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Abstract

This article proposes a dynamic model of the swim of elongated fishes suited to the on-line control of
bio-mimetic eel-like robots. The approach is analytic and can be considered as an extension of the original
reactive "Large-Elongated-Body-Theory" of Lighthill to the three dimensional self propulsion augmented
of a resistive empirical model. While all the mathematical fundamentals are detailed in [1], this article
essentially focuses on the numerical validation and calibration of the model and the study of swimming
gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the fish head
and the field of internal control torque from the knowledge of the imposed internal strain fields. Based
on the Newton-Euler formalism of robots dynamics, this algorithm works faster than real time. As far as
precision is concerned, many tests obtained with several planar and three dimensional gaits are reported
and compared (in the planar case) with a Navier-Stokes solver, devoted until today to the planar swim.
The comparisons obtained are very encouraging since in all the cases we tested, the differences between
our simplified and reference simulations do not exceed ten per cent.
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1 Introduction

In this article, we present some of the results of a multidisciplinary research project where
the purpose is to study, design, build and control an eel-like robot capable of swimming in three
dimensions (see figure 1). As it has been noted in the Bio-Robotics community, eel-like robots
are a promising perspective for improving the efficiency and manoeuverability of modern day un-
derwater vehicles [2]. From the mechanical design point of view, the good performance of these
future under-water bio-mimetic vehicles are due to the high redundancy of their internal kine-
matics with respect to the six dimensional task consisting in moving their head. Until today, two
kinds of fish have essentially focused the attention of robotic researchers : the "carangiform" and
"anguilliform swimmers". Initially introduced by Breder [3], this classification of fish locomotion
is based on the wavelength and the amplitude of the propulsive wave traveling along the body
of the animal. As far as the propulsion principle is properly concerned, the body undulations
generate the thrust by pushing the fluid (with respect to the body) from the head to the caudal
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fin where it is shed into the wake. For carangiform swimmers, due to their rigidity, the wave
propagation is restricted to the rear third part of the body unlike to the anguilliform swimmers
where near 80 % of the body participates in the propulsion. Generally, the anguilliform swimmers
are more agile in confined environments but slower in free waters. Moreover, due to their relative
simplicity compared to anguilliform swimmers most of the technological devices designed today
are inspired by carangiform swimmers (see [4, 5, 6, 7, 8]). These bio-inspired underwater vehicles
are most of the time, made up of a single rigid body connected to an actuated tail. Furthermore,
the tail internal kinematics have few (less than 4) degrees of freedom and are devoted to the
planar swim. However, in [5] and [8], a three dimensional swimming robot is presented where the
previous mentioned architecture is provided with two lateral actuated appendages playing the
role of pectoral fins. In the article presented here, the copied fish is an anguilliform swimmer as
is the eel. The prototype that we are building today (see figures 1(a)-(b)) is a serial assembling
of parallel robots [9], each of them introducing a universal joint between two contiguous rigid
platforms. These platforms mimic the vertebrae of the animal. However, contrary to the case
of a swimming eel in free water, the body can bend in two directions (yaw and pitch) thereby
improving the 3-D agility of the robot (see figures 1(a) and 2) in constrained environments.

et )=

o Al

(a) A vertebra. (b) Serial assemblage of vertebrae.

Fia. 1 — Pictures of the prototype.

In the near future, this actuated skeleton will be covered with a flexible organ playing the
role of the animal’s muscles and skin. This organ will be designed in order to guarantee the
continuity of contact with the fluid while preserving the energy resources of the actuators. In
order to control such a system, we need simple dynamic models which can be used in real time.
This article is directly related to this goal which until today has been a challenging task for
researchers involved in bio-mimetic robotics [10].

