Based on these preliminaries, several "eel like robots" appeared these last years [START_REF] Mcisaac | A geometric approach to anguilliform locomotion modelling of an underwater eel robot[END_REF][START_REF] Yamada | Development of amphibious snake-like robot acm-r5[END_REF][START_REF] Ijspeert | Simulation and robotics studies of salamander locomotion. applying neurobiological principles to the control of locomotion in robots[END_REF]. However, in spite of this increasing interest for these systems, the quest of elongated sh swim models devoted to on-line control (in particular for autonomous navigation) is still a challenging task for bio-mimetic robotics [START_REF] Colgate | Mechanics and control of swimming : a review[END_REF]. In fact, computing the interactions between a swimming sh and a uid is a very involved problem which in itself requires the integration of Navier-Stokes equations coupled with the nonlinear dynamics of a body enduring nite transformations [START_REF] Liu | A numerical study of undulatory swimming[END_REF][START_REF] Carling | Self-propelled anguilliform swimming : simultaneous solution of the two-dimensional navier-stokes equations and newton's laws of motion[END_REF][START_REF] Farnell | Numerical model of self-propulsion in a uid[END_REF][START_REF] Leroyer | Numerical methods for ranse simulations of a self-propelled sh-like body[END_REF]. More simply, several ecient numerical solvers based on the inviscid uid model have been proposed during the last decade [START_REF] Hill | Large amplitude sh swimming[END_REF][START_REF] Wolfgang | Hydrodynamics of exible-body swimming motions[END_REF][START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF]. Under this restriction, the propulsion of the sh originates only in the exchanges of kinetic amounts of the uid and its body. Consequently, such models are named "reactive" in [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], and their use is justied by the high Reynolds number that most of the shes reach when swimming. To these reactive models, a "resistive" model taking into account the eect of the viscosity can be added by invoking the theory of "boundary layer" [START_REF] Hill | Large amplitude sh swimming[END_REF]. However, in spite of these simplications, these solutions are again too computationally involved to be used for one-line control. Thus, analytical modeling seems to be the most realistic solution for robotics. As far as analytical modeling is concerned, let us remember that in 1960, two models of sh swim appeared which are untill today, considered as references in the eld of "bio-uid-dynamics". The rst one, due to Wu [START_REF] Wu | Swimming of a waving plate[END_REF] is based on the undulating innite height plate, while the second, due to James Lighthill [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], is based on the Slender-Body Theory (S.B.T.). In both cases, the modeling prots from the particularities of shes' geometry in order to approximate the 3-D ow around their body by a stratication (horizontal in the rst case, vertical in the second) of planar potential ones. Due to its slender geometry, here we essentially consider the uid dynamics around the eel (and the robot which mimics it) as governed by the S.B.T.. Originally devoted to hydrodynamics of rigid vessels in small perturbations (small angle of attack, small "thickness/length" ratio...) [START_REF] Munk | The aerodynamic forces on airship hulls[END_REF], the S.B.T. was extended in [START_REF] Lighthill | Note on the swimming of slender sh[END_REF] to the case of the undulatory swimmers (like the eel) through the "Elongated Body Theory" (E.B.T.), and the "Large Amplitude Elongated Theory" (L.A.E.B.T.) [START_REF] Lighthill | Aquatic animal propulsion of high hydro-mechanical eciency[END_REF], depending if the body endures "small" or "nite amplitudes" deformations respectively. For the purpose of robotics, the L.A.E.B.T. represents an interesting perspective for the on-line control of "eel-like robots". In fact, it gives an analytical simple model of the eel's hydrodynamics while its body achieves realistic swimming gaits of nite amplitude. Nevertheless as far as robotics is concerned, the L.A.E.B.T. is not sucient in several ways. In fact, like most of his successors until today, his author restricted his study (essentially focused onto the Gray's paradox [START_REF] Gray | Studies in animal locomotion. vi. the propulsive powers of the dolphin[END_REF]) to the uid dynamics submitted to the unsteady boundary conditions due to the imposed motion of the body. Furthermore, the L.A.E.B.T. only deals with the planar straight forward swim. On the other hand, in the article here presented, the case of all the dynamics (uid + body) is considered. Secondly, the body is self-propelled and not submitted to an imposed motion. Thirdly, the internal dynamics of the control torque law are also solved. Finally, all these problems are solved in real-time (in fact less), and in the case of the three dimensional swim, which until today and to our knowledge, has never been studied.

The solution is based on recent results from [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] and in particular : 1 ) on the modeling of the sh body as a non-linear Cosserat beam continuously actuated through a eld of internal control torque ; 2 ) on a "slice by slice" contact model which combines a resistive model of the drag and viscous forces and a reactive model of inertial (added mass) ones ; 3 ) on a fast algorithm which solves the sh head motions and the internal control torques from the given internal strain law applied along the sh body. Furthermore, the solution here presented goes beyond [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] in three ways. Firstly, the reactive model of inertial forces is actually deduced from a balance of the kinetic amounts applied to the uid and the body considered as a whole. Secondly, coming back to the original Lighthill theory of [START_REF] Lighthill | Aquatic animal propulsion of high hydro-mechanical eciency[END_REF], in order to take into account the inuence of the wake onto the sh, this balance is applied to the uid which is contained in the control volume D as shown on gure.1. Lastly, in parallel to these modeling works the solution here proposed has been successfully calibrated and tested [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF], thanks to comparisons with the Navier-Stokes solver of [START_REF] Leroyer | Numerical methods for ranse simulations of a self-propelled sh-like body[END_REF]. Lastly, note that in [START_REF] Mcmillen | An elastic rod model for anguilliform swimming[END_REF] the anguilliform swim is also modeled as an internally actuated rod, but for the study of the muscle dynamics and in the case of the planar anguilliform swim.

These results are derived from the extension of a variational calculus historically initiated by Poincaré [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF] and today known as the foundation of the Lagrangian reduction theory [START_REF] Arnold | Sur la géométrie diérentielle des groupes de lie de dimension innie et ses applications à l'hydrodynamique des uides parfaits[END_REF][START_REF] Ebin | Groups of dieomorphisms and the motion of an incompressible uid[END_REF][START_REF] Ostrowski | Computing reduced equations for robotic systems with constraints and symmetries[END_REF]. This calculus is one of the essential Geometric Mechanics tools thanks to which many of the recent advances have been produced in the eld of bio-mimetic locomotion (see [START_REF] Kelly | Modeling ecient pisciform swmming for control[END_REF][START_REF] Kanso | Locomotion of articulated bodies in a perfect planar uid[END_REF][START_REF] Melli | Motion planning for an articulated body in a perfect uid[END_REF]). In the case of the eel swim, we will rst recall this calculus to the case of a Cosserat beam [START_REF] Boyer | The poincaré-chetayev equations and exible multibody systems[END_REF]. Then, due to the slender-body assumption, the ow will be stratied in D, and the Hamilton principle extended to the case of this stratied uid owing out of D. We will derive two dynamics from this principle. The rst ones named "internal-dynamics" are merely the partial dierential equations (p.d.e.'s) which govern the internal control torques. The second dynamics, named "external dynamics", rule the eel's head motions driven by the internal shape law. Finally, these results were obtained in the working-frame of a research project whose purpose is to design and control an eel-like robot capable of swimming in the three dimensions. This robot is an assemblage of pairs of parallel platforms or "vertebrae". Two consecutive vertebrae are connected by parallel kinematics which are equivalent to a universal two degrees of freedom (d.o.f.) joint, one d.o.f. corresponding to the pitch angle and the second, to the yaw. Lastly, the article is structured as follows. In section 2, we briey recall the Lighthill theory of anguilliform swim. Section 3 is devoted to the Cosserat beam theory from the point of view of Poincaré variational calculus on Lie groups. In section 4, starting from the E.B.T., the ow laterally surrounding the slender body is stratied into a eld of uid slices transverse to the beam. Based on this stratication, the Poincaré-Cosserat construction is extended to the case of a swimming slender sh in section 5, which ends with the p.d.e.'s of the sh dynamics. These equations encode all the information about the uid-structure interactions and the internal forces of the beam body. Then, in section 6, the previous p.d.e.'s are reconsidered in order to deduce the external head's dynamics, i.e. the dynamics of the sh head when its body is submitted to an imposed internal strain law. Then the resulting model is used in section 7 for the purpose of simulation. The same section gives a three-dimensional numerical example validated in [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF] with a Navier-Stokes solver. Finally, the article ends with concluding remarks (section 8).

