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Ranking Multi-Class Data:
Optimality and Pairwise Aggregation

Stéphan Clémençon · Sylvain Robbiano ·
Nicolas Vayatis

Abstract It is the primary purpose of this paper to set the goals of ranking in a
multiple-class context rigorously, following in the footsteps of recent results in the
bipartite framework. Under specific likelihood ratio monotonicity conditions, optimal
solutions for this global learning problem are described in the ordinal situation, i.e.
when there exists a natural order on the set of labels. Criteria reflecting ranking perfor-
mance under these conditions such as the ROC surface and its natural summary, the
volume under the ROC surface (VUS), are next considered as targets for empirical op-
timization. Whereas plug-in techniques or the Empirical Risk Maximization principle
can be then easily extended to the ordinal multi-class setting, reducing the K-partite
ranking task to the solving of a collection of bipartite ranking problems, following in
the footsteps of the pairwise comparison approach in classification, is in contrast more
challenging. Here we consider a concept of ranking rule consensus based on the Kendall
τ distance and show that, when it exists and is based on consistent ranking rules for
the bipartite ranking subproblems defined by all consecutive pairs of labels, the latter
forms a consistent ranking rule in the VUS sense under adequate conditions. This result
paves the way for extending the use of recently developed learning algorithms, tailored
for bipartite ranking, to multi-class data in a valid theoretical framework. Preliminary
experimental results are presented for illustration purpose.

1 Introduction

Ranking is about learning to order observations so as to mimic the preorder induced
by the (unknown) ordinal and discrete labels that are assigned to them, based on a
set of labeled examples. This is an important issue in a wide variety of applications. In
information retrieval for instance, the goal is to rank all possible documents by degree of
relevance for a specific request, based on training data describing the characteristics X
of a sample of documents and their relevance level through an ordinal discrete variable
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Y , that may take more than two values: in the LETOR benchmark data repository (see
http://research.microsoft.com/en-us/um/people/letor/), it takes five values, ranging
from 0 ("irrelevant) to 4 ("perfectly relevant"). In medicine as well, decision-making
tools are also needed in a multiple-class setting, labels corresponding to an ordered
gradation of illness (from "not diseased" to "seriously ill") and diagnostic test statistics
are used for discriminating among disease states, see [Pep03], [DOMB00], [EMK05],
[Mos99] or [NY04] for instance. This learning task, halfway between classification and
class distribution estimation, presents a significant challenge to statisticians, precisely
because of the nature of the object to guess, a preorder on the ensemble of possible
observations. Obviously, there are many ways of comparing two preorders on a possibly
continuous space and defining optimality criteria or risk measures in the ranking setup
is not as straightforward as in classification/regression or in density estimation.

Whereas the issue of ranking data with binary labels, generally termed bipartite ranking
problem, has recently been the subject of a good deal of attention in the statistical and
machine-learning literature, leading to the design of novel efficient algorithms fully tai-
lored for the ranking task (see [CV09e], [FISS03] and [CV09d] in particular) and giving
rise to significant theoretical developments dedicated to this global learning problem
(refer to [AGH+05] or [CLV08] for instance), extension of related concepts and results
to the ordinal multi-class context is far from immediate and poses many questions of
theoretical or practical nature, not answered yet, see [Fla04] and the references therein.
While, in the bipartite framework, the ROC curve (as well as transforms or summaries
of the latter such as the celebrated AUC criterion) has provided the "definitive tool"
for evaluating the relevance of ranking rules to a certain extent since its introduction
in the 40’s (cf [DS66]), it is only recently that this functional measure of accuracy
has been generalized to the ordinal multi-class setup, leading to a specific notion of
"ROC graph" tailored for K-partite ranking, see [Scu96]. Until now, the approach to
ranking followed by most authors has consisted in optimizing a specific scalar crite-
rion over a (nonparametric) set of ranking/scoring rules and applying the empirical
risk minimization (ERM) paradigm. The "ranking risk" generally counts the number
of "concordant pairs of observations" (i.e. the number of pairs of observations that
are sorted in the same order as their labels) and takes the form of a U -statistic of
degree two, see [CLV08], [RCMS05]. Alternately, in the bipartite framework, it may be
a specific functional of the ranks induced by the ranking rule candidate, as in [Rud06],
[CV07] or [CV09a].

The angle embraced in the present paper is quite different and our contribution to the
analysis of the K-partite ranking problem is twofold. Its primary purpose is to describe
the situation, in terms of data distribution, where a scoring rule that would be optimal
for all bipartite ranking subproblems does exist, optimal scoring functions for the K-
partite ranking problem being then naturally defined as those that define the same
preorder on the input space as the latter. Here, we show that a monotonicity likelihood
ratio assumption on the underlying collection of class distributions guarantees the
existence of such optimal ranking rules. It is next shown that, under this assumption,
the ROC graph or the volume it defines (generally termed the VUS criterion) can also
be used for recovering the set of "optimal ranking rules" (originally defined without
referring to these criteria) and, more generally, for quantifying ranking accuracy. In
this respect, the K-partite framework with K ≥ 3 is in contrast with the bipartite
setup, where an optimal preorder on the input space always exists (i.e. that induced
by the likelihood ratio of the two sole class distributions), which corresponds to a ROC
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curve that dominates any other ROC curve in a pointwise manner. Once the goal of
multi-class ranking has been set in a quantitative fashion, we turn to the secondary
purpose of this article, namely the reduction of this learning problem to a series of
bipartite ranking problems, with a modus operandi similar to the pairwise comparison
method, also known as the "all versus all" approach (AVA), in multi-class pattern
recognition, see [HT98] or [F0̈2] for instance. In continuity with the way optimality
is defined here, the approach to K-partite ranking developed in this article lies in
viewing it as a "superposition" of bipartite ranking tasks, following in the footsteps of
the idea originally proposed in [FHV09]. Indeed, solutions are the ranking rules that are
simultaneously optimal for the K−1 bipartite ranking problems related to all possible
pairs of consecutive labels (i.e. pairs of consecutive class distributions). Hence, the
ranking procedure we propose here is implemented in two stages. The first stage consists
in solving the (bipartite) ranking subproblems separately, producing thus a collection
of scoring rules. The second stage then involves the computation of a "median scoring
rule", related to the collection obtained at the first stage and based on a specific notion
of "distance" between scoring rules, disagreement being measured by the Kendall τ
distance. It is shown that such a median always exists in the important situation where
the scoring functions one seeks to summarize/aggregate are piecewise constant, and its
computation is feasible. We next establish that the resulting consensus is a consistent
ranking rule, provided that the ranking method used for solving the bipartite ranking
subproblems is itself consistent. For completeness, alternative approaches, the plug-
in method and techniques based on optimization of an empirical version of the VUS

criterion namely, are also briefly mentioned. For simplicity, most results are stated
in the case K = 3 only. Additionally, connections of K-partite ranking and ordinal
regression, which involves a similar framework (i.e. also stipulates the existence of a
natural order on the set of labels), are described. Although the material in the present
paper is essentially theoretical, the principles investigated here are illustrated through
a few numerical examples and several issues related to the practical implementation of
the aggregation approach for multi-class ranking are discussed.

The rest of the paper is structured as follows. In section 2, the probabilistic setting is
introduced, together with important notations, and the issue of ranking is formulated in
an informal manner. A specific monotonicity likelihood ratio condition is stated, which
is shown to guarantee the existence of a natural optimal preorder on the input space.
In section 3, it is recalled how to extend the notion of ROC graph to the K-partite
setup, with K ≥ 3, and it is established that it provides a (functional) quantitative
criterion that enables to assess the performance of any ranking rule candidate under
the assumption aforementioned. It is also shown that the volume it defines in the ROC

space, called the volume under the ROC surface (VUS) in the 3-class framework, may
serve as a summary (scalar) criterion for ranking accuracy. Section 4 then describes
possible approaches for multi-class ranking, the plug-in method and empirical VUS

maximization, and highlights the fact that multi-class ranking can be viewed as a
multi-criteria optimization task, whose each objective consists of a particular bipartite
ranking subproblem. In section 5, a novel concept of Kendall consensus among ranking
rules is introduced and it is proved that, when applied to a collection of K− 1 ranking
rules, where each of them is asymptotically optimal for a bipartite subproblem involving
consecutive labels, it yields a consistent procedure in the VUS sense. Finally, section
6 displays some numerical results with the purpose to illustrate the principle of this
aggregation approach. Technical proofs are deferred to the Appendix.
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2 Theoretical Background - Preliminaries

We start off with a precise description of the probabilistic setup and an informal account
of the ranking task in the ordinal multi-class context. We next detail a general frame-
work where the goals of ranking can be rigorously set and ranking performance can
be assessed in a quantitative manner, generalizing results established in the bipartite
setting. Although K-partite ranking has already been tackled in previous works (see
[QnL+10], [FHV09] or [RA05]), from the perspective of (empirical) risk minimization
mainly, to the best of our knowledge, no interpretable description of the set of optimal
elements is available and no necessary and sufficient condition for the existence of op-
timal solutions (defined subsequently as simultaneous solutions of all bipartite ranking
subproblems) has been stated explicitly yet, in the statistical and machine-learning
literatures. It is the main purpose of this section to clarify these points.

2.1 Probabilistic setup - First notations

We place ourselves in the same probabilistic setup as that of ordinal regression. Pre-
cisely, one has a system consisting of a random output, taking its values in an ordered
discrete set, Y = {1, . . . , K} with K ≥ 2 say, and a random input X, valued in a
high-dimensional space X , modelling some (hopefully relevant) information for pre-
dicting Y . Here and throughout, Fk(dx) denotes X’s conditional distribution given
Y = k, Xk its support and we set pk = P{Y = k} for k = 1, . . . , K. With no re-
striction, we suppose that X coincides with ∪k≤KXk. Alternately, the distribution of
the random pair (X,Y ) can be described by X’s marginal distribution µ(dx) and the
posterior probabilities: ηk(x) = P{Y = k | X = x} with x ∈ X and 1 ≤ k ≤ K (notice
that

∑K
k=1 ηk ≡ 1). For k ∈ {1, . . . , K}, we also introduce the probability densities

Φk(X) = dFk/dµ(X), as well as the (possibly infinite) likelihood ratios

Φk,l(X) =
dFk
dFl

(X) =
Φk
Φl

(X),

with 1 ≤ k, l ≤ K and the convention that u/0 =∞ for any u ∈]0,∞[ and 0/0 = 0.
These quantities are related to each other through the equations:

µ(dx) =

K∑
k=1

pk · Fk(dx)

and, for 1 ≤ k, l ≤ K,

ηk(X) = pk · Φk(X) and Φk,l(X) = (pl/pk) · ηk(X)/ηl(X).

The conditional expectation of the output random variable (we shall write "r.v." in
abbreviated form) Y given X is denoted by:

η(X) = E [Y | X] =

K∑
k=1

k · ηk(X).

For any classifier C : X → {1, . . . , K}, we set: ∀(k, l) ∈ {1, . . . , K}2,

αk,l(C) = P{C(X) = l | Y = k}.
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Here and throughout, S denotes the set of all borelian functions s : X → R ∪ {+∞}.
Its elements will be called scoring functions. Notice that the value +∞ is allowed, so
that likelihood ratios can be considered as scoring functions. The subset of real valued
scoring functions is denoted by S0. Finally,∆ denotes the symmetric difference between
sets, I{E} the indicator function of any event E and R(ξ) the range of any mapping ξ.

2.2 Informal statement of the problem

In contrast to multi-class pattern recognition or ordinal regression, the goal we pursue
here is not to predict the label Y attached to an observation X but to sort all instances
x ∈ X , by means of a scoring function1 s : X →]−∞, +∞] transporting the natural
order on R ∪ {+∞} onto the space X , in a way that

the random variables Y and s(X) "tend to increase or decrease together".

Ideally, as the score s(X) increases, with large probability, we would like to observe,
as a majority, the instances with label Y = 1 first, those with label Y = 2 next, . . .

In order to give a rigorous sense to this assertion, we introduce the following definition.

Definition 21. (Strict stochastic ordering) Given two distribution functions
H(dt) and G(dt) on R∪{+∞}, it is said that G(dt) is stochastically larger than H(dt)

iff for any t ∈ R, we have G(t) ≤ H(t). We then write: H ≤sto G. In addition, we will
say that G(dt) is strictly stochastically larger than H(dt) iff it is stochastically larger
and there exists t ∈ R such that H(t) > G(t). In such a case, we will write: H <sto G.

