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Abstract

This article proposes a dynamic model of the swim of elongated �shes suited to the on-line control of
bio-mimetic eel-like robots. The approach is analytic and can be considered as an extension of the original
reactive "Large-Elongated-Body-Theory" of Lighthill to the three dimensional self propulsion augmented
of a resistive empirical model. While all the mathematical fundamentals are detailed in [1], this article
essentially focuses on the numerical validation and calibration of the model and the study of swimming
gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the �sh head
and the �eld of internal control torque from the knowledge of the imposed internal strain �elds. Based
on the Newton-Euler formalism of robots dynamics, this algorithm works faster than real time. As far as
precision is concerned, many tests obtained with several planar and three dimensional gaits are reported
and compared (in the planar case) with a Navier-Stokes solver, devoted until today to the planar swim.
The comparisons obtained are very encouraging since in all the cases we tested, the di�erences between
our simpli�ed and reference simulations do not exceed ten per cent.
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1 Introduction
In this article, we present some of the results of a multidisciplinary research project where

the purpose is to study, design, build and control an eel-like robot capable of swimming in three
dimensions (see �gure 1). As it has been noted in the Bio-Robotics community, eel-like robots
are a promising perspective for improving the e�ciency and manoeuverability of modern day un-
derwater vehicles [2]. From the mechanical design point of view, the good performance of these
future under-water bio-mimetic vehicles are due to the high redundancy of their internal kine-
matics with respect to the six dimensional task consisting in moving their head. Until today, two
kinds of �sh have essentially focused the attention of robotic researchers : the "carangiform" and
"anguilliform swimmers". Initially introduced by Breder [3], this classi�cation of �sh locomotion
is based on the wavelength and the amplitude of the propulsive wave traveling along the body
of the animal. As far as the propulsion principle is properly concerned, the body undulations
generate the thrust by pushing the �uid (with respect to the body) from the head to the caudal
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�n where it is shed into the wake. For carangiform swimmers, due to their rigidity, the wave
propagation is restricted to the rear third part of the body unlike to the anguilliform swimmers
where near 80 % of the body participates in the propulsion. Generally, the anguilliform swimmers
are more agile in con�ned environments but slower in free waters. Moreover, due to their relative
simplicity compared to anguilliform swimmers most of the technological devices designed today
are inspired by carangiform swimmers (see [4, 5, 6, 7, 8]). These bio-inspired underwater vehicles
are most of the time, made up of a single rigid body connected to an actuated tail. Furthermore,
the tail internal kinematics have few (less than 4) degrees of freedom and are devoted to the
planar swim. However, in [5] and [8], a three dimensional swimming robot is presented where the
previous mentioned architecture is provided with two lateral actuated appendages playing the
role of pectoral �ns. In the article presented here, the copied �sh is an anguilliform swimmer as
is the eel. The prototype that we are building today (see �gures 1(a)-(b)) is a serial assembling
of parallel robots [9], each of them introducing a universal joint between two contiguous rigid
platforms. These platforms mimic the vertebrae of the animal. However, contrary to the case
of a swimming eel in free water, the body can bend in two directions (yaw and pitch) thereby
improving the 3-D agility of the robot (see �gures 1(a) and 2) in constrained environments.

(a) A vertebra. (b) Serial assemblage of vertebrae.

Fig. 1 � Pictures of the prototype.

In the near future, this actuated skeleton will be covered with a �exible organ playing the
role of the animal's muscles and skin. This organ will be designed in order to guarantee the
continuity of contact with the �uid while preserving the energy resources of the actuators. In
order to control such a system, we need simple dynamic models which can be used in real time.
This article is directly related to this goal which until today has been a challenging task for
researchers involved in bio-mimetic robotics [10].

In its generality, the problem of the dynamic modeling of the swim consists in deriving the
laws that rule the following string of causalities : The �sh deforms its body. Through its geometry
the body imposes unsteady boundary conditions to the �uid �ow. This �ow exerts on the body
boundaries a �eld of contact forces which produces at the end a wrench that drives the rigid
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overall �sh motion. Hence we see appear three linked and coupled dynamics.

• The internal dynamics of the body deformations which rule the motion of each body particle
with respect to the others.

• The dynamics of the contact forces exerted onto the body boundary and which is in the
absolute a consequence of the Navier-Stokes equations of the �uid.

• The dynamics of the overall rigid motions that we name external dynamics since they rule
the motion of a rigid reference linked to the �sh (for instance its head) with respect to an external
Galilean reference frame.

The dynamic modeling of the contact forces (ruled by the dynamics of the ambient medium)
is by far, the most complicated of the three problems mentioned above. From Hydrodynamics to
Biology and Robotics a very rich literature about the subject has grown these last years. Going
further into the details, three great modeling approaches have been proposed depending if they
are based on (from the most realistic to the most simple) : 1�) Navier-Stokes dynamics and �nite
volume elements technics (see [11, 12, 13, 14, 15, 16]), 2�) ideal �uid dynamics and boundary
elements methods (see [17, 18, 19, 20]), 3�) analytical �uid mechanics (see [21, 22, 23, 24, 25,
26, 27, 28, 29]). In spite of the increasing performance of embedded computing technologies,
it is today impossible to solve the Navier-Stokes equations or even the inviscid �uid equations
for on-line control purposes. Hence, analytical modeling seems the most realistic solution yet
for robotics control purposes. Historically, Taylor introduced in the 50's, the �rst analytical
model of the �sh swim [21]. Devoted to the submarine worms, the solution is based on Stokes
equations and models the propulsion through quasisteady lateral drag forces. This model called
resistive by Lighthill (see [25]), is used today for studying the swim of small �shes [30]. Eight
years after the works of Taylor, Wu [26] and Lighthill [22] independently proposed a model of
the �sh swim. The "weaving plate model" of Wu considers the �sh as a �exible in�nite height
plate moving in an ideal �uid. From an expansion in perturbations of the potential velocity
�eld (see [31]), Wu computed the hydrodynamics forces exerted onto the plate. This theory
has been used by Wolfgang in [18] to study the tuna swim. As far as the Lighthill works are
concerned, the Elongated Body Theory (E.B.T.) is based on Slender Body Theory (S.B.T.) of
Munk (see [32]) where the three-dimensional �ow around an elongated body is approximated by
a strati�cation of planar lateral �ows which are then analytically resolved. First developed for
�shes enduring small perturbations of their body geometry [22], the E.B.T. was then extended
to the case of large amplitude body deformations through the Large Amplitude Elongated Body
Theory (L.A.E.B.T.) of [25]. Till today, many researchers in experimental biology use L.A.E.B.T.
for computing swimming e�ciency [25] or hydrodynamic forces [33, 34]. More recently, these
analytical approaches have been enhanced with many results from Geometric Mechanics (see
[27, 28, 29]) which take their origin in the Kirchho� works about Euler-Lagrange equations
applied to solid bodies plunged in an ideal �uid [35].

