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Feynman Integral and one/two slits electrons diffraction : an

analytic study
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School of Theoretical Physics, Dublin Institute for

Advanced Studies, 10 Burlington Road, Dublin 4∗

(Dated: March 14, 2012)

Abstract

In this article we present an analytic solution of the famous problem of diffraction and interference

of electrons through one and two slits (for simplicity, only the one-dimensional case is considered).

In addition to exact formulas, we exhibit various approximations of the electron distribution which

facilitate the interpretation of the results. Our derivation is based on the Feynman path integral

formula and this work could therefore also serve as an interesting pedagogical introduction to

Feynman’s formulation of quantum mechanics for university students dealing with the foundations

of quantum mechanics.
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I. INTRODUCTION

The quantum mechanical problem of diffraction and interference of massive particles is

discussed, though without detailed formulas, by Feynman in his famous lecture notes.1 A

more exact treatment, though still lacking in detail, is in his book with Hibbs.2 It was

first observed experimentally by Jönsson in 1961.3 Moreover, there are also experiments

for neutrons diffraction for single and double slit (see4 and the references therein) and in

quantum optics about interference between photons, (e.g.,5). The crucial point of this paper

is to deal with different optical regimes: the usual Fraunhofer regime, and (less commonly

taught to students) the Fresnel regime and intermediate regimes. Recall that these regimes

depend on the distance between the slits and the screen, where the Fraunhofer regime

corresponds to the case when the distance between the slits and the screen is infinite and

the other regimes appear when this distance is finite, the intermediate and Fresnel regimes

being distinguished by the value of the Fresnel number NF ≡ 2a2/λL, where 2a is the width

of the slit, L is the distance between the screen and the slit and λ is the wave lenght of

the electron. Thus, the purpose of this article is firstly to present the theory of the slit

experiment using the Feynman path integral formulation of quantum mechanics, which may

be of pedagogical interest as compared with the optical Young experiment (Section II, III,

IV), secondly to give an analytical derivation of the final formulas for the intensity of the

electron on the screen, and to analyse these formulas using some approximations based on

the asymptotic behavior of the Fresnel functions6 occurring in these expressions (Section V).

In particular we show how the physical parameters, especially the Fresnel number, affect the

form of the diffraction and interference images. There exists some pedagogical papers about

the multiple slit experiments (see e.g.7 for experimental and numerical discussions and,8 for

theoretical discussions using path integral formulation), but surprisingly the approximations

obtained in the Section V has never been published.

II. FEYNMAN FORMULATION OF QUANTUM MECHANICS AND WHY IT

COULD BE OF INTEREST FOR STUDENTS

Students are often surprised to learn that under certain physical conditions the exper-

imental behavior of matter is wave-like. In fact, this can present a didactical obstacle in
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teaching the first course of quantum mechanics where the principle of wave-particle dual-

ity can appear mysterious, especially with electron diffraction experiments for one- and two

slits. Despite the interesting historical ramifications, students often have many metaphysical

questions which are not answered satisfactorily in introductory quantum mechanics courses.

A formal and complete solution of the electron diffraction problem based on Feynman’s

path integral approach may be helpful in this regard. It could demystify the diffraction

experiment and clarify the principle of duality between wave and particle by analogy with

wave optics. In addition, it could to be an interesting introduction to quantum mechanics

via the Feynman approach based on the notion of path integral rather than the Schrödinger

approach, highlighting the analogy between quantum mechanics and optics. Moreover, there

is an interesting article that has recently been published in the European Journal of Physics

Education that discusses using the Feynman path integral approach in secondary schools to

teach the double slit experiment.9

We begin by outlining Feynman’s formulation of quantum mechanics. We recall some

of the fundamental equations before studying the electron diffraction problem. For more

detail and for historical remarks about this theory, see Ref.2,10,11. We will give an equivalent

formulation to that based on Schrödinger’s equation, but which is related to the Lagrangian

formulation of classical mechanics rather than the Hamiltonian formulation. Consider a

particle of mass m under the influence of an external potential V [x(t), t] where x(t) =

(x(1)(t), x(2)(t), .., x(d)(t)) is the (d-dimensional, d ≥ 1) coordinate of the particle at time t.

The Lagrangian of the particle has the simple form

L[x(t), ẋ(t), t] =
m

2
ẋ(t)2 − V [x(t), t],

where ẋ(t) = dx(t)/dt denotes the velocity of the particle at time t. If the particle is at

position xi at time ti and at xf at time tf > ti then the action is given by

S[xf , tf ; xi, ti] ≡
∫ tf

ti

L[x(t), ẋ(t), t] dt.

In classical mechanics, the total variation of the action δS for small variations of paths at

each point of a trajectory δx(t) is zero, which leads to the Euler-Lagrange equations well

known to students of physics:

d

dt

∂L[x(t), ẋ(t), t]

∂ẋ(α)(t)
− ∂L[x(t), ẋ(t), t]

∂x(α)(t)
= 0, α = 1, .., d .
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However, in quantum mechanics the Least Action Principle as described above is gener-

ally not true. Thus, the concept of classical trajectory is also no longer valid: the position as

a function of time is no longer determined in a precise way. Instead, in quantum mechanics

the dynamics only determines the probability for a particle to arrive at a position xf at

time tf knowing it was at a given position xi at time ti < tf . In other words, knowing the

state of the particle at time ti, denoted by |xi, ti〉, the question is: what is the probability of

transition from the state |xi, ti〉 to the final state |xf , tf〉? This probability is given by the

square of the modulus of the so-called amplitude denoted 〈xf , tf |xi, ti〉, i.e. |〈xf , tf |xi, ti〉|2.
The expression for the amplitude in Feynman’s formulation, though equivalent, differs from