Equipped with this notion, a minimal goal could naturally be to find a scoring function
s(x) so that the sequence of class distributions (Fs,k(dt))1≤k≤K is strictly stochastically
increasing :

Fs,1 <sto Fs,2 <sto · · · <sto Fs,K , (1)

where Fs,k(dt) denotes s(X)’s conditional distribution given Y = k for 1 ≤ k ≤ K.
As shown by the following simplistic example, finding a scoring function s(x) such that
(1) holds is not always possible, even if the Fk’s are all different.

Example 21. Suppose that X = {x1, x2, x3} and denote by δx(dx) the Dirac mass
at xk, 1 ≤ k ≤ 3. Consider the following (pairwise distinct) distributions on X : ∀k ∈
{1, 2, 3}

Fk(dx) =

3∑
i=1

ωk,iδxi(dx),

where ω1,1 = ω2,2 = ω3,3 = 1/2, ω1,2 = ω2,3 = ω3,1 = 1/3 and ω1,3 = ω2,1 = ω3,2 =

1/6. It is easy to check that, in this situation, the set of strict inequalities (1) is fulfilled
for no scoring function s on X . In contrast, the scoring function defined by s(xk) = k

for k ∈ {1, 2, 3} clearly fulfills the strict monotonicity property in the case where
ω1,1 = ω2,2 = ω3,3 = 1/2, ω1,2 = ω2,1 = ω3,2 = 1/3 and ω1,3 = ω2,3 = ω3,1 = 1/6 for
instance.

1 Any scoring function s ∈ S defines a preorder �s on X , defined by: x �s x′ iff s(x) ≤ s(x′),
for any (x, x′) ∈ X 2.
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The example above shows that, in absence of any distributional assumption, it may
happen no satisfactory solution to the K-partite ranking issue exists, i.e. it is not
possible to define a preorder on X that permits to predict well that defined by the
(unobserved) labels. In this respect, the K-partite ranking problem contrasts sharply
with multi-class classification, that does not stipulate the existence of any predefined
order on the set of output values and can be formulated in a universal manner, i.e.
whatever the distribution of the pair (X,Y ), there exists an optimal partition of the
feature space. It is the purpose of the following subsection to define precisely the set
of optimal scoring functions in the K-partite setup and to formulate a necessary and
sufficient condition for this set to be non empty.

2.3 Assumptions and Optimality

The fact that the monotonicity property (1) may be fulfilled by no scoring function in
certain situations as soon as K ≥ 3 is in contrast with the so-termed bipartite setup,
corresponding to the case K = 2 namely, where we always have

Fs,1(dt) <sto Fs,2(dt),

when taking s(x) as the likelihood ratio dF2/dF1(x) for instance, as soon as F1(dx) 6=
F2(dx). In this situation, the notion of ROC curve and the related concept of AUC

criterion (see [HM82]) enable to define a class of optimal scoring functions, which
turns out to be the set of elements s ∈ S such that: ∀(x, x′) ∈ X 2, dF2/dF1(x) <

dF2/dF1(x′) ⇒ s(x) < s(x′). For clarity, we recall the following definition.

Definition 22. (ROC curve) Let F1(dx) and F2(dx) be two probability distributions
on X . The ROC curve of a scoring function s : X →] −∞, +∞] with respect to the
pair (F1, F2) is the parametrized curve

t ∈ R 7→ (P {s(X) > t | Y = 1} ,P {s(X) > t | Y = 2}) .

By convention, possible jumps (corresponding to points where the distributions Fs,1(dt)

and/or Fs,2(dt) are degenerate) are connected by line segments, in order to guarantee
the continuity of the curve. Equipped with this convention, the ROC curve may be
viewed as the graph of a certain non decreasing càd-làg2 (càd-làg standing for "con-
tinue à droite et limitée à gauche", i.e. right-continuous and left-limited) mapping
α ∈ [0, 1] 7→ ROCF1,F2

(s, α), defined by

ROCF1,F2
(s, α) = 1− Fs,2 ◦ F−1s,1 (1− α)

at points α such that Fs,1 ◦ F−1s,1 (1 − α) = 1 − α, denoting by W−1(u) = inf{t ∈] −
∞, +∞] : W (t) ≥ u}, u ∈ [0, 1], the generalized inverse of any cdfW (t) on R∪{+∞}.
Observe that it connects the point (0, F2(X2 \ X1)) to (F1(X1 \ X2), 1) and that, in
absence of plateau, the curve α 7→ ROCF2,F1

(α) is the image of α 7→ ROCF1,F2
(α) by

the reflection with the line of Eq. "β = α" as axis. We refer to Appendix A in [CV09e]
for a list of properties of ROC curves (see Proposition 17 therein).

2 Recall that, by definition, a càd-làg function h : [0, 1]→ R is such that lims→t, s<t h(s) =
h(t−) < ∞ for all t ∈]0, 1] and lims→t, s>t h(s) = h(t) for all t ∈ [0, 1[. Its completed graph
is obtained by connecting the points (t, h(t−)) and (t, h(t)), when they are not equal, by a
vertical line segment and thus forms a continuous curve.
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Equipped with this concept, notice that Fs,1 ≤sto Fs,2 means that the curve is
above the first diagonal of the unit square and it coincides with the latter when
F1 = F2, whatever s(x). More generally, the closer to the upper left corner of [0, 1]2 the
curve ROCF1,F2

(s, .), the "stochastically larger" than Fs,1 the distribution Fs,2 can be
viewed. Hence, ROC analysis induces a partial order on the set of scoring functions:
with respect to the pair (F1, F2), a scoring functions s(x) is said to be less accurate
than another one s′(x) when: ∀α ∈ [0, 1],

ROCF1,F2
(s, α) ≤ ROCF1,F2

(s′, α).

In regards to this way of evaluating ranking performance in the bipartite situation, the
set S∗F1,F2

of optimal scoring functions is the set of functions s ∈ S such that:

∀(x, x′) ∈ X 2 : ΦF2,F1
(x) < ΦF2,F1

(x′)⇒ s(x) < s(x′).

This may be established by standard Neyman-Pearson arguments, we refer to Proposi-
tion 4 in [CV09e] for further details. One key advantage of ROC analysis in the context
of binary classification lies in the fact that it permits to visualize the two types of error
of a classifier C(X) in a way that is insensitive to class skew, see [LF03]: the ROC

curve of C(X), viewed as a scoring function, is indeed the broken line that connect the
points (0, 0), (α1,2(C), 1− α2,1(C)) and (1, 1).

We also recall that computing the area under the ROC curve, the quantity AUCF1,F2
(s) =∫

α∈[0,1] ROCF1,F2
(s, α)dα namely, is a widely used way of summarizing s’s ranking per-

formance with respect to (F1, F2). Beyond the fact that S∗F1,F2
naturally coincides with

the set of scoring functions s with maximum AUC, the popularity of this criterion arises
from its probabilistic interpretation as the (theoretical) "rate of concordant pairs" (in
this respect, its empirical counterpart coincides with the two-sample Wilcoxon Mann-
Whitney statistic). Indeed, we have:

AUCF1,F2
(s) = P

{
s(X) < s(X′)

}
+

1

2
P
{

s(X) = s(X′)
}
,

where (X,X ′) denotes a pair of independent r.v.’s with respective marginal distribu-
tions F1(dx) and F2(dx).

Going back to the multiple-class setting, in accordance with the goal of K-partite
ranking described above in an informal manner (see subsection 2.2), optimal scoring
functions should be naturally defined as those belonging to the set

S∗ def=
⋂

1≤k<l≤K
S∗k,l,

where we set S∗k,l = S∗Fk,Fl for notational convenience (note that S
∗ =

⋂
1≤k<K S

∗
k,k+1).

Hence, by definition, optimal scoring for the K-partite ranking problem are those
that are simultaneously optimal for the K(K − 1)/2 bipartite ranking subproblems
defined by all possible pairs of distinct label values. Given the definition of the set
of optimal elements, anticipating the second part of the paper (see also [FHV09]), a
natural approach to K-partite ranking in practice could be implemented in two stages:
solve first the bipartite subproblems independently and next try to find a scoring
function that induces a "barycentric" preorder on X , as close as possible (in a sense
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that will be specified later) to those induced by the bipartite solutions produced at the
first stage.

As highlighted by Example 21, the set S∗ may be empty. The following assumption,
stipulating that all ratios Φk,l, 1 ≤ l < k ≤ K, increase or decrease together, can be
easily seen to be a necessary and sufficient condition for S∗ to be non empty. Notice
incidentally that, since one may write Φk,l =

∏k−1
i=l Φi,i+1 for all 1 ≤ l < k ≤ K,

assuming that the Φk,k+1’s all vary in the same direction guarantees that this is also
the case for the collection of ratios Φk,l, 1 ≤ l < k ≤ K.

Assumption 1. For any (k, l) ∈ {1, . . . , K − 1}2, all (x, x′) ∈ X 2, we have:

Φk+1,k(x) < Φk+1,k(x′)⇒ Φl+1,l(x) ≤ Φl+1,l(x
′).

Indeed, we have the following result, for which the proof is straightforward and thus
omitted.

Theorem 21. The set S∗ is non empty if and only if Assumption 1 is fulfilled. In
such a case, we necessarily have

Xk′ ∩ Xl′ ⊂ Xk ∩ Xl for any 1 ≤ k′ ≤ k < l ≤ l′ ≤ K.

In addition, the set S∗ is the set of scoring functions s ∈ S such that,

∀(x, x′) ∈ X 2 : ∃k ∈ {1, . . . , K−1} such that Φk+1,k(x) < Φk+1,k(x′)⇒ s(x) < s(x′).

We point out that a related condition, called ERA ranking representability, has been
introduced in [WB11], see Definition 2.1 therein. Precisely, it can be easily checked
that Assumption 1 means that the collection of (bipartite) ranking functions {Φk+1,k :

1 ≤ k < K} is an ERA ranking representable set of ranking functions.

In order to gain insight into the meaning of Assumption 1, it may be useful to exhibit
(simple but illustrative) examples for which it is (not) satisfied (see also the toy example
given in Section 6).

Example 22. Consider the situation where the output variable Y can take K = 3 val-
ues: 1 ("bad"), 2 ("average") and 3 ("good") and ranking must be based on observations
of a random variable X, such that its conditional distribution given Y = k, 1 ≤ k ≤ 3,
is the Gaussian N (mk, σ

2
k) with mean mk ∈ R and variance σ2k > 0. As illustrated by

Fig. 1 a below, when σ21 = σ22 = σ23, it is straightforward that Assumption 1 is fulfilled
iff we have either m1 ≤ m2 ≤ m3 or else m3 ≤ m2 ≤ m1. Fig. 1 b depicts a situation
where m1 < m2 < m3 and σ23 > σ22 = σ21 and for which the random observation X

does not permit to recover the preorder induced by the output variable in a satisfactory
manner (with the parameter values indicated, one may easily check that the condition
involved in Assumption 1 is not satisfied for (x, x′) = (−2, 1) for instance).

Before tackling questions related to the design of quantitative performance criteria for
the multiple-class ranking problem with S∗ as set of optimal elements, a few remarks
are in order.

Remark 21. (Separable case) We point out that in the case where the supports
Xk, 1 ≤ k ≤ K, are pairwise disjoints up to µ-negligible sets, Assumption 1 is clearly
fulfilled (for k 6= l, Φl,k(X) is then equal either to 0 or else to ∞). Obviously, in this
case, any solution to the multi-class classification problem, i.e. any classifier C(X)

such that P{Y 6= C(X)} = 0, is also an optimal scoring function.
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a. Gaussian class densities fulfilling Assumption 1:
m1 = −0.5, m2 = 1, m3 = 2.5, σ21 = σ22 = σ23 = 1

b. Gaussian class densities not fulfilling Assumption 1:
m1 = −0.5, m2 = 1, m3 = 2.5, σ21 = σ22 = 1, σ23 = 2

Fig. 1 Two examples of 1-d conditional Gaussian distributions in the case K = 3: class 1 in
green, class 2 in blue and class 3 in red

Remark 22. (Multi-class ranking as bipartite ranking) Notice that, if all the
class distributions F1(dx), . . . , FK(dx) have same support and a stronger version of
Assumption 1 is fulfilled, stipulating that the strict ordering is actually preserved, S∗
coincides with all the S∗k,l’s, k < l. In that case, and in that case solely, performing
the multi-class ranking task theoretically boils down to solving a single bipartite ranking
problem, related to any pair of class distributions (Fk, Fl), k < l. From a practical
perspective however, even in such a case, using all the data in the learning stage, as
in the procedure proposed in section 5, generally increases the accuracy obtained in
practice, see section 6 for an illustrative example.

