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, this article essentially focuses on the numerical validation and calibration of the model and the study of swimming gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the sh head and the eld of internal control torque from the knowledge of the imposed internal strain elds. Based on the Newton-Euler formalism of robots dynamics, this algorithm works faster than real time. As far as precision is concerned, many tests obtained with several planar and three dimensional gaits are reported and compared (in the planar case) with a Navier-Stokes solver, devoted until today to the planar swim. The comparisons obtained are very encouraging since in all the cases we tested, the dierences between our simplied and reference simulations do not exceed ten per cent.

Introduction

In this article, we present some of the results of a multidisciplinary research project where the purpose is to study, design, build and control an eel-like robot capable of swimming in three dimensions (see gure 1). As it has been noted in the Bio-Robotics community, eel-like robots are a promising perspective for improving the eciency and manoeuverability of modern day underwater vehicles [START_REF] Mcisaac | A geometric approach to anguilliform locomotion modelling of an underwater eel robot[END_REF]. From the mechanical design point of view, the good performance of these future under-water bio-mimetic vehicles are due to the high redundancy of their internal kinematics with respect to the six dimensional task consisting in moving their head. Until today, two kinds of sh have essentially focused the attention of robotic researchers : the "carangiform" and "anguilliform swimmers". Initially introduced by Breder [START_REF] Breder | The locomotion shes[END_REF], this classication of sh locomotion is based on the wavelength and the amplitude of the propulsive wave traveling along the body of the animal. As far as the propulsion principle is properly concerned, the body undulations generate the thrust by pushing the uid (with respect to the body) from the head to the caudal n where it is shed into the wake. For carangiform swimmers, due to their rigidity, the wave propagation is restricted to the rear third part of the body unlike to the anguilliform swimmers where near 80 % of the body participates in the propulsion. Generally, the anguilliform swimmers are more agile in conned environments but slower in free waters. Moreover, due to their relative simplicity compared to anguilliform swimmers most of the technological devices designed today are inspired by carangiform swimmers (see [START_REF] Mason | Experiments in carangiform robotic sh locomotion[END_REF][START_REF] Kato | Control performance in the horizontal plane of a sh robot with mechanical pectoral ns[END_REF][START_REF] Morgansen | Nonlinear control methods for planar carangiform robot sh locomotion[END_REF][START_REF] Yu | Development of a biomimetic robotic fsh and its control algorithm[END_REF][START_REF] Morgansen | Geometric methods for modeling and control of free-actuated underwater vehicles[END_REF]). These bio-inspired underwater vehicles are most of the time, made up of a single rigid body connected to an actuated tail. Furthermore, the tail internal kinematics have few (less than 4) degrees of freedom and are devoted to the planar swim. However, in [START_REF] Kato | Control performance in the horizontal plane of a sh robot with mechanical pectoral ns[END_REF] and [START_REF] Morgansen | Geometric methods for modeling and control of free-actuated underwater vehicles[END_REF], a three dimensional swimming robot is presented where the previous mentioned architecture is provided with two lateral actuated appendages playing the role of pectoral ns. In the article presented here, the copied sh is an anguilliform swimmer as is the eel. The prototype that we are building today (see gures 1(a)-(b)) is a serial assembling of parallel robots [START_REF] Merlet | Parallel robots[END_REF], each of them introducing a universal joint between two contiguous rigid platforms. These platforms mimic the vertebrae of the animal. However, contrary to the case of a swimming eel in free water, the body can bend in two directions (yaw and pitch) thereby improving the 3-D agility of the robot (see gures 1(a) and 2) in constrained environments.

(a) A vertebra.

(b) Serial assemblage of vertebrae.

Fig. 1 Pictures of the prototype.

In the near future, this actuated skeleton will be covered with a exible organ playing the role of the animal's muscles and skin. This organ will be designed in order to guarantee the continuity of contact with the uid while preserving the energy resources of the actuators. In order to control such a system, we need simple dynamic models which can be used in real time. This article is directly related to this goal which until today has been a challenging task for researchers involved in bio-mimetic robotics [START_REF] Colgate | Mechanics and control of swimming : a review[END_REF].

In its generality, the problem of the dynamic modeling of the swim consists in deriving the laws that rule the following string of causalities : The sh deforms its body. Through its geometry the body imposes unsteady boundary conditions to the uid ow. This ow exerts on the body boundaries a eld of contact forces which produces at the end a wrench that drives the rigid overall sh motion. Hence we see appear three linked and coupled dynamics.

• The internal dynamics of the body deformations which rule the motion of each body particle with respect to the others.

• The dynamics of the contact forces exerted onto the body boundary and which is in the absolute a consequence of the Navier-Stokes equations of the uid.

• The dynamics of the overall rigid motions that we name external dynamics since they rule the motion of a rigid reference linked to the sh (for instance its head) with respect to an external Galilean reference frame.

The dynamic modeling of the contact forces (ruled by the dynamics of the ambient medium) is by far, the most complicated of the three problems mentioned above. From Hydrodynamics to Biology and Robotics a very rich literature about the subject has grown these last years. Going further into the details, three great modeling approaches have been proposed depending if they are based on (from the most realistic to the most simple) : 1 ) Navier-Stokes dynamics and nite volume elements technics (see [START_REF] Carling | Self-propelled anguilliform swimming : simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion[END_REF][START_REF] Liu | A numerical study of undulatory swimming[END_REF][START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF][START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF][START_REF] Farnell | Numerical model of self-propulsion in a uid[END_REF][START_REF] Kern | Simulations of optimized anguiliform swimming[END_REF]), 2 ) ideal uid dynamics and boundary elements methods (see [START_REF] Hill | Large amplitude sh swimming[END_REF][START_REF] Wolfgang | Hydrodynamics of exible-body swimming motions[END_REF][START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF][START_REF] Galls | Computational simulation of the autonomous navigation of a biomimetic underwater vehicle[END_REF]), 3 ) analytical uid mechanics (see [START_REF] Taylor | Analysis swimming long narrow animals[END_REF][START_REF] Lighthill | Note on the swimming of slender sh[END_REF][START_REF] Lighthill | Hydromechanics of aquatic animal propulsion -A survey[END_REF][START_REF] Lighthill | Aquatic animal propulsion of high hydro-mechanical eciency[END_REF][START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF][START_REF] Wu | Swimming of a waving plate[END_REF][START_REF] Kelly | Modeling ecient pisciform swimming for control[END_REF][START_REF] Kanso | Locomotion of articulated bodies in a perfect planar uid[END_REF][START_REF] Melli | Motion planning for an articulated body in a perfect uid[END_REF]). In spite of the increasing performance of embedded computing technologies, it is today impossible to solve the Navier-Stokes equations or even the inviscid uid equations for on-line control purposes. Hence, analytical modeling seems the most realistic solution yet for robotics control purposes. Historically, Taylor introduced in the 50's, the rst analytical model of the sh swim [START_REF] Taylor | Analysis swimming long narrow animals[END_REF]. Devoted to the submarine worms, the solution is based on Stokes equations and models the propulsion through quasisteady lateral drag forces. This model called resistive by Lighthill (see [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF]), is used today for studying the swim of small shes [START_REF] Mcmillen | An elastic rod model for anguilliform swimming[END_REF]. Eight years after the works of Taylor, Wu [START_REF] Wu | Swimming of a waving plate[END_REF] and Lighthill [START_REF] Lighthill | Note on the swimming of slender sh[END_REF] independently proposed a model of the sh swim. The "weaving plate model" of Wu considers the sh as a exible innite height plate moving in an ideal uid. From an expansion in perturbations of the potential velocity eld (see [START_REF] Glauert | The element of aerofoil and airscrew theory[END_REF]), Wu computed the hydrodynamics forces exerted onto the plate. This theory has been used by Wolfgang in [START_REF] Wolfgang | Hydrodynamics of exible-body swimming motions[END_REF] to study the tuna swim. As far as the Lighthill works are concerned, the Elongated Body Theory (E.B.T.) is based on Slender Body Theory (S.B.T.) of Munk (see [START_REF] Munk | The aerodynamic forces on airship hulls[END_REF]) where the three-dimensional ow around an elongated body is approximated by a stratication of planar lateral ows which are then analytically resolved. First developed for shes enduring small perturbations of their body geometry [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], the E.B.T. was then extended to the case of large amplitude body deformations through the Large Amplitude Elongated Body Theory (L.A.E.B.T.) of [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF]. Till today, many researchers in experimental biology use L.A.E.B.T. for computing swimming eciency [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF] or hydrodynamic forces [START_REF] Tytell | The hydrodynamics of eel swimming. I-Wake structure[END_REF][START_REF] Tytell | The hydrodynamics of eel swimming. II-Eect of swimming speed[END_REF]. More recently, these analytical approaches have been enhanced with many results from Geometric Mechanics (see [START_REF] Kelly | Modeling ecient pisciform swimming for control[END_REF][START_REF] Kanso | Locomotion of articulated bodies in a perfect planar uid[END_REF][START_REF] Melli | Motion planning for an articulated body in a perfect uid[END_REF]) which take their origin in the Kirchho works about Euler-Lagrange equations applied to solid bodies plunged in an ideal uid [START_REF] Kirchho | Ueber die Bewegung eines rotationskörpers in einer üssigkeit[END_REF].