Schrödinger’s firstly because the Lagrangian formulation is more general (there is not nec-

essarily a Hamiltonian) and secondly because it does not refer to waves. In Feynman’s

approach the amplitude of transition is given by an ‘integral’ over all possible trajectories

of a phase whose argument is the action divided by Planck’s constant h̄, symbolically,

K(xf , tf ; xi, ti) =

∫

Dx(t)eiS[x(t)]/h̄,

where K(xf , tf ; xi, ti) ≡ 〈xf , tf |xi, ti〉 is the amplitude, where the action functional is

S[x(t)] ≡
∫ tf

ti

L[x(t), ẋ(t), t]dt,

and where
∫

Dx(t) represent the path measure to be interpreted as follows: the integral

formula is a short-hand for a limit of multiple integrals:

K(xf , tf ; xi, ti) ≡ lim
n→∞

1

(2iπh̄ǫ/m)d/2

∫

Rd

dx1

(2iπh̄ǫ/m)d/2
. . .

∫

Rd

dxn−1

(2iπh̄ǫ/m)d/2

exp

(

i

h̄
ǫ

n
∑

k=1

(
m(xk − xk−1)

2

2ǫ2
− V (xk))

)

, (1)

where ǫ = (tf − ti)/n, x0 = xi et xn = xf .

To understand this formula, we recall some ideas from Feynman’s thesis10. Consider the

particle at a point x at time t. Suppose that the particle changes position by an amount δx

during an infinitesimal time interval δt. The action for this time interval can be written as

S[x+ δ, t+∆t; x, t] ≃ L[x, δx
δt
, t]δt. We define the amplitude of transition between the states

|x, t〉 and |x+ δx, t + δt〉 as

〈x+ δx, t + δt|x, t〉 ≡ 1

(2iπh̄ǫ/m)d/2
e

i
h̄
S[x+δx,t+δt,x,t] ≃ 1

(2iπh̄ǫ/m)d/2
e

i
h̄
L[x, δx

δt
,t]δt.
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FIG. 1. Representation of paths between (xi, ti) and (xf , tf ), for the continuous case at the left

(integral over continuum paths, see (1)) and for the discrete case at the right (integral over discrete

paths before the continuum limit, see (4)). In the left figure, the continuous line is the classical

path, the dashed lines are two paths obtained by variations around the classical paths and the

dotted line is an arbitrary path. In the picture at the right the discrete path for fixed n is shown

together with the classical discrete path.

Then, if we divide the time interval [ti, tf ] into a sequence of small intervals ti = t0 < t1 <

t2 < . . . < tn−1 < tf = tn, where tk = ti + k(tf − ti)/n, the transition amplitudes are

multiplied (because successive events are independent):

〈xf , tf |xi, ti〉 = 〈xf , tf |xn−1, tn−1〉 . . . 〈x2, t2|x1, t1〉〈x1, t1|xi, ti〉 .

Integrating over all possible values of the intermediate positions xk leads to the formula (1),

see Fig. 1. The intuition associated with this formula is as follows: we integrate the phase

over all possible trajectories of the particle; unlike the classical case, the particle can follow

paths that differ from the classical trajectory which minimizes the action. (Paths far away

from the classical path usually make negligible contributions.) This image, though based on

the classical image of a trajectory, illustrates the change in the mathematical description of

the particle (wave-like behaviour) which can no longer be represented as a material point as

its trajectory is not clearly defined with certainty.
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The integral equation describing the evolution of the wave function Ψ(x, t) (i.e. the state

|x, t〉) over time, is given by

Ψ(x′, t′) =

∫

Rd

K(x′, t′; x, t)Ψ(x, t)dx . (2)

It can be shown that the ‘wave function’ Ψ(x, t) is also the solution of Schrödinger’s equation:

− h̄2

2m
∆xΨ(x, t) + V (x, t)Ψ(x, t) = ih̄∂tΨ(x, t), where ∆x is the d-dimensional Laplacian and

∂t ≡ ∂/∂t. For a proof of the equivalence between both formulations, see2,10.

A useful example is the free particle amplitude calculation in one dimension. We simply

replace the Lagrangian by the free Lagrangian, i.e. without potential, and use equation (1)

to get :

K0(x
′, t′; x, t) =

1
√

2iπh̄(t′ − t)/m
e
i
m(x′−x)2

2h̄(t′−t) . (3)

Let us derive formula (3) starting from the general formula (1) applied to a free particle in

1-dimension. We divide the integral, for fixed n, we have to integrate the phase eiS[x0,..,xn]/h̄

over the intermediate positions xj , j = 1, .., n− 1 at times tj = jǫ, ǫ = (tf − ti)/n between

x0 = xi and xn = xf , where S[x0, .., xn] =
m
2

∑n
j=1

(xj−xj−1)2

ǫ
, multiplied by the constant

(

∏n
j=1

√

m/2iπh̄ǫ
)

. We need to calculate, for a fixed number of subdivision n, the multiple

integral:

K
(n)
0 (xn, tn; x0, t0) ≡

1
√

2iπh̄ǫ/m

∫ ∞

−∞

dx1
√

2iπh̄ǫ/m
. . .

∫ ∞

−∞

dxn−1
√

2iπh̄ǫ/m
exp

(

i
n
∑

j=1

(
m(xj − xj−1)

2

2h̄ǫ
)

)

. (4)

We perform the integration one stage at a time (from j = 1 to j = n − 1), using the

well known formula for the convolution of two Gaussians. Given two Gaussians gσν (x) ≡
1√
2πσ2

ν

e
− x2

2σ2
ν , ν = 1, 2, we have:

∫ ∞

−∞
gσ1(x− x′)gσ2(x

′) = g√
σ2
1+σ2

2
(x) . (5)

Hence, in (4), we can calculate the integral with respect to x1, changing variable to x′
1 =

x1 − x0, obtaining:

1
√

2iπh̄ǫ/m

∫ ∞

−∞

dx1
√

2iπh̄ǫ/m
ei

m(x2−x1)
2

2h̄ǫ ei
m(x1−x0)

2

2h̄ǫ

=
1

√

2iπh̄(2ǫ)/m
ei

m(x2−x0)
2

2h̄(2ǫ) .
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Proceeding by recursion, we get (4) :

K
(n)
0 (xn, tn; x0, t0) =

1
√

2iπh̄(nǫ)/m
ei

m(xn−x0)
2

2h̄(nǫ) ,

and hence (3) in the limit n → ∞.