The next result reveals that Assumption 1 boils down to supposing that the family of
densities {Φk(x) : 1 ≤ k ≤ K} has monotone likelihood ratio. Its proof is obvious and
left to the reader.

Proposition 22. Assumption 1 is fulfilled if and only if there exists a real valued
borelian function s∗(x) such that for any k < l in {1, . . . , K}, the ratio Φl,k(x) is a
non decreasing function of s∗(x). In this case, the scoring function s∗(x) belongs to the
set S∗.

2.4 Connection with regression estimation and ordinal regression

Whereas standard multi-class classification ignores the possible ordinal structure of
the output space, ordinal regression takes the latter into account by penalizing more
and more the error of a classifier candidate C on an example (X,Y ) as |C(X) − Y |
increases. In general, the loss function chosen is of the form ψ(c, y) = Ψ(|c − y|),
(c, y) ∈ {1, . . . , K}2, where Ψ : {0, . . . , K − 1} → R+ is some nondecreasing
mapping. The most commonly used choice is Ψ(u) = u, corresponding to the risk
L(C) = E[|C(X)−Y |], referred to as the expected ordinal regression error sometimes, cf
[Aga08]. In this case, it is shown that the optimal classifier can be built by thresholding
the regression function at specific levels t0 = 0 < t∗1 < . . . < t∗K−1 < 1 = tK , that
it so say it is of the form C∗(x) =

∑K
k=1 k · I{t

∗
k−1 ≤ η(x) < t∗k} when assuming
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that η(X) = E[Y | X] is a continuous r.v. for simplicity. Based on this observation, a
popular approach to ordinal regression lies in estimating first the regression function
η by an empirical counterpart η̂ (through minimization of an estimate of R(f) =

E[(Y −f(X))2] over a specific class F of function candidates f , in general) and choosing
next a collection t of thresholds t0 = 0 < t1 < . . . < tK−1 < 1 = tK in order to
minimize a statistical version of L(Ct) where Ct(x) =

∑K
k=1 k · I{tk−1 ≤ η̂(x) < tk}.

Such procedures are sometimes termed regression-based algorithms, see [Aga08]. One
may refer to [KPWG01] in the case of regression trees for instance.
The next theorem shows that, when Assumption 1 is fulfilled, the regression function
η(x) lies in the set S∗, making ranking methods based on the use of the latter as
a scoring function legitimate (see section 3 below for further details on the plug-in
approach). Notice however that thresholding ranking functions is not the sole possible
approach to ordinal regression, see [TDFMSN06] or [HH09] for instance.

Theorem 23. If Assumption 1 is satisfied, the regression function η(x) then belongs
to the set of optimal scoring functions S∗.

This novel result shows in particular that, under Assumption 1, the optimal prediction
rule C∗(x) can be obtained by thresholding adequately any scoring function in S∗.
Hence, in the approach to ordinal regression described above, the regression estimation
stage could be replaced by a ranking procedure, producing a nearly optimal scoring
function. Incidentally, we point out that this result legitimates the use of ranking
criteria such as the ROC graph or summaries of the latter in the context of ordinal
regression, as proposed in [WBB08b] for instance.

3 Assessing performance in K-partite ranking

Now that the situation where multi-class ranking can be considered as a well-posed
problem (i.e. where optimal ranking rules do exist) has been made explicit, we show
here how ranking performance can be quantitatively assessed in the K-partite setting,
with K ≥ 3. Precisely, we prove that, under Assumption 1, the set of optimal ranking
rules S∗ coincides with the set of optima of a functional criterion, referred to as the
ROC graph and which extends the notion of ROC curve (see Definition 22) to the
K-partite situation. Though desirable and expected both at the same time, such a
result is crucial, insofar as the optimal set S∗ has been defined without referring to
any quantitative criterion in section 2.

3.1 Multiple-class ROC analysis

In the bipartite setup, ROC analysis is the most standard, and somehow ultimate, way
of evaluating ranking performance, see [Faw06]. Alternatives consist either of differ-
ent parametrizations, such as the Precision-Recall curve, which offers a scale-adapted
graphical display that allows for visualizing ranking performance more easily in case
of a highly skewed pooled distribution (refer to [CV09b] for instance), or else of sum-
maries of the ROC curve: AUC, local AUC, p-norm push, etc. See [CV09a] or [CV07]
and the references therein.



11

Following in the footsteps of [Scu96] in situations with more than two classes, the ROC

graphic of a scoring function s(x) becomes the set of points

M(t) =
(
Fs,1(t1)− Fs,1(t0), . . . , , Fs,K(tK)− Fs,K(tK−1)

)
, (2)

where −∞ = t0 < t1 ≤ . . . ≤ tK−1 < tK = ∞, incidentally we will denote by TK the
set of all such vectors t = (t1, . . . , tK−1) in the following. Notice that Fs,K(tK) = 1

and Fs,1(t0) = 0 and that the coordinates of the point (2) coincides with the diagonal
entries of the confusion matrix of the classification rule defined by thresholding s(x)

at the levels tk, 1 ≤ k < K,

Cs,t(x) =

K∑
k=1

k · I{tk−1 < s(x) ≤ tk}.

We have indeed P {Cs,t(X) = k | Y = k} = Fs,k(tk)−Fs,k(tk−1) for all k in {1, . . . , K}.

Remark 31. (On graph conventions.) It should be pointed up that, in the case
K = 2, the ROC graphic defined above does not coincide with the ROC curve defined in
subsection 2.3 (see Definition 22) but with its image by the transform (α, β) ∈ [0, 1]2 7→
(1− α, β).

As in the bipartite situation, we connect by convention all possible discontinuities (due
to possible jumps of the distributions Fs,k) by parts of affine hyperplanes, so that
the ROC graphic is a continuous manifold of dimension K − 1. We thus call it "ROC

manifold". In order to lighten notation, we take K = 3 in the following. We then call
ROC space the unit cube [0, 1]3 equipped with the usual αβγ cartesian coordinate
system.

The ROC surface clearly concatenates all the information carried by the three curves
ROCF1,F2

(s, .), ROCF2,F3
(s, .) and ROCF1,F3

(s, .). In particular, the intersection of
the surface with each of the three facets of the positive orthant coincides with the
image of one of these curves by a simple transform, see Proposition 31 below. The
ROC graph is then a parametric surface, that coincides with the (completed) graph{

(α,ROC(s, α, γ), γ) : (α, γ) ∈ [0, 1]2 such that γ ≤ ROCF1,F3
(s, 1− α)

}
of a mapping ROC(s, ., .) defined on the set

Is
def
= {(α, γ) ∈ [0, 1]2 : γ ≤ ROCF1,F3

(s, 1− α)}

and such that, at any point (α, γ) for which γ ≤ ROCF1,F3
(s, 1−α), Fs,1 ◦F−11,s (α) = α

and Fs,3 ◦ F−13,s (γ) = γ, we have:

ROC(s, α, γ) = F2,s ◦ F−13,s (1− γ)− F2,s ◦ F−11,s (α). (3)

By convention, we extend the mapping ROC(s, ., .) on the whole unit square [0, 1]2 by
setting ROC(s, α, γ) = 0 for any (α, γ) such that γ > ROCF1,F3

(s, 1 − α). Hence we
may write:

∀(α, γ) ∈ [0, 1]2, ROC(s, α, γ) =
(

F2,s ◦ F−13,s (1− γ)− F2,s ◦ F−11,s (α)
)
+
,
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α 

γ	
  

ROC(S, α,	
  γ)	
  

Fig. 2 Plot of the ROC surface of a scoring function s: (α, γ) ∈ (0, 1)2 7→ ROC(s, α, γ)

where u+ = max(0, u) denotes the positive part of any real number u. The advantage
of this representation is obvious when it comes to comparing the ROC graphs of two
different scoring functions s(x) and s′(x) (since Is 6= Is′ in general).

For notational simplicity’s sake, we omit to index ROC(s, ., .) by the distributions
F1(dx), F2(dx) and F3(dx) on which it depends throughout the paper.

We point out that different notions of ROC graph have been considered in the literature,
depending on the learning problem considered and the goal pursued. In the context of
multi-class pattern recognition, they provide a visual display of classification accuracy,
as in [FHOS03] (see also [FE05], [FE06] and [HT01]) from a one-versus-one angle or
in [Fla04] when adopting the one-versus-all approach. The concept of ROC analysis
described above is more adapted to the situation where a natural order on the set of
labels exists, just like in ordinal regression, see [WBB08b].

Remark 32. (Alternative ROC graph.) Another way of quantifying the ranking
accuracy of a scoring function in the multi-class setting is to evaluate its ability to dis-
criminate between X’s conditional distributions given Y ≤ k and Y > k respectively,
which we denote Hk(dx) and Gk(dx), for k ∈ {1, . . . , K − 1}. This boils down to plot
the graph of the mapping α ∈ [0, 1] 7→ (ROCH1,G1

(s, α), . . . , ROCHK−1,GK−1
(s, α)).

It straightforwardly follows from the stipulated monotonicity hypothesis (cf Assump-
tion 1) that the curve related to s∗ ∈ S∗ dominates the curve of any other scoring
function s in the coordinatewise sense: ROCHk,Gk

(s, α) ≤ ROCHk,Gk
(s∗, α) for all

α ∈ [0, 1], 1 ≤ k < K. The likelihood ratio dGk/dHk(X) is indeed a non decreasing
function of s∗(X), see Theorem 3.4.1 in [LR05] for instance. However, with such a
functional representation of ranking performance, one loses an attractive advantage,
the insensitivity to the class probabilities pk. Indeed, the distributions Hk(dx) and



13

Gk(dx) depend on the latter, they can be expressed as
∑
l≤k plFl(dx)/(

∑
l≤k pl) and∑

l>k plFl(dx)/(
∑
l>k pl) respectively.

Remark 33. (On the ROC surface of a classification rule.) We point out that,
with the convention previously introduced, the ROC surface of a classifier C : X →
{1, 2, 3} is the polyhedron with vertices (0, 0, 1), (0, α2,1, 1 − α3,1), (0, 1 − α2,3, α3,3),
(0, 1, 0), (α1,1, 0, 1−α3,1), (α1,1, α2,2, α3,3), (α1,1, 1−α2,1, 0), (1−α1,3, 0, α3,3), (1−
α1,3, α2,3, 0) and (1, 0, 0), writing abusively αk,l for αk,l(C) here, for notational sim-
plicity. We underline that the confusion matrix M(C) = {αk,l} can be fully recovered
from this geometric solid, which is actually a decahedron when the matrix M(C) has
no null entry. Observe finally that this graphic representation of M(C) differs from
that which derives from the multi-class notion of ROC analysis proposed in [FHOS03].
In the latter case, the ROC space is defined as [0, 1]6 and M(C) is represented by the
point with coordinates (α1,2, α1,3, α2,1, α2,3, α3,1, α3,2). Notice incidentally that the lat-
ter concept of ROC analysis is more general in the sense that it permits to visualize
the performance of K(K − 1)/2 classifiers involved in a one-versus-one classification
method.

The next result summarizes several crucial properties of ROC surfaces. To the best
of our knowledge, though expected, these properties have not been formulated in the
literature. The technical proof straightforwardly relies on Proposition 17 in [CV09e]
and the definition of the ROC surface given in Eq. (3), it is thus left to the reader.

Proposition 31. (Properties of the ROC surface) For any distributions F1(dx),
F2(dx) and F3(dx) on X and any scoring function s ∈ S, the following properties hold.

1. Intersections with the facets of the ROC space.The intersection of the ROC

surface {(α,ROC(s, α), γ)} with the plane of Eq. "α = 0" coincides with the curve
{(β,ROCF2,F3

(s, β))} up to the transform (β, γ) ∈ [0, 1]2 7→ ψ(β, γ) = (1 −
β, γ), that with the plane of Eq. "β = 0" corresponds to the image of the curve
{(α,ROCF1,F3

(s, α))} by the mapping ψ(α, γ) and that with the plane of Eq. "γ =

0" to the image of {(α,ROCF1,F2
(s, α))} by the transform ψ(α, β).

2. Invariance. For any strictly increasing function T : R ∪ {+∞} → R ∪ {+∞}, we
have, for all (α, γ) ∈ [0, 1]2:

ROC(T ◦ s, α, γ) = ROC(s, α, γ).

