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In this paper, the problem of control law design for decentralized homogenous Multi-Agent systems ensuring the global stability and global performance properties is considered. Inspired by the decentralized control law design methodology using the dissipativity input-output approach, the problem is reduced to the problem of satisfying two conditions: (i) the condition on the interconnection and (ii) the condition on the local agent dynamics.

Both problems are eciently solved applying a (quasi-) convex optimization under Linear Matrix Inequality (LMI) constraints and an H ∞ synthesis. The proposed design methodology is applied to the control law design of a synchronous PLLs network.

Recently, the behavioral analysis and control problems of large scale systems composed of distributed interactive subsystems are raising interests in the system and control community. The ability for large scale systems to cover broad application areas, their robustness to possible subsystem failures and advances in the microelectronics (the explosion of computing capabilities and miniaturization) are the keys points for such gain of interests.

Unmanned aerial vehicles, mobile robots, satellites, formation control, sensor networks and many more are typical applications that take benets of advances in this eld. The problem considered in these applications can be classied in the following sub-classes:

the consensus or agreement protocol, coordination and rendez-vous problems, synchronization or time agreement problems etc.. A nice overview of recent results on the topic can be found in [START_REF] Ren | A survey of consensus problems in multi-agent coordination[END_REF] and [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF][START_REF] Murray | Recent research in cooperative control of multi-vehicle systems[END_REF].

Generally a decentralized control law strategy i.e. the strategy where the local controllers are placed and designed in each subsystem is adopted in order to solve the aforementioned problems. The motivation to proceed as such a way is that the classical approaches to design a control law for large scale systems fail due to their size. Moreover for the sake of implementation, it is much more practical to implement decentralized control laws than centralized ones. Decentralized controllers use the external information (output or states signals) coming from a subset of subsystems (for instance neighbor subsystems). Very often this external information is compared to the local signals in order to provide the control law ensuring desired properties not only for local subsystem but also for the global system. A general description of the control design problem can eventually be formulated in the following way: design a decentralized control law for the global system that uses local controllers ensuring both properties: the global stability and global performance requirements. While the rst property i.e. the stability is a necessary condition for the correct large scale system operation, the global performance specications (e.g. reference tracking, xed time convergence, control signal limitation, disturbance attenuation etc.) is additionally needed for some type of applications.

An example of such an application is the control law design for an active clock distribution network consisting of Phase-Locked Loops (PLLs) deployed in an array. This active clock distribution network can be used as an alternative way to distribute the clock in a synchronous many-core microprocessor system. This approach has numerous advantages in terms of perturbation rejection, robustness properties and power consumption [START_REF] Ben-Tal | Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications[END_REF].

In these systems, phase and frequency synchronization is crucial to ensure the right system operation. Issues of minimal global system bandwidth, maximal control signal level, noise and external perturbations rejection must be taken into account as well. The two rst requirements x the convergence speed and limit the power consumption of the whole system, while the two last ones are critical to distribute the clock properly in a noisy and perturbed chip environment. Indeed, the power supply noise, the temperature variations and operation mode alterations are the main disturbance sources in integrated circuits. The control law thus should not only ensure the stability of the global system but should also satisfy the global performance specications.

INTRODUCTION

Design methods for a stand-alone PLL are well-known in Microelectronics [START_REF] Rohde | Microwave and wireless synthesizers: theory and design[END_REF][START_REF] Kroupa | Phase lock loops and frequency synthesis[END_REF]. A PLL is composed of a Voltage Controlled Oscillator (VCO), a Phase Detector (PD), a frequency divider and a control lter that ensures the stability and performance specications. For an array of distributed coupled PLLs, the standard approaches consist in neglecting the global network interconnection and designing the PLLs as if they were independent. After interconnecting these independent PLLs based on a given network topology, one should check if the overall network stability and/or performance specications are conserved. Reasons to proceed this way is obviously the simplicity of the method that is based on standard well-known Control System Theory and Microelectronics tools.

However, due to the mutual coupling and the multiple feedbacks inside the PLL clock distribution network, stability and performance are not generally guaranteed for the global network even if each PLL in the network is properly designed locally. The impact of the global network interconnection can be very important: it is then necessary to design the control law under the constraint of global stability and performance. However, considering the global network interconnection aspects can strongly complicate the control design procedure compered to the simple local design problem. As it will be revealed in the present paper it is actually possible to take benets of the local design approach with additional constraints ensuring the global stability and/or the global performance as well. Unfortunately, this problem is beyond the scope of usual design methods issued from the Microelectronic.

Actually, the problem of analysis and synthesis of such a decentralized large scale system was investigated in the Control System Theory through two dierent approaches (i) the Multi-Agents system approach and (ii) the Decentralized control approach.

The Multi-Agent system is a network of intelligent subsystems called agents, where each agent exchanges some information with its neighbor agents, transforms this information and uses it in order to achieve some desired global network behavior. Multi-Agents are composed of two parts: the controller and the plant to be controlled. The controller of the Multi-Agents produces the command signal based only on the locally available information (states or measured agent outputs). Very often the authors of this approach consider that the agents are identical. One of the most important results to understand the behavior of such a networked identical Multi-Agent system for the Linear Time Invariant (LTI) case is the work [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] where the authors give a necessary and sucient stability condition for such LTI network. Using the graph theory methodology the authors of [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] transform the condition of the N Multi-Agents network global stability into a condition of simultaneous stability for the N independent subsystems. These independent subsystems are composed of the same controller and plant as the single agent with some dierence only in the feedback gain. This gain, in general complex, is dened by the eigenvalues of the interconnection matrix which in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] is the Laplacian matrix coming from the Graph Theory. We thus obtain a global stability criterion representing by some aspects the generalization of the Nyquist stability criterion to large scale systems. In this case, the global stability analysis complexity is drastically reduced since it is tested through a condition involving only one agent and the eigenvalues of the interconnection graph Laplacian. The most important idea of [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] which is common to all 1 INTRODUCTION further Multi-Agents system approach results is that a global system property (stability) can be transposed into a local subsystem property (simultaneous stability) with an additional interconnection information (Laplacian eigenvalue gains). The adjective local means that the property is satised for the subsystem which is independent of others subsystems and interconnection. As it was pointed out before, a local property is much more easier to guarantee than a possibly very complex global system property. However in contrast to the classical approach this additional interconnection information can be used to ensure that the local property is conserved in the global case as well. We retain this important idea for the further development of an original control law design method.

The global-local connection result in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] gave rise to a large number of various papers that use the same transformation. Most of them analyze the system stability. Indeed, based on dierent approaches such as passivity, L 2 gain [1318], more general Integral Quadratic Constraint (IQC) characterization [START_REF] Jönsson | A popov criterion for networked systems[END_REF][START_REF] Kao | Characterization of robust stability of a class of interconnected systems[END_REF], the authors propose a generalization of the stability analysis in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] to a set of additional stability analysis problems including heterogeneity, nonlinear interconnections, eects of delay propagation and structure switching, etc.. Concerning the performance level analysis, these papers cover only convergence rate requirement which is an immediate consequence of the stability analysis.

The questions for more general performance analysis for LTI systems are studied in [START_REF] Zelazo | Graph-theoretic analysis and synthesis of relative sensing networks[END_REF] in the context of H 2 and H ∞ performance and in [START_REF] Tonetti | Limits on the network sensitivity function for multi-agent systems on a graph[END_REF][START_REF]Limits on the network sensitivity function for homogeneous multi-agent systems on a graph[END_REF] using global performance transfer functions obtained by the direct Mason rule. These studies give insight into the network synthesis i.e. into the appropriate choice of the interconnection structure that ensures a certain level of performance. However, very often in dierent applications, the interconnection structure is xed and/or a performance level has to be satised independently.

It is actually possible, for a xed interconnection topology, to ensure the global stability and a level of performance by an appropriate choice of local controller dynamics i.e. decentralized control design.

There are very few results in the control law design in the Multi-Agent system approaches covering each particular problem. There is no, for our best knowledge, any ecient methods for the control law design of a general Multi-Agent network even in the case of identical LTI subsystems (with general kind of interconnection and general agent dynamics) that ensures the global stability and the general global level of performance.

The dicult point usually comes from both either from the interconnection complexity or from the complexity of the agent dynamics [START_REF] Wieland | From static to dynamic couplings in consensus and synchronization among identical and non-identical systems[END_REF].

One of the extensions to the control design uses the idea of simultaneous stabilization proposed in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF]. The authors of [START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF] apply the static state feedback control law as a solution of a Linear Matrix Inequality (LMI) optimization problem. It is only possible in the case for which the relative states are available for the control (static control).

Otherwise, the observer based solution (dynamic control) is used in [START_REF] Wieland | From static to dynamic couplings in consensus and synchronization among identical and non-identical systems[END_REF][START_REF] Wieland | On consensus among identical linear systems using input-decoupled functional observers[END_REF][START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF] and [START_REF] Wang | Consensus of high order linear multi-agent systems using output error feedback[END_REF].

However, the authors of the observer based control did not propose ecient method to compute it and only the questions of the global stability and a convergence rate to the steady-state are considered. Moreover, for the control law discussed in [START_REF] Wieland | From static to dynamic couplings in consensus and synchronization among identical and non-identical systems[END_REF]2628] [START_REF] Ikeda | Decentralized h ∞ controller design for largescale systems: a matrix inequality approach using a homotopy method[END_REF] and developed in [START_REF] Zhai | Decentralized h ∞ controller design: a matrix inequality approach using a homotopy method[END_REF]. Unfortunately, this optimization problem is not a convex optimization problem and the algorithm for its resolution for a general case is not ecient. It does not always converge and requires an initialization point that has obviously a huge inuence on the nal result. Moreover, the problem only focuses on stability issues and not on performance.