In the article here presented, we propose to exploit and validate the results of [1] where,
thanks to the tools of Geometric Mechanics (Lagrangian reduction in particular), the three
dynamic modeling problems previously stated (internal, external and contact dynamics) are
solved under an analytical simpli�ed form suited to the online control of eel-like robots. From
the �uid point of view, the solution proposed is based on the original Elongated Body Theory
(E.B.T.) of Lighthill [22, 23, 24, 25], where the propulsion is modeled through the e�ect of the
lateral �uid inertial forces applied along the undulating �sh body. As far as the body is concerned,
the approach uses a Cosserat beam theory [36] like that of [37], used in the eighties by J.C. Simo
in the framework of the "Geometrically Exact Finite Element Method" [38, 39]. In fact, as in
[30] where a model of the �sh muscles is proposed for planar swim, the eel is here considered as a
non-linear beam controlled continuously along its material axis. At the end, the resulting model
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turns out to be a generalization of the Large Amplitude Elongated Body Theory (L.A.E.B.T.) of
[25] in the following ways : 1�) the L.A.E.B.T. is extended to the three-dimensional swim. 2�) The
swimming dynamics are self-propelled and thus the external dynamics of overall rigid motions
are solved rather than being imposed. 3�) The internal dynamics of the beam-like �sh are also
solved in order to compute the torque control law. 4�) The pure reactive model of the Lighthill
theory is completed with a Taylor-like resistive model where the dimensionless coe�cients are
calibrated through comparisons with a Navier-Stokes solver modeling the turbulence [14]. Finally,
this solution is based on a fast algorithm recently proposed in [40]. The results are encouraging
since for a set of high Reynolds (∼= 6.105) planar swimming gaits including the straight forward
undulation, the turning, and the stopping, the discrepancies between the simpli�ed analytical
model and the Navier-Stokes simulations do not exceed 10 percent, while the analytical model
is su�ciently fast to be used for on-line control.

Fig. 2 � From the hybrid (serial/parallel) robot to the continuous beam-like one.

The article is structured as follows. The model of the internal body and contact dynamics
(where the �uid is considered as ideal), are presented in section 2 and 3 respectively. In section
4, the previous model, which is nothing but an extension of the reactive L.A.E.B.T. to the 3-
D swim is improved of some corrective (resistive and axial) forces which are neglected in the
L.A.E.B.T. The resulting model is exploited in 5 and 6 respectively devoted to the external
dynamics and the fast numerical algorithm. The next section (7) deals with the Navier-Stokes
simulation in subsection 7.1, which is �nally used in 7.3 and 7.4 for the calibration and validation
of the analytical model. Lastly, the article ends with section 8 by some concluding remarks and
perspectives.

2 Modeling of the body
In [40] we proposed to model an hyper-redundant robot as a nonlinear Cosserat beam inter-

nally actuated through a torque distribution (cf. �gure 3). By "Cosserat-beam" we here mean a
one-dimensional continuum obtained by the continuous assemblage of an in�nity of cross sections
of in�nitesimal thickness. As it is stipulated in [41], the con�guration space (C) of such a medium
is de�ned by the functional space of curves in the Lie group SE(3) :

C = {g(.) : X1 ∈ [0, 1] 7→ g(X1) ∈ SE(3)}, (1)
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Fig. 3 � General notations of body kinematics.

where X1 is the material abscissa along the beam axis and where any g(X1) is represented
by the homogeneous transformation :

g(X1) =
(

R(X1) r(X1)
0 1

)
, (2)

with R(X1) and r(X1) the rotation and position operators which map the material frame
(O, E1, E2, E3) of �gure 3 onto the current mobile frame (G, t1, t2, t3)(X1, t) attached to the X1

cross section of mass center G(X1). Corollary to these de�nitions, we introduce the two following
�elds of (spatial) twist from ]0, 1[ to se(3) (here identi�ed to R6).

• The twist �eld of velocities :

µ =
∂g

∂t
.g−1 =

(
ω
v

)
=

i=3∑

i=1

(
Ωiti
Viti

)
. (3)

• The twist �eld of strains :

χ =
∂g

∂X1
.g−1 =

(
k
γ

)
=

i=3∑

i=1

(
Kiti
Γiti

)
, (4)

where ω and v (respectively k and γ) are the spatial angular and linear Galilean velocities
(respectively, the spatial "curvature-twist" and "tangent" vectors) along the beam. This frame-
work named "macro-continuous" in [40] is particularly well suited to the modeling of hyper-
redundant robots inspired from snake, trunk and other eels... In fact, in this case the beam axis
models the animal back-bone while its cross-sections stand for its vertebrae. Going further, if the
robot, as in the case here considered, is designed as a serial assemblage of parallel platforms, the
Cosserat beam model is nothing but a continuous asymptotic limit of the hybrid (serial/parallel)
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dynamic model [42], where the cross sections play the role of the rigid platforms of the multi-
body robot and X1 this of a continuous index. Moreover, the internal beam kinematics (Kirchho�,
Timoshenko...) are merely an in�nitesimal version of the robot parallel kinematics. For instance,
in the case here considered, the parallel kinematics introduce between each pair of contiguous
platforms a universal joint where the pitch and yaw degrees of freedom are actuated (cf. �gure 2).
Thus the beam kinematics are those of non-twistable and non-extensible Kirchho� beams, a
model where the following internal kinematic constraints are forced :

χ =
(

k
γ

)
=

(
kd(t)
t1

)
= χd(t), (5)

with kd(t) = Kd,2(t)t2 + Kd,3(t)t3, the �eld of internal curvature imposed along the beam by
the internal control torque law. Finally, with these choices, the Lagrangian of the body B can be
de�ned as L(B) = T (B)− U(B) where :

• T (B) is the kinetic energy of the body de�ned by :

T (B) =
∫ 1

0
Tb dX1 =

1
2

∫ 1

0
µ.Ib.µ dX1, (6)

with Tb and Ib the densities (per unit of beam length) of kinetic energy and of inertia tensor,
where the second is de�ned by :

Ib =
(

Ib 0
0 mb

)
. (7)

In (7) mb and Ib are the linear and angular inertia tensor densities which can be detailed as :
mb = ρbA

∑i=3
i=1 ti⊗ ti, Ib = ρb

∑i=3
i=1 Jiti⊗ ti, with ρb the beam volume mass, and A, Ji the cross

section area and inertia about ti, i = 1, 2, 3.

• U(B) is the internal body potential energy de�ned by :

U(B) =
∫ 1

0
Ub dX1 =

∫ 1

0
λ.(χ− χd) dX1. (8)

Lastly, the following densities of wrenches of kinetic amounts and internal forces are intro-
duced :

(
σb

pb

)
=

∂Tb

∂µ
=

(
Ib.ω
mb.v

)
,

(
c
n

)
= λ =

∂Ub

∂χ
, (9)

where σb, pb, c, n are respectively the density �elds of kinetic momentum, kinetic resultant,
internal torque and internal force, with : c.tα = Cα, α = 2, 3, the two (pitching and yawing)
control torque laws.

3 Dynamic modeling of the anguilliform swim
In this section, we reconsider the three dynamic modeling problems pointed out in the intro-

duction and give to each of them a solution suited to the on-line control.
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Fig. 4 � Strati�cation of the �ow in D.

3.1 Modeling the contact of the robot with the medium
In order to achieve our starting goals, the modeling e�orts have to be particularly concen-

trated onto the "�uid-�sh" contact model. In fact, the Navier-Stokes equations are very di�cult
to solve and completely unsuited to robotics. Hence, in order to circumvent this di�culty we
should simplify as much as possible the �uid dynamics while keeping an acceptable accuracy
regarding the robustness of the feedback control law [43]. Coming back to the original ideas of
James Lighthill (see [22]), the contact model here proposed is based on the following two great
simpli�cations :

• First simpli�cation : The �uid is �rst of all considered as inviscid, incompressible and is
irrotational everywhere except on a free vortex sheet shedded from the sharp trailing edge of the
caudal �n. Still following Lighthill, the wake is then isolated from the �ow laterally surrounding
the �sh by a geometric plane π orthogonal to the �sh backbone and passing through the trailing
edge. Hence, only the �uid contained in the control volume D of �gure 4 is considered and the
e�ects of the wake onto the �sh are modeled through the kinetic exchanges with the �uid in D
across the plane π.