In its generality, the problem of the dynamic modeling of the swim consists in deriving the
laws that rule the following string of causalities : The fish deforms its body. Through its geometry
the body imposes unsteady boundary conditions to the fluid flow. This flow exerts on the body
boundaries a field of contact forces which produces at the end a wrench that drives the rigid
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overall fish motion. Hence we see appear three linked and coupled dynamics.

e The internal dynamics of the body deformations which rule the motion of each body particle
with respect to the others.

e The dynamics of the contact forces exerted onto the body boundary and which is in the
absolute a consequence of the Navier-Stokes equations of the fluid.

e The dynamics of the overall rigid motions that we name external dynamics since they rule
the motion of a rigid reference linked to the fish (for instance its head) with respect to an external
Galilean reference frame.

The dynamic modeling of the contact forces (ruled by the dynamics of the ambient medium)
is by far, the most complicated of the three problems mentioned above. From Hydrodynamics to
Biology and Robotics a very rich literature about the subject has grown these last years. Going
further into the details, three great modeling approaches have been proposed depending if they
are based on (from the most realistic to the most simple) : 1°) Navier-Stokes dynamics and finite
volume elements technics (see |11, 12, 13, 14, 15, 16|), 2°) ideal fluid dynamics and boundary
elements methods (see [17, 18, 19, 20]), 3°) analytical fluid mechanics (see [21, 22, 23, 24, 25,
26, 27, 28, 29]). In spite of the increasing performance of embedded computing technologies,
it is today impossible to solve the Navier-Stokes equations or even the inviscid fluid equations
for on-line control purposes. Hence, analytical modeling seems the most realistic solution yet
for robotics control purposes. Historically, Taylor introduced in the 50’s, the first analytical
model of the fish swim [21]. Devoted to the submarine worms, the solution is based on Stokes
equations and models the propulsion through quasisteady lateral drag forces. This model called
resistive by Lighthill (see [25]), is used today for studying the swim of small fishes [30]. Eight
years after the works of Taylor, Wu [26] and Lighthill [22]| independently proposed a model of
the fish swim. The "weaving plate model" of Wu considers the fish as a flexible infinite height
plate moving in an ideal fluid. From an expansion in perturbations of the potential velocity
field (see [31]), Wu computed the hydrodynamics forces exerted onto the plate. This theory
has been used by Wolfgang in [18] to study the tuna swim. As far as the Lighthill works are
concerned, the Elongated Body Theory (E.B.T.) is based on Slender Body Theory (S.B.T.) of
Munk (see [32]) where the three-dimensional flow around an elongated body is approximated by
a stratification of planar lateral flows which are then analytically resolved. First developed for
fishes enduring small perturbations of their body geometry [22], the E.B.T. was then extended
to the case of large amplitude body deformations through the Large Amplitude Elongated Body
Theory (L.A.E.B.T.) of [25]. Till today, many researchers in experimental biology use L.A.E.B.T.
for computing swimming efficiency [25] or hydrodynamic forces [33, 34]. More recently, these
analytical approaches have been enhanced with many results from Geometric Mechanics (see
|27, 28, 29|) which take their origin in the Kirchhoff works about Euler-Lagrange equations
applied to solid bodies plunged in an ideal fluid [35].

In the article here presented, we propose to exploit and validate the results of [1] where,
thanks to the tools of Geometric Mechanics (Lagrangian reduction in particular), the three
dynamic modeling problems previously stated (internal, external and contact dynamics) are
solved under an analytical simplified form suited to the online control of eel-like robots. From
the fluid point of view, the solution proposed is based on the original Elongated Body Theory
(E.B.T.) of Lighthill [22, 23, 24, 25], where the propulsion is modeled through the effect of the
lateral fluid inertial forces applied along the undulating fish body. As far as the body is concerned,
the approach uses a Cosserat beam theory [36] like that of [37], used in the eighties by J.C. Simo
in the framework of the "Geometrically Exact Finite Element Method" [38, 39]. In fact, as in
[30] where a model of the fish muscles is proposed for planar swim, the eel is here considered as a
non-linear beam controlled continuously along its material axis. At the end, the resulting model
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turns out to be a generalization of the Large Amplitude Elongated Body Theory (L.A.E.B.T.) of
[25] in the following ways : 1°) the L.A.E.B.T'. is extended to the three-dimensional swim. 2°) The
swimming dynamics are self-propelled and thus the external dynamics of overall rigid motions
are solved rather than being imposed. 3°) The internal dynamics of the beam-like fish are also
solved in order to compute the torque control law. 4°) The pure reactive model of the Lighthill
theory is completed with a Taylor-like resistive model where the dimensionless coefficients are
calibrated through comparisons with a Navier-Stokes solver modeling the turbulence [14]. Finally,
this solution is based on a fast algorithm recently proposed in [40]. The results are encouraging
since for a set of high Reynolds (= 6.10%) planar swimming gaits including the straight forward
undulation, the turning, and the stopping, the discrepancies between the simplified analytical
model and the Navier-Stokes simulations do not exceed 10 percent, while the analytical model
is sufficiently fast to be used for on-line control.