The problem of the external reference tracking by the Multi-Agent network with simple integrator dynamics is investigated in [START_REF] Ren | Multi-vehicle consensus with a time-varying reference state[END_REF]. But here again the transmission of an additional information (agent velocity) is needed. The performance requirement in the form of an H ∞ norm on a global transfer function with specic input and output is considered in the control law design in [START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: An h ∞ approach[END_REF]. However the authors deal with the symmetric interconnection topology and with one performance specication that concerns the measurement disturbance rejection on one specic output. If the rst assumption can be relaxed considering augmented complex version of the LMIs condition given in [START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: An h ∞ approach[END_REF], the second assumption limits the input/output signal choice needed to specify more general performance requirements related to the application. Additionally, the solution presented in [START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: An h ∞ approach[END_REF] seems to be conservative since the common to all subsystem Lyapunov matrix is chosen to have a block diagonal structure which is needed to reconstruct the state matrices of the dynamic controller.

In contrast with the Multi-Agent approach, the design problem of networked systems was deeply investigated in the Decentralized control of large-scale systems, see e.g. [36 41]. The decentralized control problem consists in designing (local) controller for each subsystem in order to ensure the global stability and some global performance properties for the overall system. The decentralized controllers do not necessary use only the relative node output information as in the Multi-Agents system case, they can use any type of information transmitted through the network which is dened by the plant.

Many methods were proposed for the decentralized control design but for our current application the most promising one is method proposed in [START_REF] Scorletti | An LMI approach to decentralized H ∞ control[END_REF]. Based on the inputoutput approach [START_REF] Moylan | Stability criteria for large-scale systems[END_REF], the authors of [START_REF] Scorletti | An LMI approach to decentralized H ∞ control[END_REF] propose to design local controllers for global stability and performance of the general heterogeneous large scale system by using convex optimization involving LMI constraints. Nevertheless, since in the proposed approach, the subsystems are not necessarily identical, the complexity of the design conditions strongly depends on the number of subsystems. This potentially leads to large optimization problems since, for every single subsystem, a set of LMI constraints has to be introduced. Furthermore, in order to achieve an ecient design method, the proposed approach is based on only sucient conditions that gives potentially conservative results.

On the other hand in practice, the subsystems to control are very often identical or at least with the same structure. Reasonably speaking, this property should be exploited as in the case of Multi-Agent systems [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] to release some constraints on the controller design procedure, its complexity and conservatism.

In the present paper, initially motivated by the active clock distribution network application example, we propose to develop a new ecient method of control law design for LTI large scale system composed of identical general LTI subsystems. It (i) like in the Multi-Agent approach, reduces the design problem to one agent dynamics control design including an additional interconnection design constraint; (ii) like in the decentralized control, allows to design local (node) controllers ensuring desired global stability and performance properties. Furthermore, we succeed in exploiting the similarity between the nodes in order to potentially reduce the conservatism of the design approach.

The paper is organized as follows: the second section gives the used notations and preliminaries; in the third section, we describe the general problem formulation considered here; local analysis conditions for the global stability and performance analysis are presented in section four; the control law design based on these local conditions, its resolution algorithm as well as a numerical application is presented in the sections fth, sixth and seventh respectively; as a conclusion perspectives of the oncoming studies are presented.

Notation and Preliminaries

In this section, we present various denitions and preliminary results needed to understand and formalize the problem discussed in this paper.

The superscript T dene a real matrix transpose while the superscript * dene its analogue for the complex matrices that is complex conjugate transpose. Matrix I N dene a square N × N identity matrix while 0 n×m is a n × m zero matrix. The dimension of the identity or zero matrix is omitted (I and 0) if it is clear from the context. Denition 1. The Kronecker product between two matrices A and B denoted by ⊗ is dened as: 

A ⊗ B = [a ij B]
G F = G 11 + G 12 F (I -G 22 F ) -1 G 21 (2)
with the Redheer (star ) product The Upper Fractional Transformation (UFT) can be dened in the same way using the same notations:

F G = G 22 + G 21 F (I -G 11 F ) -1 G 12 (3)
Denition 3 (Dissipativity). A causal operator G with input r and output ϕ is strictly

{X, Y, Z} -dissipative, if there exist a real ε > 0 and real matrices X = X T , Y, Z = Z T such that X Y Y T Z
is a full rank matrix and for all τ > 0 with ϕ = G (r) :

ˆτ 0 r (t) ϕ (t) T X Y Y T Z r (t) ϕ (t) dt ≤ -εI ˆ+∞ -∞ r (jω) ϕ (jω) * X Y Y T Z r (jω) ϕ (jω) dω ≤ -εI (4) 
if the inequality (4) is satised with ε = 0 the operator is then called {X, Y, Z} -dissipative.

If in addition, the operator G is a stable LTI causal operator then equation ( 4) can be simplied into:

I G (jω) * X Y Y T Z I G (jω) ≤ -εI, for almost ∀ω ∈ R + (5) 
3 Problem statement A large-scale system investigated in this paper is a more general description of the Multi-Agent systems and can be modeled as an interconnection of N identical subsystems (or agents) T s (see Fig. 1). For the sake of clarity and without loss of generality, the case of square subsystem i.e. the subsystem T s with the same number p of inputs and outputs is considered. Each subsystem is assumed to be LTI and causal and that it can be divided into two parts: (i) the part of the subsystem that has to be controlled (or plant)

G = G 11 G 12 G 21 G 22
and (ii) the part implementing this control (or controller) F . The subsystems are regrouped to form a global block-diagonal LTI operator T while their interconnections are described by a stable LTI system M =

M 11 M 12 M 21 M 22 . ϕ = T (I N ⊗ Ts) r r z = M 11 M 12 M 21 M 22 M ϕ w (6) 
with

T s = G F , r (t) , ϕ (t) ∈ R pN , w (t) ∈ R nw , z (t) ∈ R nz .
Throughout the paper, we consider the local and global stability as well as the local and global performance specications. The corresponding local system is depicted in 8 Fig. 2 and described by:

ε pi y i = G G11 G12 G21 G22 r pi u i u i = F y i (7) with r pi (t) ∈ R nr , ε pi (t) ∈ R nε , y i (t) ∈ R ny , u i (t) ∈ R nu .
It is very important to distinct these properties for both cases. The local stability means the stability of one independent subsystem [START_REF] Anceau | Une technique de réduction de la puissance dissipée par l'horlogerie des circuits complexes rapides, in 4ème journées francophones d'étude de Faible Tension Faible Consommation[END_REF] without other subsystems and interconnection (one separated node) while the global stability is the stability of the overall system dened by [START_REF] Saint-Laurent | A multi-pll clock distribution architecture for gigascale integration[END_REF]. The local performance is evaluated for the one separated subsystem [START_REF] Anceau | Une technique de réduction de la puissance dissipée par l'horlogerie des circuits complexes rapides, in 4ème journées francophones d'étude de Faible Tension Faible Consommation[END_REF] augmented by some performance inputs ε pi and outputs r pi while the global performance is evaluated for the overall system (6) with corresponding global performance inputs w and outputs z. These inputs dene the dimension and the structure of the operators G and M respectively.

The performance specications for global case are expressed by the minimization of the H ∞ norm of the transfer function T p = T M , while the performance specications for local case are expressed by the minimization of the H ∞ norm of the transfer function T p = G F . Provided that systems are stable, it allows us to fulll two issues:

1. Ability to use weighting transfer functions to more accurately specify the performance specication in the frequency domain. Indeed, each performance specication can be stated as a problem of an output signal time constraint satisfaction.

Practically, usual time domain constraint can be enforced by frequency domain constraint for a properly chosen transfer function (see [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF]). For more details and how this can by applied for application example of PLL network synchronization see Section 7 of this paper.

2. By an appropriate choice of external input and output signals, one should be able to cover not only the synchronization problem of the PLL network but also a more general problem that includes any possible problems of networked Multi-Agents systems and more general Decentralized control system: consensus, coordination, cooperation of subsystems. It is possible to cover additional performance requirements as well which, as mentioned in introduction, could be crucial for the real application.

In the further part of the paper, we focus on the following general problem.

Problem 1 (General problem formulation). Given an LTI system G, and an interconnection LTI model M , nd an LTI system F such that it 1. Stabilizes each subsystem [START_REF] Anceau | Une technique de réduction de la puissance dissipée par l'horlogerie des circuits complexes rapides, in 4ème journées francophones d'étude de Faible Tension Faible Consommation[END_REF] and Fig. 2 separately as well as the overall network [START_REF] Saint-Laurent | A multi-pll clock distribution architecture for gigascale integration[END_REF] represented Fig. 1; 3. Ensures global performance specications by the H ∞ norm minimization of the transfer function T w→z = T M between performance inputs w and outputs z.

φ N r 1 φ φ i r i r N r M T̃ T s G F φ 1 G F G F z w T s T s Figure 1: Considered global system LTI model G F r pi ɛ pi y i u i
The described problem will be solved in several steps. First, we derive a result that similarly to the result in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] reduce the global stability condition into local conditions.

However the conditions themselves are dierent compered to those proposed in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF].