• Second simpli�cation : Due to the slender geometry of the �sh (and the robot), and in
accordance with the L.A.E.B.T., the �uid �ow in D is approximated by a strati�cation of pla-
nar potential �ows transverse to the �sh back-bone. Hence, in this theory, the original three-
dimensional �uid is replaced by a one-dimensional medium where the �uid slices (sweeping past
the beam cross sections) replace the usual punctual �uid particles of the the 3-D theory (cf.
�gure 4).

Finally, this strati�cation allows one to write the kinetic energy of the �uid contained in D
(denoted by FD), under the following reduced form :

T (FD) =
∫ 1

0
Tf dX1 =

1
2

∫ 1

0
µ.If .µ dX1, (10)

where Tf denotes the density (per unit of beam length) of kinetic energy of the strati�ed
�uid in D and If is this of �uid added mass inertia which can be detailed as :
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If =
(

If 0
0 mf

)
, (11)

where If and mf are the density �eld of linear and angular �uid added inertia de�ned as :
If = ρfJf1t1⊗t1 and mf = ρf

∑i=3
2=1 Afiti⊗ti, ρf is the �uid volume mass, and Afi (respectively

Jf1) the added cross section area (respectively, inertia) along ti, i = 2, 3, (respectively about t1).
Once this kinetic energy density is de�ned, the ideal �uid dynamics [44], allow one to introduce
the following wrench density of impulses (a concept historically due to Lord Kelvin) :

(
σf

pf

)
=

∂Tf

∂µ
=

(
If .ω
mf .v

)
, (12)

which is merely an extension to the three-dimensional swim of the density of lateral impulses
introduced by James Lighthill in his "Large Amplitude Elongated Body Theory" of [25]. Finally,
in accordance with the Kirchho� theory of solid bodies moving in an irrotational ideal �uid
[35], the �uid dynamics in D are now reduced onto the con�guration space of the beam alone.
Furthermore all the e�ects of the �uid onto the body are modeled through added inertia which will
be reported onto the external and internal dynamics, which is the only subject of our attention
in the following.

3.2 Internal dynamics
The internal dynamics of the eel-like robot are given by the partial di�erential equations

(p.d.e.'s) of the actuated Cosserat beam immersed in the �uid. In order to derive these equations
we stated in [1] the following variational principle related to all the �uid and body matter
contained in the mobile volume control D :

∫ t2

t1

(∫ 1

0
δ(Tf + Tb − Ub) dX1

)
dt (13)

=
∫ t2

t1

(
δWext −

[(
V1

∂Tf

∂µ
− Tf

(
0
t1

))
.δν

]1

0

)
dt,

where the terms in brackets model the kinetic exchanges of the �uid in D, with its wake (V1 is
merely the axial velocity of the strati�ed �uid with respect to the beam) while δWext stands for
the virtual work of some corrective forces that we will add later and which are neglected by the
L.A.E.B.T.. In their generality, these forces are de�ned as a �eld of wrench density f

T = (cT , nT )
on ]0, 1[ and two punctual wrenches fT− = (cT−, nT−) and fT

+ = (cT
+, nT

+) exerted onto the �rst and
the last beam cross sections respectively. Finally, applying (13) for any variation δν = δg.g−1

de�ned on the beam con�guration space (1), one �nds :

• Field equations :

∂

∂t

(
σb + σf

pb + pf

)
+

(
v × pf

0

)
=

(
c
n

)
+

∂

∂X1

(
c + V1σf

n + V1pf

)
+

(
t1 × (n + V1pf )

0

)
. (14)
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• Boundary conditions :
(

c
n

)
(0) =

(
0

−Tf t1

)
(0) +

(
c−
n−

)
, (15)

(
c
n

)
(1) =

(
0

−Tf t1

)
(1)−

(
c+

n+

)
. (16)

Furthermore, by replacing in these equations the kinetic amounts by their expressions as
functions of the beam kinematics and by using the change of variable : n∗ = n + V1mf .v and
c∗ = c + V1If .ω, (14-16) can be rewritten as :

• P.d.e. and boundary conditions (b.c.) of the internal forces :

n′∗ = m.v̇ + ω × (mf .v)−mf . (ω × v) + n, (17)
n∗(0) = n−, n∗(1) = (V1mf .v − Tf t1)(1). (18)

• P.d.e. and b.c. of the internal torques :

c′∗ = −t1 × n∗ + I.ω̇ + ω × I.ω + v ×mf .v + c, (19)
c∗(0) = 0 , c∗(1) = (V1If .ω)(1), (20)

where from now on, ∂./∂X1 and ∂./∂t are respectively denoted by a "prime" and a "dot",
and where, because of the rounded nose, we take If (0) = 0.

4 Resistive corrections of the (reactive) 3-D Lighthill model
In this section, we add to the previous "reactive model" and through the term δWext of

the balance (13), there are two sets of corrections. The �rst one has for its purpose to improve
the L.A.E.B.T. around the rounded nose where the axial forces, neglected by the S.B.T. (see
[32]), dominate. The second set of corrections approximates the e�ect of the �uid viscosity. As
far as the �rst correction is concerned, it depends on geometric shape of the head which here
is the half of an ellipsoid where the axis lengths are 2co, 2ao and 2bo along t1(0), t2(0) and
t3(0) respectively. On the other hand, the second correction is based on the experimental �uid
mechanics of cylindrical obstacles moving in a real �uid [45]. Like buoyancy and gravity, all these
corrections are added to the reactive model through the general external load (n, c, n±, c±). In
fact we �rst impose that the two tip external wrenches be of the following form :

(
c−
n−

)
=

(
cr−
nr−

)
+

(
ca−
na−

)
,

(
c+

n+

)
= 0 , (21)

with :
(

cr−
nr−

)
= −1

2
ρfko

(
0

V1|V1|t1

)
(0), (22)

and ko = πcpaobo, the axial "pressure drag" coe�cient of the rounded nose. As far as the
second term of (21.a) is concerned, we take :

(
ca−
na−

)
= −mo

(
0

(t1.v̇)t1

)
(0), (23)

9
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where mo = ρfπkaoboco models the added mass axially accelerated with the rounded nose of
the eel. Then, following a Taylor-like resistive modeling approach, the second set of corrections
is imposed through the following density of external resistive wrenches :

(
cr

nr

)
= −1

2
ρf

(
k4|Ω1|Ω1t1∑i=3
i=1 kiVi|Vi|ti

)
, (24)

where from experimental �uid mechanics : k4 = c1π(a2 − b2)2 ; k1 = cfP (with P '
π/2((3/2)(a+b)−

√
ab) standing for the elliptic cross section perimeter), k2 = c22a and k3 = c32b.

