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Abstract

Nonparametric regression quantiles obtained by inverting a kernel estimator of the condi-
tional distribution of the response are long established in statistics. Attention has been, however,
restricted to ordinary quantiles staying away from the tails of the conditional distribution. The
purpose of this paper is to extend their asymptotic theory far enough into the tails. We focus
on extremal quantile regression estimators of a response variable given a vector of covariates in
the general setting, whether the conditional extreme-value index is positive, negative, or zero.
Specifically, we elucidate their limit distributions when they are located in the range of the data
or near and even beyond the sample boundary, under technical conditions that link the speed
of convergence of their (intermediate or extreme) order with the oscillations of the quantile
function and a von-Mises property of the conditional distribution. A simulation experiment and
an illustration on real data were proposed. The real data are the American electric data where
the estimation of conditional extremes is found to be of genuine interest.

Key words : Regression, extreme quantile, extreme-value index, kernel smoothing, von-Mises
condition, asymptotic normality

1 Introduction

Quantile regression plays a fundamental role in various statistical applications. It complements
the classical regression on the conditional mean by offering a more useful tool for examining how
a vector of regressors X ∈ R

p influences the entire distribution of a response variable Y ∈ R.
The nonparametric regression quantiles obtained by inverting a kernel estimator of the conditional
distribution function are used widely in applied work and investigated extensively in theoretical
statistics. See, for example [3, 26, 28, 29], among others. Attention has been, however, restricted
to conditional quantiles having a fixed order α ∈ (0, 1). In the following, the order α has to be
understood as the conditional probability to be larger than the conditional quantile. In result, the
available large sample theory does not apply sufficiently far in the tails.

There are many important applications in ecology, climatology, demography, biostatistics,
econometrics, finance, insurance, to name a few, where extending that conventional asymptotic
theory further into the tails of the conditional distribution is an especially welcome development.
This translates into considering the order α = αn → 0 or αn → 1 as the sample size n goes to
infinity. Motivating examples include the study of extreme rainfall as a function of the geographical
location [13], the estimation of factors of high risk in finance [30], the assessment of the optimal
cost of the delivery activity of postal services [6], the analysis of survival at extreme durations [22],



the edge estimation in image reconstruction [23], the accurate description of the upper tail of the
claim size distribution for reinsurers [2], the analysis of environmental time series with applica-
tion to trend detection in ground-level ozone [27], the estimation of autoregressive models with
asymmetric innovations [11], etc.

There have been several efforts to treat the asymptotics of extreme conditional quantile estima-
tors in semi/parametric and other nonparametric regression models. For example, Chernozhukov [5]
and Jurecková [21] considered the extreme quantiles in the linear regression model and derived their
asymptotic distributions under various distributions of errors. Other parametric models are pro-
posed in [9, 27], where some extreme-value based techniques are extended to the point-process
view of high-level exceedances. A semi-parametric approach to modeling trends in sample ex-
tremes, based on local polynomial fitting of the Generalized extreme-value distribution, has been
introduced in [8]. Hall and Tajvidi [18] suggested a nonparametric estimation of the temporal
trend when fitting parametric models to extreme values. Another semi-parametric method has
been developed in [1], where the regression is based on a Pareto-type conditional distribution of
the response. Fully nonparametric estimators of extreme conditional quantiles have been discussed
in [1, 4], where the former approach is based on the technique of local polynomial maximum
likelihood estimation, while spline estimators are fitted in the latter by a maximum penalized like-
lihood method. Recently, [13, 14] proposed, respectively, a nearest-neighbor type of estimator and
a moving-window based estimator for extreme quantiles of heavy-tailed conditional distributions,
and they established their asymptotic properties.

In the context of kernel-smoothing, the asymptotic theory for quantile regression in the tails is
relatively unexplored and still in full development. Daouia et al. [7] have extended the asymptotics
further into the tails in the particular setting of a heavy-tailed conditional distribution, while [15]
have analyzed the case αn = 1/n in the particular situation where the response Y given X = x
is uniformly distributed. The purpose of this paper is to develop a unified asymptotic theory for
the kernel-smoothed conditional extremes in the general setting where the conditional distribution
can be short, light or heavy-tailed. We will focus on the αn → 0 case, which corresponds to the
class of large quantiles of the upper conditional tail. Similar considerations evidently apply to
the case αn → 1. Specifically, we first obtain the asymptotic normality of the extremal quantile
regression under the ‘intermediate’ order condition nhpαn → ∞ where h = hn → 0 stands for the
bandwidth involved in the kernel smoothing estimation. Next we extend the asymptotic normality
far enough into the ‘most extreme’ order-βn regression quantiles with βn/αn → 0, thus providing a
conditional analog of modern extreme-value results [17]. We also analyze kernel-smoothed Pickands
type estimators of the conditional extreme-value index as in the familiar nonregression case [10].

The paper is organized as follows. Section 2 contains the basic notations and assumptions. Sec-
tion 3 states the main results. Section 4 presents some simulation evidence and practical guidelines.
Section 5 provides a motivating example in production theory, and Section 6 collects the proofs.

2 The setting and assumptions

Let (Xi, Yi), i = 1, . . . , n, be independent copies of a random pair (X,Y ) ∈ R
p×R. The conditional

survival function (csf) of Y given X = x is denoted by F̄ (y|x) = P(Y > y|X = x) and the
probability density function (pdf) of X is denoted by g. We address the problem of estimating
extreme conditional quantiles

q(αn|x) = F̄←(αn|x) = inf{t, F̄ (t|x) ≤ αn},

where αn → 0 as n goes to infinity. In the following we denote by yF (x) = q(0|x) ∈ (−∞,∞]
the endpoint of the conditional distribution of Y given X = x. The kernel estimator of F̄ (y|x) is
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defined for all (x, y) ∈ R
p × R by

ˆ̄Fn(y|x) =

n
∑

i=1

Kh(x−Xi)I{Yi > y}
/

n
∑

i=1

Kh(x−Xi), (1)

where I{.} is the indicator function and h = hn is a nonrandom sequence such that h → 0 as
n → ∞. We have also introduced Kh(t) = K(t/h)/hp where K is a pdf on R

p. In this context,
h is called the window-width. Similarly, the kernel estimators of conditional quantiles q(α|x) are

defined via the generalized inverse of ˆ̄Fn(.|x):

q̂n(α|x) = ˆ̄F←n (α|x) = inf{t, ˆ̄Fn(t|x) ≤ α}, (2)

for all α ∈ (0, 1). Many papers are dedicated to the asymptotic properties of this type of estimator
for fixed α ∈ (0, 1): weak and strong consistency are proved respectively in [28] and [12], asymptotic
normality being established in [29, 26, 3]. In Theorem 1 below, the asymptotic distribution of (2)
is investigated when estimating extreme quantiles, i.e when α = αn goes to 0 as the sample size
n goes to infinity. The asymptotic behavior of such estimators then depends on the nature of the
conditional distribution tail. In this paper, we assume that the csf satisfies the following von-Mises
condition, see for instance [17, equation (1.11.30)]:

(A.1) The function F̄ (.|x) is twice differentiable and

lim
y↑yF (x)

F̄ (y|x)F̄ ′′(y|x)
(F̄ ′)2(y|x) = γ(x) + 1,

where F̄ ′(.|x) and F̄ ′′(.|x) are respectively the first and the second derivatives of F̄ (.|x).
Here, γ(.) is an unknown function of the covariate x referred to as the conditional extreme-value
index. Let us consider, for all z ∈ R, the classical Kz function defined for all u ∈ R by

Kz(u) =

∫ u

1
vz−1dv.

The associated inverse function is denoted by K−1
z . Then, (A.1) implies that there exists a positive

auxiliary function a(.|x) such that,

lim
y↑yF (x)

F̄ (y + t(x)a(y|x)|x)
F̄ (y|x) =

1

K−1
γ(x)(t(x))

, (3)

where t(x) ∈ R is such that 1 + t(x)γ(x) > 0. Besides, (3) implies in turn that the conditional
distribution of Y given X = x is in the maximum domain of attraction (MDA) of the extreme-value
distribution with shape parameter γ(x), see [17, Theorem 1.1.8] for a proof. The case γ(x) > 0
corresponds to the Fréchet MDA and F̄ (.|x) is heavy-tailed while the case γ(x) = 0 corresponds to
the Gumbel MDA and F̄ (.|x) is light-tailed. The case γ(x) < 0 represents most of the situations
where F̄ (.|x) is short-tailed, i.e F̄ (.|x) has a finite endpoint yF (x), this is referred to as the Weibull
MDA.
The convergence (3) is also equivalent to

b(t, α|x) :=
q(tα|x) − q(α|x)
a(q(α|x)|x) −Kγ(x)(1/t) → 0 (4)

for all t > 0 as α → 0, see [17, Theorem 1.1.6]. For all (x, x′) ∈ R
p × R

p, the Euclidean distance
between x and x′ is denoted by d(x, x′). The following Lipschitz condition is introduced:

(A.2) There exists cg > 0 such that
∣

∣g(x) − g(x′)
∣

∣ ≤ cgd(x, x
′).

The last assumption is standard in the kernel estimation framework.