Indeed, as it was pointed out in the introduction to design a control law that satises the conditions of the Theorem 3 or 4 in [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] the problem of the simultaneous stabilization has to be solved. This problem is known to be a dicult to solve and there can be found only sucient or only necessary conditions of its resolution (see [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF]). For these reasons, the approach of the graph separation argument [START_REF] Moylan | Stability criteria for large-scale systems[END_REF] is proposed in this work. It allows us to separate the local subsystem dynamics constraint and interconnection dynamics constraint so that the simultaneous stabilization is no longer required. Second for an given input-output dissipativity characterization, we propose the design method ensuring these local conditions and thus the stability of the global system. Since the proposed design method is based on the H ∞ synthesis, it is then straightforward to ensure besides the global stability also the local performance. Then an original approach of relative weighted transfer functions is proposed in order to ensure the global performance specications as well. Finally, an algorithm of the appropriate choice of the dissipativity characterization and of the control law design are summarized.

Local conditions for the Global stability and performance

In the rst part of this section, local conditions on the one subsystem dynamics T s and on the interconnection matrix dynamics M are derived to ensure the global stability based on the input-output approach and the graph separation argument. Next, these conditions are extended to ensure besides the global stability the global performance as well.

In the input-output design approach, the system is often described or characterized by a quadratic constraint involving only input and output system signals. A general input-output characterization is the dissipativity property [START_REF] Moylan | Stability criteria for large-scale systems[END_REF] that for the MIMO case is formulated in Denition 3.

If the subsystems T s (respectively the interconnection system) are characterized by a dissipativity property, it is possible to ensure the stability of the overall network ensuring a dissipativity property on the interconnection system (respectively the subsystems T s ). Using this fact, the global stability can be transformed into local conditions as summarized by the following theorem:

Theorem 1. Suppose that the system described by the equation ( 6) is well posed and causal. Given real p × p matrices X = X T , Y , Z = Z T , if there exists real symmetric positive denite matrix P ∈ R N ×N such that (i) the interconnection LTI system M11 is {P ⊗ X, P ⊗ Y, P ⊗ Z} -dissipative (or strictly dissipative);

(ii) local subsystem Ts is strictly -Z, -Y T , -X -dissipative (or dissipative). Then the overall system is stable in the input-output sense.

Proof. First note that the global transfer function of the global system presented in Fig. 1 has the following form :

M T = M 22 + M 21 T I -M 11 T -1 M 12 . (8) 
Since by the denition the interconnection LTI system M is stable, the stability of the global transfer function ( 8) is equivalent to the stability of the system T I -

M 11 T -1
which is an simple interconnection of the subsystem T with LTI system M 11 i.e. Fig. 1 without external inputs w and outputs z.

By means of subsystems identity, the strict dissipativity property (ii) on the local operator T s can be reformulated as a strict

-IN ⊗ Z, -IN ⊗ Y T , -IN ⊗ X -dissipativity property of the global diagonal operator T : Ip Ts (jω) * -Z -Y T -Y -X Ip Ts (jω) ≤ -εI ⇔ I N ⊗ Ts (jω) I N ⊗ Ip * I N ⊗ X I N ⊗ Y I N ⊗ Y T I N ⊗ Z I N ⊗ Ts (jω) I N ⊗ Ip ≥ εI , for almost ∀ω ∈ R (9) 
Post-and pre-multiplying of the condition ( 9) by an invertible full rank matrix D ⊗ I p and using the property of the Kronecker product [START_REF] Brewer | Kronecker products and matrix calculus in system theory[END_REF] :

(I N ⊗ T s ) (D ⊗ I p ) = (D ⊗ I p ) (I N ⊗ T s ) (D ⊗ I p ) T (D ⊗ I p ) = D T ⊗ I p (D ⊗ I p ) = D T D ⊗ I p one obtains:   I N ⊗ Ts (jω) I N ⊗ Ip   *   (I N ⊗ X) D T D ⊗ Ip (I N ⊗ Y ) D T D ⊗ Ip I N ⊗ Y T D T D ⊗ Ip (I N ⊗ Z) D T D ⊗ Ip     I N ⊗ Ts (jω) I N ⊗ Ip   ≥ εI which for P = D T D > 0 is equivalent to   T (jω) I p×N   *   P ⊗ X P ⊗ Y P ⊗ Y T P ⊗ Z     T (jω) I p×N   ≥ εI, for almost ∀ω ∈ R (10) 
Using the assumption (i) on the interconnection matrix M 11 and that ( 10) is actually the condition of strict -P ⊗ Z, -P ⊗ Y T , -P ⊗ X -dissipativity property for the global diagonal operator T, we apply the graph separation argument of [START_REF] Moylan | Stability criteria for large-scale systems[END_REF] (Theorem 1) to obtain the stability of the interconnected system T I -

M 11 T -1
and thus the overall network ( 6) represented in Fig. 1.

Remark 1. Following the Theorem 1 proof, the reader can make an objection concerning the usefulness of the matrix P . Indeed, the Theorem 1 can be proved without using the symmetric positive denite matrix P , one can actually apply the graph separation argument Theorem directly on the

-IN ⊗ Z, -IN ⊗ Y T , -IN ⊗ X -dissipativity condition (9)
of the global operator T . However, the conditions of the Theorem 1 are only sucient since the graph separation argument used in its proof provides only sucient and not necessary stability condition. Using a symmetric positive denite matrix P in the case of identical subsystems reduces the potential conservatism of Theorem 1. Indeed, the matrix P is a parametrization matrix that adds some degrees of freedom on the dissipativity characterization choice. Actually in the case of identical subsystems satisfying dissipativity condition (ii) the global diagonal operator T satises the global dissipativity condition not only for the identify matrix I N as in [START_REF] Korniienko | A clock network of distributed adplls using an asymmetric comparison strategy[END_REF] but also for all possible symmetric positive denite matrix P . For our purpose, it is sucient to nd only one such matrix which is not necessary equal to identity. Formally speaking, the global operator can be represented as T = I N ⊗ T s only in the case of identical subsystems. Moreover in that particular case, the Kronecker product permutation based on the permutation of the matrix D with identity matrix I N can be applied in order to obtain the strict -P ⊗ Z, -P ⊗ Y T , -P ⊗ X -dissipativity condition [START_REF] Rohde | Microwave and wireless synthesizers: theory and design[END_REF] with a symmetric positive denite matrix P . Therefore, by applying the graph separation argument Theorem with these extended conditions, one can test the global stability not for the all possible full global operator T but only for all possible block identical one which results in the conservatism diminution. One thus exploits the structure of the operator and its more accurate dissipativity characterization.

Remark 2. In almost all application cases, Theorem 1 dissipativity conditions (i) and (ii) are applied with additional constraint on the X, Z characterization matrix:

X = X T ≤ 0; Z = Z T ≥ 0. (11) 
The rst constraint of (11) X = X T ≤ 0 implies that:

• the synthesis problem, i.e. the problem of the control law design F (see Figure 2) ensuring the subsystem T s stability and its dissipativity condition (see condition (ii) of the Theorem 1) can be expressed in the form of a convex optimization problem (see the case B in [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]).

• the quadratic constraint (i) of Theorem 1 for the open loop interconnection matrix (i.e. with M 11 = 0) is automatically ensured.
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The second constraint of (11) Z = Z T ≥ 0 implies that:

• zero (T s = 0) also satises the quadratic constraint (ii) of Theorem 1 and if a control law can be found such that T s satisfy the quadratic constraint (ii), it is actually the case for ∀θT s for ∀θ : θ ∈ [0, 1]. This is, in fact, a robust stability property that corresponds to the robust graph separation Theorem detailed in [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF];

According to the above discussion, the Theorem 1 can be transformed into more suitable for the design form. To do this, the following loop shifting transformation is applied :

T = (-X) 1 2 T s + X -1 Y Z -Y T X -1 Y -1 2 . ( 12 
)
The equation ( 12) is necessary well dened since the denition of the dissipativity matrices [START_REF] Kroupa | Phase lock loops and frequency synthesis[END_REF]. As a consequence, the dissipativity condition (ii) of the Theorem 1 is

transformed into standard H ∞ form : T ∞ < 1. (13) 
As it will be illustrated in the following part of the paper, thanks to this transformation, an application of the standard H ∞ synthesis to considered design problem is possible.

Thus, the next version of the Theorem 1 can be formulated as follows.

Theorem 2. Suppose that the system described by the equation ( 6) is well posed and causal. Given real p × p matrices X = X T ≤ 0, Y , Z = Z T ≥ 0, if there exists real symmetric positive denite matrix P ∈ R N ×N such that (i) the interconnection LTI system M 11 is {P ⊗ X, P ⊗ Y, P ⊗ Z} -dissipative;

(ii) the local subsystem T s is such that:

T ∞ < 1 (14) 
with T = (-X)

1 2 T s + X -1 Y Z -Y T X -1 Y -1 2
then the overall system is stable.

Proof. The proof is fullled by proving that the strict -Z, -Y T , -Xdissipativity property of the operator T s is satised by the assumption on the H ∞ constraint [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF] and by the further applying of the Theorem 1. Indeed, note that the H ∞ norm constraint [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF] is equivalent to the frequency quadratic constraint:

  T (jω) Ip   *   -Ip 0 0 Ip     T (jω) Ip   ≥ ε1I (15) 
for almost ∀ω ∈ R and for ε 1 ∈ R : ε 1 > 0.

By post and pre-multiplying of both side of (15

) by matrix Z -Y T X -1 Y 1 2
, which is positive semi-denite by the denition of X, Z matrices, and replacing T by its expression one obtains:

  Ts (jω) Ip   *   Ip 0 Y T X -T Ip     X 0 0 Z -Y T X -1 Y     Ip X -1 Y 0 Ip     Ts (jω) Ip   ≥ ε 2 I, (16) 
for almost ∀ω ∈ R with 0 < ε 2 ≤ ε 1 σ Z -Y T X -1 Y where σ (A) is the minimal singular value of the matrix A.