In the article here presented, we propose to exploit and validate the results of [START_REF] Boyer | Poincaré-Cosserat equations for Lighthill threedimensional dynamic model of a self propolled eel devoted to robotics[END_REF] where, thanks to the tools of Geometric Mechanics (Lagrangian reduction in particular), the three dynamic modeling problems previously stated (internal, external and contact dynamics) are solved under an analytical simplied form suited to the online control of eel-like robots. From the uid point of view, the solution proposed is based on the original Elongated Body Theory (E.B.T.) of Lighthill [START_REF] Lighthill | Note on the swimming of slender sh[END_REF][START_REF] Lighthill | Hydromechanics of aquatic animal propulsion -A survey[END_REF][START_REF] Lighthill | Aquatic animal propulsion of high hydro-mechanical eciency[END_REF][START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF], where the propulsion is modeled through the eect of the lateral uid inertial forces applied along the undulating sh body. As far as the body is concerned, the approach uses a Cosserat beam theory [START_REF] Cosserat | Théorie des corps déformables[END_REF] like that of [START_REF] Reissner | On a one-dimensional large displacement nite-strain theory[END_REF], used in the eighties by J.C. Simo in the framework of the "Geometrically Exact Finite Element Method" [START_REF] Simo | On the dynamics in space of rods undergoing large motions. A Geometrically Exact Approach[END_REF][START_REF] Boyer | Finite element of slender beams in nite transformations -A geometrically exact approach[END_REF]. In fact, as in [START_REF] Mcmillen | An elastic rod model for anguilliform swimming[END_REF] where a model of the sh muscles is proposed for planar swim, the eel is here considered as a non-linear beam controlled continuously along its material axis. At the end, the resulting model turns out to be a generalization of the Large Amplitude Elongated Body Theory (L.A.E.B.T.) of [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF] in the following ways : 1 ) the L.A.E.B.T. is extended to the three-dimensional swim. 2 ) The swimming dynamics are self-propelled and thus the external dynamics of overall rigid motions are solved rather than being imposed. 3 ) The internal dynamics of the beam-like sh are also solved in order to compute the torque control law. 4 ) The pure reactive model of the Lighthill theory is completed with a Taylor-like resistive model where the dimensionless coecients are calibrated through comparisons with a Navier-Stokes solver modeling the turbulence [START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF]. Finally, this solution is based on a fast algorithm recently proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF]. The results are encouraging since for a set of high Reynolds ( ∼ = 6.10 5 ) planar swimming gaits including the straight forward undulation, the turning, and the stopping, the discrepancies between the simplied analytical model and the Navier-Stokes simulations do not exceed 10 percent, while the analytical model is suciently fast to be used for on-line control. The article is structured as follows. The model of the internal body and contact dynamics (where the uid is considered as ideal), are presented in section 2 and 3 respectively. In section 4, the previous model, which is nothing but an extension of the reactive L.A.E.B.T. to the 3-D swim is improved of some corrective (resistive and axial) forces which are neglected in the L.A.E.B.T. The resulting model is exploited in 5 and 6 respectively devoted to the external dynamics and the fast numerical algorithm. The next section (7) deals with the Navier-Stokes simulation in subsection 7.1, which is nally used in 7.3 and 7.4 for the calibration and validation of the analytical model. Lastly, the article ends with section 8 by some concluding remarks and perspectives.

Modeling of the body

In [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] we proposed to model an hyper-redundant robot as a nonlinear Cosserat beam internally actuated through a torque distribution (cf. gure 3). By "Cosserat-beam" we here mean a one-dimensional continuum obtained by the continuous assemblage of an innity of cross sections of innitesimal thickness. As it is stipulated in [START_REF] Boyer | The Poincaré-Chetayev equations and exible multibody systems[END_REF], the conguration space (C) of such a medium is dened by the functional space of curves in the Lie group SE(3) : where X 1 is the material abscissa along the beam axis and where any g(X 1 ) is represented by the homogeneous transformation :

C = {g(.) : X 1 ∈ [0, 1] → g(X 1 ) ∈ SE(3)}, (1) 
g(X 1 ) = R(X 1 ) r(X 1 ) 0 1 , (2) 
with R(X 1 ) and r(X 1 ) the rotation and position operators which map the material frame (O, E 1 , E 2 , E 3 ) of gure 3 onto the current mobile frame (G, t 1 , t 2 , t 3 )(X 1 , t) attached to the X 1 cross section of mass center G(X 1 ). Corollary to these denitions, we introduce the two following elds of (spatial) twist from ]0, 1[ to se [START_REF] Breder | The locomotion shes[END_REF] (here identied to R 6 ).

• The twist eld of velocities :

µ = ∂g ∂t .g -1 = ω v = i=3 i=1 Ω i t i V i t i . ( 3 
)
• The twist eld of strains :

χ = ∂g ∂X 1 .g -1 = k γ = i=3 i=1 K i t i Γ i t i , ( 4 
)
where ω and v (respectively k and γ) are the spatial angular and linear Galilean velocities (respectively, the spatial "curvature-twist" and "tangent" vectors) along the beam. This framework named "macro-continuous" in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] is particularly well suited to the modeling of hyperredundant robots inspired from snake, trunk and other eels... In fact, in this case the beam axis models the animal back-bone while its cross-sections stand for its vertebrae. Going further, if the robot, as in the case here considered, is designed as a serial assemblage of parallel platforms, the Cosserat beam model is nothing but a continuous asymptotic limit of the hybrid (serial/parallel) dynamic model [START_REF] Khalil | Dynamic modeling and simulation of a 3-D serial eel-like robot[END_REF], where the cross sections play the role of the rigid platforms of the multibody robot and X 1 this of a continuous index. Moreover, the internal beam kinematics (Kirchho, Timoshenko...) are merely an innitesimal version of the robot parallel kinematics. For instance, in the case here considered, the parallel kinematics introduce between each pair of contiguous platforms a universal joint where the pitch and yaw degrees of freedom are actuated (cf. gure 2). Thus the beam kinematics are those of non-twistable and non-extensible Kirchho beams, a model where the following internal kinematic constraints are forced :

χ = k γ = k d (t) t 1 = χ d (t), (5) 
with [START_REF] Breder | The locomotion shes[END_REF] (t)t 3 , the eld of internal curvature imposed along the beam by the internal control torque law. Finally, with these choices, the Lagrangian of the body B can be dened as L(B) = T (B) -U (B) where :

k d (t) = K d,2 (t)t 2 + K d,
• T (B) is the kinetic energy of the body dened by :

T (B) = 1 0 T b dX 1 = 1 2 1 0 µ.I b .µ dX 1 , (6) 
with T b and I b the densities (per unit of beam length) of kinetic energy and of inertia tensor, where the second is dened by :

I b = I b 0 0 m b . (7) 
In ( 7) m b and I b are the linear and angular inertia tensor densities which can be detailed as :

m b = ρ b A i=3 i=1 t i ⊗ t i , I b = ρ b i=3 i=1 J i t i ⊗ t i ,
with ρ b the beam volume mass, and A, J i the cross section area and inertia about t i , i = 1, 2, 3.