Finally, this last corrective wrench density has to be added to the gravity and buoyancy densities
in such a manner that we �nally have, with γg the gravity acceleration �eld :

(
c
n

)
=

(
cr

nr

)
+

(
0

(ρb − ρf )Aγg

)
. (25)

Lastly, in accordance to experimental �uid mechanics [45], the corrections (22), (23) and (24)
use the following dimension-less coe�cients. The coe�cients cp and k are the "axial pressure
drag" and the axial added mass coe�cient of the head, while for the X1-elliptic cross section,
cf (X1), c1(X1), c2(X1) and c3(X1) are respectively the friction coe�cient, the angular drag
coe�cient (around t1(X1)), and the two linear drag coe�cients along t2(X1) and t3(X1).

5 External dynamics
From now on, we use the following notations : r(X1 = 0) = ro, R(0) = Ro, go = g(0),

µo = (ġ.g−1)(0) for the head frame con�guration and twist. Furthermore, we introduce the
co-adjoint maps Adg∗ and Ad∗g respectively de�ned for any g given by (2) as :

Adg∗ =
(

1 0
−r̂ 1

)
, Ad∗g =

(
1 r̂
0 1

)
(26)

The external dynamics rule the time-evolution of the external degrees of freedom here para-
meterized by the head con�guration go ∈ SE(3). This evolution being driven by the explicit time
dependent curvature law, the external dynamics can be derived by restating the internal dyna-
mics (14-16) in the weak form of the D'Alembert principle, where the virtual displacement �elds
are induced by those of the head frame while the body shape is frozen in its current con�guration.
Finally, with h(X1) = g−1

o .g(X1), p = pb + pf and σ = σb + σf , we have :

∫ 1

0
Ad∗h

(
σ̇ − c
ṗ− n

)
+

(
v × pf

0

)
dX1 =

(
c−
n−

)

+ Ad∗h(1)

(
V1

(
σf

pf

)
−

(
0

Tf t1

))
(1). (27)

Then, for numerical purposes, these dynamics have to be rewritten as an explicit form of
the head accelerations. For this, ṗ and σ̇ have to be explicitly rewritten in terms of the beam
Galilean accelerations ω̇ and v̇ which themselves have to be rewritten as :

(
ω̇
v̇

)
= Adh∗.

(
ω̇o

v̇o

)
+

(
ω̇e

γe

)
, (28)

10
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which de�nes ω̇e and γe since µo = (ωT
o , vT

o )T is the spatial twist of the head frame velocities.
Finally, thanks to (28), we can rewrite (27) from simple but tedious computations as the explicit
o.d.e. with respect to the head accelerations :

Io.µ̇o = Fo, (29)

where we introduced, if "I = Ib + If" de�nes the total (body + �uid) density of inertia along
the robot, the 6× 6 spatial inertia tensor of solid and added masses w.r.t. the nose :

Io =
∫ 1

0
Ad∗h. I .Adh∗ dX1 +

(
0 0
0 mo(t1 ⊗ t1)(0)

)
, (30)

and : Fo =
∫ 1

0
I.

(
ω̇e

γe

)
dX1 +

(
cr−
nr−

)
+

∫ 1

0
Ad∗h.

(
ω × I.ω + (v ×mf .v) + c

ω ×mf .v −mf . (ω × v) + n

)
dX1

+ Ad∗h(1)

(
V1

(
σf

pf

)
−

(
0

Tf t1

))
(1), (31)

the wrench of inertial (Coriolis-centrifugal, convective...) and external (hydrodynamic, hy-
drostatic...) forces applied onto the �sh head.

6 Fast algorithm

Fig. 5 � Macro-continuous fast algorithm.

For the purposes of simulation, design and control it is useful to compute at each instant the
head acceleration µ̇o and the internal control torque law C = RT .(c − (c.t1)t1) = C2E2 + C3E3

11
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from the knowledge of the material internal curvature law Kd(t) = RT .kd(t) = Kd,2(t)E2 +
Kd,3(t)E3. To this purpose, we proposed in [40] an algorithm (see its structure in �gure 5) which
solves at each step of a global time integration loop :

• The forward (external) dynamics :

µ̇o = Gext(go, µo,Kd(t), K̇d(t), K̈d(t)) (32)
• The inverse (internal) dynamics :

C = Gint(go, µo, µ̇o,Kd(t), K̇d(t), K̈d(t)). (33)
Because computing explicitly Gext and Gint is very involved, we compute them numerically

using the implicit formulation of the Newton-Euler Robot dynamics (see [46, 47, 48], for more
details) where the actuated beam is considered as a continuous robot and the usual recurrences
on the bodies index of the Newton-Euler algorithms are replaced by some o.d.e.'s with respect
to the cross section label X1. Such a computation is based on (17,19), (29,30,31) and the follo-
wing continuous kinematics derived from (4) and (5) and their time di�erential consequences [40] :

• Continuous model of section transformations

R′ = R.K̂d(t) , r′ = R.E1. (34)
• Continuous model of section velocities :

ω′ = R.K̇d(t) , v′ = ω × r′. (35)
• Continuous model of section accelerations :

ω̇′ = R.K̈d(t) + ω ×R.K̇d(t) , v̇′ = ω̇ × r′ + ω × (ω × r′). (36)
Now, we have at our disposal all the results required for solving the two Gint and Gext dyna-

mics. In fact, let us assume that at the current time t of a global time-loop, we know the current
head state (go, µo)(t), then :

• For computing Gext, the algorithm forward space integrates (i.e. from X1 = 0 to X1 = 1),
(34) with g(0) = go, (35) with µ(0) = µo, and (36) with µ̇(0) = 0. These integrations give
respectively the �elds (R, r), (ω, v) and (γe, ω̇e). Then, from (30) and (31), both computed by a
similar forward space integration, we �nally obtain through the explicit form (29) the head ac-
celeration µ̇o that is time-integrated twice in order to update the head state (go, µo) (see �gure 5).

• For computing Gint, and because now µ̇o is known, the algorithm computes through a
forward space integration of (36) with µ̇(0) = µ̇o, the Galilean acceleration �elds ω̇ and v̇ along
the beam. Then, once these �elds are known, it computes the �eld n∗ by forward space integrating
(17), and from n∗, it integrates (19) in order to compute c∗ and c = c∗ − V1If .ω. Finally, the
control torque law is deduced from : C2 = c.t2 and C3 = c.t3.

Lastly, once Gext and Gint so computed, the time is increased by one step and the algorithm
resumes...

12
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7 Simulations and comparisons
7.1 Navier-Stokes computational approach

In order to validate the simpli�ed model presented in this article, we chose to use reference
data coming from the resolution of the same �uid-structure problem but solving the 3-D Navier-
Stokes equations. This complex problem of a self-propelled three-dimensional �sh on realistic
con�gurations (high Reynolds number and possible complex geometry) recently received a so-
lution in the context of the ISIS-CFD software package developed by some of the partners of
our project ([13, 14]). In fact, most of the numerical results of �sh locomotion immersed in a
viscous �ow do not concern "self-propelled" bodies but rather bodies undergoing some imposed
deformations superimposed on a given stationary overall rigid motion or equivalently, a steady
past-�ow (see [12]). Nevertheless, [11] proposed a 2-D Navier-Stokes simulator of a self-propelled
deformable body but restricted their investigations to the straightforward swim for very simpli-
�ed planar body shapes. [15] also performed some 2-D self-propelled simulations by imposing
internal control torques along the body. Using quite similar methods, the only other 3-D simu-
lations we found in the literature were performed with a low Reynolds number range (around
3000) and then under a laminar �ow hypothesis (see [16]).