The last inequality is equivalent to

Ip Ts (jω) * -Z -Y T -Y -X Ip Ts (jω) ≤ -ε2I (17) 
for almost ∀ω ∈ R.

From the dissipativity Denition 3, ( 17) states that T s is strictly -Z, -Y T , -X -dissipative.

Remark 3. The dissipativity condition on the interconnection LTI system M 11 (condition (i) of the Theorem 2) can be transformed to an LMI condition in decision variable P for some given X = X T ≤ 0, Y , Z = Z T ≥ 0:

In the case of a constant interconnection matrix M 11 ∈ R pN ×pN , it is straightforward:

∃P ∈ R N ×N : P = P T > 0, I pN M 11 T P ⊗ X P ⊗ Y P ⊗ Y T P ⊗ Z I pN M 11 ≤ 0; (18) 
In the case of a dynamic stable LTI interconnection system M 11 :

I pN M 11 T = C (sI -A) -1 B + D with its state-space representation matrices A ∈ R n×n , B ∈ R n×pN , C ∈ R 2pN ×n , D ∈ R 2pN ×pN
, one can obtain the following LMI condition applying the Kalman-Yakubovich-Popov (KYP) lemma [START_REF] Rantzer | On the Kalman-Yakubovich-Popov lemma[END_REF]:

∃P ∈ R N ×N : P = P T > 0 ∃R ∈ R n×n : R = R T > 0 ,        A B I 0 C D        T            0 R R 0 0 0 P ⊗ X P ⊗ Y P ⊗ Y T P ⊗ Z                   A B I 0 C D        ≤ 0. (19) 
The Theorem 1 and Theorem 2 allow to transform the condition of the global stability of the overall system (6) into a condition on the interconnection M 11 (18) or ( 19) and a condition on the local subsystem dynamics T s (14). This result can thus be combined with the usual local control design methods in order to obtain the control law ensuring a priori the global stability. The similar result can be obtained to ensure the global performance as well. This is demonstrated in the following theorem:

Theorem 3. Suppose that the system described by the equation ( 6) is well posed and causal. Given real p × p matrices X = X T ≤ 0, Y , Z = Z T ≥ 0 and a bound η > 0 if there exists symmetric positive denite matrix

P ∈ R N ×N such that (i) the interconnection LTI system matrix M is X, Y , Z -dissipative with X = diag P ⊗ X, -η 2 I , Y = diag (P ⊗ Y, 0), Z = diag (P ⊗ Z, I) i.e.: I M (jω) *     P ⊗ X 0 P ⊗ Y 0 0 -η 2 I 0 0 P ⊗ Y T 0 P ⊗ Z 0 0 0 0 I     I M (jω) ≤ 0 (20) 
for almost ∀ω ∈ R;

(ii) the local subsystem T s satises the condition [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF] i.e.:

T ∞ < 1 (21) 
with T = (-X)

1 2 T s + X -1 Y Z -Y T X -1 Y -1 2 ,
then the overall system ( 6) is stable and the H ∞ norm of the transfer function T w→z = M T is less or equal to η i.e.:

T w→z ∞ < η. (22) 
Proof. First we prove the stability and then the bound on the global transfer function

H ∞ norm.
The global stability is ensured by applying the Theorem 2. Indeed, the condition (ii) of the Theorem 2 is exactly the same as the condition (ii) of the present Theorem and thus is satised by [START_REF] Zelazo | Graph-theoretic analysis and synthesis of relative sensing networks[END_REF].

For the other hand, the condition (20) can be equivalently expressed in the form of

    I 0 M 11 (jω) M 12 (jω) M 21 (jω) M 22 (jω) 0 I     *     P ⊗ X P ⊗ Y 0 0 P ⊗ Y T P ⊗ Z 0 0 0 0 I 0 0 0 0 -η 2 I         I 0 M 11 (jω) M 12 (jω) M 21 (jω) M 22 (jω) 0 I     ≤ 0 (23) 
for almost ∀ω ∈ R, which implies

I M 11 (jω) * P ⊗ X P ⊗ Y P ⊗ Y T P ⊗ Z I M 11 (jω) ≤ -M T 12 M 12 ≤ 0. ( 24 
)
for almost ∀ω ∈ R.

The last condition implies that the interconnection system M 11 is {P ⊗ X, P ⊗ Y, P ⊗ Z}dissipative i.e. the rst condition of the Theorem 2 is satised too. Therefore, by applying the Theorem 2 the global stability of the system (6) represented in Fig. 1 is proved.

Let us now prove the condition on the H ∞ bound. The condition [START_REF] Kao | Characterization of robust stability of a class of interconnected systems[END_REF] implies the X, Y , Z -dissipativity of the interconnection system M with characterization matrices dened as X = diag P ⊗ X, -η 2 I , Y = diag (P ⊗ Y, 0), Z = diag (P ⊗ Z, I) for some P = P T > 0. It is equivalent to the following quadratic condition for some ε 1 > 0:

∀w, ∀τ > 0,

ˆτ 0 ϕ (t) w (t) T I M T     P ⊗ X 0 P ⊗ Y 0 0 -η 2 I 0 0 P ⊗ Y T 0 P ⊗ Z 0 0 0 0 I     I M ϕ (t) w (t) dt ≤ -ε 1 I (25) 
After performing some transformation and taking into account the system description (6) one obtains:

ˆτ 0 z (t) w (t) T I 0 0 -η 2 I z (t) w (t) dt ≤ - ˆτ 0 ϕ (t) r (t) T P ⊗ X P ⊗ Y P ⊗ Y T P ⊗ Z ϕ (t) r (t) dt -ε 1 I (26) 
for ∀τ > 0, ∀w and r, ϕ, z dened by [START_REF] Saint-Laurent | A multi-pll clock distribution architecture for gigascale integration[END_REF].

The left hand part of [START_REF] Wieland | On consensus among identical linear systems using input-decoupled functional observers[END_REF] expresses the relation between external input w and output z signals of the global system (6) while its right hand side is dened in terms of the input r and the output ϕ signals of the upper diagonal bloc T of the global system (ϕ = T r see Fig. 1).

Recall that the condition ( 21) denes the strict -Z, -Y T , -Xdissipativity property of the operator T s . As it has been proven in the proof of the Theorem 1 it is equivalent to the strict -P ⊗ Z, -P ⊗ Y T , -P ⊗ X -dissipativity property for the global diagonal operator T and thus for ∀P = P T > 0 with ϕ = T r the following condition holds:

ˆτ 0 ϕ (t) r (t) T -P ⊗ X -P ⊗ Y -P ⊗ Y T -P ⊗ Z ϕ (t) r (t) dt ≤ -ε 2 I (27) 
for some ε 2 > 0.

Summing two conditions ( 27) and ( 26) together one obtains:

ˆτ 0 z (t) w (t) T I 0 0 -η 2 I z (t) w (t) dt ≤ -(ε 1 + ε 2 ) ε I (28) 
The last condition implies that the H ∞ norm of the global transfer function T w→z (s) is less or equal to η > 0 which concludes the proof. Remark 4. The dissipativity condition [START_REF] Kao | Characterization of robust stability of a class of interconnected systems[END_REF] on the interconnection LTI system M can be transformed to an LMI condition in decision variables P and R for some given X = X T ≤ 0, Y , Z = Z T ≥ 0 in a similar way as in Remark 3 with a new interconnection system M and its new X, Y , Z -dissipativity characterization dened in condition (i) of the Theorem 3. In the present section the local conditions needed to by satised for the global stability and global performance are presented based on the input-output approach. The next section demonstrates how to nd a controller such that these conditions are satised i.e.

how to design the control law solving the Problem 1.

Control law design

First, to propose an ecient control law design approach in this section we consider that the dissipativity characterization i.e. matrices X = X T ≤ 0, Y , Z = Z T ≥ 0 are given.

Then in the next section a methodology of the appropriate dissipativity characterization choice is proposed.

Let us rst consider the global stability case as in the previous section. Taking into account the Theorem 2 statements, one notes that the stability test of global system is reduced to the satisfaction of two conditions. First one is a dissipativity condition on the interconnection system M 11 [START_REF] He | Group coordination when the reference velocity is available only to the leader: An adaptive design[END_REF] or [START_REF] Jönsson | A popov criterion for networked systems[END_REF], second one is an H ∞ norm constraint [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF] on the transfer function T involving only one local subsystem dynamics i.e. a local condition.

Based on Theorem 2 the control law design ensuring the local and global stability i.e.

the rst part of the considered Problem 1 can be reformulated in the following way:

For given X = X T ≤ 0, Y , Z = Z T ≥ 0 nd:

1. a symmetric positive dened matrix P such that the condition [START_REF] He | Group coordination when the reference velocity is available only to the leader: An adaptive design[END_REF] or ( 19) is satised;

2. a controller F that ensures the H ∞ norm local constraint [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF].

The solution of the rst part of the described control problem is a solution of an LMI feasibility problem (see Remark 3). As it is well known, one can easily test the problem of a LMI condition feasibility by applying the convex optimization algorithm [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF][START_REF] Ben-Tal | Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications[END_REF] which can be eciently solved. For these reasons we restrict ourselves on the second part of the control law problem. 