• U (B) is the internal body potential energy dened by :

U (B) = 1 0 U b dX 1 = 1 0 λ.(χ -χ d ) dX 1 . ( 8 
)
Lastly, the following densities of wrenches of kinetic amounts and internal forces are introduced :

σ b p b = ∂T b ∂µ = I b .ω m b .v , c n = λ = ∂U b ∂χ , ( 9 
)
where σ b , p b , c, n are respectively the density elds of kinetic momentum, kinetic resultant, internal torque and internal force, with : c.t α = C α , α = 2, 3, the two (pitching and yawing) control torque laws.

Dynamic modeling of the anguilliform swim

In this section, we reconsider the three dynamic modeling problems pointed out in the introduction and give to each of them a solution suited to the on-line control. 

Modeling the contact of the robot with the medium

In order to achieve our starting goals, the modeling eorts have to be particularly concentrated onto the "uid-sh" contact model. In fact, the Navier-Stokes equations are very dicult to solve and completely unsuited to robotics. Hence, in order to circumvent this diculty we should simplify as much as possible the uid dynamics while keeping an acceptable accuracy regarding the robustness of the feedback control law [START_REF] Alamir | Feedback design for 3D movement of an eel-like robot[END_REF]. Coming back to the original ideas of James Lighthill (see [START_REF] Lighthill | Note on the swimming of slender sh[END_REF]), the contact model here proposed is based on the following two great simplications :

• First simplication : The uid is rst of all considered as inviscid, incompressible and is irrotational everywhere except on a free vortex sheet shedded from the sharp trailing edge of the caudal n. Still following Lighthill, the wake is then isolated from the ow laterally surrounding the sh by a geometric plane π orthogonal to the sh backbone and passing through the trailing edge. Hence, only the uid contained in the control volume D of gure 4 is considered and the eects of the wake onto the sh are modeled through the kinetic exchanges with the uid in D across the plane π.

• Second simplication : Due to the slender geometry of the sh (and the robot), and in accordance with the L.A.E.B.T., the uid ow in D is approximated by a stratication of planar potential ows transverse to the sh back-bone. Hence, in this theory, the original threedimensional uid is replaced by a one-dimensional medium where the uid slices (sweeping past the beam cross sections) replace the usual punctual uid particles of the the 3-D theory (cf. gure 4).

Finally, this stratication allows one to write the kinetic energy of the uid contained in D (denoted by F D ), under the following reduced form :

T (F D ) = 1 0 T f dX 1 = 1 2 1 0 µ.I f .µ dX 1 , ( 10 
)
where T f denotes the density (per unit of beam length) of kinetic energy of the stratied uid in D and I f is this of uid added mass inertia which can be detailed as :

I f = I f 0 0 m f , ( 11 
)
where I f and m f are the density eld of linear and angular uid added inertia dened as :

I f = ρ f J f 1 t 1 ⊗t 1 and m f = ρ f i=3 2=1 A f i t i ⊗t i , ρ f
is the uid volume mass, and A f i (respectively J f 1 ) the added cross section area (respectively, inertia) along t i , i = 2, 3, (respectively about t 1 ). Once this kinetic energy density is dened, the ideal uid dynamics [START_REF] Lamb | Hydrodynamics[END_REF], allow one to introduce the following wrench density of impulses (a concept historically due to Lord Kelvin) :

σ f p f = ∂T f ∂µ = I f .ω m f .v , ( 12 
)
which is merely an extension to the three-dimensional swim of the density of lateral impulses introduced by James Lighthill in his "Large Amplitude Elongated Body Theory" of [START_REF] Lighthill | Large-amplitude elongated body theory of sh locomotion[END_REF]. Finally, in accordance with the Kirchho theory of solid bodies moving in an irrotational ideal uid [START_REF] Kirchho | Ueber die Bewegung eines rotationskörpers in einer üssigkeit[END_REF], the uid dynamics in D are now reduced onto the conguration space of the beam alone. Furthermore all the eects of the uid onto the body are modeled through added inertia which will be reported onto the external and internal dynamics, which is the only subject of our attention in the following.

Internal dynamics

The internal dynamics of the eel-like robot are given by the partial dierential equations (p.d.e.'s) of the actuated Cosserat beam immersed in the uid. In order to derive these equations we stated in [START_REF] Boyer | Poincaré-Cosserat equations for Lighthill threedimensional dynamic model of a self propolled eel devoted to robotics[END_REF] the following variational principle related to all the uid and body matter contained in the mobile volume control D :

t 2 t 1 1 0 δ(T f + T b -U b ) dX 1 dt (13) = t 2 t 1 δW ext -V 1 ∂T f ∂µ -T f 0 t 1 .δν 1 0 dt,
where the terms in brackets model the kinetic exchanges of the uid in D, with its wake (V 1 is merely the axial velocity of the stratied uid with respect to the beam) while δW ext stands for the virtual work of some corrective forces that we will add later and which are neglected by the L.A.E.B.T.. In their generality, these forces are dened as a eld of wrench density f

T = (c T , n T ) on ]0, 1[ and two punctual wrenches f T -= (c T -, n T -) and f T + = (c T + , n T + )
exerted onto the rst and the last beam cross sections respectively. Finally, applying [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF] for any variation δν = δg.g -1 dened on the beam conguration space (1), one nds :

• Field equations : ∂ ∂t σ b + σ f p b + p f + v × p f 0 = c n + ∂ ∂X 1 c + V 1 σ f n + V 1 p f + t 1 × (n + V 1 p f ) 0 . ( 14 
)
• Boundary conditions :

c n (0) = 0 -T f t 1 (0) + c - n - , ( 15 
) c n (1) = 0 -T f t 1 (1) - c + n + . ( 16 
)
Furthermore, by replacing in these equations the kinetic amounts by their expressions as functions of the beam kinematics and by using the change of variable : [START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF][START_REF] Farnell | Numerical model of self-propulsion in a uid[END_REF][START_REF] Kern | Simulations of optimized anguiliform swimming[END_REF]) can be rewritten as :

n * = n + V 1 m f .v and c * = c + V 1 I f .ω,
• P.d.e. and boundary conditions (b.c.) of the internal forces :

n * = m. v + ω × (m f .v) -m f . (ω × v) + n, ( 17 
) n * (0) = n -, n * (1) = (V 1 m f .v -T f t 1 )(1). ( 18 
)
• P.d.e. and b.c. of the internal torques :

c * = -t 1 × n * + I. ω + ω × I.ω + v × m f .v + c, ( 19 
) c * (0) = 0 , c * (1) = (V 1 I f .ω)(1), (20) 
where from now on, ∂./∂X 1 and ∂./∂t are respectively denoted by a "prime" and a "dot", and where, because of the rounded nose, we take I f (0) = 0.