Clearly the 3-dimensional propagator is a product of 1-dimensional propagators:

K
(3D)
0 (−→x ′, t′;−→x , t) = K0(x

′, t′; x, t)K0(y
′, t′; y, t)K0(z

′, t′; z, t)

=

(

m

2iπh̄(t′ − t)

)3/2

e
im|−→x ′−−→x |2

2h̄(t′−t) , (6)

where −→x = (x, y, z) is the position vector in 3-dimensions. Note that for reasons to be

discussed below, we shall not make use of the 3-dimensional propagator in the example of

election diffraction for one and two slits. We remark for completeness, that the propagator

(3) can be calculate by other methods, for example.12

III. APPLICATION TO THE PROBLEM OF ELECTRON DIFFRACTION AND

INTERFERENCE

Consider an electron source at (x, y, z) = (0, 0, 0), and two slits at z = D of width 2a and

centered respectively at x = +b and x = −b, c.f. Fig. 2 . For the diffraction experiment with

a single slit, just replace the system with a slit of size 2a centered at x = 0. At z = D+L is

a screen on which electrons are recorded (or some other recording device). For more details

about the experimental realization of the system, see Ref.7 Note that we neglect gravity for

this problem. In addition, we assume that in the direction orthogonal to the plane in Fig. 2

(the x− z-plane), the slot is long enough to neglect diffraction effects; we consider only the

horizontal (in-plane) deflection of the beam in order not to complicate the formulas.

Then we can reduce the dimension of the propagator (6) by integrating over y:

K
(2D)
0 (−→r ′, t′;−→r , t) =

∫ ∞

−∞
dy K

(3D)
0 (−→x ′, t′;−→x , t)

=
m

2iπh̄(t′ − t)
e
im|−→r ′−−→r |2

2h̄(t′−t) , (7)

where −→r = (x, z) is the position vector in the two dimensional plane orthogonal to the

y-axis.

One can suggest different models for the slits given by distribution functions (e.g. Gaus-

sian functions or ‘door’ functions). We focus on the more realistic model of ‘door’ functions
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(for the Gaussian function model, see Ref.2):

χ[b−a,b+a](w) =











0 w > b+ a, w < b− a

1 b− a < w < b+ a
(8)

The question is: what is the probability of finding the electron at the point x on the screen

knowing that it started at the point (x = 0, z = 0)? More precisely, suppose that the source

emits electrons in large numbers, though small enough so that the distance between elec-

trons is such that interactions can be neglected (no correlations). What is the intensity of

electrons on the screen as a function of position x? The two questions are related since under

these circumstances the motion of the electrons is independent (without mutual interaction,

given that the density of the beam is very low). Indeed, the intensity curve is obtained by

simply multiplying the probability curve for an electron by the number of electrons emitted

per unit time. As explained above formula (1), the probability is given by the square of the

amplitude which we will compute using the propagator (6).

As explained in (7), we now take d = 2. In fact, we now argue that we can reduce

the dimension further. For the z-direction, we really onght to use the two-dimensional

propagator but we can reasonnably consider (as it is usually done7,2) that the propagator is

a product of two independant propagator in both directions x and z, where the last one is

equal to a constant.

To see that, let us discuss the conceptual experiment for one slit.2 We consider that

the problem is divided in two separate motions, one starting from the source to the slit

during the time T and the other one starting from the slit to the screen during the time τ .

Then, we would like to compute the probability amplitude for the electron from the source,

at the intial position (x = 0, z = 0) at the time t = 0, to go to the screen, at the final

position (x, z = D + L) at the time T + τ , knowing that it goes through the slit, at the

intermediate position (w, z = D), b − a < w < b + a, at the time t = T . In fact, by the

laws of quantum mechanics, there is no reasons to separate the motions in two independant

parts, since we don’t know where is the particle at the time T .In other words we don’t know

when the particle goes through the slit. Nevertheless, we can consider that this classical

image is appropriated to study the problem. Indeed, the electron have in the z-direction

the momentum pz = h̄kz (kz is the wave vector), which is related to the classical velocity

8



vz = D/T = L/τ , where D is supposed to be very large compared to the dimensions in

the x-direction, more precisely, x, a, b ≪ D,L. In addition we suppose that the wave lenght

λ, which is approximatively equal to the z-direction wave lenght λ ≃ λz = 2πh̄/(mvz), is

small compared to the distances λ ≪ D,L. Thus, the motion is approximatively classical

in the z-direction and we can separate the problem as two independant motions. Notice

that, quantum-mechanically, it is possible for the particle to go through the slit severals

time before strike the screen,13 but that the probability of this event is relatively small.

Now, let us compute the amplitude of the transition for the particle starting at the point

(x = 0, z = 0) at the time t = 0, going through one slit at the position (w, z = D), b− a <

w < b+a at the time t = T and arriving at the position (x, z = L+D) at the time t = T +τ :

K
(2D)
a,b ((x, L+D), T + τ ;(0, 0), 0) ≡

∫ ∞

−∞
dw χ[b−a,b+a](w)×

K
(2D)
0 ((x, L+D), T + τ ; (w,D), τ)K

(2D)
0 ((w,D), τ ; (0, 0), 0) .