α = (-X) -1 2 , β = Z -Y T X -1 Y - 1 2

H ∞ control law synthesis

The constraint ( 14) of Theorem 2 is actually a constraint on the local subsystem dynamics T s and thus for xed X, Y , Z, it can be easily ensured by an H ∞ control law synthesis see Fig. 3. As it can be seen from Fig. 3, the local subsystem dynamics T s was transformed into the standard H ∞ problem. Solving the standard H ∞ problem by LMI optimization [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] or Riccati equation method [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF], a controller F can be found that stabilizes the system in Fig. 3 and thus local subsystem dynamics. Moreover, it minimizes the H ∞ norm of the linear operator between external signals r S and ϕ S i.e. those of the transfer function T .

If its H ∞ norm is less or equal to γ < 1, the condition ( 14) is thus satised.

The described control law synthesis together with the LMI optimization feasibility problem [START_REF] He | Group coordination when the reference velocity is available only to the leader: An adaptive design[END_REF] or [START_REF] Jönsson | A popov criterion for networked systems[END_REF] results in control law design ensuring the global stability that is rst part of the Problem 1. This H ∞ control law synthesis applied only for one separate subsystem of the network and the discussed convex LMI optimization for the interconnection system allows a signicant reduction of the control law design problem complexity ensuring the global stability. One should compare this proposed approach versus the complex full network dynamics control problem or the problem of simultaneous stabilization initially suggested by Theorem 3 of [START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] and used in [START_REF] Wieland | From static to dynamic couplings in consensus and synchronization among identical and non-identical systems[END_REF][START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF][START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: An h ∞ approach[END_REF].

However, we will not directly apply this design result, we will rather exploit extensively H ∞ design for MIMO systems [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF] by adding the desired performance inputs and outputs in order to ensure local performance specications besides the stability i.e. second part of the Problem 1.

Local performance

As in the stability case, in this section, we derive local conditions on the subsystem that with the condition on the interconnection system ensures some local performance specications and global stability.

As it was pointed out before, we introduce to the local subsystem additional external performance inputs r pi and outputs ε pi as well as the corresponding input W i and output In this section we describe a general approach once the external signals were introduced while the procedure how to introduce these signals for a specic application case is reported on the numerical example of the section 7.

The system G represented in Fig. 4 correspond to the system G in [START_REF] Anceau | Une technique de réduction de la puissance dissipée par l'horlogerie des circuits complexes rapides, in 4ème journées francophones d'étude de Faible Tension Faible Consommation[END_REF] and in Fig. 2 augmented by the stability input and output r s and ϕ s respectively needed to construct the system T as in Fig. 3. The corresponding subsystem G (in Fig. 4) is a version of the subsystem G without weighting functions W i and W o .

By applying now standard H ∞ design to the local extended system model G, a controller F that stabilizes the closed loop system (local stability), and ensures the H ∞ norm constraints on the transfer function between external signals ( 29) can be computed.

T i→o (s) ∞ = T rpi→εpi (s) T r S →εpi (s) T rpi→ϕ S (s) T r S →ϕ S (s) ∞ ≤ γ (29) 
If a control law ensuring [START_REF] Zhai | A new consensus algorithm for multi-agent systems via dynamic output feedback control[END_REF] with γ < 1 is found, the local stability is then guaranteed and by the norm propriety one has:

   1) T r S →ϕ S (s) ∞ < 1 
2)

T rpi→εpi (s) ∞ = W o (s) T rpi→ ϕpi (s) W i (s) ∞ < 1 (30) 
The rst condition in [START_REF]A matrix inequality based design method for consensus problems in multiagent systems[END_REF] ensures the global stability (Theorem 2) while the local performance constraints specied by an appropriate choice of the weighted functions W i and W o are ensured by the second condition of [START_REF]A matrix inequality based design method for consensus problems in multiagent systems[END_REF]. Two rst parts of the Problem 1 are thus solved by the proposed control law design.

Global performance

The second constraint in [START_REF]A matrix inequality based design method for consensus problems in multiagent systems[END_REF] only ensures the performance locally since a unique local subsystem was considered in the H ∞ design. However, for the application purpose, how it was pointed out in the introduction, some performance specications have to be ensured also for the global network taking into account some external inputs and outputs as well as the overall network dynamics. More precisely, local controllers have to be designed such

r p1 ɛ p1 φ N r 1 φ φ i r i r N r M 11 T̃ F φ 1 G F G F Ĝ T s T s T s
Figure 5: Direct performance transfer function that the global transfer function T w→z satises the second constraint of (30) whatever the network interconnection matrix is i.e. the last part of the Problem 1. Since depending on the application there can be a number of various performance transfer functions a following its classication is proposed. We call the direct performance transfer functions the global transfer functions the inputs and outputs of which directly enter and leave the same subsystem. A direct performance transfer function for the rst subsystem case is presented in Fig. 5. The cross performance transfer functions are the transfer functions that have the inputs and outputs applied to the two dierent subsystems. The situation where inputs are applied to the rst subsystem and outputs come from the ith subsystem corresponding to a cross performance transfer function is depicted in the Fig. 6. To be able to encompass the general case a general performance T w→z presented in Fig. 1 is considered in the remained part of the section. It denes by the way a more general interconnection matrix M which is not necessary equal to the Laplacian or Adjacency matrices often used in the Multi-Agents system approaches.

The control design result of this paper ensuring the last third part of the considered Problem 1 is actually inspired by the discussion in the introduction concerning classical local methodology of the lter design in the PLLs clock distribution network. Once such local control law design is performed the global stability is usually tested and the dierences between local and global performance transfer functions is analyzed. In the same way a logical extension of the existing methodology to a control law design that ensures a bound on this local-global dierence is proposed. We will further see that it is actually possible to minimize this bound by an appropriate control law design and a suitable dissipativity characterization choice. This approach will be called hereafter an approach of the relative performance and the corresponding weighted transfer function which express the dierence between global and local transfer functions a relative weighted transfer function. The relative weighted transfer function T g is the global transfer function which can be easily chosen to compare various (direct or cross) global performance transfer In the application example it will be illustrated that this restriction is a pertinent one and being not very strong it allows to cover a big set of performance transfer function cases. In the Fig. 7, the bloc T consists of two parts: the N network nodes T s dynamics, and the k local node T s dynamics that are needed to construct the relative weighted transfer function T g . The augmented system M describes the interconnection topology between them which is summarized by the following equation similar to [START_REF] Saint-Laurent | A multi-pll clock distribution architecture for gigascale integration[END_REF]:

r p1 ɛ pi φ N r 1 φ φ i r i r N r M 11 T̃ T s F φ 1 F G F Ĝ 1 Ĝ i T s T s
ϕ = T (I N +k ⊗ Ts) r r z = M 11 M 12 M 21 M 22 M ϕ w (31) 
with

T s = G F , r (t) , ϕ (t) ∈ R p(N +k ) , w (t) ∈ R n w , z (t) ∈ R n z .
The control law synthesis result solving the Problem 1 is summarized in the following theorem:

Theorem 4. Suppose that the system described by the equation ( 31) is well posed and causal. Given real p × p matrices X = X T ≤ 0, Y , Z = Z T ≥ 0 and a bound η > 0 if there 

I M *     P ⊗ X 0 P ⊗ Y 0 0 -η 2 I 0 0 P ⊗ Y T 0 P ⊗ Z 0 0 0 0 I     I M ≤ 0 (32) 
for almost ∀ω ∈ R; the decentralized control law F ensuring

T i→o ∞ < 1 (33) 
solves the Problem 1 i.e. it: (i) Stabilizes each subsystem [START_REF] Anceau | Une technique de réduction de la puissance dissipée par l'horlogerie des circuits complexes rapides, in 4ème journées francophones d'étude de Faible Tension Faible Consommation[END_REF] and Fig. 2 separately as well as the overall network (31) represented in Fig. 7; (ii) Ensures given local performance specication dened by some local weighting functions W i and W o by minimization of the H ∞ norm of the transfer function T r pi →ε pi (s) dened in [START_REF]A matrix inequality based design method for consensus problems in multiagent systems[END_REF] between performance inputs r pi and outputs ε pi i.e.

T r pi →ε pi ∞ < 1; [START_REF] Ren | Multi-vehicle consensus with a time-varying reference state[END_REF] (iii) Ensures given global performance specication by minimization of the H ∞ norm of the relative weighted transfer function T g (s) between performance inputs w and outputs z dened in [START_REF]Extended consensus algorithm for multi-agent systems[END_REF] and Fig. 7 i.e.

T g ∞ ≤ η. [START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: An h ∞ approach[END_REF] Proof. We prove that the controller F solves the three parts of the Problem 1 in a successive order.

(i) The local stability follows from the condition (33) since an unstable system can-not have bounded H ∞ norm. The global stability in its turn is ensured by applying the Theorem 2 with new interconnection system M and symmetric positive denite matrix P . Indeed, recall from the Theorem 3 proof that the condition (32) implies P ⊗ X, P ⊗ Y, P ⊗ Zdissipativity of the matrix M 11 i.e. the rst condition of the Theorem 2, while the condition (33) implies the condition [START_REF]A matrix inequality based design method for consensus problems in multiagent systems[END_REF] and thus the second condition of the Theorem 2. As a conclusion the controller F solve the part (i) of the Problem 1.

(ii) The part (ii) of the Problem 1 is satised by the condition [START_REF] Zhai | Decentralized h ∞ controller design: a matrix inequality approach using a homotopy method[END_REF] together with the second equation of ( 30).