3. Concavity. If the likelihood ratios dFs,2/dFs,1(u) and dFs,3/dFs,2(u) are both
(strictly) increasing transforms of a certain function T (u), then the ROC sur-
face is (strictly) concave. In particular, if Assumption 1 is fulfilled, the surface

ROC∗
def
= ROC(s∗, ., .), with s∗ ∈ S∗, is concave.

4. Flat parts. If the likelihood ratios dFs,2/dFs,1(u) and dFs,3/dFs,2(u) are simul-
taneously constant on some interval in the range of the scoring function s(x),
then the ROC surface will present a flat part (i.e. will be a part of a plane)
on the corresponding domain. In addition, under the Assumption 1, (α, γ) 7→
ROC∗(α, γ) is a linear function of (α, γ) on [α1, α2]× [γ1, γ2] ⊂ Is iff dF2/dF1(x)

and dF3/dF2(x) are constant on the subsets {x ∈ X/ Q(dF2/dF1(X), α2) ≤
dF2/dF1(x) ≤ Q(dF2/dF1(X), α1)} and {x ∈ X/ Q(dF3/dF2(X), γ2) ≤ dF3/dF2(x) ≤
Q(dF3/dF2(X), γ1)} respectively, denoting by Q(Z,α) the quantile of order 1 − α
of any random variable Z.
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5. Differentiability. Assume that the distributions F1(dx), F2(dx) and F3(dx) are
continuous. Then, the ROC surface of a scoring function s is differentiable if and
only if the conditional distributions Fs,1(du), Fs,2(du) and Fs,3(du) are continuous.
In such a case, denoting by fs,1, fs,2 and fs,3 the corresponding densities, we have
in particular: ∀(α, γ) ∈ Is,

∂

∂α
ROC(s, α, γ) = −

fs,2
fs,1

(
F−1s,1 (α)

)
when fs,1(F−1s,1 (α)) > 0,

∂

∂γ
ROC(s, α, γ) = −

fs,2
fs,3

(
F−1s,3 (1− γ)

)
when fs,3(F−1s,3 (1− γ)) > 0.

Preliminary results related to statistical estimation of the ROC surface of a fixed scoring
function s(x) can be found in [LZ09], additional results related to the building of
confidence regions in the ROC space [0, 1]3 are established in [Rob10].

A partial preorder on S. The ROC surface provides a visual tool for comparing the
ranking performance of two scoring functions: we shall say that a scoring function s(x)

provides a better ranking than s′(x) when: ∀(α, γ) ∈ [0, 1]2,

ROC(s, α, γ) ≥ ROC(s′, α, γ).

This criterion induces a partial order over the space of all scoring functions S, for which
S∗ = S∗1,2 ∩S∗2,3 appear as the set of optimal elements. We highlight the fact that this
is non trivial since the set S∗ has been defined with no reference to the concept of
3-partite ROC graph. To see this, it suffices to observe that the ROC surface of s(x)

can be expressed in terms of ROC curves, as follows: ∀(α, γ) ∈ [0, 1]2,

ROC(s, α, γ) =
(
ROCF1,F2

(s, 1− α)− ROCF3,F2
(s, γ)

)
+
.

Hence, optimizing the ROC surface consists of simultaneously optimizing the ROC

curves related to the two pairs of distributions (F1, F2) and (F2, F3). The next theorem
immediately results from this observation, it states that the ROC surface provides a
(functional) quantitative means for assessing ranking accuracy.

Theorem 32. Suppose that Assumption 1 is fulfilled and set ROC∗(., .) = ROC(s∗, ., .)
for s∗ ∈ S∗. We have, for any scoring function s ∈ S and for all (α, γ) ∈ [0, 1]2,

ROC(s, α, γ) ≤ ROC∗(α, γ).

In addition, if we set, for any α ∈ [0, 1], k ∈ {1, 2, 3} and s ∈ S,

R
(i)
s,α = {x ∈ X|s(x) > Q(i)(s, α)},

where Q(i)(s, α) denotes the quantile of order α of s(X)’s conditional distribution given
Y = i and assume that η(X) is a continuous random variable, we have: ∀(α, γ) ∈ [0, 1]2,

ROC∗(α, γ)−ROC(s, α, γ) ≤ I{(α, γ) : γ ≤ ROC∗F1,F3
(1−α)} · (Θ1(s, α) + Θ2(s, γ)) ,

where

Θ1(s, α) =
I{α 6= 0}

p2Q(1)(η1, α)
E
[∣∣∣η1(x)−Q(1)(η1, α)

∣∣∣ · I{R(1)
s∗,α∆R

(1)
s,α}

]
,

Θ2(s, γ) =
I{γ 6= 1}

p2Q(3)(η3, 1− γ)
E
[∣∣∣η3(X)−Q(3)(η3, 1− γ)

∣∣∣ · I{R(3)
s∗,1−γ∆R

(3)
s,1−γ}

]
,

for any s∗ ∈ S∗.
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In the case where s(x) has no capacity to discriminate between the three distributions,
i.e. when Fs,1 = Fs,2 = Fs,3, the ROC surface boils down to the surface delimited
by the triangle that connects the points (1, 0, 0), (0, 1, 0) and (0, 0, 1), we then have
ROC(s, α, γ) = 1−α− γ. By contrast, in the separable situation (see Remark 21), the
optimal ROC surface coincides with the surface of the unit cube [0, 1]3. Though stated
in a restrictive setting (stipulating the continuity of η(X)’s distribution) for simplicity’s
sake, the second part of the theorem above reveals that the pointwise difference between
the optimal ROC surface and that of a candidate s is related to the errors made in
recovering the level sets R(1)

s∗,α and R(3)
s∗,1−γ through R(1)

s,α and R(3)
s,1−γ .

The following result establishes that, reciprocally, if there exists some scoring function
whose ROC surface dominates in a pointwise manner any other ROC surface, then it
belongs to S∗ and Assumption 1 is thus necessarily fulfilled.

Theorem 33. Suppose that there exists s∗ ∈ S such that, for any scoring function
s ∈ S, we have: ∀(α, γ) ∈ [0, 1]2,

ROC(s, α, γ) ≤ ROC(s∗, α, γ).

Then, the set S∗ = S∗1,2 ∩ S∗2,3 is non empty and the scoring function s∗ belongs to it.

Though simple, the results stated in this subsection are crucial, since they provide
theoretical grounds for the use of ROC analysis in the context of K-partite ranking. In
summary, they show that the scoring functions that are optimal for all bipartite ranking
subproblems (when they exist, that is to say iff Assumption 1 is satisfied, cf section 2)
are the optimal elements for the ROC surface criterion, and that, reciprocally, if the
ROC surface criterion has an optimum (i.e. there exists a scoring function whose ROC

surface dominates any other ROC surface in a pointwise fashion), then Assumption 1

is necessary fulfilled (and the optimum aforementioned thus belongs to the set S∗).

3.2 Volume under the ROC surface: a summary of ranking performance

In a manner similar to the bipartite situation, where the AUC criterion provides a
popular scalar summary of the ROC curve, one may consider the volume under the
ROC surface (VUS in abbreviated form) in the three-class framework, see [Scu96].
As stated in the following proposition, this induces a total preorder on the set of
scoring functions, for which S∗ correspond to the set of optimal elements. One may
refer to [LD06] and [FHOS03] for arguments in favor of the use of this criterion in
the classification context too, and to [WBB08b] in the ordinal regression setup. As
mentioned in subsection 3.1, other notions notions of ROC graph can be found in the
literature, leading to other summary quantities, also referred to as VUS, such as that
introduced in [HT01].

Proposition 34. (VUS criterion) Let s(x) be a scoring function. The volume under
its ROC surface is:

VUS(s) =

∫ ∫
ROC(s, α, γ)dαdγ,

=

∫ 1

α=0

ROCF1,F2
(s, 1− α)ROCF1,F3

(s, 1− α)dα

−
∫ 1

γ=0

ROCF3,F2
(s, γ)

(
1− ROCF3,F1

(s, γ)
)

dγ.
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Under Assumption 1, we have: ∀s ∈ S,

VUS(s) ≤ VUS∗,

with VUS∗ = VUS(s∗) for s∗ ∈ S∗.

This proposition is actually a corollary of Theorem 32, its proof is thus omitted. Notice
in particular that, when Fs,1 = Fs,2 = Fs,3, that is to say when the scoring function
s has no capacity to discriminate between the three classes, we have VUS(s) = 1/6,
the ROC surface then corresponds to the area delineated by the triangle with vertices
(1, 0, 0), (0, 1, 0) and (0, 0, 1). In contrast to this situation, in the case where the Fs,k’s
have pairwise disjoint supports, the VUS can reach the value 1 (respectively, the value
0), when, in addition, for all (x1, x2, x3) ∈ X1×X2×X3, we have s(x1) < s(x2) < s(x3)

(respectively, s(x3) < s(x2) < s(x1)).

Like the AUC criterion, VUS(s) can be interpreted in a probabilistic manner. For
clarity, we recall the following result.

Proposition 35. ([Scu96]) For any scoring function s ∈ S, we have:

VUS(s) = P {s(X1) < s(X2) < s(X3)|Y1 = 1,Y2 = 2,Y3 = 3}

+
1

2
P {s(X1) = s(X2) < s(X3)|Y1 = 1, Y2 = 2, Y3 = 3}

+
1

2
P {s(X1) < s(X2) = s(X3)|Y1 = 1, Y2 = 2, Y3 = 3}

+
1

6
P {s(X1) = s(X2) = s(X3)|Y1 = 1, Y2 = 2, Y3 = 3} ,

where (X1, Y1), (X2, Y2) and (X3, Y3) denote independent copies of the random pair
(X,Y ).

In the case where s(X)’s distribution is continuous, the last three terms in the term
on the right hand side vanishes and the VUS boils down to the probability that, given
three random instances X1, X2 and X3 with respective labels Y1 = 1, Y2 = 2 and
Y3 = 3, the scoring function s(x) ranks them in the right order.

Finally, observe that, when Assumption 1 is not fulfilled, the (scalar) VUS criterion
can still be used to set the goal of ranking. However, the interpretation of optimal pre-
orders (those with maximum VUS) in such a case becomes highly questionable, insofar
as the latter can be very different. For instance, in the situation described in Example
21, one may easily check that, when ω1,1 = 4/11, ω1,2 = 6/11, ω1,3 = ω3,1 = 1/11,
ω2,1 = ω2,2 = 3/11 and ω2,3 = ω3,2 = ω3,3 = 5/11, the maximum VUS (equal to
0.2543) is attained by the scoring functions corresponding to strict orders ≺ and ≺′,
such that x3 ≺ x2 ≺ x1 and x2 ≺′ x3 ≺′ x1 respectively, both at the same time.

4 The multi-class ranking problem

The goal is to learn from a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. copies of
the random pair (X,Y ) how to build a scoring function ŝn(x) of which ROC surface
is as close as possible to ROC∗. Distance between ROC surfaces can be naturally
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considered in many ways. Focus is here on an important example, the distance related
to the L1-norm:

d1(s, s′) =

∫ ∫
(α,γ)∈[0,1]2

|ROC(s, α, γ)− ROC(s′, α, γ)|dαdγ.

Attention of the reader should be drawn to the fact that the notation d1(s, s′) used
above for convenience represents by no means a distance between the scoring functions
s and s′, but between their ROC surfaces. Having equipped the ROC space [0, 1]3 with
this metric topology, we introduce the corresponding notion of ranking consistency.

Definition 41. (Ranking consistency) Suppose that Assumption 1 is fulfilled. Let
{sn} be a sequence of scoring functions on X . It is said VUS-consistent (respectively,
strongly VUS-consistent), when d1(sn, s

∗)→ 0 in probability (respectively, with proba-
bility one) as n tends to infinity.

By virtue of Theorem 32, under Assumption 1, d1(s, s∗) can be expressed as the deficit
of volume under the ROC surface, VUS∗ − VUS(s) namely, for any (s, s∗) ∈ S × S∗,
so that minimizing d1(sn, s

∗) obviously boils down to maximizing VUS(s). Of course,
VUS maximization could be considered in absence of Assumption 1. However, one can
easily see that VUS maximizers may then correspond to quite different rankings in
some cases and their interpretation as optimal ranking rules becomes arguable.