Given the size and the speed of our robot (leading to Reynolds number of about 6.105 for the
presented results), this hypothesis of laminar �ow is not realistic here. In fact, when Reynolds
number increases, the viscous stresses are overcome by the �uid inertial forces, and the laminar
motion becomes unstable. Rapid random velocity and pressure �uctuations appear : turbulence
occurs. The enormous amount of information and the huge grid density required to completely
describe such a turbulent �ow on realistic con�gurations (like those presented here) is totally out
of reach of current computer power yet. An average procedure (introduced by Reynolds in 1895)
of the instantaneous Navier-Stokes equations is then still needed to investigate turbulent �ows.
This statistical approach consists in expressing all quantities as the sum of mean and �uctuating
parts. The so-called Reynolds Average Navier-Stokes (RANS) equations obtained are identical
to the instantaneous ones with mean velocity and pressure replacing instantaneous quantities,
except a supply �uctuating correlation term τt(i, j) = −ρũiũj , which appears in the momentum
balance (see (37)), and is referred to the Reynolds stress tensor (ũi means the �uctuation of the
component i of the velocity and the overline represents the average process). Indeed, the whole
complexity of turbulent �ows is contained in this term, which needs to be modeled to close the
system of equations. It is classically evaluated using additional transport equations of supply
variables (turbulent kinetic energy,...).

Hence, the incompressible turbulent �ow of newtonian viscous �uid under isothermal condi-
tions are solved through the following classical RANS equations (respectively momentum balance,
incompressibility constraint and newtonian �uid behavior law) :

ρf

(
∂u

∂t
+∇u.u

)
= −∇p + ρfγg +∇.(τ t + τt), (37)

∇.u = 0, (38)
τ = µf

(∇u + (∇u)T
)
, (39)

where ρf and µf are respectively, the density and the molecular dynamic viscosity of the �uid,
γg is the gravity acceleration �eld, (u, p) represent the average values of velocity and pressure
(through the Reynolds processing), while τ and τt refer respectively to the viscous and Reynolds
stress tensors. Finally, τ follows the classical relation of Newtonian �uid for incompressible �ows
(39), while τt is determined according to the turbulence model used, through supply equations

13
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which are not presented here (for further details on turbulence modeling, see for example [49] or
[50]).

ISIS-CFD is a CFD software for simulating incompressible �uid �ows involving turbulence,
free surface and moving bodies ([51, 52, 53]). It has been developed by the CFD team of the
Fluid Dynamics Laboratory of Ecole Centrale de Nantes. It solves the incompressible unsteady
RANS equations under isothermal conditions on generalized unstructured meshes, enabling to
deal with geometries of arbitrary complexity. The solver is based on a face-based �nite-volume
method to build the spatial discretization of the equations previously described. Second-order
accurate schemes in time and in space are used. Because the case deals with a moving body, an
ALE (Arbitrary Lagrangian Eulerian) approach is used : an additional equation (the so-called
space conservation law) has to be taken into account, too. In ISIS-CFD, this geometric constraint
is directly addressed through the evaluation of the grid velocity �uxes, which ensures that the
discrete space conservation equation is exactly satis�ed (see [13, 54]).

As far as the body dynamics are concerned, the Navier-Stokes solver only deals with the
external dynamics which are here derived from a �oating frame approach (until now, ISIS-CFD
has been restricted to the planar swim, but development is planned to perform at short term
3-D swim). Originally devoted to �exible spacecraft dynamics [55], this description measures the
deformations of the body with respect to a virtual rigid body B∗ to which is attached the �oating
frame and which follows the real one (B) in its motion.

In the case here studied, the �oating frame is placed at the mass center of B∗ itself de�ned
as the rigid geometry prolonging B from the head at each instant t. Then, if g∗ ∈ SE(3) denotes
the �oating frame con�guration with respect to the earth, the time-evolution of its Galilean twist
ġ∗.g−1∗ = µ∗ is ruled by the following balance of wrenches (related to G∗) :

I∗.µ̇∗ = Fin∗ + Fhyd∗ , (40)
where we introduced I∗ the inertia tensor of the actual body, Fin,∗ the wrench of inertia forces
(due to Coriolis, centrifugal and shape accelerations of the body), and Fhyd∗ the wrench of hy-
drodynamic forces given by integrating all the contact forces exerted by the �uid onto the body
boundaries and computed through the resolution of (37). For more details about these expres-
sions, we refer the reader to [13]. It is worth noting that an internal mesh for solved motion of
�exible body is required to compute additional dynamic terms induced by the imposed deforma-
tion. On the other hand, the body kinematics in�uence the �ow via the boundary conditions on
�uid induced on each body face.

Thus, the resolution of the �ow/motion coupling at each time step progresses as shown in
the diagram �gure 6.

Concerning the deformation part of the �uid domain invoked at the beginning of each time
step to keep a body-�tted mesh, an analytical weighted regridding, taking advantage of the
Cosserat kinematics of the body, has been developed [14]. During the non-linear iterations inside
a given time step, the mesh (and so the current position of the body) is moved and updated in
space by the rigid solved transformation h∗ without any deformation, enabling �sh motion of
unlimitated amplitudes (see �gure 7).

The computational grid used here has been limited to its upper part (x3 ≥ 0), with a
symmetry condition on the plane x3 = 0 (see �gure 8). A grid independence study has been
investigated to ensure the numerical error is under control. Therefore, several mesh have been
generated, with di�erent grid density (from 65000 to 900000 cells). The in�uence of the turbulence
model has also been investigated. Examining all these simulations performed on the F1 imposed
law (see (42)-(44) and tab. 1), di�erences between all the reached forward velocities do not
exceed 5 %, whatever the grid and the turbulence model used (the in�uence of the turbulence
modelling being then of the same order of magnitude as di�erences obtained with all the tested
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Fig. 6 � Flow/motion coupling algorithm of the Navier-Stokes solver.

grids). Keeping in mind that the main objective is to validate the dynamics of a simpli�ed model,
all the comparisons with the simpli�ed model were performed on the coarser mesh containing
65.103 cells using the k− ω SST turbulence model [13]. It ensures reasonable CPU time, a good
compromise between accuracy and CPU time cost, and enables comparisons with the simpli�ed
model to be con�dently tackled.

More details of all numerical aspects and validations concerning the resolution of the RANS
equations and the �ow/motion coupling can be found in [13] and in [14].
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(b) Mesh around the head of the robot.

Fig. 8 � Mesh structured of 65.103 elements.

7.2 De�nition of the body geometry
In order to take into account the continuous property of the skin, we consider the previous

macroscopic modeling with the geometry drawn in the �gure 9. Its total length is one meter. Its
material is assumed to be homogeneous with a "mass/volume" ratio equal to that of the �uid to
ensure a buoyancy neutrality. Its mass is then of 1.94kg. The shape is �rst de�ned as a cylinder
of diameter D = 0.1m between X1 = 0.05m and X1 = 0.99m ending by two half-ellipsoids. Next,
this cylinder is deformed by multiplying its diameter along E3 by a function X1 7→ A(X1), and
along E2 by X1 7→ B(X1). Therefore, elliptic cross sections are obtained. The two functions A
and B are de�ned as follow :
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Fig. 9 � Geometry of the body.