(A.3) K is a bounded pdf on R
p, with support S included in the unit ball of R

p.
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3 Main results

Let B(x, h) be the ball centered at x with radius h. The oscillations of the csf are controlled by

∆κ(x, α) := sup
(x′,β)∈B(x,h)×[κα,α]

∣

∣

∣

∣

F̄ (q(β|x)|x′)
β

− 1

∣

∣

∣

∣

,

where (κ, α) ∈ (0, 1)2. Under assumption (A.1), F̄ (.|x) is differentiable and the associated condi-
tional density will be denoted in the sequel by f(.|x). We first establish the asymptotic normality
of q̂n(αn|x).

Theorem 1. Suppose (A.1), (A.2) and (A.3) hold. Let 0 < τJ < · · · < τ2 < τ1 ≤ 1 where J is a
positive integer and x ∈ R

p such that g(x) > 0. If αn → 0 and there exists κ ∈ (0, τJ ) such that

nhpαn → ∞, nhpαn(h ∨ ∆κ(x, αn))2 → 0,

then, the random vector

{

f(q(αn|x)|x)
√

nhpα−1
n (q̂n(τjαn|x) − q(τjαn|x))

}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix ‖K‖2
2/g(x)Σ(x) where Σj,j′(x) =

(τjτj′)
−γ(x)τ−1

j∧j′ for (j, j′) ∈ {1, . . . , J}2.

Let us remark that, in the particular case where J = 1, τ1 = 1 and αn = α is fixed in (0, 1), we
find back the result of [3, Theorem 6.4]. Theorem 1 can be equivalently rewritten as

Corollary 1. Under the assumptions of Theorem 1, the random vector

{

√

nhpαn
q(αn|x)

a(q(αn|x)|x)

(

q̂n(τjαn|x)
q(τjαn|x)

− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix ‖K‖2
2/g(x)Σ̃(x) where Σ̃j,j′(x) =

(τjτj′)
−(γ(x)∧0)τ−1

j∧j′ for (j, j′) ∈ {1, . . . , J}2.

Moreover [17, Theorem 1.2.5] and [17, page 33] show that

lim
y↑yF (x)

a(y|x)
y

= γ(x) ∨ 0. (5)

Under the assumptions of Theorem 1, and from (5), it follows that q̂n(τjαn|x)/q(τjαn|x) P−→ 1
when n→ ∞ which can be read as a weak consistency result for the considered estimator. Besides,
if γ(x) > 0, then collecting (5) and Corollary 1 shows that the random vector

{

√

nhpαn

(

q̂n(τjαn|x)
q(τjαn|x)

− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix ‖K‖2
2γ

2(x)/g(x)Σ̃(x) where the co-
efficients of the covariance matrix can be simplified Σ̃j,j′(x) = τ−1

j∧j′ for (j, j′) ∈ {1, . . . , J}2. Our
results thus build on and complement the analysis given by [7, Theorem 2] in the case γ(x) > 0.
As pointed out in [7], the condition nhpαn → ∞ implies αn > logp(n)/n eventually. This condi-
tion provides a lower bound on the order of the extreme conditional quantiles for the asymptotic
normality of kernel estimators to hold. We now propose a scheme to estimate extreme conditional
quantiles without this restriction. Let αn → 0 and βn/αn → 0 as n → ∞. Suppose one has γ̂n(x)
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and ân(x) two estimators of γ(x) and a(q(αn|x)|x) respectively. Then, starting from the estima-
tor q̂n(αn|x) of q(αn|x) defined in (2) and making use of (4), it is possible to build an estimator
q̃n(βn|x) of q(βn|x) which is an extreme conditional quantile of higher order than q(αn|x):

q̃n(βn|x) = q̂n(αn|x) +Kγ̂n(x)(αn/βn)ân(x). (6)

Let us consider, for all z ∈ R, the function defined for all u > 1 by

K ′z(u) =
∂Kz(u)

∂z
=

∫ u

1
vz−1 log(v)dv.

The following result provides a quantile regression analog of [17, Theorem 4.3.1].

Theorem 2. Suppose (A.1) holds and let αn → 0, βn/αn → 0. Let q̂n(αn|x) be the kernel
estimator of q(αn|x) defined in (2). Let γ̂n(x) and ân(x) be two estimators of γ(x) and a(q(αn|x)|x)
respectively such that

Λ−1
n

(

γ̂n(x) − γ(x),
ân(x)

a(q(αn|x)|x)
− 1,

q̂n(αn|x) − q(αn|x)
a(q(αn|x)|x)

)t
d−→ ζ(x), (7)

where ζ(x) is a non-degenerate R
3 random vector,

Λn log(αn/βn) → 0 and Λ−1
n

b(βn/αn, αn|x)
K ′γ(x)(αn/βn)

→ 0

as n→ ∞. Then,

Λ−1
n

(

q̃n(βn|x) − q(βn|x)
a(q(αn|x)|x)K ′γ(x)(αn/βn)

)

d−→ c(x)tζ(x),

where c(x)t =
(

1,−(γ(x) ∧ 0), (γ(x) ∧ 0)2
)

.

As an illustration, for all r ∈ (0, 1), let us consider τj = rj−1, j = 1, . . . , J . The following estimators
of γ(x) and a(q(αn|x)|x) are introduced

γ̂RP
n (x) =

1

log r

J−2
∑

j=1

πj log

(

q̂n(τjαn|x) − q̂n(τj+1αn|x)
q̂n(τj+1αn|x) − q̂n(τj+2αn|x)

)

âRP
n (x) =

1

Kγ̂RP
n (x)(r)

J−2
∑

j=1

πjr
γ̂RP

n (x)j(q̂n(τjαn|x) − q̂n(τj+1αn|x)),

where (πj) is a sequence of weights summing to one. Let us highlight that γ̂RP
n (x) is an adaptation

to the conditional case of the Refined Pickands estimator introduced in [10]. The joint asymptotic
normality of (γ̂RP

n (x), âRP
n (x), q̂n(αn|x)) is established in the next theorem.

Theorem 3. Suppose (A.1), (A.2) and (A.3) hold. Let x ∈ R
p such that g(x) > 0. If αn → 0

and there exists κ ∈ (0, τJ ) such that

nhpαn → ∞, nhpαn



h ∨ ∆κ(x, αn) ∨
J
∨

j=1

b(τj, αn|x)





2

→ 0,

as n→ ∞, then the random vector

√

nhpαn

(

γ̂RP

n (x) − γ(x),
âRP

n (x)

a(q(αn|x)|x)
− 1,

q̂n(αn|x) − q(αn|x)
a(q(αn|x)|x)

)t

is asymptotically centered and Gaussian.
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The asymptotic covariance matrix is denoted by S(x). It can be explicitly calculated from (27)
in the proof of Theorem 3, but the result would be too complicated to be reported here. As
a consequence of the two above theorems, one obtains the asymptotic normality of the extreme
conditional quantile estimator built on γ̂RP

n (x) and âRP
n (x):

q̃RP
n (βn|x) := q̂n(αn|x) +Kγ̂RP

n (x)(αn/βn)âRP
n (x).

Corollary 2. Suppose (A.1), (A.2) and (A.3) hold. Let x ∈ R
p such that g(x) > 0. If αn → 0,

βn/αn → 0 and there exists κ ∈ (0, τJ ) such that

nhpαn

(log(αn/βn))2
→ ∞, nhpαn



h ∨ ∆κ(x, αn) ∨
J
∨

j=1

b(τj , αn|x) ∨
b(βn/αn, αn|x)
K ′γ(x)(αn/βn)





2

→ 0,

as n→ ∞, then
√

nhpαn

(

q̃RP

n (βn|x) − q(βn|x)
a(q(αn|x)|x)K ′γ(x)(αn/βn)

)

is asymptotically Gaussian, centered with variance c(x)tS(x)c(x).

Finally, two particular cases of γ̂RP
n (x) may be considered. First, constant weights π1 = . . . πJ−2 =

1/(J − 2) yield

γ̂RP,1
n (x) =

1

(J − 2) log r
log

(

q̂n(τ1αn|x) − q̂n(τ2αn|x)
q̂n(τJ−1αn|x) − q̂n(τJαn|x)

)

.

Clearly, when J = 3, this estimator reduces the kernel Pickands estimator introduced and studied
in [7] in the situation where γ(x) > 0. Second, linear weights πj = 2j/((J − 1)(J − 2)) for
j = 1, . . . , J − 2 give rise to a new estimator

γ̂RP,2
n (x) =

2

(J − 1)(J − 2) log r

J−2
∑

j=1

log

(

q̂n(τjαn|x) − q̂n(τj+1αn|x)
q̂n(τJ−1αn|x) − q̂n(τJαn|x)

)

,

which can be read as the average of J − 1 estimators γ̂RP,1
n (x). These estimators are now compared

on finite sample situations.

4 Some simulation evidence

Subsection 4.1 provides Monte Carlo evidence that the extreme quantile function estimator q̃RP,1
n (βn|x)

is efficient relative to the version q̃RP,2
n (βn|x), whether γ(x) is positive, negative or zero, and out-

performs the estimator q̂n(βn|x) for heavy-tailed conditional distributions. Subsection 4.2 provides
a comparison with the promising local smoothing approach introduced in [1] and [2, Section 7.5.2].
Practical guidelines for selecting the bandwidth h and the order αn are suggested in Subsection 4.3.

4.1 Monte Carlo experiments

To evaluate finite-sample performance of the conditional extreme-value index and extreme quantile
estimators described above we have undertaken some simulation experiments following the model

Yi = G(Xi) + σ(Xi)Ui, i = 1, . . . , n.