Other metrics on the ROC space could be considered, such as that related to the
L∞-norm,

d∞(s, s′) = sup
(α,γ)∈[0,1]2

|ROC(s, α, γ)− ROC(s′, α, γ)|,

leading to a stronger notion of ranking consistency. The study of accuracy of ranking
methods in this sense is beyond the scope of the present paper (in contrast to the
L1 situation, the quantity d∞(s∗, s) cannot be decomposed in an additive manner).
Extensions of bipartite ranking procedures such as the TreeRank and the RankOver
algorithms (see [CV09e] and [CV09d]), for which consistency in sup-norm is guaranteed
under some specific assumptions, will be considered in a forthcoming article.

The next subsections are devoted to the description of possible strategies for building
consistent ranking rules.

4.1 K-partite ranking as a superposition of K − 1 bipartite ranking tasks

In continuity with the way we have defined optimal scoring rules in the 3-partite setting
in section 2, the three-class ranking problem can be viewed as a double bipartite ranking
problem (and, more generally, K-partite ranking can be reduced to the simultaneous
solving of (K − 1) bipartite ranking problems). The straightforward analysis below
provides a simple theoretical formulation of this fact.

Theorem 41. (Deficit of VUS) Suppose that Assumption 1 is fulfilled. Then, for
any function s ∈ S, we have

VUS∗ −VUS(s) ≤
(
AUC∗F1,F2

−AUCF1,F2
(s)
)

+
(
AUC∗F2,F3

−AUCF2,F3
(s)
)
.
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By a straightforward symmetry argument, it results from the theorem above that
the deficit of VUS of any scoring function s can also be bounded by the quantity
(2/3)

∑
1≤k<l≤3{AUC∗Fk,Fl

− AUCFk,Fl
(s)}. More importantly, this shows that a se-

quence of scoring functions that is simultaneously AUC-consistent for the bipartite
ranking problems related to the two pairs of distributions (F1, F2) and (F2, F3) is
VUS-consistent. Indeed, we have the following corollary.

Corollary 42. (Superposition of bipartite ranking problems) Suppose that
Assumption 1 is fulfilled. Let {sn}n∈N be a sequence of scoring functions. The following
assertions are equivalent.

(i) The sequence {sn} of scoring functions is asymptotically optimal (respectively,
strongly asymptotically optimal) with respect to the VUS criterion, VUS(sn) →
VUS∗ as n→∞.

(ii) As n goes to infinity, we simultaneously have AUCF1,F2
(sn) → AUC∗F1,F2

and
AUCF2,F3

(sn)→ AUC∗F2,F3
.

The goal is thus to build a scoring function ŝn(x) based on training data with nearly
optimal ROC curves ROCF1,F2

(̂sn, .) and ROCF2,F3
(̂sn, .) both at the same time.

Hence, 3-class ranking can be cast in terms of a double-criteria optimization task,
consisting in finding a scoring function s that simultaneously maximizes AUCF1,F2

(s)

and AUCF2,F3
(s). Based on this observation, there are two successive stages in the

approach we develop subsequently. The first step lies in solving each bipartite ranking
separately, producing two scoring functions. Based on the latter, the second one then
consists in computing a median scoring rule, the median being taken in a certain
sense, which permits to preserve the asymptotic consistency properties of the original
scoring functions. An algorithmic description of this procedure together with theoretical
grounds for its validity are given in the next section. We point out that the idea of
decomposing the K-partite ranking into several bipartite ranking subproblems has also
been considered in [FHV09] (with a quite different way of performing the aggregation
stage however, see section 5 below).

In the remainder of the present section, we briefly review two alternative methods for
building consistent scoring functions in the general K-partite framework. Again, for
simplicity’s sake, they are described in the case K = 3 solely.

4.2 Plug-in scoring rule

As shown by Theorem 23, when Assumption 1 is fulfilled, the regression function η(x)

is an optimal scoring function. The so-termed plug-in approach consists of estimating
the latter and use the resulting estimate as a scoring function. For instance, one may
estimate the distribution a posteriori (η1(x), . . . , ηK(x)) by an empirical counterpart
(η̂1(x), . . . , η̂K(x)) based on the training data and consider the preorder on X in-
duced by the estimator η̂(x) =

∑K
k=1 k · η̂k(x), see [CV09c] and [CR11] for preliminary

theoretical results based on this strategy in the bipartite context and [AT07] for an
account of the plug-in approach in binary classification. It is hence expected that an
accurate estimate of η(x) will define a ranking rule similar to the optimal one, with
nearly maximal VUS. As an illustration of this approach, the next result relates the
deficit of VUS of a scoring function η̂(x) to its L1(µ)-error as an estimate of η(x),
in the case where all class distributions have the same support for simplicity’s sake
(extension to the general situation is left to the reader).
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Proposition 43. (Deficit of VUS (bis)) Suppose that Assumption 1 is fulfilled. Let
η̂ be an approximant of η(x). Assume that both the random variables η(X) and η̂(X)

are continuous. We have: ∀s ∈ S,

VUS∗ −VUS(η̂) ≤ p1 + p3

p1p2p3
· E [|η(X)− η̂(X)|]

This result reveals that a L1(µ)-consistent estimator, i.e. an estimator η̂n such that
E[|η(X)− η̂n(X)|] =

∫
|η(x)− η̂(x)|µ(dx) converges to zero in probability as n → ∞,

yields a VUS-consistent ranking procedure. However, from a practical perspective, such
procedures should be avoided when dealing with high-dimensional data, since they are
obviously confronted with difficulties related to the curse of dimensionality.

4.3 Empirical VUS maximization

Exploiting the fact that the target S∗ coincides with the set of scoring functions with
maximum VUS,

S∗ = arg max
s∈S

VUS(s),

a standard approach, based on the empirical risk minimization paradigm, see [Vap99],
lies in optimizing a statistical counterpart of the unknown functional VUS(.) over a set
S1 ⊂ S of scoring function candidates of quantifiable complexity (a VC major class of
functions with finite VC dimension for instance, see [Dud99]). Based on the training
dataset Dn, a natural empirical counterpart of VUS(s), s ∈ S, is the three-sample
U -statistic

V̂USn(s) =
1

n1n2n3

∑
1≤i, j, k≤n

hs(Xi, Xj , Xk) · I{Yi = 1, Yj = 2, Yk = 3}, (4)

with kernel given by

hs(x1, x2, x3) = I{s(x1) < s(x2) < s(x3)}+
1

2
I{s(x1) = s(x2) < s(x3)}+

1

2
I{s(x1) < s(x2) = s(x3)}+

1

6
I{s(x1) = s(x2) = s(x3)},

for any (x1, x2, x3) ∈ X 3. Computational complexity of empirical VUS calculation is
investigated in [WBB08a].

A scoring function s maximizing V̂USn(.) over S1 is expected to approximately max-
imize VUS(.), when S1 is "rich enough" (when it contains an approximate maximizer
of VUS(.), namely). Properties of the empirical VUS maximizer (bounds on its deficit
of VUS, in particular) can be then easily investigated using concentration properties
of U -processes in order to control the deviation between the empirical and theoretical
versions of the VUS criterion uniformly over the class S1, following in the footsteps of
[CLV08] in the bipartite case. In contrast, algorithmic aspects of the issue of maximizing
the empirical VUS criterion (or a concave surrogate) are much less straightforward and
the question of extending optimization strategies such as those introduced in [CV09e]
or [CV09d] requires, for instance, significant methodological progress.
Finally, we point out that a theoritical study of the empirical risk minimization strategy
(ERM) in the K-partite ranking context has been carried out in [RA05], where a
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different accuracy measure is used, based on the loss function (Y − Y ′)ξ+(I{s(X) <

s(X ′)} + (1/2) · I{s(X) = s(X ′)}), with ξ ≥ 0. In this case, ERM is shown to boil
down to maximizing a weigthed sum of empirical AUC’s and generalization bounds
have been established for classes of scoring rules s with finite k-Partite rank-shatter
coefficient.

5 Aggregating bipartite ranking rules: the Kendall consensus

In multiple-class classification, one may easily build predictive rules through solving
a collection of binary classification rules, using either the "one against one" approach
or the "one versus all" procedure (see [ASS01], [HT98], [VA99], [DTT04], [DB95],
[BLZ05], [BDH+05] and the references therein for instance) and proceeding then to
a majority vote. Whereas it straightforward to give sense to the notion of majority
prediction in the classification context, it is not that easy when the issue is to predict
how to sort all X ’s elements. Aggregating binary relationships such as total preorders
is an old issue, sending us back to the pioneer work of Condorcet in Social Choice
theory, see [BB81]. Here we revisit this important problem from the multi-class ranking
perspective. Our goal is to define a notion of "ranking consensus" that permits to build
a VUS-consistent scoring rule based on K − 1 scoring functions s(1)n , . . . , s

(K−1)
n ,

when s(k)n (x) is AUC-consistent for the bipartite ranking problem related to the pair
(Fk(dx), Fk+1(dx)), for 1 ≤ k < K. Throughout this section, we assume that the Fk’s
are all absolutely continuous with respect to each other (in particular, X = X1 = · · · =
XK), in order to exclude situations where some populations are easily separable.

5.1 On Kendall measure of agreement between scoring functions

Here, we shall say that two scoring functions s1(x) and s2(x) on X "agree" when the
random variables s1(X) and s2(X) tend to increase or decrease together. A natural
way of quantifying agreement is thus to consider the (theoretical) Kendall τ related to
the pair (s1(X), s2(X)).
For clarity, we recall that the Kendall τ related to a pair (V,W ) of real-valued random
variables defined on the same probability space is given by:

τ (V,W ) = P
{(
V − V ′

)
·
(
W −W ′

)
> 0
}

+
1

2
P
{
V 6= V ′, W = W ′

}
+

1

2
P
{
V = V ′, W 6= W ′

}
.

The quantity τ (V,W ) ranges from 0 (full disagreement) to 1 (full agreement). The em-
pirical version, based on a sample ofN ≥ 2 independent copies (V1,W1), . . . , (VN ,WN )

of the pair (V,W ), known as the Kendall τ statistic, is the U -statistic of degree 2

τ̂N =
2

N(N − 1)

∑
1≤n<m≤N

U ((Vn,Wn), (Vm,Wm)) ,

with kernel given by

U
(
(v, w), (v′, w′)

)
= I
{(
v − v′

)
·
(
w − w′

)
> 0
}

+
1

2
I
{
v = v′, w 6= w′

}
+

1

2
I
{
v 6= v′, w = w′

}
,
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for (v, w) and (v′, w′) in R2.

The quantity τν(s1, s2)
def
= τ(s1(X), s2(X)) thus measures to which extent two real-

valued scoring functions s1 and s2 on a space X rank pairs of independent copies of
a r.v. X drawn from a distribution ν on X . Notice that dτν (., .) = (1 − τν(., .))/2

defines a pseudo-metric on the set of real-valued scoring functions on X (it is positive,
symmetric and the triangular inequality holds true). In addition, when ν’s support
coincides with X , it is a metric on the set of preorders �s defined by the elements s
of S1. The following proposition shows that the AUC deviation between two scoring
functions is controlled by the related probabilistic Kendall τ in a very simple fashion.
It is essentially for this reason that the Kendall τ criterion plays a crucial role in the
aggregation procedure we shall subsequently describe and analyze. One may refer to
[BFB09] for efficient computation of Kendall τ statistics.

Proposition 51. (AUC and Kendall τ) Let p be a real number in (0, 1). Con-
sider two probability distributions F1(dx) and F2(dx) on the set X . Set ν(dx) =

(1 − p)F1(dx) + pF2(dx). For any real-valued scoring functions s1(x) and s2(x) on
X , we have:

|AUCF1,F2
(s1)−AUCF1,F2

(s2)| ≤ 1− τν (s1, s2)

4p(1− p)
=

dτν (s1, s2)

2p(1− p)
.

We point out that it is generally vain to look for a reverse control: indeed, scoring
functions yielding different rankings may have exactly the same AUC. However, the
following result guarantees that a scoring function with a nearly optimal AUC is close
to optimal scoring functions in a certain sense, under the additional assumption that
the noise condition introduced in [CLV08] is fulfilled.

Proposition 52. (AUC and Kendall τ (bis)) Consider two probability distributions
F1(dx) and F2(dx) on the set X , absolutely continuous with respect to each other. Let
(X,Y ) be a pair of random variables valued in X × {1, 2} and such that P{Y = 2} =

1 − P{Y = 1} = p ∈ (0, 1) and X’s conditional distribution given Y = k is Fk(dx),
k = 1, 2. Assume that the r.v. ζ(X) = P{Y = 2 | X} is continuous and there exist
c <∞ and a ∈ (0, 1) such that

∀x ∈ X , E
[
|ζ(X)− ζ(x)|−a

]
≤ c. (5)

Then, we have for all pair of real valued scoring functions (s, s∗) ∈ S × S∗1,2,

dτν (s∗, s) ≤ C ·
(
AUC∗F1,F2

−AUCF1,F2
(s)
)a/(1+a)

,

with C = (3/2) · c1/(1+a) · (2p(1− p))a/(1+a).