(iii) The condition ( 35) is ensured by the direct applying of the Theorem 3 with new interconnection system M and symmetric positive denite matrix P . The controller F solves thus the last part (iii) of the Problem 1 which concludes the proof. Remark 6. The condition [START_REF] Ikeda | Decentralized h ∞ controller design for largescale systems: a matrix inequality approach using a homotopy method[END_REF] can be transformed to an LMI condition in decision variables P and R for given matrices X = X T ≤ 0, Y , Z = Z T ≥ 0 similarly to the Remark 3.

The Theorem 4 allows to design the control law ensuring the local and global stability, a local performance level and that the dierence between this local and global performance dened by the relative weighted function T g is not greater than η. For the given matrices X = X T ≤ 0, Y , Z = Z T ≥ 0, the condition ( 32) is an LMI constraint and a convex optimization algorithms [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF][START_REF] Ben-Tal | Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications[END_REF] can be applied in order to minimize the bound η and thus minimize the dierence. However, depending on the considered application problem, it could be dicult to nd the X, Y , Z values such that the conditions of the Theorem 2 and/or Theorem 4 dene a non empty set or are satised with required level of the local and global performance dened by [START_REF] Zhai | Decentralized h ∞ controller design: a matrix inequality approach using a homotopy method[END_REF] and η respectively. For these reasons the following section discuss a possible choice of the appropriate X, Y , Z values applying the quasi-convex optimization tools.

6 Choice of X, Y , Z First, we discuss the choice of the X, Y , Z values for the Theorem 2 conditions i.e. the case of the global stability test only. The appropriate choice of the dissipativity characterization for the control law design conditions i.e. those of the Theorem 4 are discussed after. For the sake of clarity, the study focuses on the case of a static interconnection represented by a real matrix M and SISO subsystems i.e. p = 1, x, y, z are scalars and T s has scalar input and output. The dynamical LTI system interconnection case could be treated in a similar way.

Theorem 2 conditions

Let us take a closer look at the dissipativity conditions of Theorem 2 (17) or ( 14) and x y y z

T s (jω) 1 > ε (36) ⇐⇒ (T s (jω) -c) * (T s (jω) -c) < r 2 + ε ( 37 
)
and can be interpreted as : "the Nyquist plot of the transfer function T s (jω) is inside the circle with center c = -y x and radius r = y 2 x 2 -z

x ". The Fig. 8 presents a typical

Nyquist plot of T s (jω) in the case of the PLL design which can be obtained by an usual one subsystem local design. The corresponding circle is plotted in full red line. To relax the constraint (37) (and thus conditions ( 17) and ( 14)) for a xed circle center c, one has to maximize the radius r. The only way to increase the radius r is to increase -z

x which is positive by denition of x, and z.

The other condition [START_REF] He | Group coordination when the reference velocity is available only to the leader: An adaptive design[END_REF] for P = P T > 0 is transformed as follows:

M 11 + y z I T P M 11 + y z I ≤ y 2 z 2 - x z P (38) 
It can be noted that increasing -z

x and thus the radius of the circle in Fig. 8 will auto- matically constrain the condition [START_REF] Lasley | Input-output stability of interconnected systems[END_REF]. Unfortunately, one cannot relax both constraints in the same time and an optimization problem thus has to be solved which can be formulated as follows : nd the values of x, y, z such that the condition [START_REF] Lasley | Input-output stability of interconnected systems[END_REF] is satised and that it maximizes the circle radius r = y 2 x 2 -z x with a xed center c for the condition on the local transfer function [START_REF] Lunze | Feedback Control of Large Scale Systems[END_REF] represented in Fig. 8.

To solve the described problem, without lost of generality, one redundant variable can be suppressed by setting for example z = 1. This is equivalent to dividing both inequalities ( 18) and ( 36) by z > 0 and performing the change of variables: x = x z ≤ 0, ỹ = y z . Next, one can recast the condition [START_REF] Lasley | Input-output stability of interconnected systems[END_REF] in terms of variables r and c and for symmetric matrix P formulate the following optimization problem:

min χ,P χ = 1 r 2 such that P > 0 M T 11 P M 11 ≤ 1 r 2 χ (cM 11 -I N ) T P (cM 11 -I N ) (39) 
For a given c, the minimization problem of χ (and thus maximization of r) for decision variables P ∈ R N ×N and χ ∈ R + is a problem of the generalized eigenvalue minimization [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF]. Being a quasi-convex optimization problem, it is easily solved using e.g.

Matlab. One obtains thus the maximum radius r for the circle constraint on the transfer function T s [START_REF] Lunze | Feedback Control of Large Scale Systems[END_REF] for which the dissipativity condition on the interconnection matrix M 11 (18) is satised. Next, it can be easily veried that for the feasibility of condition [START_REF] He | Group coordination when the reference velocity is available only to the leader: An adaptive design[END_REF] on the interconnection matrix, the center of the circle c has to be constrained by:

|c| = y x ≤ 1 2max i ( Re λ M 11 i ) ( 40 
)
where λ M 11 i is the i-th eigenvalue of M 11 . By varying c in the domain dened by [START_REF] Hovd | Sequential design of decentralized controllers[END_REF], the best couple of c and r can be found in the sense of relaxation of the T s transfer function circle constraint [START_REF] Lunze | Feedback Control of Large Scale Systems[END_REF] and as a consequence of the condition [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF]. Finally a simple transformation of {r, c} ⇒ {x, y, z = 1} is performed in order to obtain the needed {x, y, z} -dissipativity characterization.

It should be noticed that the relaxation of the constraint (37) (and thus conditions [START_REF] Bai | Adaptive design for reference velocity recovery in motion coordination[END_REF] and ( 14)) gives more exibility for the local performance constraint satisfaction (see [START_REF] Zhai | A new consensus algorithm for multi-agent systems via dynamic output feedback control[END_REF] and ( 30)).

Theorem 4 conditions

The condition (32) is equivalently expressed in terms of center c and radius r of the circle as dened in the previous subsection:

P > 0 I M T      -P 0 c P 0 0 -η 2 I 0 0 c P 0 r 2 -c 2 P 0 0 0 0 I      I M ≤ 0 (41) 
One can then transform the condition (41) applying a Factorization into the condition P > 0

I M T     I 0 -cI 0 0 I 0 0 0 0 I 0 0 0 0 I     T     -P 0 0 0 0 -η 2 I 0 0 0 0 r 2 P 0 0 0 0 I         I 0 -cI 0 0 I 0 0 0 0 I 0 0 0 0 I     I M ≤ 0 (42)
and perform the change of variable P = r 2 P and β = η 2 r 2 to obtain the following optimization problem: min

χ,P χ = 1 r 2 tel que P > 0 Φ T     0 0 0 0 0 0 0 0 0 0 P 0 0 0 0 I     Φ ≤ 1 r 2 χ Φ T     P 0 0 0 0 βI 0 0 0 0 0 0 0 0 0 0     Φ ( 43 
)
where

Φ =     I 0 -cI 0 0 I 0 0 0 0 I 0 0 0 0 I     I M .
For xed β and c the optimization problem [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF] with decision variables P ∈ R (N +k)×(N +k) and χ ∈ R + is a minimization problem of the maximal generalized eigenvalue [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF]. This problem can be easily solved using e.g. Matlab. Finally, a simple transformation {r, c} ⇒ {x, y, z} is performed to obtain the {x, y, z} -dissipativity characterization. Remark 7. Though the minimization of χ in [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF], one maximizes the radius of the circle r and thus releases the constraint on the local node dynamic [START_REF]Output synchronization of nonlinear systems with time delay in communication[END_REF], and in the same time minimizes the relative performance transfer function upper bound η. Indeed, since the ratio β = η 2 /χ is a xed constant, the minimization of χ implies the minimization of η 2 = χβ. The parameter β is a tuning parameter for the condition [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF]. If the optimization problem [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF] has no solution or the computed radius r = 1/ √ χ constraints too much the condition ( 14), β should be increased to release the condition of the optimization problem [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF]. 

Control law design algorithm

To summarize, the control law design solving the Problem 1 is reduced to the problem set-up i.e. an appropriate choice of the global relative and local weighted functions and the further resolution of (i) the optimization problem [START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF] 7 PLL Network design

Model description

In this section, an active clock distribution network is investigated that consists of N = 16

PLL nodes generating periodical signals on the chip and one external reference connected to the rst PLL node. Each PLL in the network communicates with its neighborhood in horizontal and vertical (2D grid) directions in order to mutually synchronize (see Fig. 9).

A Phase-Locked Loop is a feedback system that generates a periodic signal synchronized (in frequency and/or in phase) with an external periodic signal. In the case of multiple input PLL, as in an active clock distribution network, the local signal is synchronized with a Filter (F ). The lter whose input is the averaged phase error signal delivers a V CO command needed for the synchronization. Generally, one can use an additional block, a frequency divider (1/d), inserted straight after V CO in order to synchronize the internal V CO on a low frequency external signal while having a high frequency V CO output. Additionally, each P D can be shared and placed in the middle of any couple of adjacent P LL nodes in order to reduce possible delays between them and the number of used P Ds.

Local PLL node PD PD PD PD PD PD Inputs from neighbor nodes #1 #1 #2 #2 #mi #mi Σ/mi Σ/mi F F VCO VCO 1/d 1/
The problem of the system design can be expressed as designing an active clock distribution network Fig. 9 that achieves frequency and phase synchronization of all PLL VCOs within a specied time with some specied clock signal purity . The main parameters of V COs and P Ds as well as the network topology are xed by the technology process and clock generation requirements: clock frequency, PLL node number and its localization in the array, V CO and P D resolution etc.. In the present study, the control law design of each local PLL lter F is under consideration. From a control system point of view, the designed control law has to ensure the global network stability and a set of performance specications.