Elongated body theory of Lighthill

Firstly we recall the great lines of the Lighthill's modelling (E.B.T. and L.A.E.B.T.) where E.B.T. can be seen as a linear perturbation theory of the original S.B.T. with respect to the body deformations of the sh. Before all, the body is considered as slender with a rounded nose and a tail (caudal n) modeled by a sharp trailing edge. Secondly, the uid is assumed to be perfect (inviscid) and irrotational everywhere except in the wake which is modeled by a free vortex sheet. Thirdly, in order to circumvent the complex modeling of the wake, Lighthill restricts his considerations to the uid contained in an hemispheric control volume D including the eel's body and separated from the wake by the plane π passing through the caudal n and perpendicular to the eel's backbone (cf. gure 1). In these conditions, only the kinetic exchanges of the uid contained in D, where the ow is assumed to be potential, with the wake are considered. Finally, because the uid has no viscosity, the forces applied on the body have a pure inertial nature and can be modeled by some "added" or "virtual inertia" in accordance to what Lighthill named a "reactive" model, and that he opposed to a "resistive" one as required by the study of low Reynolds swimmers like worms [START_REF] Taylor | Analysis swimming long narrow animals[END_REF]. With these choices, Lighthill rst considered in [START_REF] Lighthill | Note on the swimming of slender sh[END_REF] a slender sh maintaining its head xed in a steady ow of velocity U by imposing to its body a given undulation law of small amplitude. Then, he extended his study in reference [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF] to the case of a slender body enduring planar nite amplitude undulations in a uid at rest far from the sh. In this Large Amplitude Elongated Body Theory, like in the small perturbations one (or Elongated Body Theory), each slice of the uid stays at rest axially but is laterally accelerated by the beam cross sections as it sweeps past the body. Hence, the uid kinetic amounts of the slice grow along the beam (from the head to the tail) before to be shed into the wake, so generating the sh thrust by reaction. Beyond this amplication mechanism, Lighthill gave in his L.A.E.B.T. of [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF] the following expression for the forces applied to a slender inextensible undulating body of normalized length, swimming along e 1 (cf. Figure 2.) :

T e 1 + Le 2 = - ∂ ∂t 1 0 mV 2 t 2 dX 1 + mV 2 V 1 t 2 - 1 2 mV 2 2 t 1 X 1 =1 , (1) 
where, (o, e 1 , e 2 , e 3 ) is a xed Galilean frame, while (t 1 , t 2 , t 3 )(X 1 ) is the ortho-normed mobile basis attached to the body cross section c X 1 of added mass m(X 1 ), positioned at the distance X 1 along the backbone w.r.t. the nose, with t 1 being tangent to the backbone, and t 3 normal to the swimming plane. Finally, "(V 1 t 1 + V 2 t 2 )(X 1 )" denotes the velocity of c X 1 . Physically, we nd in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] and from left to right : 1 ) the thrust (T ) and lateral (L) forces (the eel swimming in straight line), 2 ) the rate of change of uid momentum within D due to the body motion, 3 ) the rate of change of momentum within D due to momentum transport across the plane π. Moreover, following Lighthill's conclusions, this is this last contribution whose time-averaged value is non null, which is essentially at the origin of the undulating sh thrust. Before closing this presentation of the Lighthill model, let us remark that (1) is based on the fact that the axial (i.e. along the sh backbone) perturbations of the velocity eld of the uid w.r.t. the sh is negligible due to the slenderness of its body. Nevertheless, if this can be legitimated rigorously from perturbation theory in the case of the E.B.T. [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], this is not the case when the amplitude of the sh undulations increase. In fact, the curvature of the sh backbone will generate some mixing of the transverse uid slices incompatible with the S.B.T. Hence, the extension of the E.B.T. to the Large Amplitude E.B.T. introduces a sort of heuristic, summarized as follows by the author. The uid kinematics from which the added mass density is computed -which generates the density of hydrodynamic force applied onto the nite deformed sh conguration -are dened slice by slice as if each of the sh sections c X 1 would be axially prolonged by an innite cylinder of constant section moving with the transverse motion of c X 1 . Lastly, let us point out that Lighthill derived (1) through the kinetic energy conservation law applied to the uid in D. Furthermore, in this balance, all the terms of (1) appear as some inertial forces. Hence, the L.A.E.B.T. should be founded on a variational calculus where all the hydrodynamic forces of (1) can be derived from the uid kinetic energy. This is one of the purposes of this article to contribute to these foundations. [START_REF] Yamada | Development of amphibious snake-like robot acm-r5[END_REF] 

Poincaré equations of an internally actuated Cosserat beam

In all the article, we use the following notations. The contracted product of two tensors is denoted by a point, ⊗ is the usual tensor product and × the cross product in R 3 . For any W ∈ R 3 , W = W ∧ is the skew-symmetric tensor such that W .X = W × X, ∀X ∈ R 3 and W ∨ = (W ∧ ) ∨ = W . Any tensor eld can depend on time in two ways as its time evolution is known (i.e. imposed or computed by integration) or only ruled by the dynamics. In the rst case the time is explicitly indicated as an argument, while it does not appear in the second case. Finally, if V denotes a closed set of R n , then ∂V is its boundary set, while dV and d∂V are respectively the volume and surface elements of V. Finally following the notations of the geometrically exact beam theory of [START_REF] Simo | A nite strain beam formulation. the three-dimensional dynamic problem. part i : Formulation and optimal parametrization[END_REF], the spatial tensors are denoted by small characters while the material ones are denoted by large ones. Lastly, the notations of the previous section will be systematically used (and augmented) in all the following.

Basic picture

We rst recall the usual Poincaré-Cosserat picture as it is proposed in [START_REF] Boyer | The poincaré-chetayev equations and exible multibody systems[END_REF]. For the moment, we ignore the uid and just consider that the sh is submitted to any arbitrary external load. Due to its slenderness, the sh can be modeled as a beam of unit length where the cross sections c X 1 , X 1 ∈ [0, 1] remain rigid while moving, i.e. by a one dimensional Cosserat medium whose conguration space is dened by the functional set of curves in the Lie group SE(3) :

C {g : X 1 ∈ [0, 1] → g(X 1 ) ∈ SE(3)}.
(

In a tensorial representation, any g(X 1 ) is dened by the homogeneous transformation :

g(X 1 ) = R(X 1 ) r(X 1 ) 0 1 , (3) 
where R(X 1 ) and r(X 1 ) are respectively the rotation and position operators which map the material frame (O, E 1 , E 2 , E 3 ) onto the current mobile frame (G, t 1 , t 2 , t 3 )(X 1 ) attached to the X 1 cross section of mass center G(X 1 ) (cf. gure 3). Now, the Poincaré-Cosserat construction consists in deriving from a Lagrangian approach the dynamics of the beam directly on the denition (2) of the beam conguration space. Technically, this is achieved by applying the extended Hamilton principle [START_REF] Meirovitch | Methods of analytical dynamics[END_REF] :

δ t 2 t 1 L b dt = δ t 2 t 1 1 0 L b dX 1 dt = t 2 t 1 δW ext dt, ( 4 
)
where δ denotes any variation applied along the trajectory of the system while the conguration at the two ends of [t 1 , t 2 ] are maintained xed, and δW ext is the virtual work produced by the (non-conservative) external loads. Furthermore, L b and L b respectively denote the Lagrangian and the Lagrangian density of the beam free of external load. In the Poincaré-Cosserat approach, L b is directly dened as a function of the cross sections transformations and their space and time derivatives L b g, ∂g ∂X 1 , ∂g ∂t ; and not, like in the case due to Lagrange, as a function of any parametrization of the g's in R 6 . Then, let us remember that the variation is applied onto any motion in C while the space and time variables are maintained xed. In fact, δt = 0 in accordance to the D'Alembert principle of virtual works, while δX 1 = 0 since the variable X 1 is a material (conguration independent) label (note here that this imposes to δ. to follow c X 1 along any virtual displacement, a property that will play a crucial role in the generalization of this construction to the uid, see B.4 in the appendix). 

Reduced dynamics of a one-dimensional Cosserat medium

Now, let us dene the following space and time twist elds :

η g -1 ∂g ∂t (X 1 ) , ξ g -1 ∂g ∂X 1 (X 1 ), (5) 
where η and ξ are both dened in the 3), in agreement with the "material setting" of the rigid body geometry [START_REF] Arnold | Mathematical methods in classical mechanics[END_REF]. Furthermore, in the following we identify se(3) with R 6 , and η and ξ with :

(E 1 , E 2 , E 3 , E 1 , E 2 , E 3 ) basis of se(
η = (R T .(∂R/∂t)) ∨ R T .(∂r/∂t) Ω V , ξ = (R T .(∂R/∂X 1 )) ∨ R T .(∂r/∂X 1 ) K Γ , (6) 
where Ω, V (respectively K and Γ) respectively denote the material angular and linear velocity (respectively the material "curvature-twist" and tangent vector) elds along the beam. Then, introducing the denitions (5) into the Lagrangian density of the beam, allows one to rewrite (4) as :

L b = 1 0 L b g, ∂g ∂X 1 , ∂g ∂t dX 1 = 1 0 L b (g, η, ξ)dX 1 , (7) 
where L b is a new function named "reduced Lagrangian density" (in the Lie algebra of SE( 3)), when it does not depend explicitly of the transformation g. In fact, this property is named "left invariancy" and traduces the symmetry of the dynamics as seen by an observer attached to the beam material. In the rest of this section, we shall assume that the Lagrangian of the beam free of load is left invariant and we will see later how this is actually the case when we consider the eel swimming in a perfect uid. Now, let us derive the beam dynamics by applying the variational principle (4) with L b dened by [START_REF] Carling | Self-propelled anguilliform swimming : simultaneous solution of the two-dimensional navier-stokes equations and newton's laws of motion[END_REF]. For this, we have to invoke the constraints of variation at xed time and material label :