Hence, the explicite formula is given by:

K
(2D)
a,b ((x, L+D),T + τ ; (0, 0), 0) =

ei
mD2

2h̄T

√

2iπh̄T/m

ei
mL2

2h̄τ

√

2iπh̄τ/m

∫ b+a

b−a

dw
ei

m(x−w)2

2h̄τ

√

2iπh̄τ/m

ei
mw2

2h̄T

√

2iπh̄T/m
. (9)

Consequently, the two-dimensional propagator is the product of two independant one-

dimensional propagators in the x and in the z-directions, and since the propagator in z-

direction is a constante (see the right hand sides of (9)):

Kz(L+D, T + τ ; 0, 0) =
ei

mD2

2h̄T

√

2iπh̄T/m

ei
mL2

2h̄τ

√

2iπh̄τ/m
, (10)

we can reduce in the one-dimension’s x-direction the problem:

Kx(x, T + τ ; 0, 0) =

∫ b+a

b−a

dw
ei

m(x−w)2

2h̄τ

√

2iπh̄τ/m

ei
mw2

2h̄T

√

2iπh̄T/m
. (11)

Then we can reduce the dimension of the problem keeping only the x-axis propagator, as

you can see in the References2,7. In the Reference,7 they consider the slits in the x-y-plane,

in two-dimensions and not in one-dimension as we do in the present article.
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If we take the limit a → ∞ (infinite slit), by (9) and by (5) we get:

K(2D)
∞ ((x, L+D), T + τ ; (0, 0), 0) =

ei
mD2

2h̄T

√

2iπh̄T/m

ei
mL2

2h̄τ

√

2iπh̄τ/m

∫ ∞

−∞
dw

ei
m(x−w)2

2h̄τ

√

2iπh̄τ/m

ei
mw2

2h̄T

√

2iπh̄T/m

=
ei

mD2

2h̄T

√

2iπh̄T/m

ei
mL2

2h̄τ

√

2iπh̄τ/m

ei
mx2

2h̄(T+τ)

√

2iπh̄(T + τ/m)
.

Then we find the amplitude corresponding to the transition between the position (x = 0, z =

0) at the time t = 0 and the position (x, z = L +D) at the time t = T + τ , knowing that

the position in the z-direction is D at the time t = T :

K(2D)
∞ ((x, L+D), T + τ ;(0, 0), 0)

= K0,x (x, T + τ ; 0, 0)K0,z (L+D, T + τ ;D, τ)K0,z (D, T ; 0, 0) ,

where Ko,X(X
′, t′;X, t) = (m/2iπh̄(t′ − t))1/2 exp (im(X ′ −X)2/(2h̄(t′ − t))), X = x, z, are

the 1-dimensional free propagators. Then, integrating over the intermediate positions D

between −∞ and +∞, we find the two dimensional free propagator (7) between (x = 0, z =

0) at t = 0 and (x, z = L+D) at the time t = τ + T :
∫ ∞

−∞
dD K(2D)

∞ ((x, z = L+D), T + τ ; (0, 0), 0)

=

∫ ∞

−∞
dD

ei
mD2

2h̄T

√

2iπh̄T/m

ei
m(z−D)2

2h̄τ

√

2iπh̄τ/m

ei
mx2

2h̄(T+τ)

√

2iπh̄(T + τ)/m
,

=

(

m

2iπh̄(T + τ)

)

ei
m(x2+z2)
2h̄(T+τ)

= K
(2D)
0 ((x, z), T + τ ; (0, 0), 0) ,

to get the result, we have used the convolution formula between two Gaussians (5).

IV. THE EXACT RESULT IN TERMS OF A FRESNEL INTEGRAL

Now we want to compute the amplitudes A1(x; a, b), A2(x; a, b) at each point x on the

screen, using the Feynman formulation, and then to add both amplitudes to get the total

amplitude A(x; a, b) and finally to take the square of the modulus, obtaining the probability

P (x; a, b) ≡ |A(x; a, b)|2.
By (11), the formal expression for A1(x; a, b) is :

A1(x; a, b) =

∫ +∞

−∞
dw χ[b−a,b+a](w)K0(x, T + τ ;w, T )K0(w, T ; 0, 0) , (12)

10
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FIG. 2. Schematic depiction of the apparatus with the source, the two-slits and the screen. We

have represented four differents paths going through the slits, from the source to the screen. The

dashed lines represent three classical paths and the thin dashed line a curved path. The Feynman

path Integral formulation allows one to compute the propagator summing over all different paths,

see equations (1), (3), (12), (16), (17), (18).

where T is the travel time of the electron from the source to the slit and τ from the slit to the

screen. Recall that to obtain formula (12), we used a similar argument to that which enabled

us to write the formula (1), writing the integral over all possible paths as the product of

independent amplitudes at successive times. However, in this case, at time T , we have to

integrate over a finite interval (the slit), which results in the more complicated expression

(12) rather than a Gaussian:

A1(x; a, b) =

∫ b+a

b−a

dw
1

√

2iπh̄τ/m
ei

m(x−w)2

2h̄τ
1

√

2iπh̄T/m
ei

mw2

2h̄T . (13)

Notice that :

m(x− w)2

2h̄τ
+

mw2

2h̄T
= (

m

2h̄τ
+

m

2h̄T
)(y − x

1 + τ/T
)2 +

mx2

2h̄(T + τ)
,

11



and hence,

A1(x; a, b) =
ei

mx2

2h̄(T+τ)

√

2iπh̄(T + τ)/m

∫ b+a

b−a

dw

√

T + τ

2iπh̄T τ/m
exp

(

i(
T + τ

2h̄T τ/m
)(w − x

1 + τ/T
)2
)

.