Remark 51. (On the noise condition.) Recall that condition (5) is rather weak.
Indeed, it is fulfilled for any a ∈ (0, 1) as soon the distribution of the r.v. ζ(X) has a
bounded density, see Corollary 8 in [CLV08].
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5.2 Aggregating solutions of bipartite ranking problems

We now introduce the following notion of scoring function consensus, based on the
Kendall tau distance dτµ .

Definition 51. (median scoring function) Let S1 ⊂ S0 be a set of real-valued
scoring function candidates and s(1), . . . , s(K−1) be N ≥ 1 real-valued scoring func-
tions. A median scoring function related to the collection {s(k) : 1 ≤ k < K} and the
set S1 is any scoring function s ∈ S0 such that:

K−1∑
k=1

τµ

(
s, s(k)

)
= sup
s∈S1

K−1∑
k=1

τµ

(
s, s(k)

)
. (6)

It should be pointed up that, in general the supremum appearing on the right hand
side of Eq. (6) is not attained. However, when the supremum over S1 can be replaced
by a maximum over a finite set S′1 ⊂ S1, a median scoring rule always exists (but is not
necessarily unique however). In particular, this is the case when considering piecewise
constant scoring functions such as those produced by the bipartite ranking algorithms
proposed in [CDV11], [CV09d], [CV09c] or [CN09], see section 6 for a discussion of
consensus computation/approximation in this case. The idea underlying the measure
of consensus through Kendall metric in order to aggregate scoring functions that are
nearly optimal for bipartite ranking subproblems is clarified by the following result. Its
proof is obvious and thus omitted.

Proposition 53. Let s(k) be a real-valued scoring function in S∗k,k+1 for 1 ≤ k < K.
Suppose that for all (k, l) ∈ {1, . . . , K − 1}2, for all (x, x′) ∈ X 2, we have:

Φk,k+1(x) < Φk,k+1(x′) ⇒ Φl,l+1(x) < Φl,l+1(x′).

Then,

inf
s∈S0

K−1∑
k=1

dτµ

(
s, s(k)

)
= 0 (7)

and

S∗0 = arg inf
s∈S0

K−1∑
k=1

dτµ

(
s, s(k)

)
,

where S∗0 = S0 ∩ S∗ denotes the set of real-valued optimal scoring functions.

The proposition above reveals that "consensus scoring functions", in the sense of Def-
inition 51, based on K − 1 optimal scoring functions are still optimal solutions for
the global multi-class ranking problem and that, conversely, elements of S∗0 necessarily
achieve the supremum (7). This naturally suggests to implement the following two-
stage procedure, that consists in 1) solving the bipartite ranking subproblem related to
the pair (Fk, Fk+1) of consecutive class distributions, yielding a scoring function s(k),
for 1 ≤ k < K and 2) computing a median (6), when feasible, based on the latter over
a set S1 of scoring functions. Beyond the difficulty to solve each ranking subproblem
separately (for instance refer to [CV09e] for a discussion of the nature of the bipartite
ranking issue), the performance/complexity of the method sketched above is ruled by
the richness of the class S1 of scoring function candidates: too complex classes clearly
make median computation unfeasible, while poor classes may not contain sufficiently
accurate scoring rules in terms of VUS.
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5.2.1 The aggregation procedure

Now the rationale behind the way the multi-class ranking problem can be divided into
a series of bipartite subproblems, we recapitulate the successive steps of the "pairwise
aggregation" approach. Based on two independent samples, a sample D = {(Xi, Yi) :

1 ≤ i ≤ n} with i.i.d. labeled observations and D′ = {X ′i, : 1 ≤ i ≤ n′} a sample with
unlabeled observations (the first one is used for training bipartite ranking rules, while
one uses the other for consensus calculation), it is implemented in two steps, provided
a bipartite ranking algorithm A is available, as follows.

The Kendall aggregation approach for multi-class ranking

Input. Data samples D and D′, bipartite ranking algorithm A, subset S1 of
scoring functions.

1. A series of bipartite ranking tasks. For k = 1, . . . , K − 1, run algorithm
A in order to train a scoring function ŝ(k)(x) based on the truncated samples
Dk and Dk+1 of observations in D with labels k and k + 1 respectively.

2. Aggregating scoring rules. Compute ŝ(x) in S1 such that:

K−1∑
k=1

τµ̂

(
ŝ, ŝ(k)

)
= max
s∈S1

K−1∑
k=1

τµ̂

(
s, ŝ(k)

)
,

where µ̂(dx) denotes the empirical distribution computed using the (unlabeled)
sample D′.

Before stating an asymptotic result providing theoretical grounds for this aggregation
method, a few remarks are in order.

We first underline that the use of two independent samples, one for the bipartite ranking
tasks and the other for the median computation, can be seen as an adaptation of
the well-known "two-sample trick", widely used in semi-parametric statistics, to avoid
possibly harmful dependencies, permitting thus to study the asymptotic behavior of
the (functional) statistic ŝ(x) constructed in two stages. However, according to our
experience, using a single (and thus larger) data set for both stages yields similar, or
even better, numerical results in practice.

Rank prediction vs. scoring rule learning. When the goal is to rank accurately
new unlabeled datasets, rather than to learn a nearly optimal scoring function explic-
itly, the following variant of the procedure described above can be considered, avoiding
in particular the (difficult) optimization stage over a set of scoring functions. Given an
unlabeled sample of i.i.d. copies of the input r.v. X DX = {X1, . . . , Xm}, instead of
aggregating scoring functions s(k) defined on the feature space X and use a consensus
rule for ranking DX ’s elements, one may aggregate their restrictions to the finite set
DX ⊂ X , or the ranks of the unlabeled data as defined by the s(k)’s, more simply.

Practical implementation. Motivated by practical problems such as the design of
meta-search engines, collaborative filtering or combining results from multiple databases,
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consensus ranking, which the second stage of the procedure described above is a special
case of, has recently enjoyed renewed popularity and received much attention in the
machine-learning literature, see [MPPB07], [FKM+03] or [LL03] for instance. As shown
in [Hud08] or [Wak98] in particular, median computations are NP -hard problems in
general. Except in the case where S1 is of very low cardinality, the (approximate)
computation of a supremum (6) involves in practice the use of meta-heuristics such
as simulated annealing, tabu search or genetic algorithms. The description of these
computational approaches to consensus ranking is beyond the scope of this paper and
we refer to [BGH89],[CH98], [LMC99] or [MM09] and the references therein for fur-
ther details on their implementation. We also underline that the implementation of
the Kendall aggregation approach could be naturally based on K(K − 1)/2 scoring
functions, corresponding to solutions of the bipartite subproblems defined by all possi-
ble pairs of labels (the theoretical analysis carried out below can be straightforwardly
extended so as to establish the validity of this variant), at the price of an additional
computational cost for the median computation stage however.

5.2.2 Main result

The following theorem reveals that the notion of median introduced in Definition 51
preserves AUC consistency and thus yields a VUS consistent ranking when based on
K − 1 rankings, each being AUC-consistent for the bipartite subproblem related to a
specific pair of class distributions (Fk, Fk+1), 1 ≤ k < K. For simplicity’s sake again,
it is stated in the 3-class setting.

Theorem 54. Suppose that assumptions of Proposition 53 are satisfied. Let S1 ⊂ S0 be
some set of real-valued scoring functions such that S∗∩S1 6= ∅. Let sn(x) and s′n(x) be
AUC-consistent sequences of scorings functions in S1 for the bipartite ranking problems
related to the pairs of distributions (F1, F2) and (F2, F3) respectively. If there exists a
median scoring rule sn(x) in the sense of Definition 51, it is then VUS-consistent.

The result stated above deserves some comments. It provides a theoretical basis for the
ranking method proposed above that reduces the K-partite task to a series of bipartite
tasks (in this respect, notice incidentally that even proving consistency of classification
methods that reduce multi-class to binary is far from obvious in general, see [ASS01])
and its goal is to explain the main idea rather than to give the results in full generality.
Of course, it is not realistic to assume that S1 contains some optimal scoring functions.
However, through careful examination of its proof, one can see that this simplifying
hypothesis can easily be replaced by the assumption that the scoring functions sn,
s′n and sn(x) belong to a set S(n)1 , such that there exists a sequence (s∗n)n≥1 with
s∗n ∈ S

(n)
1 and VUS(s∗n)→ VUS∗ as n→∞, at the price of an additional bias term.

6 Illustrative numerical experiments

It is the purpose of this section to illustrate the approach described above by simulation
results and provide some empirical evidence for its efficacy. Since our goal is here to
show that, beyond its theoretical validity, the Kendall aggregation approach to multi-
class ranking actually works in practice, rather than to provide a detailed empirical
study of its performance on benchmark artificial/real datasets compared to that of
possible competitors (this will be the subject of a forthcoming paper), in the subsequent



25

experimental analysis we have considered two simple data generative models, for which
one may easily check Assumption 1 and compute the optimal ROC surface (as well as
the optimum value VUS∗), which the results obtained must be compared to. The first
example involves mixtures of Gaussian distributions, while the second one is based on
mixtures of uniform distributions, the target ROC surface being piecewise linear in
the latter case (cf assertion 4 in Proposition 31). Here, the artificial data simulated
are split into a training sample and a test sample, used for plotting the "test ROC

surfaces".

The learning algorithm used for solving the bipartite ranking subproblems at the first
stage of the procedure is the TreeRank procedure based on locally weighted versions
of the CART method (with axis parallel splits), see [CDV11] for a detailed description
of the algorithm (as well as [CV09e] for rigorous statistical foundations of this method).
Precisely, we used a package for R statistical software (see http://www.r-project.com)
implementing TreeRank (with the "default" parameters: minsplit = (size of training
sample)/20, maxdepth = 10, mincrit = 0), available at http://treerank.sourceforge.net,
see [BCDV09]. The scoring rules produced at stage 1 are thus (tree-structured and)
piecewise constant, making the aggregating procedure described in sub-subsection 5.2.1
quite feasible. Indeed, if s1, . . . , sM are scoring functions that are all constant on
the cells of a finite partition P of the input space X , one easily see that the infimum
infs∈S0

∑M
m=1 dτµ(s, sm) reduces to a minimum over a finite collection of scoring func-

tions that are also constant on P’s cells and is thus attained. As underlined in subsection
5.2, when the number of cells is large, median computation may become practically
unfeasible and the use of a meta-heuristic can be then considered for approximation
purpose (simulated annealing, tabu search, etc.), here the ranking obtained by taking
the mean ranks over the K − 1 rankings of the test data has been improved in the
Kendall consensus sense by means of a standard simulated annealing technique.

For comparison purpose, we have also implemented two ranking algorithms, RankBoost
(when aggregating 30 stumps, see [RCMS05]) and SVMRank (with linear and Gaussian
kernels with repective parameters C = 20 and (C, γ) = (0.01), see [HGO00]), using the
SVM-light implementation available at http://svmlight.joachims.org/. We have also
used the RankRLS method (http://www.tucs.fi/RLScore, see [PTA+07]) that imple-
ments a regularized least square algorithm with linear kernel ("bias = 1") and with
Gaussian kernel (γ = 0.01), selection of the intercept on a grid being performed through
a leave-one-out procedure. For completeness, the Kendall aggregation procedure has
also been implemented with RankBoost for solving the bipartite subproblems.

First example (mixtures of Gaussian distributions). Consider a q-dimensional
Gaussian random vector Z, drawn as N (µ, Γ ), and a borelian set C ⊂ Rq weighted
by N (µ, Γ ). We denote by NC(µ, Γ ) the conditional distribution of Z given Z ∈ C.
Equipped with this notation, we can write the class distributions used in this example
as:

F1(dx) = N[0,1]2

((
0

0

)
,

(
1/4 0

0 1/4

))
F2(dx) = N[0,1]2

((
1/2

1/2

)
,

(
1/4 0

0 1/4

))
F3(dx) = N[0,1]2

((
1

1

)
,

(
1/4 0

0 1/4

))
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a. Pooled sample: red circles represent instances with
label "1", green diamonds those with label "2" and blue

stars those with label "3"
b. Optimal level sets.