Yaw f K 1

d b P t s &

II fz f2
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Platforms Cross sections

F1a. 2 — From the hybrid (serial/parallel) robot to the continuous beam-like one.

The article is structured as follows. The model of the internal body and contact dynamics
(where the fluid is considered as ideal), are presented in section 2 and 3 respectively. In section
4, the previous model, which is nothing but an extension of the reactive L.A.E.B.T. to the 3-
D swim is improved of some corrective (resistive and axial) forces which are neglected in the
L.A.E.B.T. The resulting model is exploited in 5 and 6 respectively devoted to the external
dynamics and the fast numerical algorithm. The next section (7) deals with the Navier-Stokes
simulation in subsection 7.1, which is finally used in 7.3 and 7.4 for the calibration and validation
of the analytical model. Lastly, the article ends with section 8 by some concluding remarks and
perspectives.

2 Modeling of the body

In [40] we proposed to model an hyper-redundant robot as a nonlinear Cosserat beam inter-
nally actuated through a torque distribution (cf. figure 3). By "Cosserat-beam" we here mean a
one-dimensional continuum obtained by the continuous assemblage of an infinity of cross sections
of infinitesimal thickness. As it is stipulated in [41], the configuration space (C) of such a medium
is defined by the functional space of curves in the Lie group SE(3) :

C=1{g(): X1 €0,1] — g(X1) € SE3)}, (1)
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Current transformed configuration

IE(OJ fz(XJ fs(XJ

Material space = reference configuration

Fia. 3 — General notations of body kinematics.

where X is the material abscissa along the beam axis and where any ¢g(X;) is represented
by the homogeneous transformation :

Q(Xl) — <R(é(1) 74()1(1>> ’ (2)

with R(X7) and r(X7) the rotation and position operators which map the material frame
(O, Ey, Ey, E3) of figure 3 onto the current mobile frame (G, t1,t2,t3)(X1,t) attached to the X
cross section of mass center G(X1). Corollary to these definitions, we introduce the two following
fields of (spatial) twist from ]0, 1] to se(3) (here identified to R®).

e The twist field of velocities :

== () -2 (%) g

e The twist field of strains :

99 4 k — [ Kiti
X= 59 <v>;<ntz> (4)

where w and v (respectively k and ) are the spatial angular and linear Galilean velocities
(respectively, the spatial "curvature-twist" and "tangent" vectors) along the beam. This frame-
work named "macro-continuous" in [40] is particularly well suited to the modeling of hyper-
redundant robots inspired from snake, trunk and other eels... In fact, in this case the beam axis
models the animal back-bone while its cross-sections stand for its vertebrae. Going further, if the
robot, as in the case here considered, is designed as a serial assemblage of parallel platforms, the
Cosserat beam model is nothing but a continuous asymptotic limit of the hybrid (serial /parallel)

5
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dynamic model [42], where the cross sections play the role of the rigid platforms of the multi-
body robot and X this of a continuous index. Moreover, the internal beam kinematics (Kirchhoff,
Timoshenko...) are merely an infinitesimal version of the robot parallel kinematics. For instance,
in the case here considered, the parallel kinematics introduce between each pair of contiguous
platforms a universal joint where the pitch and yaw degrees of freedom are actuated (cf. figure 2).
Thus the beam kinematics are those of non-twistable and non-extensible Kirchhoff beams, a
model where the following internal kinematic constraints are forced :