A(X1) = 1 , for : 0 ≤ X1 < 1/5,

A(X̃1) = 1− (sin(πX̃1 − π/2) + 1)/5 ,
for : 1/5 ≤ X1 < 3/4 ,
with X̃1 = 20X1 − 4/11,

A(X1) = 3/5 , for : 3/4 ≤ X1 < 1,

and for 0 ≤ X1 < 1 :

B(X1) = − [sin (πX1 − π/2) + 1] /6−X2
1/8 + 1/2 .

Note in particular, that such a geometry guarantees to the head to be a half ellipsoid with
axis lengths b0 = 0.025m, a0 = c0 = 0.05m respectively along t2, t1 and t3.

7.3 Calibration of the model
In accordance with the previous developments, we have to specify the four groups of parame-

ters of the model, i.e. : the axial viscous drag coe�cient cf of (24), the pressure drag coe�cient cp

related to the rounded nose of the head required by (22), the transverse pressure drag coe�cients
c1, c2 and c3 of (24), the axial added mass of the nose mo required by (23).

In order to �x all these parameters, we used the following "identi�cation process" divided
into four steps :

• Step 1 : identi�cation of cf

To estimate the local viscous drag coe�cient cf along the body, a model based only on clas-
sical relations of boundary layer on a �at plate (which only depends on the local longitudinal
Reynolds number) was established. Even if this simple approach completely ignores the shape
and the deformation of the body, it can hopefully approximate the right order of magnitude of
the longitudinal viscous drag force. Since the RANS simulations do not yet take into account
correctly the transition phenomena, a study of the behavior of the turbulence model used here
was performed. Hence, �ow around a 2-D thin �at plate in a unbounded domain was simulated
using the k − ω SST turbulence model in its near-wall low Re con�guration. The plot of the
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Fig. 10 � Extraction of the local friction coe�cient on a 2-D thin plate where X=ReX1// and
Y = cf .

values of cf as a function of the local axial Reynolds number ReX1// (see �gure 10) shows that
the model leaves the laminar Blasius curve towards the turbulent Von Karman curve at about
ReX1// = 8.104.

The law for the local viscous drag coe�cient was then chosen as :

if ReX1// ≤ 8.104 , cf = 0.664/Re0.5
X1//,

if ReX1// > 8.104 , cf = 0.059/Re
1/5
X1//, (41)

where ReX1// is de�ned by : ReX1// = X1V1(X1)/ν, with ν the kinematic viscosity of water.

• Step 2 : identi�cation of cp

The coe�cient cp is identi�ed by comparing the Navier-Stokes simulations to those of the sim-
pli�ed model for a gait in which the �sh is released with an initial forward speed in a straight
and rigid con�guration. In this case, the �sh slows down by enduring the cp dependent pressure
drag force of (22) applied onto the head, and the friction (viscous drag) axial forces of (24)
applied along its body, with cf known from the previous step. The plots of �gure 11(a) show the
evolution of the axial forward velocity for Navier-Stokes simulation and for the model (with cp

equal to 0 and the calibrated value 0.036). The plots of �gure 11(b) show the two contributions
to the total axial drag forces applied onto the �sh (also plotted on the �gure), i.e. the head force
(22), and the body one (24). Note that the contribution due to the pressure applied onto the
head represents about 16% of the total drag.

• Step 3 : identi�cation of c1, c2 and c3 :
As far as c2 and c3 are concerned, their values should be time dependent through the transverse
Reynolds numbers and the Keulegan-Carpenter numbers [56], which qualify the �ow around an
oscillating cylinder. Nevertheless, the problem here is quite di�erent to experiments that can
be found in the literature on oscillating cylinders. In fact, due to the forward �sh motion, the
�ow perturbations generated by a given cross-section no longer in�uence the section itself but
rather the neighboring sections along the beam axis. Furthermore, the amplitude of oscillations
changes when moving along the body, and �nally, the sections do not have circular pro�les but
elliptic ones for which fewer experimental results are available. Nevertheless, in spite of these
di�culties, some simple models were successfully used. Particularly, in accordance with the ex-
perimental data : 1�) of [45] for di�erent 2-D shapes plunged in a stationary �ow (for our orders
of magnitude of the transverse Reynolds ReX1⊥ ' 104), and : 2�) of [57], for a normal �at plate,
the constant value of 1.98 was chosen for c2. From similar considerations, c3 was set to the lower
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(a) Identi�cation of cp. (b) Drag forces on the eel.

Fig. 11 � Step 2 : identi�cation of cp, with cf �xed by step 1.

value of 0.5, in order to take into account the thinner cross section pro�le along this direction.
As far as the resistive torque density c̄r is concerned, since the Navier-Stokes solver does not
work for the three dimensional swim, we cannot yet shape a relevant analytical form of it. So
we took c1 = 0 as a �rst value. Finally note that in the following, c1 and c3 are only concer-
ned by the last numerical test, which is the only one dealing with a three dimensional manoeuvre.

• Step 4 : identi�cation of k
With the adopted geometry of the head, we chose to take for mo, the half axial added mass of
an ellipsoid enduring a translation along its principal major axis. The dimensionless coe�cient
k computed by [44] is equal to 0.32.

Finally, as we are going to see, this setting of the analytical model was con�rmed in many
examples by comparison to our RANS equations solver.

7.4 Numerical examples
The fast algorithm of section 6 was programmed in C++ using a fourth order Runge-

Kutta integrator for the space and time loops. All the tests presented above work between
"0.2 and 0.7 times the real time" on a workstation with a Pentium IV (3.2 GHz and 1 Go
of Ram) and are therefore compatible with the online control of the prototype. As announced
from the beginning, the swim of the body is imposed through the �eld of desired curvatures
X1 7→ kd(X1, t) = R(X1).Kd(X1) imposed along the body axis. Here, we simulate four swim-
ming gaits : the "forward straight-line gaits" denoted by F., the "planar turn gait", denoted by
T., the "stopping gait" denoted by S.t., and �nally the "three dimensional spiral gaits", denoted
by S.p.. Moreover, this is achieved with several sets of parameters for F. and T. and for three
ways of turning. In the case of the planar swim, the results given by our simpli�ed analytical
model are compared to Navier-Stokes simulations.

7.4.1 Example 1 : forward nominal gait
De�nition of the internal strain law : this gait is that of the nominal "straight-line swim" as

commonly studied in zoological literature [3, 58, 59, 60]. In our case, the swim being achieved in
the plane (e1, e2), it is de�ned by the following curvature law (with "f " for "forward") :
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Fig. 12 � The body's trajectory for the forward gait F1 (1fps).

Gaits λ T a2 a1 a0 φ Vinit

F1 1 1 2 0.5 1 0 0
F2 1.25 1 2 1 0 0 0
F3 1 0.5 2 0.5 1 0 -0.6
F4 1 1.5 2 0.5 1 0 -0.6
F5 1 1 1 0.5 2 0 -0.6
F6 0.75 1 1 0.5 2 0 -0.6
F7 1 1 3.5 -4.5 2 0 -0.6

Tab. 1 � Parameters of the forward straight-line gaits (44).

kd = fr(t, 0, T )Kf3(t,X1)t3(X1), (42)
where fr(t, ti, tf ) is a sinusoid ramp de�ned by (with τ = (t− ti)/(tf − ti)) :

fr = 0 , for : 0 ≤ t < ti,

fr = τ − 1/(2π) sin (2πτ) , for : ti ≤ t < tf ,

fr = 1 , for : t ≥ tf . (43)

Note here that fr(., ti, tf ) has null �rst and second order derivatives at the commutation ins-
tants thereby guaranteeing time-smooth starts. The non-null curvature component is a backward
sinusoidal wave from the head to the tail which can be detailed as :

Kf3 = fa(X1) sin [2π (X1/λ− t/T + φ)] ,
with fa(X1) = a2X

2
1 + a1X1 + a0 . (44)

In (44), λ is the wave length, T is its period and a0, a1, a2 are the coe�cients of the ampli-
tude modulation polynomial function fa which increases from the head to the tail. φ is a possible
phase shift (used only for the turning gaits). Because (42) leads to a steady periodical motion
("cruising swim"), the �sh, initially straight along e1, can be threw with an initial forward velo-
city (ṙo(ti) , Vinitt1(0), where ti is the initial time of simulation), in order to shorten the time
of execution of the Navier-Stokes simulations.