To design the lter of a stand-alone PLL, one usually models it in the phase domain [START_REF] Rohde | Microwave and wireless synthesizers: theory and design[END_REF][START_REF] Kroupa | Phase lock loops and frequency synthesis[END_REF][START_REF] Kharrat | H ∞ loop shaping control for pll-based mechanical resonance tracking in nems resonant mass sensors[END_REF]. A periodic signal is represented by its phase growing as a ramp with a certain slope corresponding to the instantaneous oscillator frequency. Then the possibly nonlinear phase domain PLL model is linearized around an operating point. One must then design a control law that ensures the stability and the desired performance properties of the PLL LTI model.

In the context of a coupled PLL network, one can use the same design methodology.

One major non-linear issue of such PLLs network known as mode-locking states will not be addressed in this paper but can be circumvented independently as in [START_REF] Pratt | Distributed synchronous clocking[END_REF][START_REF] Gutnik | Active ghz clock network using distributed plls, Solid-State Circuits[END_REF][START_REF] Korniienko | A clock network of distributed adplls using an asymmetric comparison strategy[END_REF].

The linearized phase domain model of the PLL network in Fig. 9 is presented in Fig. 10.

Here K pd stands for the phase detector linear gain, m i is a constant normalization factor equals to the input number of the i-th P LL node, F (s) and P r (s) = K V CO /K d s are respectively the corrector and the V CO transfer functions with K V CO as a linear V CO gain and the frequency divider gain K d = d. The overall system can now be expressed in the form of Fig. 1 and ( 6) with the interconnection matrix M where M 11 is the N × N matrix1 where i th , j th element is equal to 1 m i if i th node receives the information from j th node and to 0 otherwise. The reference input is taken into account by m i as an additional input i.e. for the rst node m 1 = 3.

r i G F φ i u i ɛ i T s φ i u i ɛ i r i
The remain part of the interconnection matrix M has to be dened regarding to the considered performance specications.

In Fig. 1, Fig. 11 and(6) G represents the part of a local PLL that has to be controlled. G includes the V CO transfer function, the P D and frequency divider gains. F is the controller transfer function to be designed, T is the diagonal LTI matrix consisting of the N identical LTI models T s on the diagonal. In our application the subsystem T s (elementary PLL node) is a single-input single-output (SISO) system thus p = 1. The vector r is the average adjacent node input values vector, ϕ is the PLL outputs vector i.e. 

K d = d = 4 V CO central frequencies random initialized around d • f ref ± 25% V CO gain KV CO =

Performance specication

Beside the stability of the overall system, the clock distribution system must ensure some performance specications that are summarized in Table 2 for the present application.

The rst and most important specication is the synchronization issue of all PLLs in frequency and phase with an external periodic reference signal. In the phase domain model, this specication consists in tracking a ramp reference signal. The global system must reject the input/output P D/V CO noise and possible perturbations as well.

Usually, one must lter the V CO icker noise in the system bandwidth and the high frequency (HF) noise of the P D [START_REF] Rohde | Microwave and wireless synthesizers: theory and design[END_REF]. The temperature and power disturbances as well as central frequency variations of the V COs can be modeled as a constant or a slightly varying perturbation on the V CO input that has to be rejected. The last specication is the limitation on the control signal magnitude that has to be reasonable for practical implementation reasons especially in the HF range due to the noise command excitation reasons.

As it was mentioned in the section 3, the performance specication is often expressed as a time domain constraint on a specied output signal. It can be equivalently expressed it in the frequency domain constraint on a specied transfer function. As an example, the rst performance specication will be discussed in details.

Local PLL performance

Synchronization

A phase domain LTI model of the PLL is represented in Fig. 13 with corresponding input and output signals. Here, f i is the central V CO frequency which is constant , r i is the external periodic signal that is a ramp in the phase domain, ϕ i is the V CO phase signal, ε i is the local tracking error and u i is the corrector command. Synchronization is achieved when the output ϕ i reaches the reference r i asymptotically in a given time. Equivalently, the output signal ϕ i is constrained by red bounds depicted in Fig. We thus obtain a criterion of the 4 blocks, resulting PLL phase domain model and corresponding weighted functions are represented in Fig. 17 and summarized in Table 3.

For more details of proper frequency constraints choice with corresponding input/output weighted functions, one should see [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF].

Global performance

The previous discussion is valid for one local PLL subsystem. But we are actually interested in the global performance of the overall system and thus frequency constraints have to be satised for each PLL node taking into account the global network interconnection. Since one can satisfy the frequency constraints for the local transfer functions and a maximal distance between these transfer functions and the corresponding global performance transfer functions, one could express the global performance using the relative weighted function T g (s) approach described in the previous section. For the sake of clarity, we consider the global performance only for the rst node. The global performance for all other nodes as well as the global cross node performance can be treated similarly.

Since the performance is usually expressed as frequency constraints in the logarithm scale, the distance between two transfer functions should be evaluated in terms of its ratio. Let the transfer function S g (s) be a global transfer function between an external reference w = ref entering the rst node and the rst node tracking error z = ref -ϕ 1 (see Fig. 1). For this case one has M 11 dened as previously and

M 12 = 1 3 0 • • • 0 N -1 T M 21 = -1 N -1 0 • • • 0 M 22 = 1 (44) 
The corresponding local transfer function is the sensitivity transfer function S (s) between the rst node input r 1 and its tracking error ε 1 = r 1 -ϕ 1 without taking into account global interconnection (see Fig. 13).

Let's choose the relative weighted function T g (s) in the form of T g (s) = S g (s) S (s) + α [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] where α ∈ R + .

The global performance is then evaluated by nding the upper bound η on the H ∞ norm of T g (s) :

T g (s) ∞ ≤ η ⇔ |T g (jω)| ≤ η, ∀ω ∈ R (46) 
In the log scale, ( 46) is equivalent to: 

In the frequency range where α |S (jω)|, the parameter α can be neglected. The relative weighted function can thus be expressed as T g (s) ≈ Sg(s) S(s) and the condition (47) is equivalent to:

|S g (jω)| dB -|S (jω)| dB ≤ µ, ∀ω ∈ R (48) 
In other words, in the log scale the magnitude of the global performance transfer function is bounded by the corresponding magnitude of the local transfer function plus µ dB. This situation is depicted on Fig. 18.

The next step consists in expressing the chosen relative weighted transfer function T g (s) in the form of an LFT in local node dynamics T s . Since by denition S (s) = 1 -T s (s), one obtains the graphical representation of [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] in Fig. 19.

The schema depicted on Fig. 19 is easily transformed in the schema of Fig. 7 with k = 1 

T = I N +1 ⊗ T s M =      1 1 + α 1 1 + α M 21 1 1 + α M 22 0 M 11 M 12 1 1 + α 1 1 + α M 21 1 1 + α M 22      r = q r 1 • • • r N T , ϕ = p ϕ 1 • • • ϕ N T , w = w, z = q (49)
One should use the parameter α in the relative weighted transfer function [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] expressionto ensure the well-posedness of the relative weighted transfer function [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. Indeed, for α = 0, i.e. T P rS g (s) = P rS g (s) P rS (s) + α P rS [START_REF] Carli | A pi consensus controller for networked clocks synchronization[END_REF] with α P rS = α ∈ R + . For the frequency range where α P rS < |P rS (jω)|, the load relative weighted transfer function becomes

T P rS g (s) = P rS g (s) P rS (s) = P r (s) S g (s) P r (s) S (s) = S g (s) S (s) = T g (s) (52) 
The condition (52) shows that the load relative weighted transfer function T P rS g (s) is equal to the relative weighted transfer T g (s) in interesting us frequency range and thus has the same upper bound η. This implies that the global performance transfer function P rS g (s) magnitude is not greater than the sum of the local load sensitivity function P rS (s) magnitude and µ dB.

Same arguments can be used in order to demonstrate that the same upper bound can be used on similar relative weighted transfer functions for noise and complementary sensitivity functions. This result can be conservative with respect to some performance transfer functions since it covers the worst case. Very often the worst case (that is the most important) concerns the local sensitivity transfer function S and its corresponding global analogue S g . All other performance transfer functions are dened by S and S g respectively.

Regarding the cross performance transfer functions (see Fig. 6 as an example), it is possible to proceed in two ways. First, the corresponding cross performance transfer function constraint can be directly taken into account by appropriate choice of the relative weighted transfer function T cross g (s) = f S cross g (s) , S (s) . Second, based on [START_REF] Tonetti | Limits on the network sensitivity function for multi-agent systems on a graph[END_REF][START_REF]Limits on the network sensitivity function for homogeneous multi-agent systems on a graph[END_REF] works, all cross performance transfer functions can be bounded in low and high frequency by combining direct performance transfer functions and local sensitivity functions T s (s), S (s). An appropriate choice of the frequency constraints on these transfer functions results in the global cross performance constraint fulllment. For these reasons, the relative performance weighted function T g (s) dened as ( 45) is considered hereafter. The next step consists in solving the optimization problem (43) result of which is given in the next section.