δ ∂g ∂t = ∂δg ∂t , δ ∂g ∂X 1 = ∂δg ∂X 1 , ( 8 
)
where δζ = g -1 δg ∈ se( 3) is a eld of material variation of g, with δζ(t 1 ) = δζ(t 2 ) = 0. Then inserting "δg = gδζ" into (8.a) and (8.b) gives the following relations, as historically revealed by Poincaré [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF], relations which play a key role in the variational calculus on Lie groups :

δη = ∂δζ ∂t + ad * η (δζ) , δξ = ∂δζ ∂X 1 + ad * ξ (δζ). (9) 
Finally, applying the standard uses of variational calculus to (4), with (9) running before the usual by part integrations (here in "space" and "time"), gives the Poincaré equations of a Cosserat-beam in the material setting (see Appendix A) :

∂ ∂t ∂L b ∂η -ad * η ∂L b ∂η + ∂ ∂X 1 ∂L b ∂ξ -ad * ξ ∂L b ∂ξ = F , ( 10 
)
with the boundary conditions (also deduced from ( 4)) :

∂L b ∂ξ (0) = F -, and : ∂L b ∂ξ (1) = -F + , (11) 
where, we assume that the external load is dened by the density eld of wrench 3) * , and the two boundary wrenches F -∈ se(3) * and F + ∈ se(3) * respectively applied onto the rst and last cross section of the beam, i.e., we assume that δW ext = 1) in ( 4). Finally, these external wrenches generally depend on the beam conguration. Nevertheless, when this is not the case, the external load is said to be left invariant. This is particularly the case of the most of the contact forces involved in animal locomotion. In the following, we will see that because of their inertial nature, all the contact forces of the reactive model ( 1) can in fact be directly derived from the left hand side (l.h.s.) of ( 4). However, we shall use in the simulations of 7 the external load of the right hand side (r.h.s.) of section (4) in order to improve the L.A.E.B.T. of some corrections.

X 1 ∈]0, 1[ → F ∈ se(
1 0 F .δζdX 1 + F -.δζ(0) + F + .δζ(

Application to an internally actuated Cosserat beam

Following [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF], we propose to model the hyper-redundant eel-robot as a Cosserat beam submitted to a eld of curvature 3), imposed at each instant t along its back-bone. Furthermore, the rigid cross sections of the beam, model the parallel platforms (which mimic the vertebrae of the animal) linked together through the pitch-yaw universal joints (see introduction). With these choices, the internal beam kinematics has to satisfy the following constraints :

K d (t) : X 1 ∈ [0, 1] → K d (X 1 , t) ∈ so(
∀X 1 ∈]0, 1[: K(X 1 ) = K d (X 1 , t) , Γ(X 1 ) = E 1 , ( 12 
)
where the rotational part of (12) (with

K d (t) = K d,2 (t)E 2 + K d,3 (t)E 3
) stands for the desired control inputs, while the translational one stands for the "inextensibility" and "Kirchho constraints" of beam theory [START_REF] Boyer | Finite element of slender beams in nite transformations -a geometrically exact approach[END_REF]. Finally, note that (12) can be rewritten as the single space-twist relation :

ξ(X 1 ) -ξ d (X 1 , t) = 0, ∀X 1 ∈]0, 1[, (13) 
with

ξ d = (K T d , E T 1 ) T .
Once the internal constraints so dened, we are now able to x the Lagrangian density of (7) as :

L b (η, ξ, t) = T b (η) -U b (ξ, t), ( 14 
)
where we introduced :

The left invariant density of internal energy U imposed by the constraints as :

U b (ξ, t) = λ.(ξ -ξ d (t)), (15) 
where λ : The left invariant density of beam kinetic energy T b , dened by :

X 1 ∈ [0, 1] → λ(X 1 ) ∈ se(3) * is
T b (η) = 1 2 η.(J b .η), (16) 
and J b (X 1 ) is the 6 × 6 density of material inertia tensor, which in the case of an elliptic cross-sectional prole is given by :

J b = J b 0 0 M b , ( 17 
)
with :

J b = ρ b (J 1 E 1 ⊗E 1 +J 2 E 2 ⊗E 2 +J 3 E 3 ⊗E 3 ), M b = ρ b A(E 1 ⊗E 1 +E 2 ⊗E 2 +E 3 ⊗E 3 ), ρ b
is the mass per unit of beam volume, and A, J i , (i = 1, 2, 3) are the area and geometric moments about t i , (i = 1, 2, 3) of the X 1 beam cross section respectively. Finally, let us insert ( 14) with ( 16) and [START_REF] Munk | The aerodynamic forces on airship hulls[END_REF], into (10)- [START_REF] Wolfgang | Hydrodynamics of exible-body swimming motions[END_REF] gives :

∂(J b .η) ∂t -ad * η (J b .η) - ∂λ ∂X 1 + ad * ξ (λ) = F , (18) 
with the boundary conditions :

λ(0) = F -, and : λ(1) = -F + . ( 19 
)
Then, identifying se(3) and se(3) * to R 6 , the explicit expression of the co-adjoint action of any twist Ξ = (Ω T , V T ) T ∈ se(3) onto any wrench Θ = (C T , N T ) T ∈ se(3) * is given by [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF] :

ad * Ξ (Θ) = C × Ω + N × V N × Ω , (20) 
Furthermore, if we denote by J b .η = ∂T b /∂η = (Σ T b , P T b ) T the density of material kinetic wrench along the body and by F = (C T , N T ) T , the density of external material wrench, we nd after simple computations starting from [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF] and using (20) :

∂ ∂t

Σ b P b + Ω × Σ b + V × P b Ω × P b = ∂ ∂X 1 C N + K × C + Γ × N K × N + C N . ( 21 
)
Finally, the eld equations ( 21), once completed with the boundary conditions [START_REF] Mcmillen | An elastic rod model for anguilliform swimming[END_REF] which can now be detailed, with F ± (C T ± , N T ± ) T , as :

C(0) N (0) = C - N - , C(1) N (1) = - C + N + , ( 22 
)
plus the internal constraints [START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF], and the denitions (6), form a closed form of the internally actuated Cosserat beam dynamics.

Computational algorithm

From the beam theory point of view, the closed form [START_REF] Liu | A numerical study of undulatory swimming[END_REF][START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF][START_REF] Arnold | Sur la géométrie diérentielle des groupes de lie de dimension innie et ses applications à l'hydrodynamique des uides parfaits[END_REF][START_REF] Ebin | Groups of dieomorphisms and the motion of an incompressible uid[END_REF] corresponds to the dynamics of a torque-actuated Kirchho inextensible beam [START_REF] Boyer | Finite element of slender beams in nite transformations -a geometrically exact approach[END_REF] once they are stated in the larger conguration space (2) of Reissner-Timoshenko beams [START_REF] Reissner | On a one-dimensional large displacement nite-strain theory[END_REF]. In the passive case, such a closed form can be solved by applying the geometrically-exact nite-element method of Simo [START_REF] Simo | On the dynamics in space of rods undergoing large motions. a geometrically exact approach[END_REF][START_REF] Boyer | Finite element of slender beams in nite transformations -a geometrically exact approach[END_REF]. Here, we will not follow this approach but rather a computational algorithm recently proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] for the dynamics of hyper-redundant robots ("trunk robots", "snake-like" or "eel-like" robots...). This algorithm is based on a slight dierent formulation from [START_REF] Liu | A numerical study of undulatory swimming[END_REF][START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF][START_REF] Arnold | Sur la géométrie diérentielle des groupes de lie de dimension innie et ses applications à l'hydrodynamique des uides parfaits[END_REF][START_REF] Ebin | Groups of dieomorphisms and the motion of an incompressible uid[END_REF] that we now detail as following. Firstly, let us explicitly force the constraints [START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF] in ( 21) which can then be rewritten in the spatial setting (we use small characters for denoting the spatial counterparts of the material tensors previously dened), as :

∂ ∂t σ b p b = ∂ ∂X 1 c n + t 1 × n 0 + c n . ( 23 
)
Secondly, as far as the boundary conditions are concerned, they are unchanged, and we can write them in the spatial setting as :

c(0) n(0) = c - n - , c(1) n(1) = - c + n + . ( 24 
)
Thirdly, ( 6) is used to rewrite the constraints (12) as :