Resistive corrections of the (reactive) 3-D Lighthill model

In this section, we add to the previous "reactive model" and through the term δW ext of the balance [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF], there are two sets of corrections. The rst one has for its purpose to improve the L.A.E.B.T. around the rounded nose where the axial forces, neglected by the S.B.T. (see [START_REF] Munk | The aerodynamic forces on airship hulls[END_REF]), dominate. The second set of corrections approximates the eect of the uid viscosity. As far as the rst correction is concerned, it depends on geometric shape of the head which here is the half of an ellipsoid where the axis lengths are 2c o , 2a o and 2b o along t 1 (0), t 2 (0) and t 3 (0) respectively. On the other hand, the second correction is based on the experimental uid mechanics of cylindrical obstacles moving in a real uid [START_REF] Hoerner | Fluid dynamics drag[END_REF]. Like buoyancy and gravity, all these corrections are added to the reactive model through the general external load (n, c, n ± , c ± ). In fact we rst impose that the two tip external wrenches be of the following form :

c - n - = c r- n r- + c a- n a- , c + n + = 0 , (21) 
with :

c r- n r- = - 1 2 ρ f k o 0 V 1 |V 1 |t 1 (0), (22) 
and k o = πc p a o b o , the axial "pressure drag" coecient of the rounded nose. As far as the second term of (21.a) is concerned, we take :

c a- n a- = -m o 0 (t 1 . v)t 1 (0), (23) 
where m o = ρ f πka o b o c o models the added mass axially accelerated with the rounded nose of the eel. Then, following a Taylor-like resistive modeling approach, the second set of corrections is imposed through the following density of external resistive wrenches :

c r n r = - 1 2 ρ f k 4 |Ω 1 |Ω 1 t 1 i=3 i=1 k i V i |V i |t i , ( 24 
)
where from experimental uid mechanics :

k 4 = c 1 π(a 2 -b 2 ) 2 ; k 1 = c f P (with P π/2((3/2)(a+b)- √ ab)
standing for the elliptic cross section perimeter), k 2 = c 2 2a and k 3 = c 3 2b. Finally, this last corrective wrench density has to be added to the gravity and buoyancy densities in such a manner that we nally have, with γ g the gravity acceleration eld :

c n = c r n r + 0 (ρ b -ρ f )Aγ g . ( 25 
)
Lastly, in accordance to experimental uid mechanics [START_REF] Hoerner | Fluid dynamics drag[END_REF], the corrections ( 22), ( 23) and ( 24) use the following dimension-less coecients. The coecients c p and k are the "axial pressure drag" and the axial added mass coecient of the head, while for the X 1 -elliptic cross section, c f (X 1 ), c 1 (X 1 ), c 2 (X 1 ) and c 3 (X 1 ) are respectively the friction coecient, the angular drag coecient (around t 1 (X 1 )), and the two linear drag coecients along t 2 (X 1 ) and t 3 (X 1 ).

External dynamics

From now on, we use the following notations : r(X

1 = 0) = r o , R(0) = R o , g o = g(0), µ o = ( ġ.g -1 )(0)
for the head frame conguration and twist. Furthermore, we introduce the co-adjoint maps Ad g * and Ad * g respectively dened for any g given by (2) as :

Ad g * = 1 0 -r 1 , Ad * g = 1 r 0 1 (26) 
The external dynamics rule the time-evolution of the external degrees of freedom here parameterized by the head conguration g o ∈ SE [START_REF] Breder | The locomotion shes[END_REF]. This evolution being driven by the explicit time dependent curvature law, the external dynamics can be derived by restating the internal dynamics [START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF][START_REF] Farnell | Numerical model of self-propulsion in a uid[END_REF][START_REF] Kern | Simulations of optimized anguiliform swimming[END_REF] in the weak form of the D'Alembert principle, where the virtual displacement elds are induced by those of the head frame while the body shape is frozen in its current conguration. Finally, with h(X 1 ) = g -1 o .g(X 1 ), p = p b + p f and σ = σ b + σ f , we have :

1 0 Ad * h σ -c ṗ -n + v × p f 0 dX 1 = c - n - + Ad * h(1) V 1 σ f p f - 0 T f t 1 (1). (27) 
Then, for numerical purposes, these dynamics have to be rewritten as an explicit form of the head accelerations. For this, ṗ and σ have to be explicitly rewritten in terms of the beam Galilean accelerations ω and v which themselves have to be rewritten as :

ω v = Ad h * . ωo vo + ωe γ e , ( 28 
)
which denes ωe and γ e since µ o = (ω T o , v T o ) T is the spatial twist of the head frame velocities. Finally, thanks to [START_REF] Kanso | Locomotion of articulated bodies in a perfect planar uid[END_REF], we can rewrite [START_REF] Kelly | Modeling ecient pisciform swimming for control[END_REF] from simple but tedious computations as the explicit o.d.e. with respect to the head accelerations :

I o . μo = F o , ( 29 
)
where we introduced, if "I = I b + I f " denes the total (body + uid) density of inertia along the robot, the 6 × 6 spatial inertia tensor of solid and added masses w.r.t. the nose :

I o = 1 0 Ad * h . I .Ad h * dX 1 + 0 0 0 m o (t 1 ⊗ t 1 )(0) , ( 30 
)
and :

F o = 1 0 I. ωe γ e dX 1 + c r- n r- + 1 0 Ad * h . ω × I.ω + (v × m f .v) + c ω × m f .v -m f . (ω × v) + n dX 1 + Ad * h(1) V 1 σ f p f - 0 T f t 1 (1), (31) 
the wrench of inertial (Coriolis-centrifugal, convective...) and external (hydrodynamic, hydrostatic...) forces applied onto the sh head.

6 Fast algorithm For the purposes of simulation, design and control it is useful to compute at each instant the head acceleration μo and the internal control torque law

C = R T .(c -(c.t 1 )t 1 ) = C 2 E 2 + C 3 E 3 from the knowledge of the material internal curvature law K d (t) = R T .k d (t) = K d,2 (t)E 2 + K d,3 (t)E 3 .
To this purpose, we proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] an algorithm (see its structure in gure 5) which solves at each step of a global time integration loop :

• The forward (external) dynamics :

μo = G ext (g o , µ o , K d (t), Kd (t), Kd (t)) (32) 
• The inverse (internal) dynamics :

C = G int (g o , µ o , μo , K d (t), Kd (t), Kd (t)). (33) 
Because computing explicitly G ext and G int is very involved, we compute them numerically using the implicit formulation of the Newton-Euler Robot dynamics (see [START_REF] Luh | On-line computational scheme for mechanical manipulator[END_REF][START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF][START_REF] Boyer | An ecient calculation of exible manipulator inverse dynamics[END_REF], for more details) where the actuated beam is considered as a continuous robot and the usual recurrences on the bodies index of the Newton-Euler algorithms are replaced by some o.d.e.'s with respect to the cross section label X 1 . Such a computation is based on [START_REF] Hill | Large amplitude sh swimming[END_REF][START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF], [START_REF] Melli | Motion planning for an articulated body in a perfect uid[END_REF][START_REF] Mcmillen | An elastic rod model for anguilliform swimming[END_REF][START_REF] Glauert | The element of aerofoil and airscrew theory[END_REF] and the following continuous kinematics derived from ( 4) and ( 5) and their time dierential consequences [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] :

• Continuous model of section transformations R = R. K d (t) , r = R.E 1 . ( 34 
)
• Continuous model of section velocities :

ω = R. Kd (t) , v = ω × r . ( 35 
)
• Continuous model of section accelerations :

ω = R. Kd (t) + ω × R. Kd (t) , v = ω × r + ω × (ω × r ). (36) 
Now, we have at our disposal all the results required for solving the two G int and G ext dynamics. In fact, let us assume that at the current time t of a global time-loop, we know the current head state (g o , µ o )(t), then :

• For computing G ext , the algorithm forward space integrates (i.e. from X 1 = 0 to X 1 = 1), [START_REF] Tytell | The hydrodynamics of eel swimming. II-Eect of swimming speed[END_REF] with g(0) = g o , [START_REF] Kirchho | Ueber die Bewegung eines rotationskörpers in einer üssigkeit[END_REF] with µ(0) = µ o , and (36) with μ(0) = 0. These integrations give respectively the elds (R, r), (ω, v) and (γ e , ωe ). Then, from ( 30) and ( 31), both computed by a similar forward space integration, we nally obtain through the explicit form (29) the head acceleration μo that is time-integrated twice in order to update the head state (g o , µ o ) (see gure 5).