= ()= (M) <, o)

with kq(t) = Kq2(t)ta + Kq3(t)ts, the field of internal curvature imposed along the beam by
the internal control torque law. Finally, with these choices, the Lagrangian of the body B can be
defined as L(B) = T'(B) — U(B) where :

e T'(B) is the kinetic energy of the body defined by :

1 1 1
T(B) :/0 ‘Ib dX1 = 2/(; }L.Hb.u Xm, (6)

with T3, and [, the densities (per unit of beam length) of kinetic energy and of inertia tensor,
where the second is defined by :

I, 0
we (B0 .
In (7) my and I, are the linear and angular inertia tensor densities which can be detailed as :

my = ppA Z;z? t; Qt;, Iy = pp ZZ:Z’ Jit; ® t;, with pp the beam volume mass, and A, J; the cross
section area and inertia about ¢;, 1 = 1,2, 3.

e U(B) is the internal body potential energy defined by :

1 1
U(B) = /0 Uy dX; = /0 A(x — xa) dX1. )

Lastly, the following densities of wrenches of kinetic amounts and internal forces are intro-

duced :
gy _@_ Ib.w C o _%
(Pb)_aﬂ_<mb'v>’<”>_A_8x’ ©)

where gy, pp, ¢, n are respectively the density fields of kinetic momentum, kinetic resultant,
internal torque and internal force, with : c.t, = Cy, a0 = 2,3, the two (pitching and yawing)
control torque laws.

3 Dynamic modeling of the anguilliform swim

In this section, we reconsider the three dynamic modeling problems pointed out in the intro-
duction and give to each of them a solution suited to the on-line control.

6
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F1G. 4 — Stratification of the flow in D.

3.1 Modeling the contact of the robot with the medium

In order to achieve our starting goals, the modeling efforts have to be particularly concen-
trated onto the "fluid-fish" contact model. In fact, the Navier-Stokes equations are very difficult
to solve and completely unsuited to robotics. Hence, in order to circumvent this difficulty we
should simplify as much as possible the fluid dynamics while keeping an acceptable accuracy
regarding the robustness of the feedback control law [43]. Coming back to the original ideas of
James Lighthill (see [22]), the contact model here proposed is based on the following two great
simplifications :

e First simplification : The fluid is first of all considered as inviscid, incompressible and is
irrotational everywhere except on a free vortex sheet shedded from the sharp trailing edge of the
caudal fin. Still following Lighthill, the wake is then isolated from the flow laterally surrounding
the fish by a geometric plane 7 orthogonal to the fish backbone and passing through the trailing
edge. Hence, only the fluid contained in the control volume D of figure 4 is considered and the
effects of the wake onto the fish are modeled through the kinetic exchanges with the fluid in D
across the plane .

e Second simplification : Due to the slender geometry of the fish (and the robot), and in
accordance with the L.A.E.B.T., the fluid flow in D is approximated by a stratification of pla-
nar potential flows transverse to the fish back-bone. Hence, in this theory, the original three-
dimensional fluid is replaced by a one-dimensional medium where the fluid slices (sweeping past
the beam cross sections) replace the usual punctual fluid particles of the the 3-D theory (cf.
figure 4).

Finally, this stratification allows one to write the kinetic energy of the fluid contained in D
(denoted by Fp), under the following reduced form :

1 1 1
T(Fp) :/0 T dX) = 2/0 p I dXy, (10)

where T; denotes the density (per unit of beam length) of kinetic energy of the stratified
fluid in D and Iy is this of fluid added mass inertia which can be detailed as :
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Hf:<1f{7f?f>’ (D

where Iy and my are the density field of linear and angular fluid added inertia defined as :
It = ppJpiti @ty and my = py 212::31 Ayit; @t;, pr is the fluid volume mass, and Ay; (respectively
J1) the added cross section area (respectively, inertia) along ¢;,7 = 2,3, (respectively about 7).
Once this kinetic energy density is defined, the ideal fluid dynamics [44], allow one to introduce
the following wrench density of impulses (a concept historically due to Lord Kelvin) :

of _3Tf_<[f.w> 19
(Pf) o myv )’ (12)

which is merely an extension to the three-dimensional swim of the density of lateral impulses
introduced by James Lighthill in his "Large Amplitude Elongated Body Theory" of |25]. Finally,
in accordance with the Kirchhoff theory of solid bodies moving in an irrotational ideal fluid
[35], the fluid dynamics in D are now reduced onto the configuration space of the beam alone.
Furthermore all the effects of the fluid onto the body are modeled through added inertia which will
be reported onto the external and internal dynamics, which is the only subject of our attention
in the following.