=
ei

mx2

2h̄(T+τ)

√

(2i)2πh̄(T + τ)/m

∫ α
(1)
+ (x)

α
(1)
− (x)

dw′ exp

(

iπ

2
w′2
)

, (14)

where

α±(x; a, b) ≡
√

(T + τ)

πh̄T τ/m
(b± a)− x

√

πh̄τ/m

√

T

T + τ
. (15)

In (14), we see that we have the integral of a Gaussian with complex argument. Decomposing

the integral in real and imaginary parts, we get two integrals of cosine and sine functions

respectively, with second degree polynomial arguments. These integrals are the well-known

Fresnel functions6:

C[u] ≡
∫ u

0

dw cos (
πw2

2
) ,

S[u] ≡
∫ u

0

dw sin (
πw2

2
) .

Thus we obtain explicit analytical expressions for the amplitudes:

A1(x; a, b)=
ei

mx2

2h̄(τ+T )

√

(2i)2πh̄(T + τ)/m
×

(

C[α+(x; a, b)]− C[α−(x; a, b)] + iS[α+(x; a, b)]− iS[α−(x; a, b)]
)

, (16)

A2(x; a, b) = A1(x; a,−b) . (17)

For two slits, we can compute the total amplitude by summing the amplitudes for both slits:

A(x; a, b) = A1(x; a, b) + A2(x; a, b) . (18)

V. PHYSICAL PARAMETERS, APPROXIMATIONS AND INTERPRETATIONS

Recall that the length of the slits and the distance between them is small compared to

the horizontal distances D and L, hence we can assume that the wave length of the electron

λ = h/mv is approximatively given by h/mvz, where vz = L/τ = D/T . We will use this

expression for the wave length in the following.

12



A. Diffraction by a single slit

We can write for the single-slit case (of size 2a), the analogue of the function defined by

(15):

α(x; a) =
√

NF (a)
√

1 + L/D

(

1− x

a

1

1 + L/D

)

(19)

where NF (a) = 2a2/λL is the Fresnel number.

We can now easily compute the single-slit diffraction probability:

P (1Slit)(x; a) = |A1(x; a, b = 0)|2

=
1

2λ(L+D)

(

[C(α(x; a)) + C(α(x;−a))]2 + [S(α(x; a)) + S(α(x;−a))]2
)

. (20)

Let us introduce the following parameters η ≡ 1+L/D and γ = η− 1. We can then plot

the functions (20) for various values of these parameters, see Fig 3. Note that the Fresnel

functions in (20) behave differently depending on the value of the Fresnel number NF (a),

esp. depending on whether it is greater or less than unity. To understand these differences

explicitly, we will analyse the asymptotic behavior of these functions for different regimes of

NF (a) using the known asymptotics of the Fresnel functions: (see6)

C(±u) ≃ ±1

2
+

1

πu
sin

πu2

2
, u ≫ 1 ,

S(±u) ≃ ±1

2
− 1

πu
cos

πu2

2
, u ≫ 1 . (21)

If we have:

x

aη
− 1 ≫ 1

√

NF (a)η
,

we get the asymptotic behavior for the functions defined by (19):

α(x; a) ≪ −1 and α(x;−a) ≫ 1 ⇔ ±α(x;∓a) ≫ 1 , (22)

and so by (21) and (22), the asymptotics formulas of the Fresnel functions in (20) are given

by:

C[α(x;±a)] ≃ ±1

2
+

1

πα(x;±a)
sin (

πα(x;±a)2

2
),

S[α(x;±a)] ≃ ±1

2
− 1

πα(x;±a)
sin (

πα(x;±a)2

2
) . (23)

13



Then we get:

C[α(x; +a)] + C[α(x;−a)] ≃ 1

πα(x; a)
sin (

πα(x; a)2

2
) +

1

πα(x;−a)
sin (

πα(x;−a)2

2
),

S[α(x; +a)] + S[α(x;−a)] ≃ −1

πα(x; a)
cos (

πα(x; a)2

2
)− 1

πα(x;−a)
cos (

πα(x;−a)2

2
) (24)

Applying the Fresnel function asymptotic forms (24) to (20) and using the definition (19),

we deduce than if NF (a) ≪ 1 and if (x − aη)/aη ≫ 1/
√

NF (a)η ⇔ x − aη ≫
√

λL/2, we

get the following asymptotic formula:

P (1Slit)(x; a) ≃ 2γ

π2η2

(

a2

(x
2

η2
− a2)2

+
1

x2

η2
− a2

sin2 (πNF (a)
x

a
)

)

, (25)

Moreover, since NF (a) ≪ 1 and so x
aη

≫ 1, we have another asymptotic form (large

distance on the screen):

P (1Slit)(x; a) ≃ 2γ

π2x2
sin2 (πNF (a)

x

a
), (NF (a) ≪ 1, x/aη ≫ 1) , (26)

In this case we are in the so-called Fraunhofer regime analogous to plane wave diffraction in

optics.14 In fact, notice that the distance between fringes is a/NF (a) = λzL/2a, c.f. Fig 3a.

Both approximations (25) and (26) are also valid if NF (a) is of the order of unity (this is

the intermediate regime) provided that x ≫ aη. This means that the pattern on the screen

far from the position of the first lobe is well approximated by equations (25) and (26), see

Fig. 3b.