∂R ∂X 1 = R. K d (t) , ∂r ∂X 1 = R.E 1 = t 1 . (25) 
Hence, this second formulation is obtained in two steps : 1 ) the Hamilton principle ( 4) is developed on the Reissner-Timoshenko conguration space, i.e. with any δξ dened by (9.b), 2 ) once all the variational calculus is achieved, the constraint ξ = ξ d is forced. Now, the reader familiar with "robot dynamics" will recognize in (( 23)-( 25)) the (closed) Newton-Euler formulation of manipulators [START_REF] Khalil | Modeling, Identication and Control of Robots[END_REF], here extended to the case of a continuous locomotive robot where the body index is replaced by the cross section label X 1 . In this context, we proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] a fast algorithm enable to solve the following dynamic problem : "Compute the head motion of the beam (i.e. that of (G, t 1 , t 2 , t 3 )(0)), and the internal torque law C, from the knowledge of the internal strain law K d (t)". From the point of view of robotics, this algorithm is nothing but a continuous version of the Newton-Euler computed torque algorithm of manipulators [START_REF] Luh | On-line computational scheme for mechanical manipulator[END_REF], here extended to the case of locomotion. In order to illustrate this, let us consider the more simple case of a continuous manipulator rigidly linked in X 1 = 0 to a mobile platform of given motion t → g o (t) and submitted to the known wrench (c T + , n T + ) T at the other tip. In this case, the rst natural boundary condition (24.a) is replaced by the geometric one : g(X 1 = 0) = g o (t) and at each current time t, the algorithm rst computes the current conguration of the beam by space forward integrating (25) (i.e. w.r.t. X 1 and from the earth to the tip), which plays the role of a continuous kinematic model for the manipulator. Then, time dierentiating (25) twice, gives the continuous models of the Galilean beam velocities and accelerations [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF], that the algorithm forward space integrates too, in order to compute the desired velocity and acceleration elds along the beam. Once all these kinematics known, the p.d.e.'s [START_REF] Ostrowski | Computing reduced equations for robotic systems with constraints and symmetries[END_REF] are backward space integrated at t xed (with (24.b) as boundary conditions), in order to obtain the internal force n and nally the control torque law C which insures

(K d , ∂K d /∂t, ∂ 2 K d /∂t 2 )(t) with g(0) = g o (t), (∂g/∂t)(0) = ġo (t) (µ o g o )(t), and (∂ 2 g/∂t 2 )(0) = go (t) (( μo + µ 2 o )g o )(t)
(we denote by a dot the time derivative of a function which only depends on time). Hence, in the case of a continuous manipulator, the algorithm of [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] can be summarized as follows :

C(t) = G int (g o , µ o , μo ) (t), K d , ∂K d ∂t , ∂ 2 K d ∂t 2 (t) , ( 26 
)
where G int formally denotes the map which numerically computes the internal torques. In the case of a continuous locomotor (like a swimming eel-like robot), the previous algorithm can be extended by replacing the imposed time evolution t → g o (t) (i.e. this of the external d.o.f.), by a dynamic model or "external dynamics", which encodes the eect on the head-frame (G, t 1 , t 2 , t 3 )(X 1 = 0) of all the contact forces applied by the environment onto the animal while it moves its internal d.o.f.. In our case, these external dynamics can be formally written as follows :

μo ġo = G ext g o , µ o , K d , ∂K d ∂t , ∂ 2 K d ∂t 2 (t) µ o g o . ( 27 
)
In the following, we propose an ecient way of computing G ext for a swimming elongated sh. As it is proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF], this computation ends with the formula G ext = I -1 o .F o , where I o is the 6 × 6 tensor (with respect to the nose c X 1 =0 ) of the inertia and added masses of all the mater (body+uid) contained at each instant in D, while F o is the wrench of all the inertial and external forces applied onto the robot. As for G int , it is worth noting here, that in accordance with the Newton-Euler formalism of robot dynamics [START_REF] Luh | On-line computational scheme for mechanical manipulator[END_REF][START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF][START_REF] Featherstone | Robot dynamics : equation and algorithms[END_REF], G ext (i.e. I o and F o ), will be computed under an implicit form, giving its programming simplicity and computational eciency to the approach. Finally, this algorithm is based on an extension of the Poincaré-Cosserat equations to the uid laterally surrounding the beam, that we are now going to detail.

Basic picture of the anguilliform swim

The extension of the previous mathematical construction to the uid around the beam is based on the Lighthill model of anguilliform swim. As this model is rst based on the Elongated Body Theory (E.B.T.), we start from this context (subject of the two following subsections) but here extended to the three dimensional case, and we will reconsider (in subsection 4.3) the case of a 3D Large Amplitude E.B.T. or L.A.E.B.T. (as rst evoked at the end of section 2).

Fluid kinematics

Let us rst recall that in the E.B.T. the beam is assumed to endure small deformations. Then, if we prolong its material axis in the front of its nose by a rigid line supported by -t 1 (0), X 1 now belongs to ] -∞, 1], and for any point x ∈ D near to the body, a label

X 1 ∈] -∞, 1] exists such that x = r(X 1 ) + (X 2 t 2 (X 1 ) + X 3 t 3 (X 1 ))
r(X 1 ) + x X 1 . Then, following [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], due to the slenderness (and small perturbations of the body shape) of the swimming sh, the three dimensional potential ow in D can be approximated by a one-dimensional stratication of planar potential ows. By "stratication" we here understand a continuous juxtaposition of uid slices, each one of them being dened as the part of uid contained at each instant in the geometric section s X 1 (t) which prolongs the current beam cross section conguration c X 1 (t) (see Figure 3). More precisely, at the rst order of approximation w.r.t. the small quantities of the problem, the hydrodynamic forces exerted onto a slender undulating sh are derived from the unsteady Bernoulli pressure law with the following approximation of the three-dimensional velocity potential φ :

∀x ∈ D, φ(x) = φ(r(X 1 ) + x X 1 ) φ X 1 (x X 1 ), (28) 
where

φ X 1 = 0 if X 1 ∈]-∞, 0], while if X 1 ∈]0, 1], each φ X 1 is solution of the planar Neumann problem : ∆φ X 1 = 0, on s X 1 (t) -c X 1 (t), (29) 
where the uid is at rest far from the body and submitted to the following boundary conditions on ∂c X 1 (t) :

∂φ X 1 ∂n X 1 = ((V 2 t 2 + V 3 t 3 )(X 1 ) + (Ω 1 t 1 )(X 1 ) × x X 1 ) .n X 1 , ( 30 
)
with n X 1 , the outward normal to the planar beam cross section prole ∂c X 1 (t) which veries : n(x = r(X 1 ) + x X 1 ) n X 1 (x) all along the beam except on the rounded nose, where the slenderbody assumption introduces a local negligible error [START_REF] Batchelor | An Introduction To Fluid Dynamics[END_REF]. Finally, in the E.B.T. the uid kinematics are replaced by those of a one dimensional stratied medium of uid slices staying axially (i.e. along the eel backbone) at rest with respect to the ambient space but sweeping past the stratied space of beam slices. 

Fluid kinetics

In order to extend the Poincaré picture from the Cosserat beams to the E.B.T. of uid mechanics, the previous reduction (stratication of kinematics) should be pushed forward to the kinetics. For that purpose, we use the Kirchho principle for potential ow around a rigid body [START_REF] Lamb | Hydrodynamics[END_REF], where in our case the basic rigid elements are the beam cross sections pushing laterally the uid in the slices according to [START_REF] Taylor | Analysis swimming long narrow animals[END_REF][START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF][START_REF] Simo | A nite strain beam formulation. the three-dimensional dynamic problem. part i : Formulation and optimal parametrization[END_REF]. In this context, the set of planar potentials dened by (28-30) can be rewritten in the Kirchho form as :

∀X 1 ∈ [0, 1] , φ X 1 (x X 1 ) = Ψ 1,X 1 Ω 1 + Ψ 2,X 1 V 2 + Ψ 3,X 1 V 3 , ( 31 
)
where the Ψ i,X 1 's are some harmonic functions of (X 2 , X 3 ) verifying on ∂c X 1 (t) the following time-independent boundary conditions deduced from (30) :

∂Ψ 1,X 1 ∂n X 1 = (x X 1 × n X 1 ).t 1 (X 1 ) , ∂Ψ α,X 1 ∂n X 1 = (n X 1 .t α )(X 1 ), α = 2, 3. (32) 
Now if ρ f is the uid mass per unit of volume, the general expression for the kinetic energy T f of the uid contained in the control box D is given by :

T f = 1 2 D ρ f ∇(φ) 2 dD = 1 2 D ρ f (∇(φ∇(φ)) -φ∆φ)dD. ( 33 
)
Then from Stokes theorem and because φ is harmonic in D, we nd :

T f = 1 2 ∂D ρ f φ ∂φ ∂n d∂D. ( 34 
)
But the uid being at rest at innity and due to the approximation (28-30), ( 34) can be rewritten as :

T f = 1 2 1 0 ρ f ∂c X 1 φ X 1 ∂φ X 1 ∂n X 1 d∂c X 1 dX 1 = 1 0 T f dX 1 , ( 35 
)
where T f is the left invariant density of kinetic energy of the uid stratied inside D, which can be rewritten by inserting the Kirchho form (31) into [START_REF] Reissner | On a one-dimensional large displacement nite-strain theory[END_REF], as :

T f (η) = 1 2 η.(J f .η), (36) 
with J f (X 1 ), the tensor of added (or "virtual") masses of the X 1 cross section which for an elliptic prole, can be detailed as follows :

J f = J f 0 0 M f . ( 37 
)
Finally, from complex planar potential ow theory and conform mapping, we have :

J f = ρ f (π/8)(a 2 -b 2 ) 2 E 1 ⊗ E 1 , and M f = ρ f π(b 2 E 2 ⊗ E 2 + a 2 E 3 ⊗ E 3 )
, with 2a(X 1 ) and 2b(X 1 ) the length of the major and minor axes of the beam elliptic cross section c X 1 respectively. Lastly, thanks to the the slender-body assumption and the Kirchho potentials approach, we were able to reduce the conguration space of the uid contained in D onto that of the beam dened by (2) as it is done in [START_REF] Kanso | Locomotion of articulated bodies in a perfect planar uid[END_REF] for the discrete multi-body case.