3.2 Internal dynamics

The internal dynamics of the eel-like robot are given by the partial differential equations
(p.d.e.’s) of the actuated Cosserat beam immersed in the fluid. In order to derive these equations
we stated in [1] the following variational principle related to all the fluid and body matter
contained in the mobile volume control D :

/: (/Ola(zf T, - ) Xm) dt (13)
[ (o 002

where the terms in brackets model the kinetic exchanges of the fluid in D, with its wake (V7 is
merely the axial velocity of the stratified fluid with respect to the beam) while §W,,; stands for
the virtual work of some corrective forces that we will add later and which are neglected by the

L.A.E.B.T.. In their generality, these forces are defined as a field of wrench density fT = (e'',ma")
on ]0,1[ and two punctual wrenches fI = (cI,nT) and fT = (cI,nT) exerted onto the first and
the last beam cross sections respectively. Finally, applying (13) for any variation v = 6g.g~*

defined on the beam configuration space (1), one finds :

e Field equations :

g op+ oy v X pf . c

8t<pb+pf)+( 0 “\n T

i c+ Vios t1 X (n+ Vipy)

0X4 ( n—i—lef + 0 : (14)
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e Boundary conditions :

<Z>(O):<—&9ft1)(o>+<2_>’ (15)
(761)(1):(—50#1)(1)_(;1)' (16)

Furthermore, by replacing in these equations the kinetic amounts by their expressions as
functions of the beam kinematics and by using the change of variable : n, = n + Vim;.v and
¢ = ¢+ Vilj.w, (14-16) can be rewritten as :

e P.d.e. and boundary conditions (b.c.) of the internal forces :

n, =m0+ w X (mpv) —mys. (wx v) +7, (17)
nx(0) =n_, n.(1) = (Vimgp.v — Tpt1)(1). (18)

e P.d.e. and b.c. of the internal torques :

do=—-tixni+Iw+wxlw+vxmsv+F, (19)
c(0) =0, c.(1) = (Vidp.w)(1), (20)

where from now on, 0./0X; and 0./0t are respectively denoted by a "prime" and a "dot",
and where, because of the rounded nose, we take I¢(0) = 0.

4 Resistive corrections of the (reactive) 3-D Lighthill model

In this section, we add to the previous "reactive model” and through the term W, of
the balance (13), there are two sets of corrections. The first one has for its purpose to improve
the L.A.E.B.T. around the rounded nose where the axial forces, neglected by the S.B.T. (see
[32]), dominate. The second set of corrections approximates the effect of the fluid viscosity. As
far as the first correction is concerned, it depends on geometric shape of the head which here
is the half of an ellipsoid where the axis lengths are 2¢,, 2a, and 2b, along t1(0), t2(0) and
t3(0) respectively. On the other hand, the second correction is based on the experimental fluid
mechanics of cylindrical obstacles moving in a real fluid [45]. Like buoyancy and gravity, all these
corrections are added to the reactive model through the general external load (7,¢,n4,cy). In
fact we first impose that the two tip external wrenches be of the following form :

()= )+ () () =0 (2”

( - ) B _;pfk"< Vl\g'l\tl > (0), (22)

and k, = mcpanb,, the axial "pressure drag" coefficient of the rounded nose. As far as the
second term of (21.a) is concerned, we take :

< ZZZ > - _m"< (tl.(z)';)tl ) (0), (23)

with :
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where m, = pymkasboc, models the added mass axially accelerated with the rounded nose of
the eel. Then, following a Taylor-like resistive modeling approach, the second set of corrections
is imposed through the following density of external resistive wrenches :