On the contrary, if NF (a) ≫ 1, we get different asymptotics given by:

P (1Slit)(x) ≃ γ

η

(

√

NF (a)

2a
+

sin (π
2
NF (a)η(1− x

aη
)2)

2π
√
η(a− x

η
)

+
sin (π

2
NF (a)η(1 +

x
aη
)2)

2π
√
η(a+ x

η
)

)2

+
γ

η

(

√

NF (a)

2a
−

cos (π
2
NF (a)η(1− x

aη
)2)

2π
√
η(a− x

η
)

−
cos (π

2
NF (a)η(1 +

x
aη
)2)

2π
√
η(a + x

η
)

)2

, |x| < aη, (27)

P (1Slit)(x)≃ 2γ

π2η2

(

a2

(x
2

η2
− a2)2

+
1

x2

η2
− a2

sin2 (πNF (a)
x

a
)

)

, |x| > aη , (28)

since the asynptotic behavior of the functions (19) are:

α(x;±a) ≫ 1, if NF (a) ≫ 1 and |x| < aη , (29)

±α(x;∓a) ≫ 1, if NF (a) ≫ 1 and |x| > aη , (30)

14



so if |x| < aη, by (29) and (21), we get:

C[α(x;±a)] ≃ 1

2
+

1

πα(x;±a)
sin (

πα(x;±a)2

2
),

S[α(x;±a)] ≃ 1

2
− 1

πα(x;±a)
sin (

πα(x;±a)2

2
) , (31)

then by (29) and (31), we have:

C[α(x; +a)] + C[α(x;−a)] ≃ 1 +
1

πα(x; a)
sin (

πα(x; a)2

2
) +

1

πα(x;−a)
sin (

πα(x;−a)2

2
),

S[α(x; +a)] + S[α(x;−a)] ≃ 1− 1

πα(x; a)
cos (

πα(x; a)2

2
)− 1

πα(x;−a)
cos (

πα(x;−a)2

2
) ,

then we get (27).

If |x| > aη, by (30) and (21), we get the same approximations as (23) and (24), then we

obtain (28).

Note that the function (27) oscillates rapidly in the interval [−a,+a] (esp. near the edges)

around a constant value NF (a)γ/2a
2η = 1/(λz(L +D)), whereas for |x| > aη, the function

(28) decreases rapidly to 0. Hence P (1Slit) tends at large NF (a) to the ‘door’ function defined

by (8), as might have been expected, see Fig. 3c.

B. Comment about the probability interpretation

We can see that (20) has the physical dimension of the inverse of a length squared

and so it is neither a probability nor a probability density. This apparent problem can,

however, be seen to be a matter of interpretation by looking at the formula (2). Indeed, the

probability density for the diffraction problem is given by |Ψ(x, T + τ)|2, where Ψ(x, T + τ)

is a normalized wave function, i.e.
∫

R1 dx |Ψ(x, T + τ)|2 = 1. Therefore, we must choose an

initial wave function (at time t = 0) which is also normalized so that its square modulus

describes the probability distribution of the electron in the x0 plane. Essentially, what we

have done in (20) is to take the initial wave function to be a delta-function, whereas it should

be the initial probability distribution which is a delta-function, i.e. Ψ(x, 0) should be ‘the

square root of a delta-function’.

To make this clearer, consider for example a wave function at time t = 0 given by

the square root of a Gaussian φσ(x0) = 1
(2πσ2)1/4

e−
x20
4σ2 , so that

∫

R1 dx0 |φσ(x0)|2 = 1 and

|φσ(x0)|2 → δ(x0) as σ → 0. In this way the wave function obtained in (34) is properly

15
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FIG. 3. Diffraction curve for a single-slit, with η = 2. The abscissae are the distances in units of a

and the ordinates are the relative populations. We have NF (a) = 0.01 for the Figure (3a), 0.5 for

(3b), and 100 for (3c).

normalized so as to get the probability of the presence of the electron at the point x on the

screen by taking the square of the modulus. Indeed, the wave function at time t = T , i.e.

at the position of the slits, is given by:

φσ(x, T ) =

∫

R1

dx0 K0(x, T ; x0, 0)φσ(x0) , (32)

where K0(x, T + τ ; x0, 0) is the free propagator defined by the equation (3). Using the

identity
∫

R1

K0(x, T ; x0, 0)
∗K0(x, T ; x

′
0, 0)dx = δ(x0 − x′

0) (33)

we have that φσ(x, T ) remains normalized, i.e.
∫

|φσ(x, T )|2dx = 1.

The wave function at time t = T + τ is given by:

Ψσ(x, T + τ) =

∫ +a

−a

dyK0(x, T + τ ; y, T )φσ(y, T ). (34)

16



Now, the quantity of interest is the conditional probability (density) for the electron to be

at the point x on the screen at the time T + τ given that it was in the interval [−a,+a] at

time T , i.e. given that it passed through the slit:

Pσ (x, T + τ | y ∈ [−a,+a], T ) ≡ |Ψσ(x, T + τ)|2
∫ +a

−a
dy |φσ(y, T )|2

. (35)

after which we wish to take the limit σ → 0. Using the relation (33) one can see that the

condition probability (35) is normalized so that this procedure just amounts to division by

a normalization factor. Thus

∫

R1

dx |Ψσ(x, T + τ)|2 =
∫ +a

−a

dy|φσ(y, T )|2 . (36)

To take the limit σ → 0, note that φσ(x0) = (8πσ2)1/4gσ
√
2(x0) where gσ

√
2(x0) =

e
−

x
′2
0

4σ2
√
4πσ2

is

a normalized Gaussian of variance σ
√
2, and hence gσ

√
2(x0) → δ(x0), σ → 0. Multiplying

top and bottom of (34) by (8πσ2)1/2 we thus have

limσ→0 Pσ (x ∈ A, T + τ |y ∈ [−a,+a], T ) =

= lim
σ→0

(8πσ2)−1/2|Ψσ(x, T + τ)|2

(8πσ2)−1/2
∫ +a

−a
dy|φσ(y, T )|2

,

=

∣

∣

∫

dx0K(x, T + τ ; x0, 0)gσ
√
2(x0)

∣

∣

2

∫ a

−a
dy
∣

∣

∫

dx0K0(y, T ; x0, 0)gσ
√
2(x0)

∣

∣

2

=
|K(x, T + τ ; 0, 0)|2
∫ +a

−a
dy|K0(y, T ; 0, 0)|2

=
λL

2a
P 1Slit(x; a) , (37)

where

K(x, T + τ ; 0, 0) =

∫ +a

−a

dyK0(x, T + τ ; y, T )K0(y, T ; 0, 0) (38)

is the propagator through the slit and P (1Slit)(x; a) = |K(x, T + τ ; 0, 0)|2 is given by (20).