Fig. 3 First example - Mixture of Gaussian distributions

Table 1 Comparison of the VUS: "Gaussian" experiment - VUS∗ = 0.4369

Method VUS (σ̂)
TreeRank 1v2 0.3703 (±0.0102)
TreeRank 2v3 0.3728 (±0.0104)
TreeRank 1v3 0.3972 (±0.0053)
TreeRank Agg 0.4118 (±0.0054)
RankBoostVUS 0.4281 (±0.0024)
RankBoost Agg 0.4305(±0.0019)
SVMrank lin 0.4367 (±0.0003)
SVMrank gauss 0.4363 (±0.0009)
RLScore lin 0.4368 (±0.0003)
RLScore gauss 0.4366 (±0.0006)

When p1 = p2 = p3 = 1/3, the regression function is then an increasing transform of
(x1, x2) ∈ [0, 1]2 7→ x1 + x2, it is given by:

η(x) =
2.79 · e−(x1+x2)

2

+ 2 · 1.37 · e−(x1+x2−1)2 + 3 · 2.79 · e−(x1+x2−2)2

2.79 · e−(x1+x2)2 + 1.37 · exp−(x1+x2−1)2 +2.79 · e−(x1+x2−2)2
.

The simulated dataset is plotted in Fig. 3a, while some level sets of the regression
function are represented in 3b. We have drawn 50 training samples of size n = 3000

and a test sample of size 3000. Using TreeRank, we learn 3 bipartite ranking rules:
s(1)(x) based on data with labels ”1” and ”2”, s(2)(x) based on data with labels ”2”

and ”3” and s(3)(x) based on data with labels ”1” and ”3”. Finally, s(1) and s(2) are
aggregated through the procedure described in sub-subsection 5.2.1, yielding the score
called "TreeRank Agg" in Table 1. We also used each scoring function separately to
rank the test data and compute a test estimate of the VUS ("TreeRank 1v2", "2v3",
"1v3"). The scoring function produced by RankBoost is referred to as "RankBoost-
VUS", while that obtained by Kendall aggregation based on (a bipartite implementa-
tion of) RankBoost is called "RankBoost Agg". The scoring rule computed through
SVMrank (respectively, through RankRLS) based on a linear and a Gaussian kernels
are respectively called "SVMrank lin" and "SVMrank gauss" (respectively, "RLScore
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Fig. 4 Levels sets of the scoring functions "TreeRank 1v2", "TreeRank 2v3", "TreeRank 1v3"
and "TreeRank Agg" in a top-down left-right manner

lin" and "RLScore gauss"). Averages (VUS) over the 50 training samples have been
next computed, as well as standard deviations σ̂, they are given in Table 1 with the
results of the earlier described algorithms. For comparison purpose, some level sets of
the TreeRank scoring functions learnt from the first training sample are displayed in
Fig. 4.

Second example (mixtures of uniform distributions). The artificial data sample
used in this second example is represented in Fig 5.a and has been generated as follows.
The unit square X = [0, 1]2 is split into 9 squares of equal size and we defined next
the scoring function s∗ as the function constant on each of these squares depicted by
Fig. 5.b). We then chose the uniform distribution over the unit square as marginal
distribution of X and took φ1,2(x) = s∗1,2(x)/1.3 and φ2,3 = 1.3s∗2,3(x). As s∗1,2 and
s∗2,3 are non-decreasing functions of s∗ (see Table 2) : φ2,1 and φ3,2 are thus non-
decreasing functions of s∗, by virtue of Proposition 22, the class distributions check
the monotonicity assumption 1. Computation of the ηi’s on each part of X is then
straightforward, see Table 2.

Here 50 training samples of size n = 9000 plus a test sample of size 9000 have been
generated. The performance results are reported in Table 3. For comparison purpose,
some level sets of the scoring function learnt on the first training sample for each
method is represented in Fig. 6.
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Table 2 Values of the ηk’s on each of the nine subsquare of [0, 1]2, cf Fig. 5 b

s∗ s∗1,2 s∗2,3 η1 η2 η3
0.2 0.2 0.2 0.7692 0.2000 0.0308
0.4 0.4 0.2 0.6250 0.3250 0.0500
0.6 0.8 0.6 0.3968 0.4127 0.1905
0.8 0.8 0.8 0.3731 0.3881 0.2388
1 1 1 0.3030 0.3939 0.3030
1.25 1.25 1 0.2581 0.4194 0.3226
1.66 1.66 1.66 0.1682 0.3645 0.4673
2.5 2.5 2.5 0.0952 0.3095 0.5952
5 2.5 5 0.0597 0.1940 0.7463

a. Pooled sample: red circles represent instances with
label "1", green diamonds those with label "2" and blue

stars those with label "3"

b. Optimal scoring function s∗.

Fig. 5 Second example - Mixtures of uniform distributions

Table 3 Comparison of the VUS : "uniform" experiment - VUS∗ = 0.3855

Method VUS(σ̂)
TreeRank 1v2 0.3681 (±0.0060)
TreeRank 2v3 0.3611 (±0.0056)
TreeRank 1v3 0.3774 (±0.0037)
TreeRank Agg 0.3818 (±0.0027)
RankBoostVUS 0.3681 (±0.0013)
RankBoost Agg 0.3687 (±0.0013)
SVMrank lin 0.3557 (±0.0008)
SVMrank gauss 0.3734 (±0.0008)
RLScore lin 0.3554 (±0.0005)
RLScore gauss 0.3742 (±0.0007)

An example based on real data. We finally illustrate the methodology promoted
in this paper by implementing it on a real data set, the Cardiotocography Data Set
considered in [FA10] namely. The data have been collected as follows: 2126 fetal car-
diotocograms (CTG’s in abbreviated form) have been automatically processed and the
respective diagnostic features measured. The CTG’s have been next analyzed by three
expert obstetricians and a consensus ordinal label has been then assigned to each of
them, depending on the degree of anomaly observed: 1 for "normal", 2 for "suspect"
and 3 for "pathologic".
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Fig. 6 Levels sets of the scoring functions "TreeRank Agg", "SVMrank lin", "RLScore lin",
"RLScore gauss", "SVMrank gauss", "RankBoostVUS", "RankBoost Agg".

We have split the data set into a training sample De and a test sample Dt of same
sizes: scoring functions have been built based on the sample De and next tested on
the sample Dt (i.e. we have computed the empirical versions of the ROC and VUS

criteria based on Dt). In this experiment, parameters have been selected by cross-
validation: the scoring rule RankBoostVUS is based on 300 stumps and the bipartite
rules produced by RankBoost are based on 100 stumps, the intercept involved in SVM
ranklin is C = (0.001), while SVMrank gauss, RLScore lin and RLScore gauss have
been obtained with the respective parameters (C, γ) = (0.001, 0.0001), bias = 1 and
(bias, γ) = (1, 0.001). Performance results are reported in Table 4 and the ROC surfaces
test are plotted in Fig. 7.

Discussion.We observe that, in each of these experiments, Kendall aggregation clearly
improves ranking accuracy, when measured in terms of VUS. In addition, looking at
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Fig. 7 ROC surfaces "test" of the scoring functions bipartite "TreeRank", "TreeRank Agg",
"SVMrank lin", "RLScore lin", "RLScore gauss", "SVMrank gauss", "RankBoostVUS",
"RankBoost Agg".
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Table 4 Comparison of the VUS test - "Cardiotocography" experiment

Method VUS test
TreeRank 1v2 0.2357
TreeRank 2v3 0.3314
TreeRank 1v3 0.6932
TreeRank Agg 0.8141
RankBoostVUS 0.8346
RankBoost Agg 0.8959
SVMrank lin 0.7202
SVMrank gauss 0.7856
RLScore lin 0.7652
RLScore gauss 0.7829

the standard deviation, we see that the aggregated scoring function is more stable.
In terms of level sets, Kendall aggregation yielded more complex subsets and thus
sharper results. Notice additionally that, as in the "Gaussian" experiment the level
sets are linear, it is not surprising that the kernel methods outperform the tree-based
ones in this situation. In contrast, for the "uniform" experiment, the tree-based meth-
ods performed much better than the others, the performance of TreeRank Agg is nearly
optimal. Looking at the level sets (see Fig. 6), they seem to recover well their geometric
structure. Observe also that Kendall aggregation of (bipartite) scoring functions pro-
duced by RankBoost has always lead to (slightly) better results than those obtained by
a direct use of RankBoost on the 3-class population, with a computation time smaller
by a factor 10 however. Finally, notice that, on the Cardiotocography data set, the
Kendall aggregation approach based on RankBoost is the method that produced the
scoring function with largest VUS test among the algorithms candidates. In particular,
it provides the best discrimination for the bipartite subproblem "1 vs 2", the most
difficult to solve apparently, in view of the ROC surfaces plotted in Fig. 7.

These empirical results only aim at illustrating the Kendall aggregation approach for
multi-class ranking, the limited goal pursued here being to show how aggregation helps
to improve results. Beyond the theoretical validity framework sketched in section 5,
since a variety of bipartite ranking algorithms have been proposed in the literature
and dedicated libraries are readily available, one of the main advantages of the Kendall
aggregation approach lies in the fact that it is very easy to implement, when applied to
bipartite rules that are not too complex, so that the (approximate) median computation
is feasible, see subsection 5.2. A complete and detailed empirical analysis of the merits
and limitations of this procedure will be the subject of a forthcoming article, where
comparisons with competitors will be carried out (based on real datasets in particular)
and computational issues be discussed at length.

7 Conclusion

In this article, we have presented theoretical work on multi-class ranking. In the first
part of the paper, the issue of optimality has been tackled. We have proposed a mono-
tonicity likelihood ratio condition that guarantees the existence and unicity of an "op-
timal" preorder on the input space, in the sense that it is optimal for any bipartite
ranking subproblem, considering all possible pairs of labels. In particular, the regres-
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sion function is proved to define an optimal ranking rule in this setting, highlighting
the connection between K-partite ranking and ordinal regression. We have next shown
that the notion of ROC manifold/surface and its summary, the volume under the ROC

surface (VUS), then provide quantitative criteria for evaluating ranking accuracy in the
multi-class setup: under the afore mentioned monotonicity likelihood ratio condition,
scoring functions whose ROC surface is as high as possible everywhere exactly coincide
with those forming the optimal set (i.e. the set of scoring functions that are optimal for
all bipartite subproblems, defined with no reference to the notions of ROC surface and
VUS). Conversely, we have proved that the existence of a scoring function with such
a dominating ROC surface implies that the monotonicity likelihood ratio condition is
fulfilled. The second part is dedicated to describe a specific method for decomposing
the multi-class ranking problem into a series of bipartite ranking tasks, as proposed
in [FHV09]. For this purpose, we have introduced a specific notion of median scoring
function based on the (probabilistic) Kendall τ distance and shown that it leads to a
consistent ranking rule, when applied to scoring functions that are, each, consistent for
the bipartite ranking subproblem related to a specific pair of consecutive class distri-
butions. This approach allows for extending the use of ranking algorithms originally
designed for the bipartite situation to the ordinal multi-class context. It is illustrated
by three numerical examples. Further experiments, based on more real datasets in
particular, will be carried out in a dedicated article in order to determine precisely
the situations in which this method is competitive, compared to alternative ranking
techniques in the ordinal multi-class setup. In this respect, we underline that, so far,
very few practical algorithms tailored for ROC graph optimization have been proposed
in the literature. Whereas, as shown at length in [CV09e] and [CDV11], partitioning
techniques for AUC maximization, in the spirit of the CART method for classifica-
tion, can be implemented in a very simple manner, by solving recursively cost-sensitive
classification problems (with a local cost, depending on the data lying in the cell to
be split), recursive VUS maximization remains a challenging issue, for which no sim-
ple interpretation is currently available. Hence, the number of possible strategies for
direct optimization of the ranking criterion in the K-partite situation contrasts with
that in the bipartite context and strongly advocates, for the moment, for considering
techniques that transform multi-class ranking into a series of bipartite tasks, such as
the method analyzed in this article.

Appendix - Technical Proofs

Proof of Theorem 23

Recall that η(x) =
∑K
k=1 k · ηk(x). Our goal is to establish that: ∀(x, x′) ∈ X 2,

Φk,l(x) < Φk,l(x
′)⇒ η(x) < η(x′).

The proof is based on the next lemma.

Lemma 1 Suppose Assumption 1 is satisfied. Let (x, x′) ∈ X 2. If there exists 1 ≤ l <
k ≤ K such that 0 < Φk,l(x) < Φk,l(x

′), then for all j ∈ {1, ...,K}, we have

K∑
i=j

ηi(x) ≤
K∑
i=j

ηi(x
′). (8)
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Additionally, a strict version of inequality (8) holds true when j = l + 1.