Numerical results : for this example, we applied the strain law (42)-(44) with the parameters
of the table 1. The results obtained with our simpli�ed model were then compared with those
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Gaits V 1,N−S(0) V 1,S−M (0) eV 1

(m.s−1) (m.s−1) (%)
F1 0.642 0.619 1.9
F2 0.613 0.614 0.2
F3 1.310 1.270 3.1
F4 0.412 0.407 1.2
F5 0.753 0.721 4.2
F6 0.452 0.456 0.9
F7 0.278 0.306 9

Tab. 2 � Comparisons N-S/S-M for forward gaits.

given by the Navier-Stokes reference used under the same conditions. In order to quantify the
comparison, we used the following error ratio related to the average axial head velocity in the
steady periodic motion :

eV1
=
|V 1,N−S(0)− V 1,S−M (0)|

|V 1,N−S(0)| ,

where "N − S" means "Navier-Stokes", "S −M" means "Simpli�ed-Model", and V 1(0) =
V 1(X1 = 0) is the mean axial head velocity reached at any time beyond which the �sh follows
its steady periodical motion. The error ratios for the parameters of the table 1 are summarized
in the table 2.

As an illustration, the �gures 13(a), 13(b) and 13(c) show the time evolutions of the head
velocity obtained for F1 with the Navier-Stokes solver and the simpli�ed-model-based-algorithm
of the article. The components of the velocities are related to the earth frame. All the components
oscillate with the propulsion period of Kf3 and the plots show good agreement (in phases and
amplitude) of the simpli�ed model with the Navier-Stokes reference (even for the transverse
and yawing velocities of small amplitudes). Finally, all these plots like others tested with (42)-
(44) and many sets of parameters show the right accordance (less than 5% of discrepancies)
of the simpli�ed model when compared to the reference, except for F7 where the di�erence is
due to the low steady velocity reached by the �sh (see table 2). In fact, when the Reynolds
decreases, the model of cf becomes less and less suited and particularly more dependent on the
�sh deformations.

7.4.2 Example 2 : Turning gaits
De�nition of the internal strain law. This gait is deduced from the previous one by adding

to the propulsive curvature term of (42), a constant planar curvature Kc3 along the body. More
precisely, we take :

kd(t) = (α(t)Kf3 + β(t)Kc3) t3, (45)
where α(.) and β(.) are two transition functions which allow a smooth starting and a smooth

suppression and re-installation of the propulsion at the beginning and the end of the turn.

Numerical results : in this test, the internal law (45) is applied to three types of turns. The
�rst type denoted "T.i.p.", is an inertial-turn with a propulsion before and after the turning
phase Φ2 (laws T1, T2 and T3 plotted on �gure 14 left), the second type, denoted "T.p.", is a
propulsive turn (the robot does not stop to undulate while turning) (law T4 plotted on �gure 14
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(a) Linear head velocity along e1. (b) Linear head velocity along e2.

(c) Angular head velocity along e3.

Fig. 13 � Comparisons between N-S/S-M for F1 forward gait.

Fig. 14 � Visualization of all the turning gaits (1f/0.4s).
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Gaits T1 T2 T3 T4 T5 T6
type T.i.p. T.i.p. T.i.p. T.p. T.i. T.i.

λ 1 1 1 1 - -
T 1 1 1 1 - -
a2 2 2 2 2 - -
a1 0.5 0.5 0.5 0.5 - -
a0 1 1 1 1 - -
φ 1/4 1/4 1/4 1/4 - -
Vinit -0.6 -0.6 -0.6 -0.6 -0.6 -0.6
Kc3 2 2 2 1 1 2
t1 1.5 1.5 1.5 1.5 0.25 0.25
t2 2 2.5 3.5 3.5 0.75 1.25
t3 2.5 3 4 4 1.75 4.25
t4 - - - - 2.25 5.25

Tab. 3 � Parameters of the turning gaits.

center). Finally, the third type, denoted "T.i.", corresponds to a pure inertial turn with just an
initial axial velocity and no self propulsion (laws T5 and T6, plotted on �gure 14 right). These
three types of turning gait are de�ned as follow :

• T.i.p. gait :

α(t) = fr(t, 0, T ) , β(t) = 0 , for : t < T,

α(t) = 1− β(t) = 1− fr(t, T, t1) , for : T ≤ t < t2,

α(t) = 1− β(t) = fr(t, t2, t3) , for : t ≥ t2.

• T.p. gait :

α(t) = fr(t, 0, T ) , β(t) = 0 , for : t < T,

α(t) = 1 , β(t) = fr(t, T, t1) , for : T ≤ t < t2,

α(t) = 1 , β(t) = 1− fr(t, t2, t3) , for : t ≥ t2.

• T.i. gait :

α(t) = 0 , β(t) = 0 , for : t < t1,

α(t) = 0 , β(t) = fr(t, t1, t2) , for : t1 ≤ t < t3,

α(t) = 0 , β(t) = 1− fr(t, t3, t4) , for : t ≥ t3.

The simulations were experimented with the parameters given in the table 3.
In the case of the turn, we compared the yaw angle of the head at any time beyond which

the �sh has reached its steady periodical motion after the turn. The yaw angle ψ is that of the
head axis t1(X1 = 0) with respect to e1, and we denote by ψ, its mean value computed at any
time beyond the turn is ended and the steady motion reached. Due to this de�nition, we can
construct the following yaw error ratio :

eψ =
|ψN−S − ψS−M |

|ψN−S |
,
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(a) Forward head velocity. (b) Head trajectory.

(c) Yaw head angle.

Fig. 15 � Comparisons between N-S/S-M for T1 turning gait.

which is used to compare the results of the Navier-Stokes ("N-S") simulator and those of the
simpli�ed model ("S-M"). These comparisons are summarized in table 4.

For all the turns we experimented, the error on the yaw does not exceed 10%, which is fully
acceptable for any robust feedback control law of the swim as those proposed in [43]. For the
purpose of illustration, we give on the �gures 15(a)-(c) the time evolutions of the norm of the
head velocity, its position vector in the swimming plane, and its yaw angle for the turn T1.

7.4.3 Example 3 : stopping gaits
This gait is obtained by imposing a forward undulation (from the tail to the head) still of

the form (42) and (44) while the �sh is moving forward (cf. �gure 16). This is in accordance with
the experimental observation of anguilliform �shes such as the European eel [60]. In nature the
role of the body is assisted by that of the pectoral �ns to stop the �sh.