The local scale factor, σ(x) = (1 + x)/10, is linearly increasing in x, while the local location
parameter

G(x) =
√

x(1 − x) sin

(

2π(1 + 2−7/5)

x+ 2−7/5

)

6



has been introduced in [25, Section 17.5.1]. The design points Xi are generated following a standard
uniform distribution. The Ui’s are independent and their conditional distribution given Xi = x is
chosen to be standard Gaussian, Student tk(x), or Beta(ν(x), ν(x)), with

k(x) = [ν(x)] + 1, ν(x) =

{(

1

10
+ sin(πx)

)(

11

10
− 1

2
exp{−64(x − 1/2)2}

)}−1

,

and [ν(x)] being the integer part of ν(x). Let us recall that the Gaussian distribution belongs to
the Gumbel MDA, i.e γ(x) = 0, the Student distribution tk(x) belongs to the Fréchet MDA with
γ(x) = 1/k(x) > 0 and the Beta distribution belongs to the Weibull MDA with γ(x) = −1/ν(x) < 0.

In all cases we have q(β|x) = G(x) + σ(x)F̄←U |X(β|x), for β ∈ (0, 1). All the experiments were
performed over 400 simulations for n = 200, and the kernel function K was chosen to be the
Triweight kernel

K(t) =
35

32
(1 − t2)3I{−1 ≤ t ≤ 1}.

Monte Carlo experiments were first devoted to accuracy of the two conditional extreme-value index
estimators γ̂RP,1

n (x) and γ̂RP,2
n (x). The measures of efficiency for each simulation used were the mean

squared error and the bias

MSE{γ̂n(.)} =
1

L

L
∑

ℓ=1

{γ̂n(xℓ) − γ(xℓ)}2 , Bias{γ̂n(.)} =
1

L

L
∑

ℓ=1

{γ̂n(xℓ) − γ(xℓ)}

for γ̂n(x) = γ̂RP,1
n (x), γ̂RP,2

n (x), with the xℓ’s being L = 100 points regularly distributed in [0, 1]. To
guarantee a fair comparison among the two estimation methods, we used for each estimator the pa-
rameters (αn, h) minimizing its mean squared error, with αn ranging over A = {0.1, 0.15, 0.2, . . . , 0.95}
and the bandwidth h ranging over a grid H of 50 points regularly distributed between hmin =
max1≤i<n |X(i+1) −X(i)| and hmax = |X(n) −X(1)|/2, where X(1) ≤ · · · ≤ X(n) are the ordered ob-
servations. The resulting values of MSE and bias are averaged on the 400 Monte Carlo replications
and reported in Table 1 for J ∈ {3, 4, 5} and r ∈ {1/J, (J − 1)/J}.

r = 1/J
MSE Bias

γ̂RP,1
n (x) γ̂RP,2

n (x) γ̂RP,1
n (x) γ̂RP,2

n (x)
Gaussian

J=3 0.2026 0.2026 -0.2415 -0.2415
J=4 0.1915 0.2018 -0.3270 -0.3501
J=5 NaN NaN NaN NaN
Student

J=3 0.2882 0.2882 -0.2964 -0.2964
J=4 0.3350 0.2837 -0.4167 -0.3480
J=5 NaN NaN NaN NaN
Beta

J=3 0.1157 0.1157 -0.0730 -0.0730
J=4 0.0510 0.0597 -0.0811 -0.0750
J=5 NaN NaN NaN NaN

r = (J − 1)/J
MSE Bias

γ̂RP,1
n (x) γ̂RP,2

n (x) γ̂RP,1
n (x) γ̂RP,2

n (x)

0.7656 0.7656 -0.3213 -0.3213
0.6730 0.7960 -0.3455 -0.3747
0.7305 0.9128 -0.4104 -0.4107

1.1109 1.1109 -0.4497 -0.4497
0.9991 1.1997 -0.4384 -0.4597
1.1245 1.3331 -0.5715 -0.5872

0.6737 0.6737 -0.2591 -0.2591
0.5861 0.6891 -0.2338 -0.2432
0.6431 0.8167 -0.2185 -0.2757

Table 1: Performance of γ̂RP,1

n (x) and γ̂RP,2

n (x) – Results averaged on 400 simulations with
n = 200. The results may not be available for r = 1/J and J = 5 since the numerator
{q̂n(τjαn|x) − q̂n(τj+1αn|x)} and the denominator {q̂n(τJ−1αn|x) − q̂n(τJαn|x)} in the definitions
of both estimators might be null when n is not large enough.

It does appear that the results for r = 1/J are superior to those for r = (J − 1)/J , uniformly
in J . For these desirable results, it may be seen that the estimator γ̂RP,1

n (x) performs better than
γ̂RP,2

n (x) in the Gaussian error model, whereas the latter is superior to the former in the Student
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error model. It may be also seen that there is no winner in the Beta error model in terms of both
MSE and bias.

Turning to the performance of the extreme conditional quantile estimators, we consider as above
the two measures of performance

MSE{qn(βn|·)} =
1

L

L
∑

ℓ=1

{qn(βn|xℓ) − q(βn|xℓ)}2 , Bias{qn(βn|·)} =
1

L

L
∑

ℓ=1

{qn(βn|xℓ) − q(βn|xℓ)} ,

for qn(βn|x) = q̂n(βn|x), q̃RP,1
n (βn|x), q̃RP,2

n (βn|x). The averaged MSE and bias of these three
estimators of q(βn|x), computed for βn ∈ {0.05, 0.01, 0.005}, J ∈ {3, 4} and r = 1/J , over 400
Monte Carlo simulations are displayed in Table 2. Here also, we used for each estimator the
smoothing parameters (αn, h) minimizing its MSE over the grid of values A×H described above.
When comparing the estimators q̃RP,1

n (βn|x) and q̃RP,2
n (βn|x) themselves with q̂n(βn|x), the results

(both in terms of MSE and bias) indicate that q̃RP,2
n (βn|x) is slightly less efficient than q̃RP,1

n (βn|x)
in all cases, and that the latter is appreciably more efficient than q̂n(βn|x) only in the Student error
model. It may be also noticed that q̂n(βn|x) is more efficient but not by much (especially when
J = 3) in the Gaussian and Beta error models.

r = 1/J , βn = 0.05
MSE Bias

q̃RP,1
n (βn|x) q̃RP,2

n (βn|x) q̂n(βn|x) q̃RP,1
n (βn|x) q̃RP,2

n (βn|x) q̂n(βn|x)
Gaussian

J=3 0.0110 0.0110 0.0108 0.0001 0.0001 0.0063
J=4 0.0591 0.0796 0.0108 0.1136 0.1131 0.0063
Student

J=3 0.0307 0.0307 0.0771 -0.0134 -0.0134 0.0871
J=4 0.0532 0.0743 0.0771 0.0792 0.0792 0.0871
Beta

J=3 0.0091 0.0091 0.0022 0.0505 0.0505 0.0135
J=4 0.0745 0.1002 0.0022 0.1746 0.1752 0.0135

r = 1/J , βn = 0.01
MSE Bias

q̃RP,1
n (βn|x) q̃RP,2

n (βn|x) q̂n(βn|x) q̃RP,1
n (βn|x) q̃RP,2

n (βn|x) q̂n(βn|x)
Gaussian

J=3 0.0265 0.0265 0.0161 -0.0776 -0.0776 -0.0360
J=4 0.0693 0.0926 0.0161 0.1092 0.1225 -0.0360
Student

J=3 0.1115 0.1115 0.6825 -0.0895 -0.0895 -0.0959
J=4 0.1304 0.3992 0.6825 0.0018 0.1089 -0.0959
Beta

J=3 0.0143 0.0143 0.0034 0.0523 0.0523 0.0212
J=4 0.1038 0.1265 0.0034 0.1964 0.2064 0.0212

r = 1/J , βn = 0.005
MSE Bias

q̃RP,1
n (βn|x) q̃RP,2

n (βn|x) q̂n(βn|x) q̃RP,1
n (βn|x) q̃RP,2

n (βn|x) q̂n(βn|x)
Gaussian

J=3 0.0354 0.0354 0.0203 -0.0981 -0.0981 -0.0524
J=4 0.0719 0.0932 0.0203 0.0982 0.1073 -0.0524
Student

J=3 0.2919 0.2919 0.9782 -0.1623 -0.1623 -0.2605
J=4 0.4569 0.9748 0.9782 -0.1920 0.0280 -0.2605
Beta

J=3 0.0155 0.0155 0.0038 0.0536 0.0536 0.0239
J=4 0.1130 0.1337 0.0038 0.1871 0.2111 0.0239

Table 2: Performance of q̃RP,1
n (βn|x), q̃RP,2

n (βn|x) and q̂n(βn|x) with βn = 0.05 (top), βn = 0.01
(middle) and βn = 0.005 (bottom) – Results averaged on 400 simulations with n = 200.
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4.2 Benchmark nonparametric estimators of γ(x) and q(βn|x)

Alternative modern smoothing techniques were discussed in e.g. [2, Section 7.5]. For comparison,
we focus on the prominent local polynomial maximum likelihood estimation. This contribution
fits a generalized Pareto (GP) model to the exceedances Zx

i = Yj − ux given Yj > ux, for a high
threshold ux, where j denotes the original index of the ith exceedance. Let Nx be the number of all
exceedances over ux and rearrange the indices of the explanatory variable such that Xi denotes the
covariate observation associated with exceedance Zx

i . If g̃(z;σ, γ) stands for the GP density, then
the local polynomial maximum likelihood approach maximizes the kernel weighted log-likelihood
function