• For computing G int , and because now μo is known, the algorithm computes through a forward space integration of (36) with μ(0) = μo , the Galilean acceleration elds ω and v along the beam. Then, once these elds are known, it computes the eld n * by forward space integrating [START_REF] Hill | Large amplitude sh swimming[END_REF], and from n * , it integrates [START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF] in order to compute c * and c = c * -V 1 I f .ω. Finally, the control torque law is deduced from :

C 2 = c.t 2 and C 3 = c.t 3 .
Lastly, once G ext and G int so computed, the time is increased by one step and the algorithm resumes...

Simulations and comparisons 7.1 Navier-Stokes computational approach

In order to validate the simplied model presented in this article, we chose to use reference data coming from the resolution of the same uid-structure problem but solving the 3-D Navier-Stokes equations. This complex problem of a self-propelled three-dimensional sh on realistic congurations (high Reynolds number and possible complex geometry) recently received a solution in the context of the ISIS-CFD software package developed by some of the partners of our project ( [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF][START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF]). In fact, most of the numerical results of sh locomotion immersed in a viscous ow do not concern "self-propelled" bodies but rather bodies undergoing some imposed deformations superimposed on a given stationary overall rigid motion or equivalently, a steady past-ow (see [START_REF] Liu | A numerical study of undulatory swimming[END_REF]). Nevertheless, [START_REF] Carling | Self-propelled anguilliform swimming : simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion[END_REF] proposed a 2-D Navier-Stokes simulator of a self-propelled deformable body but restricted their investigations to the straightforward swim for very simplied planar body shapes. [START_REF] Farnell | Numerical model of self-propulsion in a uid[END_REF] also performed some 2-D self-propelled simulations by imposing internal control torques along the body. Using quite similar methods, the only other 3-D simulations we found in the literature were performed with a low Reynolds number range (around 3000) and then under a laminar ow hypothesis (see [START_REF] Kern | Simulations of optimized anguiliform swimming[END_REF]).

Given the size and the speed of our robot (leading to Reynolds number of about 6.10 5 for the presented results), this hypothesis of laminar ow is not realistic here. In fact, when Reynolds number increases, the viscous stresses are overcome by the uid inertial forces, and the laminar motion becomes unstable. Rapid random velocity and pressure uctuations appear : turbulence occurs. The enormous amount of information and the huge grid density required to completely describe such a turbulent ow on realistic congurations (like those presented here) is totally out of reach of current computer power yet. An average procedure (introduced by Reynolds in 1895) of the instantaneous Navier-Stokes equations is then still needed to investigate turbulent ows. This statistical approach consists in expressing all quantities as the sum of mean and uctuating parts. The so-called Reynolds Average Navier-Stokes (RANS) equations obtained are identical to the instantaneous ones with mean velocity and pressure replacing instantaneous quantities, except a supply uctuating correlation term τ t (i, j) = -ρ u i u j , which appears in the momentum balance (see [START_REF] Reissner | On a one-dimensional large displacement nite-strain theory[END_REF]), and is referred to the Reynolds stress tensor ( u i means the uctuation of the component i of the velocity and the overline represents the average process). Indeed, the whole complexity of turbulent ows is contained in this term, which needs to be modeled to close the system of equations. It is classically evaluated using additional transport equations of supply variables (turbulent kinetic energy,...).

Hence, the incompressible turbulent ow of newtonian viscous uid under isothermal conditions are solved through the following classical RANS equations (respectively momentum balance, incompressibility constraint and newtonian uid behavior law) :

ρ f ∂u ∂t + ∇u.u = -∇p + ρ f γ g + ∇.(τ t + τ t ), (37) 
∇.u = 0, ( 38 
) τ = µ f ∇u + (∇u) T , ( 39 
)
where ρ f and µ f are respectively, the density and the molecular dynamic viscosity of the uid, γ g is the gravity acceleration eld, (u, p) represent the average values of velocity and pressure (through the Reynolds processing), while τ and τ t refer respectively to the viscous and Reynolds stress tensors. Finally, τ follows the classical relation of Newtonian uid for incompressible ows [START_REF] Boyer | Finite element of slender beams in nite transformations -A geometrically exact approach[END_REF], while τ t is determined according to the turbulence model used, through supply equations which are not presented here (for further details on turbulence modeling, see for example [START_REF] Wilcox | Turbulence modeling for CFD[END_REF] or [START_REF] Tennekes | A rst course in turbulence[END_REF]).

ISIS-CFD is a CFD software for simulating incompressible uid ows involving turbulence, free surface and moving bodies ( [START_REF] Duvigneau | Optimization of a Synthetic Jet Actuator for Aerodynamic Stall Control[END_REF][START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF][START_REF] Hay | H-adaptive Navier-Stokes simulations of free-surface ows around moving bodies[END_REF]). It has been developed by the CFD team of the Fluid Dynamics Laboratory of Ecole Centrale de Nantes. It solves the incompressible unsteady RANS equations under isothermal conditions on generalized unstructured meshes, enabling to deal with geometries of arbitrary complexity. The solver is based on a face-based nite-volume method to build the spatial discretization of the equations previously described. Second-order accurate schemes in time and in space are used. Because the case deals with a moving body, an ALE (Arbitrary Lagrangian Eulerian) approach is used : an additional equation (the so-called space conservation law) has to be taken into account, too. In ISIS-CFD, this geometric constraint is directly addressed through the evaluation of the grid velocity uxes, which ensures that the discrete space conservation equation is exactly satised (see [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF][START_REF] Ferziger | Computational methods for uid dynamics[END_REF]).

As far as the body dynamics are concerned, the Navier-Stokes solver only deals with the external dynamics which are here derived from a oating frame approach (until now, ISIS-CFD has been restricted to the planar swim, but development is planned to perform at short term 3-D swim). Originally devoted to exible spacecraft dynamics [START_REF] Canavin | Floating reference frames for exible spacecraft[END_REF], this description measures the deformations of the body with respect to a virtual rigid body B * to which is attached the oating frame and which follows the real one (B) in its motion.

In the case here studied, the oating frame is placed at the mass center of B * itself dened as the rigid geometry prolonging B from the head at each instant t. Then, if g * ∈ SE(3) denotes the oating frame conguration with respect to the earth, the time-evolution of its Galilean twist ġ * .g -1 * = µ * is ruled by the following balance of wrenches (related to G * ) :

I * . μ * = F in * + F hyd * , ( 40 
)
where we introduced I * the inertia tensor of the actual body, F in, * the wrench of inertia forces (due to Coriolis, centrifugal and shape accelerations of the body), and F hyd * the wrench of hydrodynamic forces given by integrating all the contact forces exerted by the uid onto the body boundaries and computed through the resolution of [START_REF] Reissner | On a one-dimensional large displacement nite-strain theory[END_REF]. For more details about these expressions, we refer the reader to [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF]. It is worth noting that an internal mesh for solved motion of exible body is required to compute additional dynamic terms induced by the imposed deformation. On the other hand, the body kinematics inuence the ow via the boundary conditions on uid induced on each body face. Thus, the resolution of the ow/motion coupling at each time step progresses as shown in the diagram gure 6.

Concerning the deformation part of the uid domain invoked at the beginning of each time step to keep a body-tted mesh, an analytical weighted regridding, taking advantage of the Cosserat kinematics of the body, has been developed [START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF]. During the non-linear iterations inside a given time step, the mesh (and so the current position of the body) is moved and updated in space by the rigid solved transformation h * without any deformation, enabling sh motion of unlimitated amplitudes (see gure 7).