Note that this now has the correct dimension of an inverse length.

C. Interference and diffraction for two slits

Similarly, one can find the two-slit diffraction probability formula using (16), (17) :

P (2Slit)(x; a, b) = P1(x; a, b) + P2(x; a, b) + I12(x; a, b) , (39)

17



with the diffraction terms :

P1(x; a, b) = |A1(x; a, b)|2

=
γ

2λLη

(

[C(α+(x; a, b))− C(α−(x; a, b))]
2 + [S(α+(x; a, b))− S(α−(x; a, b))]

2
)

,

P2(x; a, b) = |A2(x; a, b)|2 = P1(x; a,−b) , (40)

and the interference term :

I12(x; a, b) = A1(x; a, b)A2(x; a, b)
∗ + A2(x; a, b)A1(x; a, b)

∗

=
γ

λLη
([C(α+(x; a, b))− C(α−(x; a, b))][C(α+(x; a,−b))− C(α−(x; a,−b))]

+ [S(α+(x; a, b))− S(α−(x; a, b))][S(α+(x; a,−b))− S(α−(x; a,−b))]) . (41)

Notice that there is an additional term compared to the single-slit case called the interference

term, which is of course quite similar to that in optics.14 This results in a modulation effect

of the curve given by (39) by the sum of the diffraction terms (40) (modulo a multiplicative

factor), see Fig. 4.

Let us define the Fresnel numbers

NF (a) ≡ 2a2/λzL, NF (b) ≡ 2b2/λzL and NF ≡ 2ab/λzL =
√

NF (a)NF (b)/2.

Assume that the distance between the slits is large compared to the size of the slits b ≫ a.

In the experiment considered one fixes both parameters a and b and varies the distance

between the screen and the slits (keeping the same value for η). Notice that because b ≫ a,

NF ≫ 1 does not necessarily imply that NF (a) ≫ 1. Thus we will see that both parameters

play different roles.

First, we establish the asymptotics of (39) for different asymptotic value of NF (a). Under

the condition NF (a) ≪ 1 and at large scales |x − bη| ≫ aη et |x + bη| ≫ aη, we get

similar expressions for P1(x; a, b) and P2(x; a, b) as (26). We have to compute the asymptotic

expression for the interference term. This yields

P (2Slit)(x; a, b) ≃ 2γ

π2(x− bη)2
sin2

(

πNFη(1−
x

bη
)

)

+
2γ

π2(x+ bη)2
sin2

(

πNFη(1 +
x

bη
)

)

− γ

π2(x2 − b2η2)

(

cos (2π(NF +NF (a))
x

a
)− cos (2πNFη(1 +

x

aη
))

)

− γ

π2(x2 − b2η2)

(

cos (2π(NF −NF (a))
x

a
)− cos (2πNFη(1−

x

aη
)))

)

. (42)
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One can observe that there are two phases: the separated phase (NF ≫ 1) and the mixed

phase (NF ≪ 1). At the same time there are the Fresnel and Fraunhofer regimes depending

on the values of NF (a) as explained above. The distinction between two phases is purely

geometric and characterizes the separation respectively mixture of diffraction curves. Indeed,

similar to optics, to observe the two diffraction curves separately, the fringe modulation

λzL/2a must be less than the distance between the origins of the two curves (being centered

in ±bη) because otherwise both curves are mixed. Thus the criterion is written λzL/2a < bη

and therefore NFη > 1. This obviously unlike the case NF ≪ 1 where the two curves are

combined (one added to the other) and where we observe modulation interference.

To see this more formally, consider firstly the case NFη ≪ 1. If |x| > λL/2a then |x| ≫ bη

and we can give an approximation of (42). Indeed, the first two terms are approximately

equal and contribute
4γ

π2x2
sin2(

2πa

λL
x).

In the last two terms we develop the cosine functions and get

2

[

cos (
2πb

λL
x) cos (

2πa

λL
x)− cos (

2πabη

λL
) cos (

2πb

λL
x)

]

≈ −4 cos(
2πb

λL
x) sin2(

2πa

λL
x),

where we used cos (2πabη
λL

) ≃ 1 because NFη ≪ 1. Adding the terms we obtain

P (2slit)(x; a, b) ≃ 8γ

π2x2
sin2 (

2πa

λL
x) cos2 (

2πb

λL
x) . (43)

This is the familiar optical formula: see Reference,14 formula (10) Chap. VIII-6. It shows

that the diffraction curves are modulated by interference fringes. The distance between two

interference fringes is of the order of λzL/2b whereas that between minima of the diffraction

curves is of the order of λzL/2a ≫ λzL/2b, see Fig. 4a, Fig. 4b (far from the first lobe) and

Fig. 4c.

Secondly, consider the case that NFη ≫ 1 (while still assuming NF (a) ≪ 1). If x− bη >

−λL/2a (or x + bη < λL/2a) then (x − bη)−2 ≫ (x + bη)−2 (respectively (x − bη)−2 ≪
(x+ bη)−2) so one of the two terms is negligible in the respective domain. Moreover, in both

cases, the interference term is small compared to the diffraction term since (x − bη)−2 ≫
(x2 − b2η2)−1. The total probability is therefore approximatively equal to a sum of the

two diffraction curves centered at ±bη modulated by an interference term which oscillates
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rapidly with a relatively small amplitude, c.f. Fig 4c :

P (2slit)(x; a, b) ≃ 2γ

π2(x∓ bη)2
sin2

(

πNFη(1∓
x

bη
)

)

+O(
1

x2 − b2η2
), |x± bη| > λL

2a
.(44)

Now, consider NF (a) ≫ 1. Since, unlike the previous cases, we do not need special

conditions for the position x on the screen, we find similar formulas to (27) and (28) for the

direct terms P1 and P2, except that x is replaced by x− bη for the slit centered at +b and

by x+ bη for the slit centered at −b.