Remark about the Large Amplitude E.B.T.

In the case when the sh body endures deformations of nite amplitudes, the previous stratication of the three dimensional ow in D cannot be achieved in all cases. In fact, due to the beam curvatures, the geometric planes s X 1 prolonging the beam cross sections c X 1 will intersect so forcing the uid slices to mix together (as in the multi-body case of [START_REF] Kanso | Locomotion of articulated bodies in a perfect planar uid[END_REF]). Be that as it may, the author of the L.A.E.B.T. neglects this phenomenon, which is assumed to occur suciently far from the body to have negligible eects on its dynamics. Nevertheless, this choice gives to the L.A.E.B.T. the heuristic character discussed at the end of section 2. Finally, contrary to the case of the E.B.T. which is funded on the previous kinematics, deduced from an expansion in perturbations of the slender (rigid) body theory, the L.A.E.B.T. is directly introduced through the basic uid kinetics [START_REF] Simo | On the dynamics in space of rods undergoing large motions. a geometrically exact approach[END_REF] (in fact the density of lateral impulses) which in the case of the planar swim studied by Lighthill reduces to

T f = (1/2)mV 2 2 (with m = ρ f πa 2 ) [29], [10].
5 Generalisation of the Poincaré-Cosserat picture to the L.A.E.B.T.

The purpose of this section is to apply the Poincaré-Cosserat picture to the previous threedimensional L.A.E.B.T.. For this, it is worth noting here that the context of section 3 diers from this now studied in two points. Firstly, the uid kinetic energy has to be added to the body Lagrangian of [START_REF] Carling | Self-propelled anguilliform swimming : simultaneous solution of the two-dimensional navier-stokes equations and newton's laws of motion[END_REF], in order to dene the Lagrangian of the total ("uid" plus "body") material system contained at each instant in D :

L = 1 0 L dX 1 = 1 0 T b + T f -U b dX 1 . ( 38 
)
Secondly, due to the uid owing out of D, the material system contained at each instant in the control box D is an "open material system." Hence, as this is usually the case for this type of systems [START_REF] Del Valle | A hamilton-jacobi approach to the rocket problem[END_REF], we wait for some new inertial terms (for instance modeling the ejection of matter through the control surface bounding the system) that do not appear in the case of usual "closed material systems" (like the beam alone for instance). As we will see in this section, in our case these new terms correspond to the "rate of change of momentum within D due to momentum transport across the plane π" of (1) here generalized to the three dimensional swim. Furthermore, they can be completely deduced from the uid kinetic energy of (38) by using the following extension of the Hamilton principle (4) to the case of our stratied uid owing out of D (see B) :

t 2 t 1 1 0 δ(T f + T b -U b ) dX 1 dt = t 2 t 1 δW ext -V 1 ∂T f ∂η -T f 0 E 1 .δζ 1 0 dt, ( 39 
)
where the boundary term of the r.h.s. is due to the relative motion of the two stratied media (the beam and the stratication of uid slices), dened by (see B.1 in the appendix) :

η f = η -V 1 ξ, ( 40 
)
with η f , the twist of the uid slice (which coincides with the geometric slice s X 1 (t)) prolonging c X 1 at the current time t.

Generalization of the Poincaré equations to the L.A.E.B.T.

Before developing [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF] through variational calculus, one should point out that T f , dened by [START_REF] Simo | On the dynamics in space of rods undergoing large motions. a geometrically exact approach[END_REF][START_REF] Khalil | Modeling, Identication and Control of Robots[END_REF], being mechanically related to the uid, it should be a quadratic form of the uid slice twists η f rather than η. In fact this is actually the case since taking [START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF][START_REF] Lighthill | Note on the swimming of slender sh[END_REF] and the sparse form of (37) into account, allows one to write :

J f .ξ = J f .ξ d = 0 . ( 41 
)
Hence, replacing η by ( 40) in ( 36), ( 41) does impose T f (η) = T f (η f ). Furthermore, if taking T f as a function of η or η f seems indierent in [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF], however, when developing [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF], T f should be varied on the Reissner beam conguration space, i.e. with any δξ dened by (9.b). However, since from [START_REF] Featherstone | Robot dynamics : equation and algorithms[END_REF] we have :

(δη f = δη -V 1 δξ -ξδV 1 )
= δη, it is necessary (as it will be conrmed at the end of this subsection) for the completeness of the variational calculus to take 39), and to write :

T f = T f (η f ) in (
δT f = ∂T f ∂η f .δη f = ∂T f ∂η f .(D.δη -V 1 δξ), ( 42 
)
where we introduced the tensor D(ξ) = 1 -ξ ⊗ (0 T , E T 1 ) T such that D.δη = δη -ξδV 1 and where "1" here denotes the unit tensor of R 6 ⊗ R 6 . Then, using [START_REF] Leroyer | Numerical methods for ranse simulations of a self-propelled sh-like body[END_REF] and the linearity of the co-adjoint map, we can write :

δT f = ∂T f ∂η f . D. ∂δζ ∂t + ad * η (δζ) -V 1 ∂δζ ∂X 1 + ad * ξ (V 1 δζ) . ( 43 
)
Now inserting [START_REF] Del Valle | A hamilton-jacobi approach to the rocket problem[END_REF] into the integral uid contribution of (39), gives :

t 2 t 1 1 0 δT f dX 1 dt = I 1 + I 2 , ( 44 
)
with :

I 1 = t 2 t 1 1 0 ∂T f ∂η f . D. ∂δζ ∂t + ad * η (δζ) dX 1 dt = (45) t 2 t 1 1 0 δζ. - ∂ ∂t D T . ∂T f ∂η f + ad * η D T . ∂T f ∂η f dX 1 dt,
and :

I 2 = t 2 t 1 1 0 ∂T f ∂η f . - ∂δζ ∂X 1 V 1 -ad * ξ (V 1 δζ) dX 1 dt = ( 46 
)
t 2 t 1 δζ. -V 1 ∂T f ∂η f 1 0 - 1 0 δζ. ∂ ∂X 1 -V 1 ∂T f ∂η f + V 1 ad * ξ ∂T f ∂η f dX 1 dt.
Now, in agreement with the subsection 3.4, because all the variational calculations are achieved (i.e. δζ is in factor of all the contributions of I 1 and I 2 ), we can force again : ξ = ξ d . Consequently from (41), we have : [START_REF] Ringuette | Vortex formation and drag on low aspect ratio, normal at plates[END_REF][START_REF] Susbielles | Vagues et Ouvrages Pétroliers en Mer[END_REF]. Then, taking these simplications into account in ( 44) and [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF], allows one to deduce the dynamics of all the matter contained in the control box D as :

∂T f /∂η f = J f .η f =J f .(η -V 1 ξ d ) = J f .η = ∂T f /∂η, and D T (ξ d ).(∂T f /∂η f ) = (1 -(0 T , E T 1 ) T ⊗ ξ d ).(J f .η f ) = J f .η f -0 = (∂T f /∂η f ), in
∂ ∂t ∂(T b + T f ) ∂η -ad * η ∂(T b + T f ) ∂η = ∂ ∂X 1 ∂U b ∂ξ + V 1 ∂T f ∂η -ad * ξ ∂U b ∂ξ + V 1 ∂T f ∂η + F , ( 47 
)
with the boundary conditions of the total system :

∂U b ∂ξ (0) = λ(0) = -T f 0 E 1 (0) + F -, ( 48 
)
∂U b ∂ξ (1) = λ(1) = -T f 0 E 1 (1) -F + . ( 49 
)
Furthermore, pre-multiplying each of the two rows of (47-49) by R(X 1 ) allows one to obtain the dynamics of all the matter in D in the spatial setting :

Field equations of the total system (uid + body) :

∂ ∂t σ b + σ f p b + p f + (∂r/∂t) × p f 0 = ∂ ∂X 1 c + V 1 σ f n + V 1 p f + t 1 × (n + V 1 p f ) 0 + c n . ( 50 
)
Boundary conditions of the total system :

c n (0) = 0 -T f t 1 (0) + c - n - , c n (1) = 0 -T f t 1 (1) - c + n + . ( 51 
)
Before closing this section it is worth noting here, that for any X 1 ∈]0, 1[, the equations (50) state the balance of kinetic amounts of all the mater contained in the geometric strip bounded by the planes s X 1 and s X 1 +dX 1 , both attached to the beam (see gure 4). Hence, this balance contains three types of terms : 1 ) the usual terms of the beam alone [START_REF] Ostrowski | Computing reduced equations for robotic systems with constraints and symmetries[END_REF], 2 ) the terms modeling the proper time-rate of changes of the uid kinetic amounts (they have the same form as the previous ones with the uid kinetic amounts replacing the body ones), 3 ) those modeling the time-rate of change of the uid kinetic amounts of the strip due to the fact that the uid slices sweep past the body ones (these are the terms containing V 1 ). Finally, let us remark that if [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF] is computed by taking T f (η) instead of T f (η f ), all the terms of the third type disappear although they should not. Lastly, following [START_REF] Lighthill | Aquatic animal propulsion of high hydro-mechanical eciency[END_REF], the terms containing T f in ( 51) can be interpreted as the resultant forces exerted by the uid outside D across s X 1 =0 and s X 1 =1 = π.