The computational grid used here has been limited to its upper part (x 3 ≥ 0), with a symmetry condition on the plane x 3 = 0 (see gure 8). A grid independence study has been investigated to ensure the numerical error is under control. Therefore, several mesh have been generated, with dierent grid density (from 65000 to 900000 cells). The inuence of the turbulence model has also been investigated. Examining all these simulations performed on the F 1 imposed law (see ( 42)-( 44) and tab. 1), dierences between all the reached forward velocities do not exceed 5 %, whatever the grid and the turbulence model used (the inuence of the turbulence modelling being then of the same order of magnitude as dierences obtained with all the tested grids). Keeping in mind that the main objective is to validate the dynamics of a simplied model, all the comparisons with the simplied model were performed on the coarser mesh containing 65.10 3 cells using the k -ω SST turbulence model [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF]. It ensures reasonable CPU time, a good compromise between accuracy and CPU time cost, and enables comparisons with the simplied model to be condently tackled. More details of all numerical aspects and validations concerning the resolution of the RANS equations and the ow/motion coupling can be found in [START_REF] Leroyer | Flow/Motion interaction for solid and exible bodies by resolution of the Navier-Stokes equations[END_REF] and in [START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF]. 

Denition of the body geometry

In order to take into account the continuous property of the skin, we consider the previous macroscopic modeling with the geometry drawn in the gure 9. Its total length is one meter. Its material is assumed to be homogeneous with a "mass/volume" ratio equal to that of the uid to ensure a buoyancy neutrality. Its mass is then of 1.94kg. The shape is rst dened as a cylinder of diameter D = 0.1m between X 1 = 0.05m and X 1 = 0.99m ending by two half-ellipsoids. Next, this cylinder is deformed by multiplying its diameter along E 3 by a function X 1 → A(X 1 ), and along E 2 by X 1 → B(X 1 ). Therefore, elliptic cross sections are obtained. The two functions A and B are dened as follow : Fig. 9 Geometry of the body.

A(X 1 ) = 1 , for : 0 ≤ X 1 < 1/5, A( X1 ) = 1 -(sin(π X1 -π/2) + 1)/5 , for : 1/5 ≤ X 1 < 3/4 , with X1 = 20X 1 -4/11, A(X 1 ) = 3/5 , for : 3/4 ≤ X 1 < 1,
and for 0 ≤ X 1 < 1 :

B(X 1 ) = -[sin (πX 1 -π/2) + 1] /6 -X 2 1 /8 + 1/2 .
Note in particular, that such a geometry guarantees to the head to be a half ellipsoid with axis lengths b 0 = 0.025m, a 0 = c 0 = 0.05m respectively along t 2 , t 1 and t 3 .

Calibration of the model

In accordance with the previous developments, we have to specify the four groups of parameters of the model, i.e. : the axial viscous drag coecient c f of ( 24), the pressure drag coecient c p related to the rounded nose of the head required by [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], the transverse pressure drag coecients c 1 , c 2 and c 3 of ( 24), the axial added mass of the nose m o required by [START_REF] Lighthill | Hydromechanics of aquatic animal propulsion -A survey[END_REF].

In order to x all these parameters, we used the following "identication process" divided into four steps :

• Step 1 : identication of c f To estimate the local viscous drag coecient c f along the body, a model based only on classical relations of boundary layer on a at plate (which only depends on the local longitudinal Reynolds number) was established. Even if this simple approach completely ignores the shape and the deformation of the body, it can hopefully approximate the right order of magnitude of the longitudinal viscous drag force. Since the RANS simulations do not yet take into account correctly the transition phenomena, a study of the behavior of the turbulence model used here was performed. Hence, ow around a 2-D thin at plate in a unbounded domain was simulated using the k -ω SST turbulence model in its near-wall low Re conguration. The plot of the The law for the local viscous drag coecient was then chosen as :

if Re X 1 // ≤ 8.10 4 , c f = 0.664/Re 0.5 X 1 // , if Re X 1 // > 8.10 4 , c f = 0.059/Re 1/5 X 1 // , (41) 
where Re X 1 // is dened by : Re X 1 // = X 1 V 1 (X 1 )/ν, with ν the kinematic viscosity of water.

• Step 2 : identication of c p The coecient c p is identied by comparing the Navier-Stokes simulations to those of the simplied model for a gait in which the sh is released with an initial forward speed in a straight and rigid conguration. In this case, the sh slows down by enduring the c p dependent pressure drag force of ( 22) applied onto the head, and the friction (viscous drag) axial forces of (24) applied along its body, with c f known from the previous step. The plots of gure 11(a) show the evolution of the axial forward velocity for Navier-Stokes simulation and for the model (with c p equal to 0 and the calibrated value 0.036). The plots of gure 11(b) show the two contributions to the total axial drag forces applied onto the sh (also plotted on the gure), i.e. the head force [START_REF] Lighthill | Note on the swimming of slender sh[END_REF], and the body one [START_REF] Lighthill | Aquatic animal propulsion of high hydro-mechanical eciency[END_REF]. Note that the contribution due to the pressure applied onto the head represents about 16% of the total drag.

• Step 3 : identication of c 1 , c 2 and c 3 : As far as c 2 and c 3 are concerned, their values should be time dependent through the transverse Reynolds numbers and the Keulegan-Carpenter numbers [START_REF] Sarpkaya | Force on a circular cylinder in viscous oscillatory ow at low Keulegan-Carpenter numbers[END_REF], which qualify the ow around an oscillating cylinder. Nevertheless, the problem here is quite dierent to experiments that can be found in the literature on oscillating cylinders. In fact, due to the forward sh motion, the ow perturbations generated by a given cross-section no longer inuence the section itself but rather the neighboring sections along the beam axis. Furthermore, the amplitude of oscillations changes when moving along the body, and nally, the sections do not have circular proles but elliptic ones for which fewer experimental results are available. Nevertheless, in spite of these diculties, some simple models were successfully used. Particularly, in accordance with the experimental data : 1 ) of [START_REF] Hoerner | Fluid dynamics drag[END_REF] for dierent 2-D shapes plunged in a stationary ow (for our orders of magnitude of the transverse Reynolds Re X 1 ⊥ 10 4 ), and : 2 ) of [START_REF] Ringuette | Vortex formation and drag on low aspect ratio, normal at plates[END_REF], for a normal at plate, the constant value of 1.98 was chosen for c 2 . From similar considerations, c 3 was set to the lower value of 0.5, in order to take into account the thinner cross section prole along this direction.

As far as the resistive torque density cr is concerned, since the Navier-Stokes solver does not work for the three dimensional swim, we cannot yet shape a relevant analytical form of it. So we took c 1 = 0 as a rst value. Finally note that in the following, c 1 and c 3 are only concerned by the last numerical test, which is the only one dealing with a three dimensional manoeuvre.

• Step 4 : identication of k With the adopted geometry of the head, we chose to take for m o , the half axial added mass of an ellipsoid enduring a translation along its principal major axis. The dimensionless coecient k computed by [START_REF] Lamb | Hydrodynamics[END_REF] is equal to 0.32.

Finally, as we are going to see, this setting of the analytical model was conrmed in many examples by comparison to our RANS equations solver.

Numerical examples

The fast algorithm of section 6 was programmed in C++ using a fourth order Runge-Kutta integrator for the space and time loops. All the tests presented above work between "0.2 and 0.7 times the real time" on a workstation with a Pentium IV (3.2 GHz and 1 Go of Ram) and are therefore compatible with the online control of the prototype. As announced from the beginning, the swim of the body is imposed through the eld of desired curvatures

X 1 → k d (X 1 , t) = R(X 1 ).K d (X 1
) imposed along the body axis. Here, we simulate four swimming gaits : the "forward straight-line gaits" denoted by F., the "planar turn gait", denoted by T., the "stopping gait" denoted by S.t., and nally the "three dimensional spiral gaits", denoted by S.p.. Moreover, this is achieved with several sets of parameters for F. and T. and for three ways of turning. In the case of the planar swim, the results given by our simplied analytical model are compared to Navier-Stokes simulations.