Numerical results : Taking (42), (44) with the parameters of table 5, while the �sh has an
initial axial velocity ṙo = Vinit(0)t1(0), gives the results of �gures 17(a)-(c) for both the simpli�ed
model and the Navier-Stokes based one. This stopping law does not appear to be very e�cient
when velocity becomes low. In the range of slow motion, amplitudes of deformation should be
larger to obtain a clearer stopping. In the case of the animal, the pectoral �ns may also be used

24



EMN - IRCCyN Technical Report No.: 07/9/Auto

Gaits ψN−S (deg) ψS−M (deg) eψ (%)
T1 -88 -86 1.96
T2 -116 -117 0.9
T3 -163 -166 1.75
T4 -94 -98 4.27
T5 -45 -49 8.09
T6 -157 -167 6.57

Tab. 4 � Comparison N-S/S-M for the turning gaits.

Fig. 16 � Stopping gait (2fps).

to actually (and e�ciently) stop and maintain its body at rest. In this case, the following error
ratio was used (where '0' here stands for "X1 = 0") :

eV1
=
|V 1,N−S(0)− V 1,S−M (0)|

|Vinit| .

In these conditions, the values of velocities and error ratio at the �nal time of the simulation
tf = 20s are given in table 6.

Finally, because the velocity tends to zero, the same remarks as those evoked for the forward
gait F7 in the low Reynolds apply in this gait.

7.5 Three dimensional gait : the spiral manoeuvre or three-dimensional turn
De�nition of the internal strain law : This gait consists of applying to the body two constant

curvatures, plus a propulsive one normal to the plane of the swim.

kd(t) = fr(t, 0, T )(Kf3t3 + Kc2t2 + Kc3t3), (46)
where Kc2 and Kc3 are the constant pitch (along the �eld t2) and yaw (along the �eld t3)

curvatures respectively, while Kf3 is the "forward" yaw curvature of (44) still responsible of the
undulating propulsion.

Gait λ T a2 a1 a0 Vinit

Stopping -1 1 0.5 0.5 0.5 -1.5

Tab. 5 � Parameters of the stopping gaits "S.T.I.".
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Gait V 1,N−S V 1,S−M eV 1

(m.s−1) (m.s−1) (%)
Stopping 0.0321 -0.0581 6

Tab. 6 � Comparison Simpli�ed-Model/Navier-Stokes.

(a) Linear head velocity along e1. (b) Linear head velocity along e2.

(c) Angular head velocity around e3.

Fig. 17 � Comparisons between N-S/S-M for the stopping gait.

Numerical results : The test is obtained by applying (46), with the set of parameters given
in the table 7. During the duration T , the body is curved in yaw and pitch. Thus, the �sh main-
tains these curvatures along its body and rolls up along the spiral while propelling (�gure 18).
As far as the internal dynamics are concerned, �gures 19(a)-(f) give the spatial distribution of
the three components of the internal torque �eld c∗ =

∑i=3
i=1 C∗iti and the internal force �eld

n∗ =
∑i=3

i=1 N∗iti evaluated all along the beam axis at the �nal time of the simulation. On the
other hand, �gures 20(a)-(f) validate the compatibility of the external dynamics with respect
to the internal ones. In fact, the computation of the �elds n∗ and c∗ at the tail boundary is
achieved all along the time horizon (here of length 10s) by forward space integrating (17) with
the "initial condition" n∗(0) = n−, and (19) with the "initial condition" c∗(0) = 0. In these
conditions, we do obtain the �nal conditions : n∗(1) = (V1mf .v − Tf t1)(1) =

∑i=3
i=1 Ni,dti and

c∗(1) = (V1If .ω)(1) =
∑i=3

i=1 Ci,dti of (17) and (19), as required by the external dynamics.
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Fig. 18 � Three dimensional gait : the spiral (1f/1.5s).

Gait λ T a2 a1 a0 Vinit Kc2 Kc3

Spiral 1 1 2 0.5 1 -0.6 1 1

Tab. 7 � Parameters of the spiral gait.

The �gure 21 plots the axial and rolling velocities of the head. It is worth noting the non
null (equal to 0.31 rad/sec.) average rolling velocity of the head which shows that the eel rolls
around its backbone while plunging in a spiral. The high sensitivity of the roll dynamics to any
perturbations (here generated by the couplings of the pitch and yaw dynamics and the boundary
rolling terms) should require a detailed modeling of k4 and the design of a speci�c stabilization
controller using pectoral �ns. Such a rolling-stabilizer will be included in the feedback controller
of the whole 3-D motion of our future eel-like robot. Such feedback laws are today being designed
and studied (with crude approximations of k4) by our partners specialized in Automatic Control
and are presented in [43]. Finally, the computations of the internal dynamics for all these tests
(and others) were used in order to design the dimensions of our prototype and particularly those
of the actuators (powers, maximal and nominal torques...).

8 Conclusion
In this article, a solution to the fast dynamics of eel-like robots has been proposed and tested.

The solution works faster than the "real-time". It solves the problem of the numerical integration
of the �sh head dynamics while computing the control torque �eld required by the �sh motions.
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(a) C1 at t = 10s. (b) C2 at t = 10s. (c) C3 at t = 10s.

(d) N1 at t = 10s. (e) N2 at t = 10s. (f) N3 at t = 10s.

Fig. 19 � "X1 pro�le" of components of the internal force (n) and torque (c) at t = 10s for the
spiral gait.

The proposed solution is based on a fast algorithm recently proposed in [40] for dealing with
hyper-redundant robots dynamics and an extension of the Large Amplitude Elongated Body
Theory of Lighthill to the three-dimensional self propelled swim [1]. From this initial framework
a pure reactive model has been improved by some resistive corrective terms deduced from ex-
perimental �uid mechanics around obstacles and following a "trial and error tuning strategy"
based on comparisons of the simpli�ed model with a Navier-Stokes solver. It is worth noting here
that, once this calibration achieved, the coe�cients of the model were �xed de�nitively. Finally,
the comparisons of our calibrated analytical model with the reference are very encouraging since
they in fact do not exceed ten per cent for all the hight Reynolds planar cases tested until today.
Nevertheless, the simpli�ed model has now to be validated for the three dimensional swim for
which our Navier-Stokes solver is not yet operational. Furthermore, the robot will be equipped
in the future with lateral appendages that will mimic the pectoral �ns of the �sh and special
attention will be paid to the roll dynamics which will be dealt with like a stabilization problem
for the control feedback loops. The tail and the skin will also be designed and "optimized" with
respect to the swimming e�ciency under the constraints imposed by the actuators performances.
This operation will be facilitated by the computation of the actuators power given by the inter-
nal dynamics presented in the article. Finally, based on a visual feedback, the remote-control of
the prototype will be a �rst step towards autonomous navigation. Several experiments will be
tested in swimming pools in order to qualify the bio-mimetic solution in terms of e�ciency and
manoeuvrability with respect to more conventional rigid underwater vehicles.
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(a) ...(−C∗1)(1),-.-Cd,1,�∆C1 (b) ...(−C∗2)(1),-.-Cd,2,�∆C2.

(c) ...(−C∗3)(1),-.-Cd,3,�∆C3. (d) ...(−N∗1)(1),-.-Nd,1,�∆N1

(e) ...(−N∗2)(1),-.-Nd,2,�∆N2. (f) ...(−N∗3)(1),-.-Nd,3,�∆N3.

Fig. 20 � Time evolution of the boundary internal wrench (cT∗ , nT∗ )T (1) (its opposite) given by
the forward space integration of (19,17), and (cT

d , nT
d )T directly given by (16), ∆. stands for their

di�erences.
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