LNx(β1, β2) =
1

Nx

Nx
∑

i=1

log g̃



Zx
i ;

p1
∑

j=0

β1j(Xi − x)j,

p2
∑

j=0

β2j(Xi − x)j



Kh(Xi − x)

with respect to (β′1, β
′
2) = (β10, · · · , β1p1 , β20, · · · , β2p2) to get the estimates σ̂GP

n (x) = β̂10 and

γ̂GP
n (x) = β̂20 of the parameter functions σ(x) and γ(x) of the GP distribution fitted to the

exceedances over ux. Note that local polynomial fitting also provides estimates of the derivatives
of σ(x) and γ(x) up to order p1 and p2, respectively. In order to not overload the estimation
procedure, we confine ourselves to p1 = p2 = 0. The Monte Carlo results for γ̂GP

n (.) are reported in
Table 3 (l-h.s). For each simulation, we used the parameters (h, u) that minimize the MSE{γ̂GP

n (.)},
with the bandwidth ranging over the grid H described above and the threshold ranging over the
αth sample quantiles of Y , where α ∈ A. The estimator γ̂GP

n has clearly smaller MSEs than the
γ̂RP

n estimators in the Gaussian and Student error models, but it seems to be less efficient in the
Beta error model than both γ̂RP,1

n and γ̂RP,2
n for J = 4 and r = 1/J . From a theoretical point of

view, it should be clear that the pointwise asymptotic normality of γ̂GP
n (x) is proved in [1] only

in case γ(x) > 0. Moreover, the proof is restricted to the setting where the design points Xi are
deterministic.

MSE{γ̂GP
n } Bias{γ̂GP

n }
Gaussian 0.1324 -0.2671
Student 0.1310 -0.2238
Beta 0.0675 -0.0221

βn = 0.05 βn = 0.01 βn = 0.005
MSE Bias MSE Bias MSE Bias

Gaussian 0.0184 0.0974 0.0278 0.0952 0.0315 0.0861
Student 0.1346 0.1526 0.6924 0.0895 1.0232 -0.0452
Beta 0.0364 0.1578 0.0659 0.2067 0.0786 0.2242

Table 3: Performance of γ̂GP
n and q̂GP

n (βn|·) – Results averaged on 400 simulations with n = 200.

On the other hand, as suggested in [2, Section 7.5.2] and [1], the extreme conditional quantile
q(βn|x) can be estimated by

q̂GP
n (βn|x) := ux +

σ̂GP
n (x)

γ̂GP
n (x)

[

(

n⋆
xhβn

kx

)−γ̂GP
n (x)

− 1

]

where n⋆
xh is the number of observations in [x − h, x + h] and kx is the number of exceedances

receiving positive weight. Table 3 (r-h.s) reports the Monte Carlo estimates obtained by using
in each simulation the parameters (h, u) that minimize the MSE{q̂GP

n (βn|·)}, where h ∈ H and u
ranges over the αth sample quantiles of Y with α ∈ A. In all cases, the regression quantile (RQ)
estimator q̂n(βn|·) do appear to be more efficient than q̂GP

n (βn|·). Compared with the q̃RP
n (βn|·)

estimators (for J = 3 and r = 1/J), q̂GP
n (βn|·) seems to be more efficient only in the Gaussian error

model for βn = 0.005 = 1/n, but not by much. A typical realization of the experiment in each
simulated scenario is shown in Figure 1, where the smoothing parameters of each estimator were
chosen in such a way to minimize its MSE. From a theoretical viewpoint, unlike our estimators
q̂n(βn|x) and q̃RP

n (βn|x), the asymptotic distribution of q̂GP
n (βn|x) is not elucidated yet.
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Figure 1: Typical realizations for simulated samples of size n = 200. From left to right and from
top to bottom, Y |X is Gaussian, Student, Beta. The true quantile function q(βn|·) in red with
βn = 1/n. Its estimators q̂n(βn|·) in magenta, q̃RP,1

n (βn|·) ≡ q̃RP,2
n (βn|·) in black with r = 1/J and

J = 3, and q̂GP
n (βn|·) in green. The observations (Xi, Yi) are depicted as blue points.

4.3 Data-driven rules for selecting the parameters h and αn

The use of the ‘RQ’ estimator q̂n(βn|x) ≡ q̂n(βn|x;h), which relies on the inversion of ˆ̄Fn(·|·),
requires only the choice of the bandwidth h in an interval H of lower and upper bounds given
respectively by, say, hmin := max1≤i<n

(

X(i+1) −X(i)

)

and hmax :=
(

X(n) −X(1)

)

/4. One way to
select this parameter is by employing the cross-validation criterion as in [7] to obtain

hcv = arg min
h∈H

n
∑

i=1

n
∑

j=1

{

I(Yi ≥ Yj) − ˆ̄Fn,−i(Yj |Xi)
}2
,

where ˆ̄Fn,−i(·|·) is the estimator ˆ̄Fn(·|·) computed from the sample {(Xj , Yj), 1 ≤ j ≤ n, j 6= i}.
The empirical procedure of [31] could be used to get the alternative data-driven global bandwidth

hyj = hcv

(

βn(1 − βn)

φ(Φ−1(βn))2

)1/5

,

where φ and Φ stand respectively for the standard normal density and distribution functions.
However, the use of the ‘RP’ estimators q̃RP,i

n (βn|x) and γ̂RP,i
n (x), for i = 1, 2, requires in addition

the selection of an appropriate order αn. To simplify the discussion we set αn at k/n⋆
xh, where

the integer k varies between 1 and n⋆
xh − 1, for each h ∈ H. We also consider the value J = 3 for

which γ̂RP,1
n (x) ≡ γ̂RP,2

n (x) := γ̂RP
n (x;h, k) and q̃RP,1

n (βn|x) ≡ q̃RP,2
n (βn|x) := q̃RP

n (βn|x;h, k), with
r = 1/J . An empirical way to decide what values of (h, k) should one use to compute the estimates
in practice could be the automatic ad hoc data driven-rule employed in [6]. The main idea is to
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evaluate first the estimates, for each x in a chosen grid of values, and then to select the parameters
where the variation of the results is the smallest. This can be achieved in two ways:

Separate parameters’ selection.
Step 1. Select a data-driven global bandwidth h, for example, hcv or hyj .
Step 2. Evaluate q̃RP

n (βn|x;h, k) at k = 1, . . . , n⋆
xh − 1. Then compute the standard deviation of

the estimates over a ‘window’ of (say [
√

n⋆
xh]) successive values of k. The value of k where this

standard deviation is minimal defines the desired parameter.
The same considerations evidently apply to γ̂RP

n (x) and to the ‘benchmark’ estimators γ̂GP
n (x) :=

γ̂GP
n (x;h, k) and q̂GP

n (βn|x) := q̂GP
n (βn|x;h, k), defined in Subsection 4.2, with the covariate depen-

dent threshold being ux := Y x
(n⋆

xh
−k), and Y x

(1) ≤ · · · ≤ Y x
(n⋆

xh
) being the sequence of ascending order

statistics corresponding to the Yi’s such that |Xi − x| ≤ h.
The main difficulty when employing such a separate choice of h and k is that both q̃RP

n (βn|x;hcv, k)
and q̂GP

n (βn|x;hcv, k), respectively γ̂RP
n (x;hcv , k) and γ̂GP

n (x;hcv , k), as functions of k may be so
unstable that reasonable values of k (which would correspond to the true value of q(βn|x), re-
spectively γ(x)) may be hidden in the graphs. In result, the estimators may exhibit considerable
volatility as functions of x itself.

A typical realization is shown in Figure 2 when the bandwidths hcv (left panels) and hyj (right
panels) are used in Step 1. It may be seen that the method affords reasonable estimates in both
Gaussian and Beta error models regarding the difficult curvature of the extreme quantile regression
and the very small sample size n = 200. However, it seems that the method fails in the case of
Student noise, where the superiority of q̃RP

n (βn|·) over both q̂GP
n (βn|·) and q̂n(βn|·), demonstrated

via the Monte Carlo study, is clearly sacrificed. This failure is probably due to the arbitrary choice
(3, 1/3) of the parameters (J, r) in q̃RP

n (βn|·). It might also be seen that, apart from the student
error model, the three estimators q̃RP

n (βn|·), q̂n(βn|·) and q̂GP
n (βn|·) point toward similar results.

Simultaneous parameters’ selection:
Step 1. For each h ∈ H, proceed to Step 2 described in the separate parameters’ selection. Set
the value of k where the standard deviation is minimal to be kxh and calculate the corresponding
estimate q̃RP

n (βn|x;h, kxh).
Step 2. Compute the standard deviation of the estimates q̃RP

n (βn|x;h, kxh) over a window of (say
10) successive values of h. Select the bandwidth where the standard deviation is minimal and then
evaluate the corresponding estimate.

In our simulations, we used a refined grid H of 50 points between min(hcv, hyj − hcv) and
hyj + 2hcv. Any other limit bounds of H could of course be chosen near hcv below and near hyj

above. See Figure 3 for a typical realization in each simulated scenario. Here also the method is
not without disadvantage as can be seen from the case of Student noise, where good results require
a large sample size.