Example 1 : forward nominal gait

Denition of the internal strain law : this gait is that of the nominal "straight-line swim" as commonly studied in zoological literature [START_REF] Breder | The locomotion shes[END_REF][START_REF] Gray | Studies in animal locomotion. I. The movement of sh with special reference to the eel[END_REF][START_REF] Weihs | Hydrodynamical analysis sh turning manoeuvres[END_REF][START_REF] Aerts | A kinematic comparison of forward and backward swimming in the eel Anguilla Anguilla[END_REF]. In our case, the swim being achieved in the plane (e 1 , e 2 ), it is dened by the following curvature law (with "f " for "forward") : Tab. 1 Parameters of the forward straight-line gaits [START_REF] Lamb | Hydrodynamics[END_REF].

Gaits λ T a 2 a 1 a 0 φ V init F 1 1 1 2 0.5 1 0 0 F 2 1.25 1 2 1 0 0 0 F 3 1 0.5 2 
k d = f r (t, 0, T )K f 3 (t, X 1 )t 3 (X 1 ), (42) 
where f r (t, t i , t f ) is a sinusoid ramp dened by (with τ = (t -t i )/(t f -t i )) :

f r = 0 , for : 0 ≤ t < t i , f r = τ -1/(2π) sin (2πτ ) , for : t i ≤ t < t f , f r = 1 , for : t ≥ t f . ( 43 
)
Note here that f r (., t i , t f ) has null rst and second order derivatives at the commutation instants thereby guaranteeing time-smooth starts. The non-null curvature component is a backward sinusoidal wave from the head to the tail which can be detailed as :

K f 3 = f a (X 1 ) sin [2π (X 1 /λ -t/T + φ)] , with f a (X 1 ) = a 2 X 2 1 + a 1 X 1 + a 0 . ( 44 
)
In [START_REF] Lamb | Hydrodynamics[END_REF], λ is the wave length, T is its period and a 0 , a 1 , a 2 are the coecients of the amplitude modulation polynomial function f a which increases from the head to the tail. φ is a possible phase shift (used only for the turning gaits). Because [START_REF] Khalil | Dynamic modeling and simulation of a 3-D serial eel-like robot[END_REF] leads to a steady periodical motion ("cruising swim"), the sh, initially straight along e 1 , can be threw with an initial forward velocity ( ṙo (t i ) V init t 1 (0), where t i is the initial time of simulation), in order to shorten the time of execution of the Navier-Stokes simulations.

Numerical results : for this example, we applied the strain law ( 42)- [START_REF] Lamb | Hydrodynamics[END_REF] with the parameters of the table 1. The results obtained with our simplied model were then compared with those Tab. 2 Comparisons N-S/S-M for forward gaits.

Gaits V 1,N -S (0) V 1,S-M (0) e V 1 (m.s -1 ) (m.
given by the Navier-Stokes reference used under the same conditions. In order to quantify the comparison, we used the following error ratio related to the average axial head velocity in the steady periodic motion :

e V 1 = |V 1,N -S (0) -V 1,S-M (0)| |V 1,N -S (0)| ,
where "N -S" means "Navier-Stokes", "S -M " means "Simplied-Model", and V 1 (0) = V 1 (X 1 = 0) is the mean axial head velocity reached at any time beyond which the sh follows its steady periodical motion. The error ratios for the parameters of the table 1 are summarized in the table 2.

As an illustration, the gures 13(a), 13(b) and 13(c) show the time evolutions of the head velocity obtained for F 1 with the Navier-Stokes solver and the simplied-model-based-algorithm of the article. The components of the velocities are related to the earth frame. All the components oscillate with the propulsion period of K f 3 and the plots show good agreement (in phases and amplitude) of the simplied model with the Navier-Stokes reference (even for the transverse and yawing velocities of small amplitudes). Finally, all these plots like others tested with ( 42)- [START_REF] Lamb | Hydrodynamics[END_REF] and many sets of parameters show the right accordance (less than 5% of discrepancies) of the simplied model when compared to the reference, except for F 7 where the dierence is due to the low steady velocity reached by the sh (see table 2). In fact, when the Reynolds decreases, the model of c f becomes less and less suited and particularly more dependent on the sh deformations.

Example 2 : Turning gaits

Denition of the internal strain law. This gait is deduced from the previous one by adding to the propulsive curvature term of (42), a constant planar curvature K c3 along the body. More precisely, we take :

k d (t) = (α(t)K f 3 + β(t)K c3 ) t 3 , ( 45 
)
where α(.) and β(.) are two transition functions which allow a smooth starting and a smooth suppression and re-installation of the propulsion at the beginning and the end of the turn.

Numerical results : in this test, the internal law ( 45) is applied to three types of turns. The rst type denoted "T.i.p.", is an inertial-turn with a propulsion before and after the turning phase Φ 2 (laws T 1, T 2 and T 3 plotted on gure 14 left), the second type, denoted "T.p.", is a propulsive turn (the robot does not stop to undulate while turning) (law T4 plotted on gure 14 center). Finally, the third type, denoted "T.i.", corresponds to a pure inertial turn with just an initial axial velocity and no self propulsion (laws T 5 and T 6, plotted on gure 14 right). These three types of turning gait are dened as follow :

Gaits

• T.i.p. gait :

α(t) = f r (t, 0, T ) , β(t) = 0 , for : t < T, α(t) = 1 -β(t) = 1 -f r (t, T, t 1 ) , for : T ≤ t < t 2 , α(t) = 1 -β(t) = f r (t, t 2 , t 3 ) , for : t ≥ t 2 .
• T.p. gait :

α(t) = f r (t, 0, T ) , β(t) = 0 , for : t < T, α(t) = 1 , β(t) = f r (t, T, t 1 ) , for : T ≤ t < t 2 , α(t) = 1 , β(t) = 1 -f r (t, t 2 , t 3 ) , for : t ≥ t 2 .
• T.i. gait :

α(t) = 0 , β(t) = 0 , for : t < t 1 , α(t) = 0 , β(t) = f r (t, t 1 , t 2 ) , for : t 1 ≤ t < t 3 , α(t) = 0 , β(t) = 1 -f r (t, t 3 , t 4 ) , for : t ≥ t 3 .
The simulations were experimented with the parameters given in the table 3.

In the case of the turn, we compared the yaw angle of the head at any time beyond which the sh has reached its steady periodical motion after the turn. The yaw angle ψ is that of the head axis t 1 (X 1 = 0) with respect to e 1 , and we denote by ψ, its mean value computed at any time beyond the turn is ended and the steady motion reached. Due to this denition, we can construct the following yaw error ratio : which is used to compare the results of the Navier-Stokes ("N-S") simulator and those of the simplied model ("S-M"). These comparisons are summarized in table 4.

e ψ = |ψ N -S -ψ S-M | |ψ N -S | ,
For all the turns we experimented, the error on the yaw does not exceed 10%, which is fully acceptable for any robust feedback control law of the swim as those proposed in [START_REF] Alamir | Feedback design for 3D movement of an eel-like robot[END_REF]. For the purpose of illustration, we give on the gures 15(a)-(c) the time evolutions of the norm of the head velocity, its position vector in the swimming plane, and its yaw angle for the turn T 1.

Example 3 : stopping gaits

This gait is obtained by imposing a forward undulation (from the tail to the head) still of the form (42) and (44) while the sh is moving forward (cf. gure 16). This is in accordance with the experimental observation of anguilliform shes such as the European eel [START_REF] Aerts | A kinematic comparison of forward and backward swimming in the eel Anguilla Anguilla[END_REF]. In nature the role of the body is assisted by that of the pectoral ns to stop the sh.