For the interference term, inserting the asymptotics (21) into (41) above results in the

sum of two terms, one being the product of differences of cosin-functions, the other the

product of differences of sin-functions. The problem is obviously symmetric about x = 0, so

we need only consider the case x > 0. Then there are again two cases:

(i) |x− b| > a; and (ii) |x− b| < a.

In the first case, both terms decrease like 1/(x+ b)(x− b) with various fluctuating factors as

in (42). In the second case, P1 behaves as in (27) but centred around x = b, and the other

terms are negligible. We do not write the asymptotic formulas explicitly because the result

is simply the observation that in this case we obtain a sum of two separated diffraction

curves in the Fresnel regimes, i.e. curves that tend to the door functions in the limit, see

Fig. 4d.

Notice an interesting behavior of the interference pattern in Fig. 4c, where we see that the

interference amplitudes are very small compared to the diffraction amplitude inside a band

25<
∼ |x/a|

<
∼75, so that there are no interference fringes. This is also discernible in Fig. 4b

of the Reference7 which corresponds to the calculated two-slit diffraction images, where one

can observe the absence of fringes in a band. However, this phenomenon is not apparent on

the corresponding experimental image. This is probably due to the difference in defocussing

between the calculated and experimental images, see Fig. 3b and Fig. 4b of the Reference.7

Indeed, the existence of such a band is quite sensitive to the value of the parameter NF (a).

VI. CONCLUSION AND REMARKS

- We have briefly presented the Feynman approach to quantum mechanics, based on the

Lagrangian formulation of classical mechanics, and the associated change in paradigm in
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FIG. 4. Interference curves (39) from two slits, with b/a = 13, η = 2. The abscissae are the

distances in units of a and the ordinates are the relative populations. We have NF (a) = 0.001 for

the Figure (4a) , 0.015 for (4b), 0.12 for (4c) and 6 for (4d).

the transition from classical to quantum mechanics. We note that in this approach, the

transition from classical to quantum mechanics is quite natural because it relies mostly on

concepts well known to students of analytical mechanics and does not confuse particle and

wave behavior. It thus avoids some metaphysical questions and leads directly to the solution

of the diffraction and interference problems above, and hence to a better understanding of

the quantum mechanics of such quintessential phenomena. This justifies introducing the

Feynman formulation at an early stage especially as the semi-classical approach that is

often used in a first course relies on the idea of quantification of the action. A parallel

introduction of the Feynman integral thus makes sense as it clarifies the passage classical to

quantum.

- Secondly, it seemed of interest to derive explicit formulas for the problem of diffraction

/ interference by one or two slits, and to discuss the results based on the physical parameters

of the system, notably the Fresnel numbers and the distance scale at which we observe on
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the screen. The properties of the diffraction and interference patterns are not apparent from

the exact formulas (20) (39), so it is useful to establish asymptotic forms (25) (26) (27) for

the case of one slit, and (42) for the case of two slits.

We summarize the various conclusions. In case of a single slit:

- If NF (a) ≪ 1, this is the Fraunhofer regime for which the distribution curve is similar

to the plane wave case, c.f. equations (25), (26) and Fig. 3a.

- If NF (a) ≫ 1, this is the Fresnel regime for which the diffraction curve approximates

the form of the slit, c.f. equations (27), (28) and Fig. 3c.

- If NF (a) ∼ 1 one is in the intermediate regime for which there is a spreading around

the center of the electronic distribution and we find the case of Fraunhofer distances on the

screen, c.f. equation (20) and Fig. 3b.

In the case of two slits of width 2a, and separated by a distance 2b with b ≫ a, we

can make similar distinctions as in the one-slit diffraction case but there is also a transition

between two phases dependent on the optical resolution:

- If NF ≪ 1, one is in the mixed phase, i.e. we observe an interference curve modulated

by a diffraction curve for a slit of size a in this case NF (a) ≪ 1, then we are in the regime

of Fresnel, c.f. equations (42), (43) and Fig. 4a.

- If NF ≫ 1, one is in the separated phase, and there are two interference curves (the

interference amplitudes are lower) modulated by the diffraction curves corresponding to both

slits, each curve being centered respectively at ±bη; the shapes of the diffraction curves

modulating the signals of each of the slits depends on NF (a) and are similar to the case of a

single slit as summarized above (with three regimes: Fresnel, Fraunhofer and intermediate),

c.f. (44), Fig. 4c for NF (a) ≪ 1 and Fig. 4d for NF (a) ≫ 1.

- If NF ∼ 1 we observe a separation between two interference curves, modulated by the

diffraction curve corresponding to one slit at the intermediate regime. see Fig. 4b and Eq.

(42).

Note that the fringes corresponding to the diffraction are at a distance λL/2a and those

for interference at about λL/2b. The analytical properties of our asymptotics of two slits

do not permit us to estimate these distances more exactly, but by analogy with optics they

may be considered adequate.
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In perspective, I suggest to take into account the quantum-mechanical way in the z-

direction to solve the problem completely. Indeed, recall that as we discussed in the Section

III, we consider in this article that the problem is separated in two motions, one between the

source and the slits and the other one between the slits and the screen, which is rigorously

not true. This is a challenging task since we have also to compute the loop path corrections,13

but it could be an interesting contribution to the European Journal of Physics.
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