4.4 Concluding remarks

Monte Carlo evidence. The experiments indicate that q̂n(βn|x) is efficient relative to the modern
smoothing estimator q̂GP

n (βn|x) first introduced in [1, 2]. The simulations also indicate that the
performance of the alternative estimator q̃RP,1

n (βn|x) is quite remarkable in comparison with its
analog q̃RP,2

n (βn|x), at least in terms of MSE. In comparison with q̂n(βn|x) and q̂GP
n (βn|x), the

variability and the bias of both q̃RP,1
n (βn|x) and q̃RP,2

n (βn|x) are quite respectable and it seems
that the heavier is the conditional tail, the better the estimators q̃RP

n (βn|x) are. It should be also
clear that q̃RP,1

n (βn|x) and q̃RP,2
n (βn|x) can be improved appreciably by tuning the choice of the

parameters J and r.

Parameters’ selection in practice. The simulations worked reasonably well for our ‘ad hoc’ selection
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Figure 2: Separate parameters’ selection using the same simulated samples as in Figure 1. From
left to right, the used bandwidth is hcv, hyj . From top to bottom, Y |X is Gaussian, Student,
Beta. The true quantile function q(βn|·) in red with βn = 1/n. Its estimators q̂n(βn|·) in magenta,
q̃RP,1
n (βn|·) ≡ q̃RP,2

n (βn|·) in black with r = 1/J and J = 3, and q̂GP
n (βn|·) in green. The observations

(Xi, Yi) are depicted as blue points.

methods except for the heavy-tailed case, corresponding to generally severe events. A sensible prac-
tice would be to verify whether the resulting ‘RP’, ‘GP’ and ‘RQ’ estimators point toward similar
conclusions: the hard question of how to pick out the smoothing parameters (h, k) simultaneously
in an optimal way might thus become less urgent. In contrast, if the estimators look clearly differ-
ent, this might diagnose a heavy-tailed conditional distribution with a great variability in severity:
thereby our technique might be viewed as an exploratory tool, rather than as a method for final
analysis. Doubtless, further work to define a concept of selecting appropriate values for the crucial
parameters (J, r) in the q̃RP

n (βn|x) estimators will yield new refinements.

The case of multiple covariates. We have discussed the asymptotic distributional properties of both
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Figure 3: Simultaneous parameters’ selection using the same simulated samples as above. From left
to right and from top to bottom, Y |X is Gaussian, Student, Beta. The true quantile function q(βn|·)
in red with βn = 1/n. Its estimators q̂n(βn|·) = q̂n(βn|·, hcv) in magenta, q̃RP,1

n (βn|·) ≡ q̃RP,2
n (βn|·)

in black with (r, J) = (1/3, 3), and q̂GP
n (βn|·) in green. The (Xi, Yi)’s are depicted as blue points.

estimators q̂n(βn|x) and q̃RP
n (βn|x) in detail in Sections 2-3 for multiple regressors X ∈ R

p, but our
contributions are probably only of a theoretical value in the case p > 1. Indeed, as in the ordinary
setting where the quantile order does not depend on the sample size, the kernel-smoothing method
suffers from the ‘curse of dimensionality’. In our setting of extreme quantile regression, the curse
is exacerbated by several degrees of magnitude and drastically increases in higher dimensions. To
overcome this vexing defect, one can use dimension reduction techniques such as ADE (Average
Derivative Estimator), see for instance [19]. Nevertheless, the theoretical properties of such methods
are not yet established in the extreme framework.

5 Data example

Data on 123 American electric utility companies were collected and the aim is to investigate the
economic efficiency of these companies (see, e.g., [16]). A possible way to measure this efficiency
is by looking at the maximum level of produced goods which is attainable for a given level of
inputs-usage. From a statistical point of view, this problem translates into studying the upper
boundary of the set of possible inputs X and outputs Y , the so-called cost/econometric frontier
in production theory. Hendricks and Koenker [20] stated: “In the econometric literature on the
estimation of production technologies, there has been considerable interest in estimating so called
frontier production models that correspond closely to models for extreme quantiles of a stochastic
production surface”. The present paper may be viewed as the first ‘purely’ nonparametric work to
actually investigate theoretically the idea of Hendricks and Koenker.

For our illustration purposes, we used the measurements on the variable Y = log(Q), with Q
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being the production output of a firm, and the variable X = log(C), with C being the total cost
involved in the production. Figure 4 shows the n = 123 observations, together with estimated
extreme conditional quantiles q̂n(βn|x), q̂GP

n (βn|x) and q̃RP,1
n (βn|x) = q̃RP,2

n (βn|x) at r = 1/J with
J = 3. Given the small sample size, it was enough to use βn = 1/n in describing the conditional
distribution tails. For selecting the window width h and the number k of extremes, we maintained
the automatic empirical data-driven rules described above. It appears that the extreme conditional
quantile estimates are similar for both simultaneous (top) and separate (bottom) selection methods.
Following their evolution, it may be seen that the American electric utility data do not correspond to
the situation hoped for by the practitioners of a heavily short-tailed production process. Indeed, one
may distinguish between two different behaviors of the extreme regression quantiles: They indicate
a short-tailed conditional distribution for companies working at (transformed) input-factors larger
than, say, 2. In contrast, the tail distribution for the smallest companies with inputs Xi < 2 seems
to be moderately heavy. Therefore, the theoretical economic assumption that producers should
operate on the upper boundary of the joint support of (X,Y ) rather than on its interior is clearly
not fulfilled here, revealing a certain lack of production performance in this sector of activity. The
estimated graph of q̃RP,1

n (βn|x), q̂n(βn|x) or q̂GP
n (βn|x) might be interpreted as the set of the most

efficient firms. It is then clear that the firms achieve significantly lesser output than that predicted
by the extremal quantile frontiers. This indicates a relative economic inefficiency especially in the
population of the (sparse) smallest companies in terms of inputs.

6 Appendix: Proofs

6.1 Preliminary results

We begin with a homogeneous property of the quantile function.

Lemma 1. Suppose (A.1) holds. If αn → 0 as n→ ∞, then,

lim
n→∞

q(ξαn|x)
q(αn|x)

= ξ−(γ(x)∨0),

for all ξ > 0.

Proof. From (4), we have

q(ξαn|x)
q(αn|x)

= 1 +Kγ(x)(1/ξ)
a(q(αn|x)|x)
q(αn|x)

(1 + o(1))

and the conclusion follows using (5).

The following lemma states that the convergence in (3) is uniform.

Lemma 2. Under (A.1), if zn(x) ↑ yF (x) as n→ ∞, then for all sequence of functions tn(x) such
that tn(x) → t0(x) as n→ ∞ where t0(x) is such that there exists η > 0 for which 1+γ(x)t0(x) ≥ η
then,

lim
n→∞

F̄ (zn(x) + tn(x)a(zn(x)|x)|x)
F̄ (zn(x)|x) =

1

K−1
γ(x)(t0(x))

.

Proof. Since tn(x) → t0(x) as n → ∞, for all ε1 > 0 such that |γ(x)|ε1 < η, there exists N1 ≥ 0
such that for all n ≥ N1, t0(x) − ε1 ≤ tn(x) ≤ t0(x) + ε1. Since a(zn(x)|x) > 0 and F̄ (.|x) is a

14
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Figure 4: Scatterplot of the American electric utility data (blue points). Results obtained via the
simultaneous (top) and separate (bottom) selection methods for βn = 1/n: the estimator q̂n(βn|·)
is drawn in magenta with hyj (top) and hcv (bottom), q̂GP

n (βn|·) in green and q̃RP,1
n (βn|·) in black

with (r, J) = (1/3, 3).

decreasing function, we have:

F̄ (zn(x) + (t0(x) + ε1)a(zn(x)|x)|x)
F̄ (zn(x)|x) ≤ F̄ (zn(x) + tn(x)a(zn(x)|x)|x)

F̄ (zn(x)|x)

≤ F̄ (zn(x) + (t0(x) − ε1)a(zn(x)|x)|x)
F̄ (zn(x)|x) .

Now, since |γ(x)|ε1 < η, it is easy to check that 1 + γ(x)(t0(x) + ε1) ∧ 1 + γ(x)(t0(x) − ε1) > 0.
Hence, under (A.1), for all ε2 > 0, there exists N2 ≥ 0 such that for all n ≥ N2

1 − ε2

K−1
γ(x)(t0(x) + ε1)

≤ F̄ (zn(x) + tn(x)a(zn(x)|x)|x)
F̄ (zn(x)|x) ≤ 1 + ε2

K−1
γ(x)(t0(x) − ε1)

.

Since ε1 and ε2 can be chosen arbitrarily small, this concludes the proof.

Let us remark that the kernel estimator (1) can be rewritten as ˆ̄Fn(y|x) = ψ̂n(y, x)/ĝn(x) where

ψ̂n(y, x) =
1

n

n
∑

i=1

Kh(x−Xi)I{Yi > y}

15



is an estimator of ψ(y, x) = F̄ (y|x)g(x) and ĝn(x) is the classical kernel estimator of the pdf g(x)
defined by:

ĝn(x) =
1

n

n
∑

i=1

Kh(x−Xi).

Lemma 3 gives standard results on the kernel estimator (see [24] for a proof) whereas Lemma 4 is
dedicated to the asymptotic properties of ψ̂n(y, x).

Lemma 3. Suppose (A.2), (A.3) hold. If nhp → ∞, then, for all x ∈ R
p such that g(x) > 0,

(i) E(ĝn(x) − g(x)) = O(h),

(ii) var(ĝn(x)) =
g(x)‖K‖2

2

nhp
(1 + o(1)).