Fig. 4 The kinetic amounts of all mater contained in the geometric strip bounded by the planes s X 1 and s X 1 +dX 1 .

External (head) dynamics

Devoted to the locomotion control and the study of swimming gaits, the algorithm of [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] needs to derive the dynamics of the eel on the principal ber bundle SE(3) × S where the ber SE(3) stands for the head conguration space i.e. the set of all the g(X 1 = 0) g o 's, while the shape space S, is here dened by the functional set of curves in the Lie algebra so(3) :

S {K : X 1 ∈ [0, 1] → K(X 1 ) = K 2 E 2 + K 3 E 3 ∈ so(3)}. ( 52 
)
In fact, when the eel swims, the internal actuators impose the constraint (12.a) at each instant and the eel propels its head (external d.o.f.) by reaction due to the hydrodynamic forces applied by the uid on its body. This dynamic model, formally denoted G ext in [START_REF] Boyer | The poincaré-chetayev equations and exible multibody systems[END_REF], is derived from the weak form of virtual work balance here applied to all the mater in D and consistent with the strong form (50-51) :

1 0 δν. ∂ ∂t σ b + σ f p b + p f - ∂ ∂X 1 V 1 σ f V 1 p f - t 1 × V 1 p f 0 dX 1 (53) = 1 0 δξ.λ + δν. c n dX 1 -δν. 0 T f t 1 1 0 + δν(0). c - n - -δν(1). c + n + ,
where δν = δgg -1 denote any spatial eld of virtual twist applied along the beam. Then, let us introduce the two maps : Ad g * : se(3) → se(3) and Ad * g : se(3) * → se(3) * such that :

Ad g * = 1 0 -r 1 , Ad * g = 1 r 0 1 , ( 54 
)
where 1 denotes the identity tensor of R 3 ⊗ R 3 , and g ∈ SE( 3) is given by (3). Now, in order to derive the head dynamics, we just have to take in (53) a virtual displacement eld δν dened by :

δν(X 1 ) = Ad h(X 1 ) * .δν o , (55) 
with h(X 1 ) = g -1 o g(X 1 ), and δν o = (δgg -1 )(0) denoting the conguration of the X 1 -cross section with respect to the head frame and the head spatial virtual twist respectively. It is worth noting here, that with this restriction, the "virtual motion" dened by ( 55) is a rigid one imposed on the eel (through its head) while it is in its current frozen internal conguration. Consequently, with such a virtual eld, the virtual work of internal wrenches "δU b = 1 0 δξ.λ dX 1 " is necessary zero, and we can rewrite (53) as :

δν o . 1 0 Ad * h(X 1 ) . ∂ ∂t σ b + σ f p b + p f - ∂ ∂X 1 V 1 σ f V 1 p f - t 1 × V 1 p f 0 dX 1 (56) = δν o . 1 0 Ad * h(X 1 ) . c n dX 1 -Ad * h(X 1 ) . 0 T f t 1 1 0 + c - n - -Ad * h(1) . c + n + .
Now, let us consider the two last terms of the l.h.s. of (56), we have :

1 0 Ad * h . ∂ ∂X 1 V 1 σ f V 1 p f + V 1 t 1 × p f 0 dX 1 (57) = 1 0 ∂ ∂X 1 Ad * h . V 1 σ f V 1 p f + V 1 t 1 × p f 0 - ∂Ad * h ∂X 1 . V 1 σ f V 1 p f dX 1 .
Hence, because :

1 0 V 1 t 1 × p f 0 - ∂Ad * h ∂X 1 . V 1 σ f V 1 p f dX 1 = 1 0 V 1 t 1 × p f 0 - 0 t 1 0 0 . V 1 σ f V 1 p f dX 1 = 0 , (58) 
we can rewrite (57) as :

1 0 Ad * h . ∂ ∂X 1 V 1 σ f V 1 p f + V 1 t 1 × p f 0 dX 1 = 1 0 ∂ ∂X 1 Ad * h . V 1 σ f V 1 p f dX 1 = V 1 Ad * h σ f p f (1) -V 1 (0) σ f (0) p f (0) . ( 59 
)
Finally, inserting (59) into (56), gives with p = p b + p f and σ = σ b + σ f :

1 0 ∂σ/∂t + (∂r/∂t) × p f + r × (∂p/∂t) ∂p/∂t dX 1 = Ad * h V 1 σ f V 1 p f -T f t 1 1 0 + + 1 0 Ad * h c n dX 1 + c - n - -Ad * h(1) c + n + . (60)
Now, let us remark that because the eel's cross section c X 1 =0 reduces to a single particle, its added mass tensor is equal to zero. Hence, splitting the uid and body kinetic amounts in (60) and removing the external loads which are not present in the Lighthill reactive modeling, give the following expression of the wrench f h (w.r.t. the origin of space), of the hydrodynamic forces applied onto the eel :

f h = - ∂ ∂t 1 0 σ f + r × p f p f dX 1 + V 1 (1) σ f + r × p f p f (1) - r × T f t 1 T f t 1 (1). 
(61)

Finally, in the case of the planar swim in (e 1 , e 2 ), we have V 3 = Ω 1 = 0 and so :

σ f = 0, p f = mV 2 t 2 and T f = (1/2)mV 2 2 .
Then taking these considerations into account in (61), gives the Lighthill Large Amplitude E.B.T. model of (1), whose (61) is nothing but the three dimensional generalization.

Simulations

Principle of the algorithm

Following the remarks of subsection 3.3, the principle of the algorithm is the following. It is structured by two spatial integration loops computing G ext and G int respectively, and both included in a global time loop. The inputs are the current head state (g o , µ o ) and the internal curvature time law K d . The rst space integration loop G ext starts by forward integrating (from the head to the tail) the beam kinematics (conguration, velocity). Then making the head accelerations explicitly appear in (60) allows one to write G ext as G ext = I -1 o .F o where the inertia tensor I o and the wrench F o are computed through a forward space integration included in the rst space loop (see [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] for more details). Finally, the rst space-loop ends and ( 27) is time-integrated in order to update the head state. Then, G int starts by computing the beam accelerations by a forward space-integration initialized by the head acceleration previously computed. Then, forward space integrating [START_REF] Alamir | Feedback design for 3d movement of an eel-like robot[END_REF] gives the internal forces n and nally the control torque C, which, once completed with the head accelerations μo , are the outputs of the algorithm at the current time. Finally, the time is updated and the algorithm resumes.

A numerical example

In this section, we report a numerical example obtained with the algorithm of subsection 7.1. The concerned result is a "three dimensional rising and falling gait". For more details about numerical aspects we invite the reader to consult [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF] where a complete set of planar gaits is also tested and compared to Navier-Stokes simulations with many gaits parameters. The algorithm was implemented in C++ on a workstation with a Pentium IV (3.2 GHz with 1Go of Ram). The integrations of space and time loops are achieved with a fourth order RK method. All the tests presented below work between "0.2 and 0.7 times the real time" and are thus compatible with on-line computation. The straight reference geometry of the robot is drawn in gure 5. Its total length l is one meter. Its material is assumed to be homogeneous with a "mass/volume" ratio equal to that of water to ensure a buoyancy neutrality (the mass is 1.94Kg). The shape is rst dened as a cylinder of diameter D = 0.1m for any X 1 ∈ [0.05, 1]. This cylinder is covered with an halfellipsoid between X 1 = 0 and X 1 = 0.05. Next, this shape is deformed as follows. For any cross section, the minor axis (along E 2 ) is multiplied by A(X 1 ), and its major axis (along E 3 ) by B(X 1 ), where A and B are two functions dened by :

A(X 1 ) = - 1 6 sin πX 1 - π 2 + 1 - X 2 1 8 + 1 2 , for : 0 ≤ X 1 < 1, B(X 1 ) = 1 , for : 0 ≤ X 1 < 1 5 , B(X 1 ) = 3 5
, for :

3 4 ≤ X 1 < 1, B( X1 ) = 1 - sin(π X1 -π/2) + 1 5
, for :