Algorithm solution

In this section, the control law design algorithm (Algorithm 1) described in Section 6.3 is applied to the model described by (31) and section 7.1 with the numerical values of the Table 1. Here again to simplify the discussion, we consider the global performance only for the rst node. We choose thus the local external input signals r T p1 = [r 1 , f 1 ] T and the local output that has to be minimized ε T p1 = [r 1 -ϕ 1 , ϕ 1 ] T corresponding to the rst PLL node as in the Fig. 17 and Fig. 2 according to the performance specications in After few iterations of the proposed algorithm, we obtain the following solution:

1. Selected relative weighted transfer function is in the form of (45); 

There is no need to dene a parameter α since there is no division by zero in low frequency range (as lim ω→0 (|T s (jω)|) = 1). As a consequence, the bound that will be found is valid for all frequency range. Instead of simplifying the relation (54) as it was Using the same x,y,z found in the third step of the Algorithm 1 and solving the optimization problem to minimize η under constraint [START_REF] Ikeda | Decentralized h ∞ controller design for largescale systems: a matrix inequality approach using a homotopy method[END_REF], the new bound based on the relative weighted transfer function T Ts g (s): µ T = 1.166 dB is found that is much less conservative in comparison to µ = 36.9 dB (see Fig. 23).

Observing the resulting performance transfer functions in both local and global cases, it can be noticed that discrepancies between the two cases exist. The magnitude of the local sensitivity function S is lower that the magnitude of the corresponding global performance transfer function S g . That results in a longer time response (smaller bandwidth for the system) in the latter case. This is conrmed by the dierence on the complementary sensitivity function T s and T gl . Nevertheless the slope of +40 dB/dec ensured by the lter design is still conserved in the global case of sensitivity transfer function S and thus each node can globally track the ramp reference : synchronization on the master clock is ensured. The same observations can be done for the noise sensitivity function F S and the load sensitivity function P rS. Discrepancies between local and global performance transfer function depend on the interconnection topology which in this study was considered given. Interested reader can, however, nd some additional information concerning the performance analysis for some interconnection cases in [START_REF] Tonetti | Limits on the network sensitivity function for multi-agent systems on a graph[END_REF][START_REF]Limits on the network sensitivity function for homogeneous multi-agent systems on a graph[END_REF].

Conclusion

In this paper, a general control law design methodology for homogenous LTI Multi-Agent systems was proposed. The condition of the overall network stability and performance exploiting the identity of the agents and based on the input-output dissipativity properties was transformed to a condition on the interconnection matrix and a condition on the local node dynamics. The rst condition is satised by an appropriate dissipativity properties choice that is reduced to a quasi-convex optimization problem by xing some decision variables. The second condition is satised by a local H ∞ synthesis. Both problems can be eciently solved in the general case. As an example, the control law design for the synchronization of a PLLs network was presented.

As a perspective to this work the following idea should be pointed out. In order to further reduce the dierence between the global and local performance levels the combination of the proposed control law method and an appropriate interconnection topology choice could be performed. Moreover other type of perturbations such as non-linearity of the subsystems as well as of the interconnection, delays, switching interconnection topology are the subject of the ongoing work.
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Figure 9 :

 9 Figure 9: The active clock distribution network

Figure 10 :

 10 Figure 10: Phase domain model of the local PLL node

Figure 11 :

 11 Figure 11: Transformed phase domain model of the PLL node

40

 40 Hz/c. u. P D gain KP D = 21.2 e. u./rad Number of inputs mi = {1, 2, 3, 4} depending on PLL position

14

 14 

.+FFigure 13 :

 13 Figure 13: Phase domain LTI model of a PLL

Figure 14 :Figure 15 :FFigure 16 :( 1 + 1 PLL( 1 + 1 V 1 PFigure 17 :

 1415161111117 Figure 14: Time domain constraint for synchronization performance specication

20log 10 (

 10 |S g (jω)|) -20log 10 (|S (jω) + α|) ≤ 20log 10 (η) = µ ⇐⇒ |S g (jω)| dB -|S (jω) + α| dB ≤ µ , ∀ω ∈ R

Figure 18 :Figure 19 :

 1819 Figure 18: Relative performance weighted function constraints

Figure 20 :

 20 Figure 20: Local weighting functions

2 .

 2 The obtained tuning parameter of the optimization problem (43) β = 3.8 • 10 3 3. The solution of the optimization problem (43) for α = 5.1 • 10 -3 (-45.85 dB in log scale) and center c = 0.1 + j0 is x = -1.2426, y = 0.1243, z = 1, radius r = 0.9027 and corresponding value of µ = 36.9 dB.
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 45 The local weighting functions chosen based on Table2and Table3are presented in Fig.20and have the following numerical values:W S (s) = W ε (s) W Ref (s) = 0.36 (s + 998.2) s + 0.22 ; W GS (s) = W ε (s) W V CO (s) = 2.5 (s + 998.2) s + 0.22 ;W KS (s) = W u (s) W Ref (s) = 0.0073; W T (s) = W u (s) W V CO (s) = 0.05. The solution of the H ∞ control design after order reduction gives a PI controller : F = 5.99(s+19.96) s with γ = 0.99 and T ∞ = 0.997. The corresponding local sensitivity and global performance transfer functions are presented in Fig.21. It conrms the result in [51] that the PI consensus algorithm is sucient for the synchronization of identical networked clocks. Moreover, it actually extends this results since any symmetric assumption on the network topology here was considered. The Fig.21 presents the local sensitivity functions (blue dashed line) as well as the corresponding global sensitivity function (blue full line) of the rst PLL node. One notices that for the global bound on the relative transfer function µ = 36.9 dB,
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  and (ii) the problem of local H ∞ control law design ensuring the constraint (33) of Theorem 4. It can be summarized by the following control law design algorithm: Algorithm 1 Algorithm of the control law design 1. Select the global relative weighted function T g that can be transformed into an UFT (or LFT ) in local dynamics T s and evaluates the dierence between global and local node transfer functions;2. Set the tuning parameter β which denes the ratio between the squared bound η 2 on the relative weighed function T g and decision variable γ of the optimization problem (43);3. Solve the optimization problem[START_REF] Blondel | Simultaneous stabilizability of three linear systems is rationally undecidable[END_REF] in order to minimize χ and thus minimize η and maximize the radius r releasing the constraint on the local dynamic T s (see equation[START_REF] Zhai | Decentralized h ∞ controller design: a matrix inequality approach using a homotopy method[END_REF] 

	of Theorem 4);
	4. Select the weighting functions ensuring the local performance specications dened by
	(34);

5.

Apply the H ∞ control design to the extended system of Fig.

4;

6. If a controller giving γ < 1 is found, then the Problem 1 is solved i.e. the local and global stability and the local and global (in terms of the relative weighed transfer function T g ) performance are guaranteed;

7. If no controller is found or if the corresponding value of γ is high, so that the constraint (33) of the Theorem 4 cannot be satised, either reduce the weighing function constraints i.e. local performance specications or increase the value of the ratio β and then go to step 3.
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 1 its local phase values. All numerical values of the considered clock distribution network are summarized in Table1. Numerical values of the considered clock distribution network
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	Figure 12: Associated PLL network graph
	Parameter		Numerical value
	Reference frequency		f ref = 50 kHz
	Frequency divider factor			

Table 2 :

 2 Performance requirements

		Reference (ramp)
	Synchronization	
		tracking
		Input/output V CO/P D
	Perturbation	noise rejection,
	rejection	temperature and power
		perturbation rejection
	Control	
		Moderate control
	limitations	

  the condition[START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] is valid for all frequency range, and because the sensitivity function S tends to zero in low frequency range (integrator behavior in the open loop F (s) P r (s)), one obtain a division by zero while evaluating the expression of the relative weighted transfer function[START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. Consequently, one has to impose a non-zero value for α to ensure validity of the condition (48) in a signicantly wide frequency range. If parameter α is dened such as 20 log 10 (α) < -40dB , the frequency range where α cannot be neglected is not relevant enough. That is because it results in an already small tracking error that can be neglected. As a conclusion, by evaluating the upper bound µ on the relative weighted transfer function[START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] the magnitude of the global performance transfer function S g will not be for sure greater than the magnitude of the local performance transfer function S plus µ dB in the frequency range where α |S (jω)|. dynamics T s itself. Since the typical complementary sensitivity transfer function T s has a low gain in the HF range, the upper bound on the frequency response magnitude of W * g (s) in HF range is reduced. It results in allowing less importance in this frequency range to the dierence between local and global performance transfer functions in the optimization problem. It can be proved[START_REF] Tonetti | Limits on the network sensitivity function for multi-agent systems on a graph[END_REF][START_REF]Limits on the network sensitivity function for homogeneous multi-agent systems on a graph[END_REF] that in HF range the both performance transfer functions coincide. However in the present study, for the sake of clarity the simple form of the relative weighted transfer function (45) is considered.It turns out that if µ is the upper bound on the chosen relative weighted transfer function[START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] i.e. corresponding to the sensitivity transfer function S, then it is necessary the upper bound for all other similar weighted transfer functions corresponding to the complementary sensitivity transfer function T s , the noise sensitivity transfer function F S and the load sensitivity transfer function P rS. Indeed, let's illustrate this property on the example of the load sensitivity transfer function P rS (s). The corresponding global performance transfer function is denoted by P rS g (s). Let the new load relative weighted transfer function be described as:

	It is possible to choose the relative weighted transfer function in the form of	
	T * g (s) =	S g (s) S (s) + α	T s (s)	(50)
	This a weighted version of (45) with the additional weighting function represented by the
	local transfer function			

Table 3

 3 

	and 2. The corresponding global not weighted performance input and output

CHOICE OF X, Y , Z

This interconnection matrix is similar to the normalized Adjacency matrix considered in[START_REF] Fax | Information ow and cooperative control of vehicle formations, Automatic Control[END_REF] except that the lines corresponding to the PLL nodes that receive the external reference input do not sum up to 1.
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