Therefore, under the assumptions of the above lemma, ĝn(x) converges to g(x) in probability.
Let us introduce some further notations. In the following, yn(x) is a sequence such that yn(x) ↑
yF (x) and yn,j(x) = yn(x)+Kγ(x)(1/τj)a(yn|x)(1+ o(1)) for all j = 1, . . . ,K. Recall that 0 < τJ <
· · · < τ2 < τ1 ≤ 1. Moreover, the oscillations of the csf are controlled by

ωn(x) := max
j=1,...,J

sup
x′∈B(x,h)

∣

∣

∣

∣

F̄ (yn,j(x)|x′)
F̄ (yn,j(x)|x)

− 1

∣

∣

∣

∣

.

Lemma 4. Suppose (A.1), (A.2) and (A.3) hold and let x ∈ R
p such that g(x) > 0. If ωn(x) → 0

and nhpF̄ (yn(x)|x) → ∞ then,

(i) E(ψ̂n(yn,j(x), x)) = ψ(yn,j(x), x) (1 +O(ωn(x)) +O(h)), for j = 1, . . . , J .

(ii) The random vector

{

√

nhpψ(yn(x), x)

(

ψ̂n(yn,j(x), x) − E(ψ̂n(yn,j(x), x))

ψ(yn,j(x), x)

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix ‖K‖2
2V where Vj,j′ = τ−1

j∧j′ for

(j, j′) ∈ {1, . . . , J}2.

Proof. (i) Since the (Xi, Yi), i = 1, . . . , n are identically distributed, we have

E(ψ̂n(yn,j(x), x)) =

∫

Rp

Kh(x− t)F̄ (yn,j(x)|t)g(t)dt =

∫

S
K(u)F̄ (yn,j(x)|x− hu)g(x − hu)du,

under (A.3). Let us now consider

|E(ψ̂n(yn,j(x), x))−ψ(yn,j(x), x)| ≤ F̄ (yn,j(x)|x)
∫

S
K(u)|g(x − hu) − g(x)|du (8)

+ F̄ (yn,j(x)|x)
∫

S
K(u)

∣

∣

∣

∣

F̄ (yn,j(x)|x− hu)

F̄ (yn,j(x)|x)
−1

∣

∣

∣

∣

g(x−hu)du. (9)

Under (A.2), and since g(x) > 0, we have

(8) ≤ F̄ (yn,j(x)|x)cgh
∫

S
d(u, 0)K(u)du = ψ(yn,j(x), x)O(h), (10)
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and, in view of (10),

(9) ≤ F̄ (yn,j(x)|x)ωn(x)

∫

S
K(u)g(x− hu)du = F̄ (yn,j(x)|x)ωn(x)g(x)(1 + o(1))

= ψ(yn,j(x), x)ωn(x)(1 + o(1)). (11)

Combining (10) and (11) concludes the first part of the proof.
(ii) Let β 6= 0 in R

J , Λn(x) = (nhpψ(yn(x), x))−1/2, and consider the random variable

Ψn =

J
∑

j=1

βj

(

ψ̂n(yn,j(x), x) − E(ψ̂n(yn,j(x), x))

Λn(x)ψ(yn,j(x), x)

)

=
n
∑

i=1

1

nΛn(x)







J
∑

j=1

βjKh(x−Xi)I{Yi ≥ yn,j(x)}
ψ(yn,j(x), x)

− E





J
∑

j=1

βjKh(x−Xi)I{Yi ≥ yn,j(x)}
ψ(yn,j(x), x)











:=

n
∑

i=1

Zi,n.

Clearly, {Zi,n, i = 1, . . . , n} is a set of centered, independent and identically distributed random
variables with variance

var(Zi,n) =
1

n2h2pΛ2
n(x)

var





J
∑

j=1

βjK

(

x−Xi

h

)

I{Yi ≥ yn,j(x)}
ψ(yn,j(x), x)



 =
1

n2hpΛ2
n(x)

βtBβ,

where B is the J × J covariance matrix with coefficients defined for (j, j′) ∈ {1, . . . , J}2 by

Bj,j′ =
Aj,j′

ψ(yn,j(x), x)ψ(yn,j′(x), x)
,

Aj,j′ =
1

hp
cov

(

K

(

x−X

h

)

I{Y ≥ yn,j(x)}, K
(

x−X

h

)

I{Y ≥ yn,j′(x)}
)

= ‖K‖2
2E

(

1

hp
Q

(

x−X

h

)

I{Y ≥ yn,j(x) ∨ yn,j′(x)}
)

− hp
E(Kh(x−X)I{Y ≥ yn,j(x)})E(Kh(x−X)I{Y ≥ yn,j′(x)}),

with Q(.) := K2(.)/‖K‖2
2 also satisfying assumption (A.3). As a consequence, the three above

expectations are of the same nature. Thus, remarking that, for n large enough, yn,j(x)∨ yn,j′(x) =
yn,j∨j′(x), part (i) of the proof implies

Aj,j′ = ‖K‖2
2ψ(yn,j∨j′(x), x) (1 +O(ωn(x)) +O(h))

− hpψ(yn,j(x), x)ψ(yn,j′(x), x) (1 +O(ωn(x)) +O(h))

leading to

Bj,j′ =
‖K‖2

2

ψ(yn,j∧j′(x), x)
(1 +O(ωn(x)) +O(h)) − hp (1 +O(ωn(x)) +O(h))

=
‖K‖2

2

ψ(yn,j∧j′(x), x)
(1 + o(1)),

since ψ(yn,j∧j′(x), x) → 0 as n→ ∞. Now, from Lemma 2,

lim
n→∞

ψ(yn,j∧j′(x), x)

ψ(yn(x), x)
=

1

K−1
γ(x)(Kγ(x)(1/τj∧j′))

= τj∧j′

17



entailing

Bj,j′ =
‖K‖2

2Vj,j′

ψ(yn(x), x)
(1 + o(1)),

and therefore, var(Zi,n) ∼ ‖K‖2
2β

tV β/n, for all i = 1, . . . , n. As a preliminary conclusion, the
variance of Ψn converges to ‖K‖2

2β
tV β. Consequently, Lyapounov criteria for the asymptotic

normality of sums of triangular arrays reduces to
∑n

i=1 E |Zi,n|3 = nE |Z1,n|3 → 0. Remark that
Z1,n is a bounded random variable:

|Z1,n| ≤
2‖K‖∞

∑J
j=1 |βj |

nΛn(x)hpψ(yn,J , x)
=

2

τJ
‖K‖∞

J
∑

j=1

|βj |Λn(x)(1 + o(1))

and thus,

nE |Z1,n|3 ≤ 2

τJ
‖K‖∞

J
∑

j=1

n|βj |Λn(x)var(Z1,n)(1 + o(1))

=
2

τJ
‖K‖∞‖K‖2

2

J
∑

j=1

|βj |βtV βΛn(x)(1 + o(1)) → 0

as n → ∞. As a conclusion, Ψn converges in distribution to a centered Gaussian random variable
with variance ‖K‖2

2β
tV β for all β 6= 0 in R

p. The result is proved.

Let us now focus on the estimation of small tail probabilities F̄ (yn(x)|x) when yn(x) ↑ yF (x)
as n → ∞. The following result provides sufficient conditions for the asymptotic normality of
ˆ̄Fn(yn(x)|x).
Proposition 1. Suppose (A.1), (A.2) and (A.3) hold and let x ∈ R

p such that g(x) > 0. If
nhpF̄ (yn(x)|x) → ∞ and nhpF̄ (yn(x)|x)(h ∨ ωn(x))2 → 0, then, the random vector

{

√

nhpF̄ (yn(x)|x)
(

ˆ̄Fn(yn,j(x)|x)
F̄ (yn,j(x)|x)

− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix ‖K‖2
2/g(x)V where Vj,j′ = τ−1

j∧j′ for

(j, j′) ∈ {1, . . . , J}2.

Proof of Proposition 1. Keeping in mind the notations of Lemma 4, the following expansion
holds

Λ−1
n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j(x)|x)
F̄ (yn,j(x)|x)

− 1

)

=
T1,n + T2,n − T3,n

ĝn(x)
, (12)

where

T1,n = g(x)Λ−1
n (x)

J
∑

j=1

βj

(

ψ̂n(yn,j(x), x) − E(ψ̂n(yn,j(x), x))

ψ(yn,j(x), x)

)

T2,n = g(x)Λ−1
n (x)

J
∑

j=1

βj

(

E(ψ̂n(yn,j(x), x)) − ψ(yn,j(x), x)

ψ(yn,j(x), x)

)

T3,n =





J
∑

j=1

βj



Λ−1
n (x) (ĝn(x) − g(x)) .
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Let us highlight that assumptions nhpF̄ (yn(x)|x)ω2
n(x) → 0 and nhpF̄ (yn(x)|x) → ∞ imply that

ωn(x) → 0 as n→ ∞. Thus, from Lemma 4(ii), the random term T1,n can be rewritten as

T1,n = g(x)‖K‖2

√

βtV βξn, (13)

where ξn converges to a standard Gaussian random variable. The nonrandom term T2,n is controlled
with Lemma 4(i):

T2,n = O(Λ−1
n (x)(h+ ∆(yn(x), x)) = O

(

(nhpF̄ (yn(x)|x))1/2(h ∨ ωn(x))
)

= o(1). (14)

Finally, T3,n is a classical term in kernel density estimation, which can be bounded by Lemma 3:

T3,n = O(hΛ−1
n (x)) +OP (Λ−1

n (x)(nhp)−1/2)

= O
(

nhp+2F̄ (yn(x)|x)
)1/2

+OP (F̄ (yn(x)|x))1/2 = oP (1). (15)

Collecting (12)–(15), it follows that

ĝn(x)Λ−1
n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j(x)|x)
F̄ (yn,j(x)|x)

− 1

)

= g(x)‖K‖2

√

βtV βξn + oP (1).