1 5 ≤ X 1 < 3 4 , with X1 = 20X 1 -4 11 .
As far as the contact model is concerned, the reactive component is xed by the added mass tensor of subsection 4.2 with the above geometry which allows one to deduce the minor and major axes length 2a(X 1 ) and 2b(X 1 ) of any cross section c X 1 . As proposed in [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF], this model is rstly improved with the following axial corrections which model the resistive and reactive forces applied onto the rounded nose neglected by the slender body assumption : c -= 0 , n -= n reac-+ n res-, with : n reac-= -m o ((t 1 .(∂ 2 r/∂t 2 ))t 1 )(0), and

n res-= -(1/2)ρ f k o (V 1 |V 1 |t 1 )(0).
Secondly, the eects of the uid viscosity on the body are modeled by the following slice by slice resistive model : ∀X 1 ∈]0, 1[: n(X 1 ) = n res (X 1 ), c(X 1 ) = c res (X 1 ), where :

c res = (-1/2)ρ f k 4 Ω 1 |Ω 1 |t 1 , n res = (-1/2)ρ f i=3 i=1 k i V i |V i |t i ;
while no force is applied onto the trailing edge except the inertial ones of the reactive model, i.e. n + = 0, c + = 0. Thirdly, in agreement with the standard uses of naval engineering [START_REF] Hoerner | Fluid Dynamics Drag[END_REF][START_REF] Ringuette | Vortex formation and drag on low aspect ratio, normal at plates[END_REF][START_REF] Susbielles | Vagues et Ouvrages Pétroliers en Mer[END_REF], we took the following expressions :

m o = ρ f πka o b o c o , k o = πc p a o b o , k 4 = c 1 π(a 2 -b 2 ) 2 , k 1 = c f P (where P π/2((3/2)(a + b) - √ ab)
stands for the elliptic cross section perimeter), k 2 = 2c 2 a, k 3 = 2c 3 b. Lastly, according to the robot geometry and "a trial and error based strategy" using Navier-Stokes simulations [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF], we took the following values (xed once and for all in all the simulations) : a 0 = 0.025 m, b 0 = c 0 = 0.05 m, k = 0.32, c p = 0.036, c 1 = 1, c 2 = 1.98 and c 3 = 1. Finally c f is dened as follows in order to take into account the transition phenomena in the boundary layer (laminar ow to turbulent ow) : c f = 0.664/Re 0.5 , for : Re ≤ 8.10 4 ,c f = 0.059/Re 1/5 , for : Re > 8.10 4 ; where we introduced the local axial Reynolds number Re(X 1 ) = (V 1 X 1 )/ν and ν the kinematic viscosity of water.

Example : three-dimensional rising and falling gait

The goal of this example is to achieve a falling gait or "submergence" from one given altitude to another (see g.6). This is accomplished with the following "pitch-yaw curvature" law :

K d (t, X 1 ) = K 2 (t, X 1 )E 2 + K 3 (t, X 1 )E 3 , ( 62 
)
where we adopt the following yaw-curvature law : with f r (., t i , t f ), a sinusoid ramp dened by :

K 3 (t, X 1 ) = f r (t, 0, T )K f 3 (t, X 1 ), (63) 
f r (t, t i , t f ) = 0 , for : 0 ≤ t < t i , f r (t, t i , t f ) = t -t i t f -t i - 1 2π sin 2π t -t i t f -t i , for : t i ≤ t < t f , f r (t, t i , t f ) = 1 , for : t ≥ t f , ( 64 
)
which has null rst and second order derivatives at the commutation instants thereby guaranteeing smooth time transitions, while K f 3 (with f for "forward"), is the backward sinusoidal wave (traveling from the head to the tail) of the nominal "straight-line swim" as it has been extensively studied in the zoological literature [START_REF] Breder | The locomotion shes[END_REF][START_REF] Gray | Studies in animal locomotion. i. the movement of sh with special reference to the eel[END_REF][START_REF] Lighthill | Mathematical biouiddynamics[END_REF], i.e. :

K f 3 (t, X 1 ) = f a (X 1 ) sin 2π X 1 λ - t T , with f a (X 1 ) = a 2 X 2 1 + a 1 X 1 + a 0 , (65) 
where : λ is the wave length, T is its period and a 0 , a 1 , a 2 are the coecients of the amplitude modulation polynomial function f a . Finally, we also took the following pitch-curvature law :

K 2 (t, X 1 ) = K c2 γ(t), ( 66 
)
with K c2 a constant component, and γ(t) = f r (t, t 1 , t 2 ) , for : t < t 2 , γ(t) = 1-f r (t, t 2 , t 3 ), for : t 2 ≤ t < t 4 , γ(t) = -f r (t, t 4 , t 5 ), for : t 4 ≤ t < t 5 , and γ(t) = f r (t, t 5 , t 6 ) -1, for : t ≥ t 5 . Finally all the following results were obtained with the strain law (62) and the following parameters : λ = 1m, T = 1s, a 2 = 2rad.m -3 , a 1 = 0.5rad.m -2 and a 0 = 1rad.m -1 , K c2 = 0.5rad.m -1 , t 1 = 1s, t 2 = 2s, t 3 = 3s, t 4 = 6s, t 5 = 7s and t 6 = 8s.

On Figure 7 the spatial proles are plotted (along the eel backbone) of the internal axial force N 1 and those of the two control torques C 2 and C 3 . On g.8, the same internal stresses are plotted but with respect to the time and at a point located at the half of the eel length. Lastly, g.9 shows the time evolution of the axial head velocity and of its angular roll one. While the roll dynamics play no role in the denition of the locomotion gaits, they are very inuential on their control. For instance, in the case of the falling gait, they break the symmetry of the yaw dynamics and produce the deviation of g.6.

Thus, the roll dynamics will imperatively require a stabilization control based on the use of pectoral ns [START_REF] Alamir | Feedback design for 3d movement of an eel-like robot[END_REF].

Conclusion

This article deals with the dynamic modeling of the anguilliform swim of elongated shes. Devoted to the on-line control of an eel-like robot capable of swimming in the three dimensions, the proposed solution is entirely analytic and once coupled to an algorithm recently proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF], it works in a fraction of the real-time. The model is a generalization of the Large Amplitude Elongated Body Theory of Lighthill to the case of the three-dimensional swim. Furthermore, contrary to the Lighthill result, the swim is self-propelled and the internal body dynamics are also investigated. In order to derive this model, the article proposes to use a geometric framework due to Poincaré and here applied to a one dimensional Cosserat medium. Such media were extensively studied by J.C. Simo [START_REF] Simo | A nite strain beam formulation. the three-dimensional dynamic problem. part i : Formulation and optimal parametrization[END_REF][START_REF] Simo | A three-dimensional nite-strain rod model. part ii : Computational aspects[END_REF] in the context of his "Geometrically-Exact" theory of nite elements. Because, this picture is originally restricted to the sh body, the article also extends the Poincaré equations from a standard Cosserat medium to a stratied uid contained in a control volume laterally surrounding the sh body. This last extension is based on the Lighthill theory of anguilliform swim itself originally founded on the Slender Body Theory of aeronautics. Moreover, it uses a generalization of the Hamilton principle, also derived for this article, to a material open system. In our case, the open system is assimilated to the stratied uid contained at each instant in the control volume which moves with the body. Once this generalized Hamilton principle obtained, its application gives the waited for reactive model of the three-dimensional anguilliform swim. Furthermore, like any Lagrangian based modeling, all the nonlinear dynamics forces are derived from the system Lagrangian and a "blind" variation calculus. This advantage is crucial here because of the "complexity" of uid-structure interactions. Finally, while being suciently fast for on-line control, the model is suciently accurate too. In fact, comparisons with a Navier-Stokes solver for several gaits show discrepancies inferior to ten per-cents [START_REF] Boyer | Fast dynamics of an eel-like robot, comparisons with navier-stokes simulations[END_REF].

A Proof of the Cosserat beam equations (( 10),( 11))

The purpose of this appendix is to compute the eld equations [START_REF] Hill | Large amplitude sh swimming[END_REF] and boundary conditions [START_REF] Wolfgang | Hydrodynamics of exible-body swimming motions[END_REF] by starting from the extended Hamilton principle (4), that we now restate for a left invariant density of Lagrangian of the form (7) and, with as external loads, a wrench density eld F and the two punctual wrenches F -and F + , both applied onto the two tips of the beam :

δ t 2 t 1 1 0 T b (η) -U b (ξ)dX 1 dt = t 2 t 1 1 0 F .δζdX 1 + F -.δζ(0) + F + .δζ(1)dt. ( 67 
)
Because the variation δ is achieved while the time t is maintained xed, we can rst rewrite (67) as :

t 2 t 1 1 0 δT b -δU b -δζ.F dX 1 -F -.δζ(0) -F + .δζ(1) dt = 0, (68) 
where we have :

t 2 t 1 1 0 δT b -δU b dX 1 dt = t 2 t 1 1 0 ∂T b ∂η δη - ∂U b ∂ξ δξ dX 1 dt. ( 69 
)
Then, inserting (9) into (69), and integrating by part with respect to the time and space variables, gives, the two end times t 1 and t 2 being maintained xed :

0 = t 2 t 1 1 0 δζ. - ∂ ∂t ∂T b ∂η + ad * η ∂T b ∂η -F dX 1 dt - t 2 t 1 δζ(1) ∂U b ∂ξ (1) + F + -δζ(0) ∂U b ∂ξ (0) -F -dt - t 2 t 1 1 0 δζ. - ∂ ∂X 1 ∂U b ∂ξ + ad * ξ ∂U b ∂ξ dX 1 dt, ( 70 
)
which has to be veried for any δζ so proving [START_REF] Hill | Large amplitude sh swimming[END_REF] and ( 11) when we insert in them a Lagrangian density of the form [START_REF] Carling | Self-propelled anguilliform swimming : simultaneous solution of the two-dimensional navier-stokes equations and newton's laws of motion[END_REF].