Proof Let (x, x′) ∈ X 2 and 1 ≤ l < k ≤ K be such that Φk,l(x) < Φk,l(x
′)

Combining Φk,l(x) =
plηk(x)

pkηl(x)
and ηl(x) = 1−

∑
i 6=l ηi(x), we clearly have

ηk(x)− ηk(x)
∑
i 6=l

ηi(x
′) < ηk(x′)− ηk(x′)

∑
i 6=l

ηi(x),

and, by virtue of Assumption 1, for 1 ≤ j ≤ m ≤ K:

ηm(x) ≤ ηm(x′) +
∑
i<j−1

{
ηm(x)ηi(x

′)− ηm(x′)ηi(x)
}

+
∑
i>j−1

{
ηm(x)ηi(x

′)− ηm(x′)ηi(x)
}
,

≤ ηm(x′) +
∑
i>j−1

{
ηm(x)ηi(x

′)− ηm(x′)ηi(x)
}
. (9)

Summing up, term-by-term, inequalities (9) for m = j, . . . , K, one gets that

K∑
m=j

ηm(x) ≤
K∑
m=j

ηm(x′) +

K∑
m=j

K∑
i=j

{
ηm(x)ηi(x

′)− ηm(x′)ηi(x)
}
.

The proof is finished by noticing that the sum on the right hand side of the inequality
above is equal to 0. �

The desired result is established by summing up the inequalities (8) stated in Lemma
1 for j = 1, . . . , K.

Proof of Theorem 32

Let (s, s∗) ∈ S × S∗. Since, in particular, the scoring function s∗ belongs to the set
S∗1,3, we have ROCF1,F3

(s∗, 1−α) ≥ ROCF1,F3
(s, 1−α) for all α ∈ [0, 1]. Hence, as the

desired bound obviously holds true on the set {(α, γ) : γ > ROCF1,F3
(s∗, 1 − α)} ⊂

{(α, γ) : γ > ROCF1,F3
(s, 1 − α)}, we place ourselves on the complementary set

{(α, γ) : γ ≤ ROCF1,F3
(s∗, 1− α)}, on which we have

ROC(s∗, α, γ)− ROC(s, α, γ) ≤
(
ROCF1,F2

(s∗, 1− α)− ROCF1,F2
(s, 1− α)

)
+(

ROCF3,F2
(s, γ)− ROCF3,F2

(s∗, γ)
)
.

The terms on the right hand side of the equation are both nonnegative, since s∗ lies
in S∗1,2 and S∗3,2 respectively (observing that, whatever the two distributions H and
G on R and for any s ∈ S and (α, β) ∈ [0, 1]2, we have: ROCH,G(s, α) ≤ β ⇔ α ≤
ROCG,H(s, β)). The first part of the result is thus established.

Turning now to the second part, the bound stated obviously holds true on the set
{(α, γ) : γ > ROCF1,F3

(s∗, 1− α)}.
We denote by Ē = X \ E the complementary set of any subset E ⊂ X and set
m1(x) = I{x ∈ R̄∗(1)α } − I{x ∈ R̄(1)

s,α} and m3(x) = I{x ∈ R∗(3)1−γ} − I{x ∈ R(3)
s,1−γ} for

α ∈ [0, 1]. On the set {(α, γ) : γ ≤ ROCF1,F3
(s∗, 1− α)}, we may then write:
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ROC(s∗, α, γ)− ROC(s, α, γ) ≤ −E[m1(X)|Y = 2]− E[m3(X)|Y = 2].

Considering the first ROC curve deficit, we have:

−E[m1(X)|Y = 2] = −p1
p2

E
[
m1(X)

η2(X)

η1(X)
|Y = 1

]
.

Then we add and subtract
η3(x)

η1(x)
− 1−Q(1)(η1, α)

Q(1)(η1, α)
, this leads to:

− E [m1(X)|Y = 2] = −p1
p2

E
[
m1(X)(

η2(X) + η3(X)

η1(X)
+

1−Q(1)(η1, α)

Q(1)(η1, α)
)|Y = 1

]
+
p1
p2

E
[
m1(x)

η3(X)

η1(X)
|Y = 1

]
.

By definition of s∗, the second term on the right hand side of the equation above is
equal to

p3
p2

E[m1(X)|Y = 3] = ROCF1,F3
(s, 1− α)− ROCF1,F3

(s∗, 1− α),

while, for the first term, by removing the conditioning with respect to Y = 1 and using
then the definition of Q(1)(η1, α)), we get:

1

p2Q(1)(η1, α)
E
[
m1(X)

(
η1(X)−Q(1)(η1, α)

)]
=

1

p2
E
[∣∣∣η1(X)−Q(1)(η1, α)

∣∣∣m1(X)
]
.

The first part of the desired bound follows from A∆B = Ā∆B̄. The other ROC curve
difference can be handled the same way. This leads to the desired result.

Proof of Theorem 33

Suppose that there exists s∗ ∈ S such that, for any s ∈ S, we have: ∀(α, β) ∈ [0, 1]2,

ROC(s∗, α, γ) ≥ ROC(s, α, γ). (10)

Observe that, if γ > ROCF1,F3
(s∗, 1 − α), this implies that γ > ROCF1,F3

(s, 1 − α),
whatever (α, γ). It then follows that s∗ ∈ S∗1,3. Now the fact that s∗ belongs to S∗1,2
(respectively, to S∗1,3) straightforwardly result from Eq. (10) with β = 0 (respectively,
with α = 1).
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Proof of Theorem 41

Let (s, s∗) ∈ S × S∗. Notice that, as s∗ ∈ S∗1,3, we have {(α, γ) : γ ≤ ROCF1,F3
(s, 1−

α)} ⊂ {(α, γ) : γ ≤ ROCF1,F3
(s∗, 1− α)}, so that

ROC∗(α, γ)− ROC(s, α, γ) ≤ {ROCF1,F2
(s∗, 1− α)− ROCF3,F2

(s∗, γ)

−
(
ROCF1,F2

(s, 1− α)− ROCF3,F2
(s, γ)

)
+
}

× I{γ ≤ ROC∗F1,F3
(1− α)}

≤ {ROCF1,F2
(s∗, 1− α)− ROCF3,F2

(s∗, γ)

− ROCF1,F2
(s, 1− α)− ROCF3,F2

(s, γ)}
× I{γ ≤ ROC∗F1,F3

(1− α)}
≤
(
ROCF1,F2

(s∗, 1− α)− ROCF1,F2
(s, 1− α)

)
−
(
ROCF3,F2

(s∗, γ)− ROCF3,F2
(s, γ)

)
.

Integrating over (α, γ) ∈ [0, 1]2 then yields the desired bound, using the fact that, for
any s ∈ S0,

∫ 1
γ=0

ROCF3,F2
(s, γ)dγ = 1−AUCF2,F3

(s).

Proof of Proposition 43

By virtue of proposition 41, we have:

VUS∗ −VUS(η̂) ≤
(
AUC∗F1,F2

−AUCF1,F2
(η̂)
)

+
(
AUC∗F2,F3

−AUCF2,F3
(η̂)
)
.

Considering the first term on the right hand side of the equation above, we have:

AUC∗F1,F2
−AUCF1,F2

(η̂) =
1

2p1p2
E[|η1(X)η2(X′)− η1(X′)η2(X)| · I{(X,X′) ∈ Γ}],

where
Γ = {(x, x′) ∈ X 2 : (η(x)− η(x′))(η̂(x)− η̂(x′)) < 0}.

By using the triangular inequality and Lemma 1, one may establish that: ∀(x, x′) ∈ X 2,
∀i ∈ {1, 2, 3},

|ηi(x)− ηi(x′)| < |η(x)− η(x′)|.

Then, we get:

AUC∗F1,F2
−AUCF1,F2

(η̂) ≤ 1

2p1p2
E[|η(X)− η(X′)|I{(X,X′) ∈ Γ}].

But, one may easily check that, if (x, x′) ∈ Γ , then

|η(x)− η(x′)| ≤ |η(x)− η̂(x)|+ |η(x′)− η̂(x′)|.

As the same argument can be applied to the second AUC difference, this gives the
desired result.
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Proof of Proposition 51

Recall that τν(s1, s2) = 1− 2dτν (s1, s2), where dτν (s1, s2) is given by:

P{(s1(X)−s1(X ′)) ·(s2(X)−s2(X ′)) < 0}+ 1

2
P{s1(X) = s1(X ′), s2(X) 6= s2(X ′)}

+
1

2
P{s1(X) 6= s1(X ′), s2(X) = s2(X ′)}.

Observe first that, for all s ∈ S0, AUCF1,F2
(s) may be written as:

P{(s(X)−s(X ′))·(Y−Y ′) > 0}/(2p(1−p))+P{s(X) = s(X ′), Y 6= Y ′}/(4p(1−p)).

Notice also that, using Jensen’s inequality, one easily obtain that the quantity 2p(1−
p)|AUCF1,F2

(s1)−AUCF1,F2
(s2)| is bounded by the expectation of the random variable

I{(s1(X)−s1(X ′))·(s2(X)−s2(X ′)) < 0}+1

2
I{s1(X) = s1(X ′)}·I{s2(X) 6= s2(X ′)}+

1

2
I{s1(X) 6= s1(X ′)} · I{s2(X) = s2(X ′)},

which is equal to dτν (s1, s2) = (1− τν(s1, s2))/2. This proves the assertion.

Proof of Proposition 52

Set Γs = {(x, x′) ∈ X 2 : (ζ(x)− ζ(x′))(s(x)− s(x′)) < 0}. We have, for all real valued
scoring functions (s, s∗) ∈ S × S∗1,2:

dτν (s, s∗) ≤ P
{

(X,X ′) ∈ Γs
}

+
1

2
P{s(X) = s(X ′)}.

Recall also that

2p(1− p)
(
AUC∗F1,F2

−AUCF1,F2
(s)
)

= E [|ζ(X)− ζ(X ′)|I{(X,X ′) ∈ Γs}]
+ P{s(X) = s(X ′), (Y, Y ′) = (−1,+1)},

see Example 1 in [CLV08] for instance.
Observe that Hölder inequality combined with the noise condition shows that the
quantity E [I{(X,X ′) ∈ Γs}] is bounded by

E [|ζ(X)− ζ(X ′)| · I{(X,X ′) ∈ Γs}]a/(1+a)c
1/(1+a)

.

In addition, we have

P{s(X) = s(X ′), (Y, Y ′) = (−1,+1)}

=
1

2
E
[
I{s(X) = s(X ′)} · (ζ(X) + ζ(X ′)− 2ζ(X)ζ(X ′))

]
,

and the upper bound can be easily seen as larger than E
[
I{s(X) = s(X ′)} · |ζ(X)− ζ(X ′)

]
/2.

Therefore, using the same Hölder argument as above, we obtain that

P{s(X) = s(X ′)} ≤
(
E [|ζ(X)− ζ(X ′)| · I{s(X) = s(X ′)}

)a/(1+a) × c1/(1+a)

Combining the bounds above, the concavity of t 7→ ta/(1+a) permits to finish the proof.
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Proof of Theorem 54

Let (s
(1)
n , s

(2)
n ) be a sequence of real-valued scoring functions in S1 such that, as n→∞,

AUCF1,F2
(s

(1)
n )→ AUC∗F1,F2

and AUCF2,F3
(s

(2)
n )→ AUC∗F2,F3

. Here we consider the
following consensus measure: ∀s ∈ S1,

∆n(s) = dτµ

(
s, s

(1)
n

)
+ dτµ

(
s, s

(2)
n

)
.

Let s∗ ∈ S1 ∩ S∗. With µ1,2 = (p1/(1 − p3))F1 + (p2/(1 − p3))F2, Proposition 51,
combined with the triangular inequality applied to the pseudo-distance dτµ1,2 , implies
that

AUC∗F1,F2
−AUCF1,F2

(s̄n) ≤
dτµ1,2 (s∗, s̄n)

p1p2/(1− p3)2

≤
dτµ1,2 (s̄

(1)
n , s̄n) + dτµ1,2 (s∗, s̄

(1)
n )

p1p2/(1− p3)2

≤
dτµ1,2 (s∗, s̄

(1)
n )

p1p2/(1− p3)2
+
dτµ(s̄

(1)
n , s̄n)

p1p2
.

The desired result finally follows from Proposition 52 combined with the AUC-consistency
assumptions.
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