Finally, ĝn(x)
P−→ g(x) yields

√

nhpF̄ (yn(x)|x)
J
∑

j=1

βj

(

ˆ̄Fn(yn,j(x)|x)
F̄ (yn,j(x)|x)

− 1

)

= ‖K‖2

√

βtV β

g(x)
ξn + oP (1)

and the result is proved.

The last lemma establishes that Kγ̂n(x)(rn) inherits from the convergence properties of γ̂n(x).

Lemma 5. Suppose ξ
(γ)
n (x) := Λ−1

n (γ̂n(x) − γ(x)) = OP(1), where Λn → 0. Let rn ≥ 1 or rn ≤ 1
such that Λn log(rn) → 0. Then,

Λ−1
n

(

Kγ̂n(x)(rn) −Kγ(x)(rn)

K ′γ(x)(rn)

)

= ξ(γ)
n (x)(1 + oP(1)).

Proof. Since γ̂n(x)
P−→ γ(x), a first order Taylor expansion yields

Kγ̂n(x)(rn) = Kγ(x)(rn) + Λnξ
(γ)
n (x)K ′γ̃n(x)(rn),

where γ̃n(x) = γ(x) + ΘnΛnξ
(γ)
n (x) with Θn ∈ (0, 1). As a consequence

Λ−1
n

(

Kγ̂n(x)(rn) −Kγ(x)(rn)

K ′γ(x)(rn)

)

= ξ(γ)
n (x)

K ′γ̃n(x)(rn)

K ′γ(x)(rn)

= ξ(γ)
n (x)

(

1 +

∫ rn

1 (sγ̃n(x)−γ(x) − 1)sγ(x)−1 log(s)ds
∫ rn

1 sγ(x)−1 log(s)ds

)

.

Suppose for instance rn ≥ 1. The assumptions yield (log rn)(γ̃n(x) − γ(x))
P−→ 0 and thus, for n

large enough, with high probability,

sup
s∈[1,rn]

|(sγ̃n(x)−γ(x) − 1)| ≤ 2(log rn)|γ̃n(x) − γ(x)| = oP(1).

As a conclusion,

Λ−1
n

(

Kγ̂n(x)(rn) −Kγ(x)(rn)

K ′γ(x)(rn)

)

= ξ(γ)(x)(1 + oP(1))

and the result is proved. The case rn ≤ 1 is easily deduced since Kγ(x)(1/rn) = −K−γ(x)(rn) and
K ′γ(x)(1/rn) = K ′−γ(x)(rn).
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6.2 Proofs of main results

Proof of Theorem 1. Let us introduce vn = (nhpα−1
n )1/2, σn(x) = (vnf(q(αn|x)|x))−1 and, for

all j = 1, . . . , J ,

Wn,j(x) = vn

(

ˆ̄Fn(q(τjαn|x) + σn(x)zj |x) − F̄ (q(τjαn|x) + σn(x)zj |x)
)

an,j(x) = vn

(

τjαn − F̄ (q(αn,j|x) + σn(x)zj |x)
)

and zj ∈ R. We examine the asymptotic behavior of J-variate function defined by

Φn(z1, . . . , zJ ) = P





J
⋂

j=1

{

σ−1
n (x)(q̂n(τjαn|x) − q(τjαn|x)) ≤ zj

}



 = P





J
⋂

j=1

{Wn,j(x) ≤ an,j(x)}



 .

Let us first focus on the nonrandom term an,j(x). For each j ∈ {1, . . . , J} there exists θn,j ∈ (0, 1)
such that

an,j(x) = vnσn(x)zjf(qn,j(x)|x) = zj
f(qn,j(x)|x)
f(q(αn|x)|x)

,

where

qn,j(x) = q(τjαn|x) + θn,jσn(x)zj

= q(τjαn|x) + θn,j
zj
τj

(nhpαn)−1/2 τjαn

f(q(τjαn|x)|x)
f(q(τjαn|x)|x)
f(q(αn|x)|x)

= q(τjαn|x) + θn,jzjτ
γ(x)
j (nhpαn)−1/2 τjαn

f(q(τjαn|x)|x)
(1 + o(1)),

since y 7→ f(q(y|x)|x) is regularly varying at 0 with index γ(x) + 1, see [17, Corollary 1.1.10,
eq. 1.1.33]. Now, in view of [17, Theorem 1.2.6] and [17, Remark 1.2.7], a possible choice of the
auxiliary function is

a(t|x) =
F̄ (t|x)
f(t|x) (1 + o(1)), (16)

leading to

qn,j(x) = q(τjαn|x) + θn,jzjτ
γ(x)
j (nhpαn)−1/2a(q(τjαn|x)|x)(1 + o(1)).

Applying Lemma 2 with zn(x) = q(τjαn|x), tn(x) = θn,jzjτ
γ(x)
j (nhpαn)−1/2(1+o(1)) and t0(x) = 0

yields
F̄ (qn,j(x)|x)

τjαn
→ K−1

γ(x)(0) = 1

as n→ ∞. Recalling that y 7→ f(q(y|x)|x) is regularly varying, we have

f(qn,j(x)|x)
f(q(αn|x)|x)

→ τ
γ(x)+1
j

as n→ ∞ and therefore

an,j(x) = zjτ
γ(x)+1
j (1 + o(1)), j = 1, . . . , J. (17)

Let us now turn to the random term Wn,j(x). Let us define zn,j(x) = q(τjαn|x) + σn(x)zj for
j = 1, . . . , J , yn(x) = q(αn|x), and consider the expansion

zn,j(x) − yn(x)

a(yn(x)|x) =
q(τjαn|x) − q(αn|x)

a(q(αn|x)|x)
+

σn(x)zj
a(q(αn|x)|x)

.
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From (4), we have

lim
n→∞

q(τjαn|x) − q(αn|x)
a(q(αn|x)|x)

= Kγ(x)(1/τj),

and

lim
n→∞

σn(x)zj
a(q(αn|x)|x)

= 0,

leading to zn,j(x) = yn(x) +Kγ(x)(1/τj)a(yn(x)|x)(1 + o(1)). Introducing βn,j(x) = F̄ (yn,j(x)|x),
the oscillation ωn(x) can be rewritten as

ωn(x) = max
j=1,...,J

sup
x′∈B(x,h)

∣

∣

∣

∣

F̄ (q(βn,j(x)|x)|x′)
βn,j(x)

− 1

∣

∣

∣

∣

.

For all κ ∈ (0, τJ ) and j = 1, . . . , J , we eventually have zn,j(x) ∈ [yn(x), zn(x)] where zn(x) :=
yn(x) +Kγ(x)(2/κ)a(yn(x)|x) and thus βn,j(x) ∈ [F̄ (zn(x)|x), αn] eventually. Now, Lemma 2 im-
plies that F̄ (zn(x)|x)/αn → κ/2 as n → ∞ and thus, for n large enough, βn,j(x) ∈ [καn, αn].
Consequently, ωn(x) ≤ ∆κ(αn, x). Applying Proposition 1 and Lemma 2 yields

Wn,j(x) =
F̄ (zn,j(x)|x)

αn
ξn,j = τjξn,j(1 + o(1))

where ξn = (ξn,1, . . . , ξn,j)
t converges to a centered Gaussian random vector with covariance matrix

‖K‖2
2/g(x)V . Taking into account of (17), the results follows.

Proof of Corollary 1. Let us remark that, from (16),
{

f(q(αn|x)|x)
√

nhpα−1
n (q̂n(τjαn|x) − q(τjαn|x))

}

j=1,...,J

=

{

q(αn|x)
f(q(αn|x)|x)

αn

q(τjαn|x)
q(αn|x)

√

nhpαn

(

q̂n(τjαn|x)
q(τjαn|x)

− 1

)}

j=1,...,J

=

{

q(αn|x)
a(q(αn|x)|x)

q(τjαn|x)
q(αn|x)

√

nhpαn

(

q̂n(τjαn|x)
q(τjαn|x)

− 1

)}

j=1,...,J

(1 + o(1))

=

{

q(αn|x)
a(q(αn|x)|x)

τ
−(γ(x)∨0)
j

√

nhpαn

(

q̂n(τjαn|x)
q(τjαn|x)

− 1

)}

j=1,...,J

(1 + o(1)),

in view of Lemma 1. The result follows from Theorem 1.