B Proof of the statement [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF] The purpose of this appendix is to prove [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF]. This extension of the Hamilton principle requires the use of a one-dimensional version of the transport Reynolds theorem (subsection B.2) devoted to the kinematics of two stratied media moving axially, the one w.r.t. the other (B.1). Once these results are in hand, the variational principle is deduced from the D'Alembert principle of virtual works here revisited for our particular case (subsection B.3). Finally, the appendix ends with (B.4) where ( 39) is stated.

B.1 More about kinematics

The purpose of what follows is to give more insight about the kinematics of the beam with respect to the uid. Let us rst introduce the particular derivative d./dt which follows a uid slice. If d./dt is applied to a given function f , mechanically related to the stratied uid state, but parameterized by the beam base variables (X 1 , t), we have :

df dt (X 1 , t) = ∂f ∂t (X 1 , t) + ∂f ∂X 1 dX 1 dt (X 1 , t), (71) 
where dX 1 /dt = -V 1 (X 1 , t) is the axial velocity of the X 1 -beam cross section measured by an observer attached to the uid slice which prolongs the beam cross section to D at the current time t. Now applying (71) to g(X 1 , t), gives [START_REF] Featherstone | Robot dynamics : equation and algorithms[END_REF], i.e. the twist of the uid slice which prolongs the body slice c X 1 at the current time t. Corresponding to "∂./∂t" and "d./dt", we introduce two "variations", respectively denoted "δ." and "∆.". The rst one (δ) is the variation related to the beam conguration space as already dened in the section 3, while the second one (∆), follows the uid slices, and as such can be named "particular variation". It is dened by replacing the time t in (71) by a variation parameter ε ∈ R. Thus :

∆f = δf - ∂f ∂X 1 δζ 4 , (72) 
where "δζ 4 = δζ.(0 T , E T 1 ) T ", is the axial component of the virtual displacement applied to the X 1 body cross section.

B.2 One dimensional Reynolds transport theorem

Once these denitions introduced, a one dimensional version of the Reynolds transport theorem can be deduced of :

d dt 1 0 f (X 1 , t) dX 1 = 1 0 df dt dX 1 + f d dt (dX 1 ), (73) 
where because the space of cross sections moves with respect to the space of uid slices, we do not have d(dX 1 )/dt = 0 but rather : d(dX 1 )/dt = d(dX 1 /dt) = (∂(dX 1 /dt)/∂X 1 )dX 1 . Furthermore, since we also have dX 1 /dt = -V 1 , we can rewrite (73), thanks to (71) as :

d dt 1 0 f (X 1 , t) dX 1 = 1 0 ∂f ∂t - ∂f ∂X 1 V 1 -f ∂V 1 ∂X 1 dX 1 . ( 74 
)
And we nally nd :

d dt 1 0 f dX 1 = ∂ ∂t 1 0 f dX 1 -[f V 1 ] 1 0 . (75)
Finally ( 75) is merely a one-dimensional version of the Reynolds Transport theorem [START_REF] Batchelor | An Introduction To Fluid Dynamics[END_REF], where the boundary term stands for the ow of f outside of D after its stratication.

B.3 Coming back to the principle of virtual works

The purpose of this appendix is to prove that for any one-dimensional Cosserat medium S of Lagrangian L = T -U = where "δW ext " is still the virtual work of the external load. For this, let us start from the D'Alembert principle of virtual works applied to S :

δW acc = 1 0 ∂ ∂t ∂T ∂η -ad * η ∂T ∂η .δζdX 1 = -δU -δW ext , (77) 
where "δW acc " and "-δU " are respectively the virtual works of the acceleration amounts, and this of the internal forces which are assumed to be conservative.

Then, let us remark that we also have : But by the denition of the co-adjoint map, we can rewrite (77) as :

δW acc = ∂ ∂t
δW acc = ∂ ∂t 1 0 ∂T ∂η .δζdX 1 = δ(T -U ) -δW ext , (80) 
and (80) does allow one to state (76). Finally, let us remark that in all the above computations δ. is a Lagrangian variation, i.e. it follows the cross sections along their virtual motion while X 1 plays the role of a continuous label. where δW ext is still given by (67). Then let us apply to the uid term of the r.h.s. of (81) the Reynolds theorem (75) with d./dt and f = (∂T f /∂η).∆ζ. We nd, after time integration on [t 1 , t 2 ] with δζ(t 1 ) = δζ(t 2 ) = 0 :

t 2 t 1 δL b + ∆ 1 0 T f dX 1 dt = t 2 t 1 δW ext -V 1 ∂T f ∂η .∆ζ 1 0 dt, ( 82 
)
where we used the fact that from (72) applied to g, we have : ∆ζ = δζ -δζ 4 ξ, and so δζ(t 1 ) = δζ(t 2 ) = 0 ⇒ ∆ζ(t 1 ) = ∆ζ(t 2 ) = 0. Furthermore, applying now (75) to the l.h.s. of (82), i.e. with "∆." instead of "d./dt", and f = T f , we nd, by remarking from (72) that ∆X 1 = -δζ 4 = -δζ.(0 T , E T 1 ) T , the following new form of (4) :

t 2 t 1 δL b + 1 0 δT f dX 1 + V 1 ∂T f ∂η .∆ζ -T f 0 E 1 .δζ 1 0 dt = t 2 t 1 δW ext dt. ( 83 
)
But, introducing ∆ζ = δζ -δζ 4 ξ, into the boundary term of (83), we obtain :

t 2 t 1 (δW ext -δL b )dt = (84) t 2 t 1 1 0 δT f dX 1 + V 1 ∂T f ∂η -T f + V 1 ∂T f ∂η .ξ 0 E 1 .δζ 1 0 dt.
Now, since all the variational calculations are achieved, we can force "ξ = ξ d " into the boundary term of (84) (see subsection 3.4). Hence, taking [START_REF] Batchelor | An Introduction To Fluid Dynamics[END_REF] into account in (84), gives the waited for "Extension of the Hamilton principle to the Cosserat beam surrounded by the stratied uid inside D" : 

t 2 t 1 1 0 δ(T f + T b -U b ) dX 1 dt = t 2 t 1 δW ext -V 1 ∂T f ∂η -T f 0 E 1 .δζ

Fig. 1

 1 Fig.1The volume control D used by Lighthill to isolate the rotational wake from the potential ow laterally bounding the body. Note that π is the plane perpendicular to the backbone passing through the trailing edge of the caudal n.

Fig. 2

 2 Fig. 2 Basic picture of a Cosserat beam.

  the eld of internal wrench which forces the constraint (13), i.e. λ = (C T , N T ) T where C and N are the density elds of internal torque (C α = C.E α , α = 2, 3 are the two control torque laws) and internal reaction force respectively.

Fig. 3

 3 Fig. 3 Stratication of the uid ow in D.

7. 2 . 1

 21 Geometric description of the eel-like robot and corrections of the L.A.E.B.T.

Fig. 5

 5 Fig. 5 Geometry of the Body.

Fig. 6

 6 Fig. 6 Body congurations for the falling gait (2f ps).

  (a) N 1 at t = 7s. (b) C 2 at t = 7s. (c) C 3 at t = 7s.

Fig. 7 "

 7 Fig. 7 "X 1 prole" of internal force N 1 , and internal torques C 2 and C 3 at t = 7s for the falling gait.

(a) N 1

 1 at X 1 = 0.5m. (b) C 2 at X 1 = 0.5m. (c) C 3 at X 1 = 0.5m.

Fig. 8 "

 8 Fig. 8 "t prole" of internal force N 1 , and internal torques C 2 and C 3 at X 1 = 0.5m for the falling gait.

Fig. 9

 9 Fig. 9 Time evolution of V 1 (0) and Ω 1 (0) for the falling gait.

1 0 1 +

 11 T -U dX 1 with L = T -U having the reduced form (14), we have : δW ext , (76)

B. 4 1 0 1 0 1 +

 4111 Proof of[START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF] Now let us consider the Cosserat medium S constituted by the beam (of Lagrangian L b = T b -U b dX 1 ) and the stratied uid in D (of Lagrangian L f = T f = T f dX 1 ). From the concluding remark of the previous subsection, let us apply (76) to S with (δ., ∂./∂t) for the beam, and (∆., d./dt) for the uid, we nd :δL b + ∆T f = δW ext ,(81)

  in order to generalize the Poincaré-Cosserat equations to the L.A.E.B.T. of Lighthill.
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