Cr 1 ka ||ty
= - 24
() 2W<Zﬁmwmu’ 2
where from experimental fluid mechanics : ks = cim(a® — b%)?; k1 = ¢fP (with P ~

7/2((3/2)(a+b)—+/ ab) standing for the elliptic cross section perimeter), ko = c22a and k3 = ¢320b.
Finally, this last corrective wrench density has to be added to the gravity and buoyancy densities
in such a manner that we finally have, with v, the gravity acceleration field :

< ):<Z>+(%—gm%>' (25)

Lastly, in accordance to experimental fluid mechanics [45], the corrections (22), (23) and (24)
use the following dimension-less coefficients. The coefficients ¢, and k are the "axial pressure
drag" and the axial added mass coefficient of the head, while for the Xj-elliptic cross section,
cp(X1), c1(X1), c2(X1) and c3(X1) are respectively the friction coefficient, the angular drag
coefficient (around ¢1(X7)), and the two linear drag coefficients along t2(X7) and t3(X1).

3| ol

5 External dynamics

From now on, we use the following notations : r(X; = 0) = r,, R(0) = R,, go = ¢(0),
to = (g.g71)(0) for the head frame configuration and twist. Furthermore, we introduce the
co-adjoint maps Adg. and Adj respectively defined for any g given by (2) as :

1 0 . 17
w5 0) g (1 7) -

The external dynamics rule the time-evolution of the external degrees of freedom here para-
meterized by the head configuration g, € SE(3). This evolution being driven by the explicit time
dependent curvature law, the external dynamics can be derived by restating the internal dyna-
mics (14-16) in the weak form of the D’Alembert principle, where the virtual displacement fields
are induced by those of the head frame while the body shape is frozen in its current configuration.
Finally, with 2(X1) = g;'.9(X1), p = pp + ps and 0 = 0}, + 0, we have :

[l (v yone(2)
s (5(2) ()

Then, for numerical purposes, these dynamics have to be rewritten as an explicit form of
the head accelerations. For this, p and ¢ have to be explicitly rewritten in terms of the beam
Galilean accelerations w and v which themselves have to be rewritten as :

() =aa (S )+ (). 28)

10



EMN - IRCCyN Technical Report No.: 07/9/Auto

which defines . and 7, since p, = (wl,v])7 is the spatial twist of the head frame velocities.

Finally, thanks to (28), we can rewrite (27) from simple but tedious computations as the explicit
o.d.e. with respect to the head accelerations :

To-fio = Fo, (29)

where we introduced, if "I = I, +1;" defines the total (body + fluid) density of inertia along
the robot, the 6 x 6 spatial inertia tensor of solid and added masses w.r.t. the nose :

1
0 0
L= [ Ad.1.Ad,, dX ,
/0 pe L-Adpy dX5 + ( 0 mo(ts ®1)(0) ) (30)

1 .
and : IF(,:/]I.<‘”€>dX1+<CT‘>+
0 Ve Ny —

1Ad* wxlw+(vxmpuv)+¢T IX
o M\ wxmpv—mp (wxv)+7 !

¢ oty (5(5) ()

the wrench of inertial (Coriolis-centrifugal, convective...) and external (hydrodynamic, hy-
drostatic...) forces applied onto the fish head.

6 Fast algorithm

Inputs Kd,K'd,[{d

Inverse Internal Forward External 1
Dynamics (Head) Dynamics —jdr jdr
HGint n ”Ge_ﬂ n Y
Algorithm <+
— CE,C3 /ag D
Outputs H, =
&g

Fic. 5 — Macro-continuous fast algorithm.