Numerical results : Taking ( 42), [START_REF] Lamb | Hydrodynamics[END_REF] with the parameters of table 5, while the sh has an initial axial velocity ṙo = V init (0)t 1 (0), gives the results of gures 17(a)-(c) for both the simplied model and the Navier-Stokes based one. This stopping law does not appear to be very ecient when velocity becomes low. In the range of slow motion, amplitudes of deformation should be larger to obtain a clearer stopping. In the case of the animal, the pectoral ns may also be used to actually (and eciently) stop and maintain its body at rest. In this case, the following error ratio was used (where '0' here stands for "X 1 = 0") :

e V 1 = |V 1,N -S (0) -V 1,S-M (0)| |V init | .
In these conditions, the values of velocities and error ratio at the nal time of the simulation t f = 20s are given in table 6.

Finally, because the velocity tends to zero, the same remarks as those evoked for the forward gait F 7 in the low Reynolds apply in this gait.

7.5 Three dimensional gait : the spiral manoeuvre or three-dimensional turn Denition of the internal strain law : This gait consists of applying to the body two constant curvatures, plus a propulsive one normal to the plane of the swim.

k d (t) = f r (t, 0, T )(K f 3 t 3 + K c2 t 2 + K c3 t 3 ), (46) 
where K c2 and K c3 are the constant pitch (along the eld t 2 ) and yaw (along the eld t 3 ) curvatures respectively, while K f 3 is the "forward" yaw curvature of (44) still responsible of the undulating propulsion.

Gait

λ T a 2 a 1 a 0 V init Stopping -1 1 0.5 0.5 0.5 -1.5 Numerical results : The test is obtained by applying [START_REF] Luh | On-line computational scheme for mechanical manipulator[END_REF], with the set of parameters given in the table 7. During the duration T , the body is curved in yaw and pitch. Thus, the sh maintains these curvatures along its body and rolls up along the spiral while propelling (gure 18). As far as the internal dynamics are concerned, gures 19(a)-(f) give the spatial distribution of the three components of the internal torque eld c * = i=3 i=1 C * i t i and the internal force eld n * = i=3 i=1 N * i t i evaluated all along the beam axis at the nal time of the simulation. On the other hand, gures 20(a)-(f) validate the compatibility of the external dynamics with respect to the internal ones. In fact, the computation of the elds n * and c * at the tail boundary is achieved all along the time horizon (here of length 10s) by forward space integrating (17) with the "initial condition" n * (0) = n -, and (19) with the "initial condition" c * (0) = 0. In these conditions, we do obtain the nal conditions : n * (1) = (V 1 m f .v -T f t 1 )(1) = i=3 i=1 N i,d t i and c * (1) = (V 1 I f .ω)(1) = i=3 i=1 C i,d t i of ( 17) and ( 19), as required by the external dynamics. The gure 21 plots the axial and rolling velocities of the head. It is worth noting the non null (equal to 0.31 rad/sec.) average rolling velocity of the head which shows that the eel rolls around its backbone while plunging in a spiral. The high sensitivity of the roll dynamics to any perturbations (here generated by the couplings of the pitch and yaw dynamics and the boundary rolling terms) should require a detailed modeling of k 4 and the design of a specic stabilization controller using pectoral ns. Such a rolling-stabilizer will be included in the feedback controller of the whole 3-D motion of our future eel-like robot. Such feedback laws are today being designed and studied (with crude approximations of k 4 ) by our partners specialized in Automatic Control and are presented in [START_REF] Alamir | Feedback design for 3D movement of an eel-like robot[END_REF]. Finally, the computations of the internal dynamics for all these tests (and others) were used in order to design the dimensions of our prototype and particularly those of the actuators (powers, maximal and nominal torques...).

Gait V 1,N -S V 1,S-M e V 1 (m.

Conclusion

In this article, a solution to the fast dynamics of eel-like robots has been proposed and tested. The solution works faster than the "real-time". It solves the problem of the numerical integration of the sh head dynamics while computing the control torque eld required by the sh motions. The proposed solution is based on a fast algorithm recently proposed in [START_REF] Boyer | Macro-continuous computed torque algorithm for the three-dimensional eel-like robot[END_REF] for dealing with hyper-redundant robots dynamics and an extension of the Large Amplitude Elongated Body Theory of Lighthill to the three-dimensional self propelled swim [START_REF] Boyer | Poincaré-Cosserat equations for Lighthill threedimensional dynamic model of a self propolled eel devoted to robotics[END_REF]. From this initial framework a pure reactive model has been improved by some resistive corrective terms deduced from experimental uid mechanics around obstacles and following a "trial and error tuning strategy" based on comparisons of the simplied model with a Navier-Stokes solver. It is worth noting here that, once this calibration achieved, the coecients of the model were xed denitively. Finally, the comparisons of our calibrated analytical model with the reference are very encouraging since they in fact do not exceed ten per cent for all the hight Reynolds planar cases tested until today.

Nevertheless, the simplied model has now to be validated for the three dimensional swim for which our Navier-Stokes solver is not yet operational. Furthermore, the robot will be equipped in the future with lateral appendages that will mimic the pectoral ns of the sh and special attention will be paid to the roll dynamics which will be dealt with like a stabilization problem for the control feedback loops. The tail and the skin will also be designed and "optimized" with respect to the swimming eciency under the constraints imposed by the actuators performances. This operation will be facilitated by the computation of the actuators power given by the internal dynamics presented in the article. Finally, based on a visual feedback, the remote-control of the prototype will be a rst step towards autonomous navigation. Several experiments will be tested in swimming pools in order to qualify the bio-mimetic solution in terms of eciency and manoeuvrability with respect to more conventional rigid underwater vehicles. 
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 12 Fig.[START_REF] Liu | A numerical study of undulatory swimming[END_REF] The body's trajectory for the forward gait F 1 (1f ps).

  (a) Linear head velocity along e 1 . (b) Linear head velocity along e 2 .(c) Angular head velocity along e3.
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 13 Fig. 13 Comparisons between N-S/S-M for F 1 forward gait.
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 14 Fig.[START_REF] Leroyer | Numerical methods for RANSE simulations of a selfpropelled sh-like body[END_REF] Visualization of all the turning gaits (1f /0.4s).
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 187 Fig.[START_REF] Wolfgang | Hydrodynamics of exible-body swimming motions[END_REF] Three dimensional gait : the spiral (1f/1.5s).Gaitλ T a 2 a 1 a 0 V init K c2 K c3 Spiral 1 1 2 0.5 1 -0.6 1 1Tab. 7 Parameters of the spiral gait.

  (a) C 1 at t = 10s. (b) C 2 at t = 10s. (c) C 3 at t = 10s. (d) N 1 at t = 10s. (e) N 2 at t = 10s. (f) N 3 at t = 10s.
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 19 Fig.[START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF] "X 1 prole" of components of the internal force (n) and torque (c) at t = 10s for the spiral gait.

  Fig. 20 Time evolution of the boundary internal wrench (c T* , n T * ) T (1) (its opposite) given by the forward space integration of[START_REF] Cheng | Computational hydrodynamics of animal swimming : boundary element method and three-dimensional vortex wake structure[END_REF][START_REF] Hill | Large amplitude sh swimming[END_REF], and (c T d , n T d ) T directly given by (16), ∆. stands for their dierences.
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 21 Fig. 21 Time evolution of V 1 (0) and Ω 1 (0).

  

  

  Fig. 10 Extraction of the local friction coecient on a 2-D thin plate where X=Re X 1 // and Y = c f . values of c f as a function of the local axial Reynolds number Re X 1 // (see gure 10) shows that the model leaves the laminar Blasius curve towards the turbulent Von Karman curve at about Re X 1 // = 8.10 4 .
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  Gaits ψ N -S (deg) ψ S-M (deg) e ψ (%)

	T 1	-88	-86	1.96
	T 2	-116	-117	0.9
	T 3	-163	-166	1.75
	T 4	-94	-98	4.27
	T 5	-45	-49	8.09
	T 6	-157	-167	6.57

Tab.

[START_REF] Mason | Experiments in carangiform robotic sh locomotion[END_REF] 

Comparison N-S/S-M for the turning gaits.

Tab. 5 Parameters of the stopping gaits "S.T.I.".
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