Proof of Theorem 2. By definition,

qn(βn|x) = qn(αn|x) + (Kγ(x)(αn/βn) + b(βn/αn, αn))a(q(αn|x)|x)
and thus, the following expansion can be easily established:

Λ−1
n

(

q̃n(βn|x) − q(βn|x)
a(q(αn|x)|x)K ′γ(x)(αn/βn)

)

= Λ−1
n

(

q̂n(αn|x) − q(αn|x)
a(q(αn|x)|x)K ′γ(x)(αn/βn)

)

+ Λ−1
n

(

Kγ̂n(x)(αn/βn) −Kγ(x)(αn/βn)

K ′γ(x)(αn/βn)

)

ân(x)

a(q(αn|x)|x)

+ Λ−1
n

Kγ(x)(αn/βn)

K ′γ(x)(αn/βn)

(

ân(x)

a(q(αn|x)|x)
− 1

)

+ Λ−1
n

b(βn/αn, αn)

K ′γ(x)(αn/βn)

=: Tn,1 + Tn,2 + Tn,3 + Tn,4.
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Introducing

(ξ(γ)
n (x), ξ(a)

n (x), ξ(q)n (x)) := Λ−1
n

(

γ̂n(x) − γ(x),
ân(x)

a(q(αn|x)|x)
− 1,

q̂n(αn|x) − q(αn|x)
a(q(αn|x)|x)

)

,

from and remarking that, when u→ ∞,

K ′z(u) = (1 + o(1))

∣

∣

∣

∣

∣

∣

∣

1
z2 if z < 0,
log2(u)

2 if z = 0,
uz log(u)

z if z > 0,

(18)

the first term can be rewritten as

Tn,1 =
ξ
(q)
n (x)

K ′γ(x)(αn/βn)
= (γ(x) ∧ 0)2ξ(q)n (x)(1 + oP(1)). (19)

Second, Λn → 0 and (7) entail ân(x)/a(q(αn|x)|x) P−→ 1 and thus

Tn,2 = Λ−1
n

(

Kγ̂n(x)(αn/βn) −Kγ(x)(αn/βn)

K ′
γ(x)

(αn/βn)

)

(1 + oP(1)) = ξ(γ)
n (x)(1 + oP(1)), (20)

from Lemma 5. From (7), (18), and in view of

Kz(u) = (1 + o(1))

∣

∣

∣

∣

∣

∣

−1
z if z < 0,

log(u) if z = 0,
uz

z if z > 0.

the third term can be rewritten as

Tn,3 = ξ(a)
n (x)

Kγ(x)(αn/βn)

K ′γ(x)(αn/βn)
= −(γ(x) ∧ 0)ξ(a)

n (x)(1 + oP(1)). (21)

Finally, Tn,4 = oP(1) by assumption and the conclusion follows from (7), (19), (20) and (21).

Proof of Theorem 3. The proof consists in deriving asymptotic expansions for the three con-
sidered random variables. i) Let us first introduce

γn,j(x) =
1

log r
log

(

q̂n(τjαn|x) − q̂n(τj+1αn|x)
q̂n(τj+1αn|x) − q̂n(τj+2αn|x)

)

(22)

such that γ̂RP
n (x) =

∑J−2
j=1 πjγn,j(x). From Theorem 1 and in view of (4), we have, for all j =

1, . . . , J ,

q̂n(τjαn|x) = q(αn|x) + a(q(αn|x)|x)(Kγ(x)(1/τj) + b(τj , αn|x)) + σn(x)ξj,n,

with σ−1
n (x) = f(q(αn|x)|x)

√

nhpα−1
n and where the random vector ξn = (ξj,n)j=1,...,J is asymptot-

ically Gaussian, centered, with covariance matrix ‖K‖2
2/g(x)Σ(x). Introducing

ηn(x) := max
j=1,...,J

|b(τj , αn|x)|

εn := σn(x)/a(q(αn|x)|x) = (nhpαn)−1/2(1 + o(1)),

22



see [17], it follows that

q̂n(τjαn|x) − q̂n(τj+1αn|x)
a(q(αn|x)|x)

= εn(ξj,n − ξj+1,n)

+ Kγ(x)(1/τj) −Kγ(x)(1/τj+1) + b(τj , αn|x) − b(τj+1, αn|x)
= εn(ξj,n − ξj+1,n) +Kγ(x)(r)r

−γ(x)j +O(ηn(x)). (23)

Replacing in (22), we obtain

(log r)γn,j(x) = log

(

εn(ξj,n − ξj+1,n) +Kγ(x)(r)r
−γ(x)j +O(ηn(x))

εn(ξj+1,n − ξj+2,n) +Kγ(x)(r)r−γ(x)(j+1) +O(ηn(x))

)

,

or equivalently,

(log r)(γn,j(x) − γ(x)) = log

(

1 +
εn(ξj,n − ξj+1,n)rγ(x)j

Kγ(x)(r)
+O(ηn(x))

)

− log

(

1 +
εn(ξj+1,n − ξj+2,n)rγ(x)(j+1)

Kγ(x)(r)
+O(ηn(x))

)

A first order Taylor expansion yields

(log r)ε−1
n (γn,j(x)− γ(x)) =

rγ(x)j

Kγ(x)(r)

(

ξj,n − (1 + rγ(x))ξj+1,n + rγ(x)ξj+2,n

)

+O(ε
−1
n ηn(x)) + oP(1)

and thus, under the assumption (nhpαn)1/2ηn(x) → 0 as n→ ∞,

√

nhpαn(γ̂RP
n (x)−γ(x)) =

1

(log r)Kγ(x)(r)

J−2
∑

j=1

πjr
γ(x)j

(

ξj,n − (1 + rγ(x))ξj+1,n + rγ(x)ξj+2,n

)

+oP(1).

Defining for the sake of simplicity π−1 = π0 = πJ−1 = πJ = 0, β
(γ)
0 = 1

log r , β
(γ)
1 = −1+r−γ(x)

log(r) and

β
(γ)
2 = r−γ(x)

log(r) , we end up with

ξ(γ)
n (x) :=

√

nhpαn(γ̂RP
n (x) − γ(x))

=
1

Kγ(x)(r)

J
∑

j=1

rγ(x)j
(

β
(γ)
0 πj + β

(γ)
1 πj−1 + β

(γ)
2 πj−2

)

ξj,n + oP(1). (24)

ii) Second, let us now consider

an,j(x) =
rγ̂RP

n (x)j(q̂n(τjαn|x) − q̂n(τj+1αn|x))
Kγ̂RP

n (x)(r)

such that ân(x) =
∑J−2

j=1 πjan,j(x). From (23), it follows that, for all j = 1, . . . , J ,

an,j(x)

a(q(αn|x)|x)
=

rγ̂RP
n (x)j

Kγ̂RP
n (x)(r)

(

εn(ξj,n − ξj+1,n) +Kγ(x)(r)r
−γ(x)j +O(ηn(x))

)

.

Remarking that γ̂RP
n (x) = γ(x) + (nhpαn)−1/2ξ

(γ)
n (x), Lemma 5 yields

an,j(x)

a(q(αn|x)|x)
=

1 + rγ(x)j

Kγ(x)(r)
εn(ξj,n − ξj+1,n) +O(ηn(x))

1 +
K ′

γ(x)
(r)

Kγ(x)(r)
(nhpαn)−1/2ξ

(γ)
n (x)(1 + oP(1))

exp
(

ξ(γ)
n (x)j log(r)(nhpαn)−1/2

)

.
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A first order Taylor expansion thus gives

√

nhpαn

(

an,j(x)

a(q(αn|x)|x)
− 1

)

= ξ(γ)
n (x)

(

j log(r) −
K ′γ(x)(r)

Kγ(x)(r)

)

+
rγ(x)j

Kγ(x)(r)
(ξj,n − ξj+1,n)

+ O
(

√

nhpαnηn(x)
)

+ oP(1).

Recalling that π−1 = π0 = πJ−1 = πJ = 0 and introducing

E(π) =
∑J

j=1 jπj , β
(a)
1 = −r−γ(x) − (r−γ(x) + 1)

(

E(π) − K ′

γ(x)
(r)

log(r)Kγ(x)(r)

)

,

β
(a)
0 = 1 + E(π) − K ′

γ(x)
(r)

log(r)Kγ(x)(r)
, β

(a)
2 = r−γ(x)

(

E(π) − K ′

γ(x)
(r)

log(r)Kγ(x)(r)

)

it follows that

ξ(a)
n (x) :=

√

nhpαn

(

an(x)

a(q(αn|x)|x)
− 1

)

=

(

E(π) log(r) −
K ′γ(x)(r)

Kγ(x)(r)

)

ξ(γ)(x)
n +

1

Kγ(x)(r)

J
∑

j=1

rγ(x)j(πj − r−γ(x)πj−1)ξj,n + oP(1)

=
1

Kγ(x)(r)

J
∑

j=1

rγ(x)j
(

β
(a)
0 πj + β

(a)
1 πj−1 + β

(a)
2 πj−2

)

ξj,n + oP(1) (25)

in view of (24). iii) Third, Corollary 1 states that

ξ1,n =

√
nhpαn

a(q(αn|x)|x)
(q̂n(αn|x) − q(αn|x)) (26)

is asymptotically Gaussian. Finally, collecting (24), (25) and (26),

(ξ(γ)
n (x), ξ(a)

n (x), ξ1,n)t =
1

Kγ(x)(r)
A(x)ξn + oP(1),

where A(x) is the 3 × J matrix defined by

A1,j(x) = rγ(x)j
(

β
(γ)
0 πj + β

(γ)
1 πj−1 + β

(γ)
2 πj−2

)

A2,j(x) = rγ(x)j
(

β
(a)
0 πj + β

(a)
1 πj−1 + β

(a)
2 πj−2

)

A3,j(x) = Kγ(x)(r)I{j = 1},

for all j = 1, . . . , J . It is thus clear that the random vector (ξ
(γ)
n (x), ξ

(a)
n (x), ξ1,n)t converges in

distribution to a centered Gaussian random vector with covariance matrix

‖K‖2
2

g(x)K2
γ(x)(r)

A(x)Σ(x)At(x) =: S(x). (27)
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