For the purposes of simulation, design and control it is useful to compute at each instant the
head acceleration fi, and the internal control torque law C = RT.(c — (c.t1)t1) = CoFo + C3E3

11
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from the knowledge of the material internal curvature law Ky(t) = RT.k4(t) = Kaa(t)E2 +
K 3(t)Es. To this purpose, we proposed in [40] an algorithm (see its structure in figure 5) which
solves at each step of a global time integration loop :

e The forward (external) dynamics :

fto = Ge:pt(gmMOaKd(t)»Kd(t)aKd(t)) (32)

e The inverse (internal) dynamics :

C= Gi'ﬂt(gm:uo’/:LOde(t)akd(t)vkd(t))' (33)

Because computing explicitly Gezs and Gype is very involved, we compute them numerically
using the implicit formulation of the Newton-Euler Robot dynamics (see [46, 47, 48|, for more
details) where the actuated beam is considered as a continuous robot and the usual recurrences
on the bodies index of the Newton-Fuler algorithms are replaced by some o.d.e.’s with respect
to the cross section label X;. Such a computation is based on (17,19), (29,30,31) and the follo-
wing continuous kinematics derived from (4) and (5) and their time differential consequences |40] :

e Continuous model of section transformations

R = R.EK4t) ,r = R.E. (34)

e Continuous model of section velocities :

W =REKyt) v =wxr (35)

e Continuous model of section accelerations :

W' = REKy(t)+wx REy(t), 9 =& x7 +wx (wxr). (36)

Now, we have at our disposal all the results required for solving the two Gt and Geypr dyna-
mics. In fact, let us assume that at the current time ¢ of a global time-loop, we know the current
head state (go, o) (), then :

e For computing Gy, the algorithm forward space integrates (i.e. from X; =0 to X; = 1),
(34) with g(0) = go, (35) with u(0) = po, and (36) with (0) = 0. These integrations give
respectively the fields (R, 7), (w,v) and (7e,we). Then, from (30) and (31), both computed by a
similar forward space integration, we finally obtain through the explicit form (29) the head ac-
celeration fi, that is time-integrated twice in order to update the head state (go, tto) (see figure 5).

e For computing Gipt, and because now [i, is known, the algorithm computes through a
forward space integration of (36) with (0) = fi,, the Galilean acceleration fields w and © along
the beam. Then, once these fields are known, it computes the field n* by forward space integrating
(17), and from n*, it integrates (19) in order to compute ¢* and ¢ = ¢* — Vi/s.w. Finally, the
control torque law is deduced from : Co = c.to and C5 = c.t3.

Lastly, once Gegzt and Gy so computed, the time is increased by one step and the algorithm
resumes...
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7 Simulations and comparisons

7.1 Navier-Stokes computational approach

In order to validate the simplified model presented in this article, we chose to use reference
data coming from the resolution of the same fluid-structure problem but solving the 3-D Navier-
Stokes equations. This complex problem of a self-propelled three-dimensional fish on realistic
configurations (high Reynolds number and possible complex geometry) recently received a so-
lution in the context of the ISIS-CFD software package developed by some of the partners of
our project ([13, 14]). In fact, most of the numerical results of fish locomotion immersed in a
viscous flow do not concern "self-propelled" bodies but rather bodies undergoing some imposed
deformations superimposed on a given stationary overall rigid motion or equivalently, a steady
past-flow (see [12]). Nevertheless, [11] proposed a 2-D Navier-Stokes simulator of a self-propelled
deformable body but restricted their investigations to the straightforward swim for very simpli-
fied planar body shapes. [15] also performed some 2-D self-propelled simulations by imposing
internal control torques along the body. Using quite similar methods, the only other 3-D simu-
lations we found in the literature were performed with a low Reynolds number range (around
3000) and then under a laminar flow hypothesis (see [16]).

Given the size and the speed of our robot (leading to Reynolds number of about 6.10° for the
presented results), this hypothesis of laminar flow is not realistic here. In fact, when Reynolds
number increases, the viscous stresses are overcome by the fluid inertial forces, and the laminar
motion becomes unstable. Rapid random velocity and pressure fluctuations appear : turbulence
occurs. The enormous amount of information and the huge grid density required to completely
describe such a turbulent flow on realistic configurations (like those presented here) is totally out
of reach of current computer power yet. An average procedure (introduced by Reynolds in 1895)
of the instantaneous Navier-Stokes equa